JP2002159509A - Detecting method and device of tip load of operating apparatus of surgery under celoscope - Google Patents

Detecting method and device of tip load of operating apparatus of surgery under celoscope

Info

Publication number
JP2002159509A
JP2002159509A JP2001238893A JP2001238893A JP2002159509A JP 2002159509 A JP2002159509 A JP 2002159509A JP 2001238893 A JP2001238893 A JP 2001238893A JP 2001238893 A JP2001238893 A JP 2001238893A JP 2002159509 A JP2002159509 A JP 2002159509A
Authority
JP
Japan
Prior art keywords
force
tip
active element
shaft
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001238893A
Other languages
Japanese (ja)
Inventor
Shigeyuki Shimaji
重幸 島地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001238893A priority Critical patent/JP2002159509A/en
Publication of JP2002159509A publication Critical patent/JP2002159509A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a detecting method of a tip load of an operating apparatus of a surgery under a celoscope capable of transmitting the load at the tip of the operating apparatus such as a forceps or a scalpel inserted into the coelom to a surgeon through a control stick of an operation robot device, and of improving operability. SOLUTION: The operating apparatus such as the forceps or the scalpel is inserted into the coelom through a hole opened in the surface. In this detecting method of the tip load force of the operating apparatus of the surgery under the celoscope, an outer pipe capable of contacting or separating the operating apparatus from an organ other than a body hole or a desired organ is provided, the operating apparatus is disposed inside the outer pipe, and a force detector disposed between the outer pipe and the operating apparatus detects the load force received by the tip of the operating apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、躰腔鏡下で行う外
科手術を支援する装置に関するものであり、特に、躰腔
内に挿入した鉗子やメスなどの操作器の先端部の負荷力
を手術ロボット装置の操縦桿を通して術者に伝え、手術
操作性を向上させることができる躰腔鏡下外科手術操作
器の先端負荷力の検出方法およびその装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for assisting a surgical operation performed under a body cavity, and more particularly, to a load force applied to a distal end of an operating device such as a forceps or a scalpel inserted into a body cavity. The present invention relates to a method and apparatus for detecting a load applied to a distal end of a body-operated surgical operating device which can be transmitted to a surgeon through a control stick of a surgical robot device to improve surgical operability.

【0002】[0002]

【従来の技術】図6は手術ロボット装置により手術操作
器を操作する際、操作器の先端に加わる負荷力を操縦桿
に帰還させる方法を示す躰腔鏡下外科手術操作器の概念
図である。図中、1は操作器の先端にあって折れ曲がっ
たりはさんだりの動きができる能動子、2は操作器とし
てのシャフト、3は能動子1を駆動するモーターなどの
能動子駆動部であり、これらによって手術用の操作器の
主要部が構成されている。操作器のシャフト2はロボッ
ト本体31に設けられたロボットハンド30で把持され
るようになっており、またロボット本体31および前記
能動子駆動部3は制御部33によって制御されるように
なっている。前記制御部33は操作器先端の能動子1に
作用する負荷力を検出するための検出器4からの検出信
号、術者の手35の力によって作動する操縦桿32から
の信号を基に能動子駆動部3およびロボット本体31の
作動を制御する。なお、図中28は躰表面を切開した穴
である。
2. Description of the Related Art FIG. 6 is a conceptual diagram of a surgical operation device using a laparoscope, showing a method of returning a load applied to the tip of the operation device to a control stick when operating a surgical operation device by a surgical robot apparatus. . In the drawing, reference numeral 1 denotes an active element at the tip of the operating device, which can be bent or sandwiched, 2 denotes a shaft as an operating device, 3 denotes an active element driving unit such as a motor for driving the active element 1, These form the main part of the operating device for surgery. The shaft 2 of the operating device is gripped by a robot hand 30 provided on a robot body 31, and the robot body 31 and the active element driving unit 3 are controlled by a control unit 33. . The control unit 33 is activated based on a detection signal from the detector 4 for detecting a load force acting on the active element 1 at the tip of the operating device and a signal from the control stick 32 operated by the force of the operator's hand 35. The operation of the child drive unit 3 and the robot body 31 is controlled. In the figure, reference numeral 28 denotes a hole formed by cutting the body surface.

【0003】上記躰腔鏡下外科手術操作器では、ロボッ
トハンド30で把持している操作器を躰腔表面に開けた
穴28を介して躰腔内に挿入し、能動子1の負荷力を検
出器4により検知し、この検知信号を基に制御部33の
作用により操縦桿32を通して負荷力を術者に伝えなが
ら、ロボット本体31、能動子駆動部3を制御し、躰腔
鏡下外科手術を行うことができる構成となっており、手
術操作性を向上させることできるというものである。
[0003] In the above-mentioned body-operated surgical operating device, the operating device held by the robot hand 30 is inserted into the body cavity through a hole 28 formed in the surface of the body cavity, and the load force of the active element 1 is reduced. Detected by the detector 4, and based on the detection signal, the robot 33 and the active element driving unit 3 are controlled while transmitting the load force to the operator through the control stick 32 by the operation of the control unit 33. The configuration is such that the operation can be performed, and the operability of the operation can be improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記躰
腔鏡下外科手術操作器では、操作器の先端への負荷力を
検出し、ロボット操縦桿へ負荷力を帰還させるための具
体的な負荷力検出手段が未だ確立されておらず、このた
め有効な躰腔鏡下外科手術操作器の実用化が遅れてい
る。ここで、現時点において、能動子1の負荷力を検出
するために考えられる4種類の方法について説明する。
図7(b)は、第1番目の方法を示す図であり、負荷力
を検出するための力検出器21をロボットハンド30と
操作器としてのシャフト2との間に設けるようにしてい
る。図において、2は操作器(たとえばシャフト)、3
は能動子駆動部、28は躰腔表面に開けた穴、30は操
作器2を把持するロボットハンド、21は躰腔外におい
て操作器2とロボットハンド30の間に設置された力検
出器(前述した検出器4に対応する構成要素)、33は
操作器2に取り付けた力検出器21からの検出信号およ
び図示せぬ術者の手の力によって作動する操縦桿からの
信号を基に能動子駆動部3およびロボット本体31の作
動を制御する制御部である。この装置は、力検出器21
で検出した力を制御部33に帰還させ、シャフト2が常
に躰穴28を通過するように制御部33でロボット本体
31、および能動子駆動部3を調整する。この動作方法
は、図7(a)に示す術者が外科手術操作器を手で直接
操作しながら躰穴28を通過させるだけでなく、操作器
先端の触覚を感じるながら手術を行う方法に対応してお
り、この方法は操作器先端負荷を検出できる可能性はあ
る。しかしながらこの方法(躰腔外の操作器部分に力検
出器をつける方法)は、体の穴から操作器が受ける種々
の方向の力が先端負荷力の雑音として働き、能動子の正
確な制御が困難であるという問題がある。
However, in the above-mentioned surgical operation device using a laparoscope, a specific load force for detecting the load force applied to the tip of the operation device and returning the load force to the robot control stick is used. Detection means have not yet been established, which has delayed the practical application of effective endoscopic surgical operating devices. Here, four types of methods that can be considered at present to detect the load force of the active element 1 will be described.
FIG. 7B is a diagram showing a first method, in which a force detector 21 for detecting a load force is provided between the robot hand 30 and the shaft 2 as an operating device. In the figure, 2 is an operating device (for example, a shaft), 3
Is an active element driving unit, 28 is a hole formed in the surface of the body cavity, 30 is a robot hand for gripping the operating device 2, 21 is a force detector installed between the operating device 2 and the robot hand 30 outside the body cavity ( The components corresponding to the above-described detector 4) and 33 are active based on a detection signal from the force detector 21 attached to the operation device 2 and a signal from a control stick operated by the power of the operator's hand (not shown). The control unit controls the operation of the child drive unit 3 and the robot body 31. This device comprises a force detector 21
Is returned to the control unit 33, and the control unit 33 adjusts the robot body 31 and the active element driving unit 3 so that the shaft 2 always passes through the body hole 28. This operation method corresponds to the method shown in FIG. 7 (a) in which the surgeon not only passes through the body hole 28 while directly operating the surgical operation device by hand, but also performs the operation while feeling the tactile sensation at the tip of the operation device. Therefore, this method may be able to detect the actuator tip load. However, in this method (the method of attaching a force detector to the actuator part outside the body cavity), the force in various directions which the actuator receives from a hole in the body acts as noise of the tip load force, and accurate control of the active element is not possible. There is a problem that it is difficult.

【0005】図8は、第2番目の方法を示す図であり、
操作器の能動子1を駆動するモータの電気的な負荷を検
出するようにしている。図8において、1は操作器の先
端に設ける能動子、2は操作器としてのシャフト、5は
能動子1を駆動する能動子駆動モータ、12は能動子駆
動モータ5と能動子2を結ぶワイヤーであり、シャフト
2の中に設置される。33Aはモータの電気的駆動部で
ある。この操作器では、能動子1に大きな負荷が加わる
と能動子モータ5の電気的な駆動力も大きくなり、逆に
言えばこの駆動力を検出することで能動子1の負荷力を
測定することができる。しかし、能動子1の先端の負荷
力は一般には6軸方向成分(即ち、X、Y、Z方向の力
とX、Y、Z軸周りの偶力)を持っており、従って、6
軸の力を測定するためには少なくとも6個のモータ、お
よびそれらが有効に力を測定できるような能動子1の姿
勢が必要とされる。また、現実にはモータの個数は2〜
4個と少なく、力の成分によっては測定できない。さら
に、この方法では、能動子駆動モータ5が躰腔外に配置
されることが多くなり、その場合、ワイヤーや棒による
動力伝達での摩擦力、さらに躰穴28から操作器が受け
る摩擦力等が先端負荷力検出の雑音となるという問題が
ある。
FIG. 8 is a diagram showing a second method.
The electric load of the motor that drives the active element 1 of the operating device is detected. In FIG. 8, 1 is an active element provided at the tip of the operating device, 2 is a shaft as an operating device, 5 is an active element driving motor for driving the active element 1, and 12 is a wire connecting the active element driving motor 5 and the active element 2. And is installed in the shaft 2. 33A is an electric drive unit of the motor. In this operating device, when a large load is applied to the active element 1, the electric driving force of the active element motor 5 increases, and conversely, by detecting this driving force, the load force of the active element 1 can be measured. it can. However, the load force at the tip of the active element 1 generally has six axial components (i.e., forces in the X, Y, and Z directions and couples around the X, Y, and Z axes).
Measuring the axial force requires at least six motors and the attitude of the active element 1 so that they can effectively measure the force. In reality, the number of motors is 2
As few as four, cannot be measured depending on the force component. Further, in this method, the active element drive motor 5 is often arranged outside the body cavity. In this case, the frictional force in the power transmission by the wire or the rod, the frictional force that the operating device receives from the body hole 28, etc. However, there is a problem that noise is generated in the detection of the tip load force.

【0006】図9は、第3番目の方法を示す図であり、
操作器先端の能動子1それ自体に力検出器を取りつける
ようにしている。図9において、7は能動子1の骨格、
6は骨格7の覆、8は骨格7と覆6の間に挿入された力
検出器を示す。この方法では力検出器8の接触面を広く
して出来るだけ能動子1の全面を覆うとすれば検出すべ
き力の軸数は6軸ということになり、能動骨格の個数が
増えると測定する力の成分の数が多くなり、情報の伝達
方法が複雑になるという問題が生じる。また、操作器先
端の能動子1それ自体に力検出器8を取りつける方法の
ため、前記第2番目の方法のような摩擦による問題は無
くなるものの、多種多用な操作器の全てに力検出器を取
りつけ、さらに2〜4個はある操作器先端の能動子の一
つ一つに力検出器を取りつける必要があり、構成が複雑
になるいう問題がある。
FIG. 9 is a diagram showing a third method.
A force detector is attached to the active element 1 itself at the tip of the operating device. In FIG. 9, 7 is a skeleton of the active element 1,
Reference numeral 6 denotes a cover of the skeleton 7, and reference numeral 8 denotes a force detector inserted between the skeleton 7 and the cover 6. In this method, if the contact surface of the force detector 8 is widened to cover the entire surface of the active element 1 as much as possible, the number of axes of the force to be detected is six, and measurement is performed when the number of active skeletons increases. There is a problem that the number of force components increases and the method of transmitting information becomes complicated. Further, since the force detector 8 is attached to the active element 1 itself at the tip of the operating device, the problem due to friction as in the second method is eliminated, but the force detecting device is provided for all of the various operating devices. In addition, it is necessary to attach a force detector to each of the active elements at the tip of a certain operating device, and there is a problem that the configuration becomes complicated.

【0007】図10は、第4番目の方法を示す図であ
り、先端能動子1の付け根に力検出器をつけるようにし
ている。図10において、2は操作器としてのシャフ
ト、12は能動子に動力を伝達するワイヤー、11は同
様に伝動のための結合棒であり、根元の能動子の取りつ
け台9に力検出器10が取り付けられている。この方法
では、結合棒11、ワイヤー12の伝動要素に働くシャ
フト軸方向の力を分離し、能動子1に働く力を求めるに
は、この軸方向の力を除く必要がある。そのひとつの方
法として伝動要素11、12に働く力そのものを測定す
る方法があるが、測定が複雑になるという問題がある。
また、ワイヤーや棒に働く力の反力の分離が困難である
と言う問題が生じる。以上に述べたように、現在提案さ
れているいずれの方法も躰腔鏡下外科手術に適用できる
可能性があるものの、それぞれ未だ解決すべき課題が多
々ある。
FIG. 10 shows a fourth method, in which a force detector is attached to the base of the tip active element 1. In FIG. 10, 2 is a shaft as an operating device, 12 is a wire for transmitting power to the active element, 11 is a connecting rod for transmission, and a force detector 10 is mounted on a mounting stand 9 of the active element at the base. Installed. In this method, in order to separate the axial force acting on the transmission element of the connecting rod 11 and the wire 12 in the axial direction and obtain the force acting on the active element 1, it is necessary to remove the axial force. One of the methods is to measure the force acting on the transmission elements 11 and 12 itself, but there is a problem that the measurement becomes complicated.
Another problem is that it is difficult to separate the reaction force of the force acting on the wire or rod. As described above, although any of the currently proposed methods may be applicable to laparoscopic surgery, there are still many problems to be solved.

【0008】そこで、本発明者は、外科手術操作器に於
ける負荷力は、操作器先端の能動子全体の負荷力が検出
できれば十分であることが多いことに着目し、外套で操
作器を能動子の付け根まで覆い、外套と操作器の間で力
検出する方法を見いだした。図1を参照して本発明の基
本原理を説明すると、図中、1は能動子、2は操作器と
してのシャフト、3は能動子駆動部であり、シャフト2
と能動子駆動部3を覆うように外套20が配置されてい
る。シャフト2は、シャフト2と能動子駆動部3と外套
20との間の空間に配置された、たとえば21−1ある
いは21−2あるいは21−3あるいは複数の力検出器
を介して外套20により支持されている。そして外套2
0はロボットハンド30で把持され、外套20が躰穴2
8と接触する構成となっている。この外科手術操作器で
は力検出器21からの検知信号を基に図示せぬ制御部の
作用により操縦桿を通して負荷力を術者に伝えながら、
ロボット本体31、能動子駆動部3を制御する。このよ
うな基本構成からなる操作器では、躰腔内においてシャ
フト2は体内臓器とは接触しないので、躰穴や目標臓器
以外のものからの力を分離でき、ワイヤーや棒に働く反
力の影響も受けることなく、能動子1への接触負荷力が
測定できる。なお、先端能動子1全体の負荷力を検出す
るには、能動子1、シャフト2、能動子駆動部3の操作
器自体の重さや姿勢等を考慮しなければならないが、計
算で求めることで解決できる。
The inventor of the present invention has focused on the fact that the load on the surgical operating device is often sufficient if the load on the entire active element at the distal end of the operating device can be detected. We found a way to detect the force between the mantle and the actuator by covering the base of the active element. Referring to FIG. 1, the basic principle of the present invention will be described. In the figure, reference numeral 1 denotes an active element, 2 denotes a shaft as an operating device, 3 denotes an active element driving section,
The mantle 20 is arranged so as to cover the active element driving unit 3. The shaft 2 is supported by the mantle 20 via, for example, 21-1 or 21-2 or 21-3 or a plurality of force detectors arranged in a space between the shaft 2, the actuator driving unit 3 and the mantle 20. Have been. And cloak 2
0 is gripped by the robot hand 30, and the mantle 20 is
8. In this surgical operation device, the load force is transmitted to the operator through the control stick by the action of a control unit (not shown) based on the detection signal from the force detector 21,
The robot body 31 and the active child drive unit 3 are controlled. In the operating device having such a basic configuration, the shaft 2 does not come into contact with the internal organs in the body cavity, so that a force from a body other than the body hole and the target organ can be separated, and the influence of the reaction force acting on the wire or rod The contact load force applied to the active element 1 can be measured without receiving the force. In order to detect the load force of the entire tip active element 1, it is necessary to consider the weight, posture, and the like of the operating element itself of the active element 1, the shaft 2, and the active element driving section 3, but by calculating it, Solvable.

【0009】[0009]

【課題を解決するための手段】このため、本発明が採用
した課題解決手段は、表面を切開した穴を通して躰腔内
に挿入される鉗子やメスなどを備えた外科手術用操作器
において、躰穴や目標臓器以外の臓器から操作器を接触
分離できる外套を与え、その外套内に操作器を配置し、
外套と操作器の間に設置した力検出器により操作器先端
が受ける負荷力を検出することを特徴とする躰腔鏡下外
科手術操作器の先端負荷力の検出方法であり、前記検出
した負荷力を基に操作器を制御することを特徴とする躰
腔鏡下外科手術操作器の先端負荷力の検出方法であり、
能動子と、能動子を支持するシャフトと、能動子を駆動
する能動子駆動部と、シャフトと能動子駆動部を覆う外
套と、外套とシャフトの間に設ける力検出器と、外套の
上から操作器を支持するロボットハンドと、ロボットハ
ンドを制御するロボット本体と、力検出器からの検出信
号に基づいて能動子駆動部およびロボット本体とを制御
する制御部とを備えてなることを特徴とする躰腔鏡下外
科手術操作器の先端負荷力の検出装置であり、前記力検
出器はシャフトの先端部と外套の間、あるいはロボット
ハンドが把持する近傍のシャフト部分と外套との間、あ
るいは能動子駆動部と外套との間、あるいはこれら複数
の箇所に配置したことを特徴とする躰腔鏡下外科手術操
作器の先端負荷力の検出装置であり、前記力検出器は外
套と能動子駆動部との間に配置したことを特徴とする躰
腔鏡下外科手術操作器の先端負荷力の検出装置であり、
前記力検出器はシャフトの直交3軸方向とそれぞれの軸
周りの偶力の全て、あるいはそれらの一部の力成分を測
定できる力検出器であることを特徴とする躰腔鏡下外科
手術操作器の先端負荷力の検出装置であり、前記力検出
器は外套と能動子駆動部との間およびシャフト先端部と
外套の間に配置したことを特徴とする躰腔鏡下外科手術
操作器の先端負荷力の検出装置であり、前記外套と能動
子駆動部との間に配置した力検出器は、外套に設けた揺
動部材との間に設けたことを特徴とする躰腔鏡下外科手
術操作器の先端負荷力の検出装置であり、前記外套と能
動子駆動部との間に配置した力検出器は、シャフトの軸
方向の力を検出する力検出器であることを特徴とする躰
腔鏡下外科手術操作器の先端負荷力の検出装置であり、
前記力検出器は外套と能動子駆動部との間に配置すると
ともにシャフトの先端と外套との間には軸受を配置した
ことを特徴とする躰腔鏡下外科手術操作器の先端負荷力
の検出装置であり、前記力検出器はシャフトの軸方向の
力を検出する力検出器であることを特徴とする躰腔鏡下
外科手術操作器の先端負荷力の検出装置であり、前記能
動子先端負荷力を求めるにあたり、ロボットハンドの支
持力と躰穴壁から受ける力を測定し、それらの力から能
動子先端負荷力を求めることを特徴とする躰腔鏡下外科
手術操作器の先端負荷力の検出方法であり、前記力の検
出にあたり、力覚センサーを、躰穴の近傍の前記外套と
シャフト通過管の間に取付け、またロボットハンドの近
傍に力検出器を設け、躰穴壁から受ける力とロボットハ
ンドの支持力を測定し能動子先端負荷力を求めることを
特徴とする躰腔鏡下外科手術操作器の先端負荷力の検出
装置であり、前記外套を短くして躰穴の近傍に配置し、
トロッカとしての機能を有するようにしたことを特徴と
する躰腔鏡下外科手術操作器の先端負荷力の検出装置で
ある。
SUMMARY OF THE INVENTION Accordingly, the object of the present invention is to provide a surgical operating device having forceps, a scalpel, and the like inserted into a body cavity through a hole having a cut surface. Provide a mantle that can contact and separate the manipulator from organs other than holes and target organs, place the manipulator in the mantle,
A method of detecting a load applied to a distal end of a surgical operation device for a body laparoscopic surgical operation, comprising detecting a load force applied to a distal end of an operating device by a force detector installed between a mantle and an operating device. A method for detecting a tip load force of a surgical instrument for body laparoscopic surgery, comprising controlling the actuator based on a force,
Active element, a shaft supporting the active element, an active element driving section for driving the active element, a jacket covering the shaft and the active element driving section, a force detector provided between the jacket and the shaft, A robot hand supporting the operating device, a robot body controlling the robot hand, and a control unit controlling the active element driving unit and the robot body based on a detection signal from the force detector. Device for detecting the load applied to the distal end of a surgical instrument for laparoscopic surgery, wherein the force detector is located between the distal end of a shaft and a jacket, or between a shaft portion near the robot hand and a jacket, or What is claimed is: 1. A device for detecting a load applied to a distal end of a laparoscope-based surgical operation device, wherein the force detector is disposed between an active element driving unit and an outer coat or at a plurality of locations. Drive part A detector of the front end load force of the body laparoscope surgical operation manipulator, characterized in that disposed between,
Wherein said force detector is a force detector capable of measuring all or a couple of force components in three orthogonal directions of a shaft and around respective axes thereof, wherein a surgical operation under a laparoscope is performed. An apparatus for detecting a load applied to a distal end of a surgical instrument, wherein the force detector is disposed between a mantle and an active element driving part and between a shaft tip and a mantle. A tip load force detecting device, wherein a force detector disposed between the mantle and the active element driving unit is provided between the mantle and a swing member provided on the mantle. An apparatus for detecting a load applied to a distal end of a surgical operation device, wherein the force detector disposed between the mantle and the active element drive unit is a force detector that detects a force in an axial direction of a shaft. It is a device for detecting the load applied to the tip of a surgical operation device using a laparoscope.
The force detector is disposed between the mantle and the active element driving part and a bearing is arranged between the tip of the shaft and the mantle. A detecting device, wherein the force detector is a force detector for detecting a force in an axial direction of a shaft; In determining the tip load force, the support force of the robot hand and the force received from the body hole wall are measured, and the tip load force of the active element is determined from those forces. It is a method of detecting a force, and in detecting the force, a force sensor is attached between the jacket and the shaft passage tube near the body hole, and a force detector is provided near the robot hand, and the force sensor is provided from the body hole wall. Measure the received force and the supporting force of the robot hand. And a detector of the front end load force of the body laparoscope surgical operation manipulator, characterized in that obtaining the Nodoko tip loading force, disposed in the vicinity of the body bore to shorten the mantle,
An apparatus for detecting the load applied to the distal end of a body-operated surgical operation device characterized by having a function as a trocar.

【0010】[0010]

【実施の形態】以下、本発明に係る幾つかの実施形態を
図面を参照して説明する。なお、全体的な構成は先述し
た基本原理で説明した構成と同様であることから、ここ
では各実施形態の特徴部を中心に説明する。図2は第1
実施形態を示す図である。図において1の能動子は先端
折曲、先端回転、先端額開閉の運動ができる。2は外径
9mm、長さ約350mmのシャフトで、この中を通過
する伝動要素には回転軸、連結棒、ワイヤーが用いられ
ている。3は能動子駆動部、20は外径12mm内径1
1mmからなるシャフト2の外套で、能動子駆動部3と
外套20の間に直交3軸方向とそれぞれの軸周りの偶力
を測定できる6軸の力検出器21が設置され、ロボット
ハンド30は外套20を把持、脱着できる構成となって
いる。この構成によれば、能動子1、シャフト2、能動
子駆動部3からなる外科手術操作器は力検出器21から
分離でき、また、力検出器21の個数が少なくて済むの
で操作器と一体として作ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments according to the present invention will be described below with reference to the drawings. Since the overall configuration is the same as the configuration described in the basic principle described above, the description will focus on the features of each embodiment. FIG. 2 shows the first
It is a figure showing an embodiment. In the figure, one active element is capable of bending the tip, rotating the tip, and opening and closing the forehead. Reference numeral 2 denotes a shaft having an outer diameter of 9 mm and a length of about 350 mm. A rotating shaft, a connecting rod, and a wire are used as a transmission element passing through the shaft. 3 is an active element driving unit, 20 is an outer diameter of 12 mm and an inner diameter of 1
A six-axis force detector 21 capable of measuring couples in three orthogonal directions and around each axis is installed between the active element driving unit 3 and the outer jacket 20 on the outer jacket of the shaft 2 having a length of 1 mm. The outer jacket 20 can be gripped and detached. According to this configuration, the surgical operation device including the active element 1, the shaft 2, and the active element driving section 3 can be separated from the force detector 21, and the number of the force detectors 21 can be reduced, so that it is integrated with the operation device. Can be made as

【0011】図3は第2実施形態を示す図である。図に
おいて、外径12mm内径11mmの外套20の中に外
径9mmのシャフト2を挿入配置し、シャフト2の先端
(能動子の根元部分)と外套20との間にシャフト(Z
軸)に直交する2軸方向(X、Y軸)の力検出器21−
3を配置し、さらに、能動子駆動部3と外套20に取り
付けた揺動部材20aとの間にはZ方向の力検出器21
−1を配置する。この構成により外科手術操作器の重心
はほぼ回転支持部にあり、操作器の傾き姿勢によるX、
Y軸方向の力検出には影響が出ないように配置してあ
る。Z方向の力は重力加速度に対するシャフトの傾きを
考慮して操作器全体重量の姿勢の影響を補正する。
FIG. 3 is a view showing a second embodiment. In the figure, a shaft 2 having an outer diameter of 9 mm is inserted and arranged in a jacket 20 having an outer diameter of 12 mm and an inner diameter of 11 mm, and a shaft (Z) is provided between the tip of the shaft 2 (the root portion of the active element) and the jacket 20.
Axis), a force detector 21- in two axis directions (X and Y axes) orthogonal to
3, and a Z-direction force detector 21 is provided between the active element driving unit 3 and the swinging member 20 a attached to the jacket 20.
-1 is arranged. With this configuration, the center of gravity of the surgical operation device is almost at the rotation support portion, and X,
They are arranged so as not to affect the force detection in the Y-axis direction. The force in the Z direction corrects the influence of the attitude of the overall weight of the actuator in consideration of the inclination of the shaft with respect to the gravitational acceleration.

【0012】図4は第3実施形態を示す図である。一般
的に能動子への負荷成分の内、シャフト軸Z方向の力成
分の測定は難しい。このため本実施形態では、外套20
内にシャフト2を挿入配置するととともに、シャフトの
先端と外套20との間にはシャフト2が外套20内をシ
ャフト軸方向に自由に移動できる要素、例えばボールあ
るいは薄板ばねを配置する。さらに、外套20と能動子
駆動部3との間に図8と同様にZ方向の力検出器21−
1を配置する。また、シャフトに直交するX、Y方向の
力は、図3に述べた能動子駆動モータに係る負荷により
検出する構成を採用する。こうすることで、本形態で
は、能動子駆動モータの電気的な負荷からシャフト軸に
直交するX、Y方向の力を測定し、Z方向の力だけを本
発明の外套によって検出し、各検出値に基づいて、制御
部を介してロボットハンドおよび能動子駆動モータを制
御できる。
FIG. 4 is a diagram showing a third embodiment. In general, it is difficult to measure the force component in the shaft axis Z direction among the load components applied to the active element. For this reason, in the present embodiment, the mantle 20
The shaft 2 is inserted and arranged therein, and an element, such as a ball or a thin plate spring, which allows the shaft 2 to move freely in the axial direction of the shaft within the jacket 20 is disposed between the tip of the shaft and the jacket 20. Further, a Z-direction force detector 21- is disposed between the mantle 20 and the active element driving unit 3 as in FIG.
1 is arranged. Further, a configuration is adopted in which the forces in the X and Y directions perpendicular to the shaft are detected by the load related to the active element drive motor described in FIG. In this manner, in this embodiment, in the present embodiment, the forces in the X and Y directions perpendicular to the shaft axis are measured from the electric load of the active element drive motor, and only the force in the Z direction is detected by the jacket of the present invention. Based on the values, the robot hand and the active child drive motor can be controlled via the control unit.

【0013】図5は第4実施形態を示す図である。この
実施例の場合は、能動子先端負荷力を求めるのに、ロボ
ットハンドの支持力と躰穴壁からの力を測定して求める
ものである。そのために、短い外套20とシャフト2と
の間にシャフト連通管37を挿入し、外套20とシャフ
ト連通管37間で、且つ躰穴28の近辺に力覚センサー
36−1,36−2を取付け、また、能動子駆動部3と
ロボットハンド30間には力検出器21をそれぞれ取付
ける。そして、ロボットハンドの支持力と躰穴壁からの
力を測定し能動子先端負荷力を求めるものである。躰穴
鏡下手術では、躰腔内にガスを送り膨らませることで作
業空間を確保することが多い。この場合、躰穴からガス
が抜けないような器具、「トロッカ」と呼ばれるものが
取り付けられるが、このトロッカの働きに、外套を用い
て力も測定する働きも加えてもよい。この実施例の場
合、能動子先端を躰腔内の広い範囲にわたって移動させ
るのに躰穴の厚さ、すなわちトロッカの長さであれば十
分であり、短くて作りやすいという利点がある。また、
ロボットハンドの取付け位置に制限がなく、力検出器の
取付け構造が簡単になる。
FIG. 5 is a view showing a fourth embodiment. In the case of this embodiment, the load applied to the tip of the active element is obtained by measuring the support force of the robot hand and the force from the body wall. For this purpose, the shaft communication pipe 37 is inserted between the short jacket 20 and the shaft 2, and the force sensors 36-1 and 36-2 are attached between the jacket 20 and the shaft communication pipe 37 and near the body hole 28. Further, a force detector 21 is attached between the active element driving unit 3 and the robot hand 30. Then, the support force of the robot hand and the force from the wall of the body hole are measured to determine the load force at the tip of the active element. In a surgical operation under a body cavity, a working space is often secured by inflating gas into the body cavity. In this case, a device called a “trocar” that prevents gas from escaping from the body hole is attached, but the function of measuring the force using an outer jacket may be added to the function of the trocar. In the case of this embodiment, the thickness of the body hole, that is, the length of the trocar is sufficient to move the tip of the active element over a wide range in the body cavity, and there is an advantage that it is short and easy to make. Also,
There is no limitation on the mounting position of the robot hand, and the mounting structure of the force detector is simplified.

【0014】以上、本発明に係る実施形態について説明
したが、上記各実施形態中で使用する力検出器としては
歪みゲージ、圧力センサ、それらのセンサを組み合わせ
て構成したセンサ等、測定しようとする力を検出できる
ものであれば、種々のものを採用することができる。ま
た、本発明の精神または主要な特徴から逸脱することな
く本発明は他の色々な形で実施することができ、そのた
め、前述の実施例はあらゆる点で単なる例示に過ぎず、
限定的に解釈してはならない。
Although the embodiments according to the present invention have been described above, the force detector used in each of the above embodiments is to measure a strain gauge, a pressure sensor, a sensor configured by combining these sensors, and the like. Various types can be adopted as long as the force can be detected. Also, the present invention may be embodied in various other forms without departing from the spirit or main characteristics of the present invention, so that the above-described embodiments are merely illustrative in all respects,
It should not be interpreted restrictively.

【0015】[0015]

【発明の効果】躰腔外の操作器に力検出器を取りつける
場合には、躰穴からの力を正確に推察することが出来な
いが、本発明の方法および装置により、躰穴からの力の
影響を受けずに躰腔内に挿入した鉗子やメスなどの操作
器の先端部の負荷力を手術ロボット装置の操縦桿を通し
て術者に伝えることができ、手術操作性を向上させるこ
とができる。操作器先端の能動子の付け根部分に力検出
器を取りつける場合、伝動ワイヤーや伝動棒の反力を分
離する機構を狭い空間しか許されない先端部に設置する
必要があるが、本発明の方法によれば、そのような必要
もなく機構を簡単に出来る。さらに、先端能動子のモー
タの電気的な負荷から力を測定する場合には、6軸
(X、Y、Z方向の力とX、Y、Z軸周りの偶力)の先
端負荷力に対応する最低6個の能動子を先端に取り付け
ることになるが、本発明の方法ではこれよりも少ない個
数の能動子の場合でも必要であれば6軸の力を検出で
き、汎用性のある利用を可能にする効果がある。また、
外套を躰穴部分程度に短縮しトロッカとしての機能をも
たせので、部品の削減、製作が容易となり、更に外套と
鉗子との互換性がよく、各種の鉗子・操作器を利用でき
るので、操作性が向上する。
When a force detector is attached to an operation device outside the body cavity, the force from the body cavity cannot be accurately estimated, but the force and the force from the body cavity can be estimated by the method and apparatus of the present invention. The load force of the tip of the operating device such as forceps or a scalpel inserted into the body cavity can be transmitted to the surgeon through the control stick of the surgical robot device without being affected by the surgeon, and the surgical operability can be improved. . When installing a force detector at the root of the active element at the tip of the actuator, it is necessary to install a mechanism that separates the reaction force of the transmission wire and the transmission rod at the tip where only a small space is allowed. According to this, the mechanism can be simplified without such necessity. Furthermore, when the force is measured from the electric load of the motor of the tip active element, it corresponds to the tip load force of six axes (force in X, Y, Z directions and couple around X, Y, Z axes). At least six active elements are attached to the tip. However, in the method of the present invention, even if the number of active elements is smaller than this, the force of six axes can be detected if necessary, so that versatile use is possible. It has the effect of making it possible. Also,
The outer jacket is shortened to the body hole part and has a function as a trocar, so the number of parts can be reduced and production is easy, the compatibility between the outer jacket and forceps is good, and various forceps and operating devices can be used. Is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】操作器が躰穴や目的外臓器と接触しないように
外套をつけ、外套と操作器の間に力検出器を配置すると
いう本発明の概念を示す図である。
FIG. 1 is a view showing the concept of the present invention in which a mantle is attached so that an operating device does not come into contact with a body hole or an organ outside a target, and a force detector is arranged between the mantle and the operating device.

【図2】能動子駆動部の近傍に6軸の力検出器を配置す
る第1実施形態の概要図である。
FIG. 2 is a schematic diagram of a first embodiment in which a six-axis force detector is arranged near an active element driving unit.

【図3】能動子駆動部の近傍にシャフト軸Z方向の力の
検出器を、能動子の根元部分にシャフトに直行するX、
Y方向の力の検出器を配置する第2実施形態の概要図で
ある。
FIG. 3 shows a detector of a force in the direction of the shaft axis Z in the vicinity of the active element driving unit, and X, which is orthogonal to the shaft at the root of the active element.
FIG. 10 is a schematic diagram of a second embodiment in which a Y-direction force detector is arranged.

【図4】操作器先端の能動子を駆動する能動子駆動モー
タの電気的な負荷からシャフト軸に直交するX、Y方向
の負荷力を検出し、シャフト軸Z方向の力を外套と能動
子駆動部との間の検出器で測定する第3実施形態の概要
図である。
FIG. 4 detects a load force in the X and Y directions perpendicular to the shaft axis from an electric load of an active element drive motor for driving an active element at the tip of the operating device, and outputs the force in the shaft axis Z direction to the mantle and the active element. FIG. 10 is a schematic diagram of a third embodiment in which measurement is performed by a detector between the driving unit and the driving unit.

【図5】外套を短くし、躰穴の近傍の力覚センサで躰穴
壁から受ける力を測定する第4実施例の概要図である。
FIG. 5 is a schematic view of a fourth embodiment in which the outer jacket is shortened and a force sensor near the body hole measures a force received from the body hole wall.

【図6】ロボットにより手術操作器を操作する際、操作
器の先端に加わる負荷力を操縦桿に帰還させる装置の構
成の概念図を示し、負荷力測定の必要性を示す図であ
る。
FIG. 6 is a conceptual diagram of a configuration of a device that returns a load force applied to the distal end of the operation device to a control stick when a surgical operation device is operated by a robot, and is a diagram illustrating a necessity of measuring a load force.

【図7】躰腔外の操作器部分に力検出器を取りつける第
1の案を示す図である。
FIG. 7 is a diagram showing a first alternative of attaching a force detector to an operation device portion outside the body cavity.

【図8】操作器先端能動子を駆動するモータの電気的な
負荷から負荷力を検出する第2の案を示す図である。
FIG. 8 is a diagram showing a second scheme for detecting a load force from an electric load of a motor that drives an operating element tip active element.

【図9】操作器先端能動子それ自体に力検出器を取りつ
ける第3の案を示す図である。
FIG. 9 is a view showing a third scheme for attaching a force detector to the actuator tip active element itself.

【図10】シャフトへの能動子の取り付け台に力検出器
を取りつける第4の案を示す図である。
FIG. 10 is a diagram showing a fourth alternative of attaching a force detector to a mount for attaching an active element to a shaft.

【符号の説明】[Explanation of symbols]

1 能動子 2 シャフト 3 能動子駆動部 4 検出器 5 能動子駆動モータ 6 覆 7 骨格 8 力検出器 11 結合棒 12 ワイヤ 20 外套 21 力検出器 21−1 力検出器 21−2 力検出器 21−3 力検出器 28 躰穴 30 ロボットハンド 31 ロボット本体 32 操縦桿 33 制御部 36ー1 力覚センサー 36ー2 力覚センサー 37 シャフト通過管 DESCRIPTION OF SYMBOLS 1 Active element 2 Shaft 3 Active element drive part 4 Detector 5 Active element drive motor 6 Cover 7 Skeleton 8 Force detector 11 Connecting rod 12 Wire 20 Outer jacket 21 Force detector 21-1 Force detector 21-2 Force detector 21 -3 Force detector 28 Body hole 30 Robot hand 31 Robot body 32 Control stick 33 Control unit 36-1 Force sensor 36-2 Force sensor 37 Shaft passage tube

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年8月21日(2001.8.2
1)
[Submission date] August 21, 2001 (2001.8.2
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 表面を切開した穴を通して躰腔内に挿入
される鉗子やメスなどを備えた外科手術用操作器におい
て、躰穴や目標臓器以外の臓器から操作器を接触分離で
きる外套を与え、その外套内に操作器を配置し、外套と
操作器の間に設置した力検出器により操作器先端が受け
る負荷力を検出することを特徴とする躰腔鏡下外科手術
操作器の先端負荷力の検出方法。
A surgical operation device provided with forceps and a scalpel inserted into a body cavity through a hole whose surface is incised, and provided with an outer jacket capable of contacting and separating the operation device from an organ other than the body hole and a target organ. A distal end load of a body laparoscopic surgical operating device, wherein an operating device is arranged in the outer jacket, and a load force applied to the operating device tip is detected by a force detector installed between the outer jacket and the operating device. Force detection method.
【請求項2】 前記検出した負荷力を基に操作器を制御
することを特徴とする請求項1に記載の躰腔鏡下外科手
術操作器の先端負荷力の検出方法。
2. The method according to claim 1, wherein the operating device is controlled based on the detected load force.
【請求項3】 能動子と、能動子を支持するシャフト
と、能動子を駆動する能動子駆動部と、シャフトを覆う
外套と、外套とシャフトの間に設ける力検出器と、外套
の上から操作器を支持するロボットハンドと、ロボット
ハンドを制御するロボット本体と、力検出器からの検出
信号に基づいて能動子駆動部およびロボット本体とを制
御する制御部とを備えてなることを特徴とする躰腔鏡下
外科手術操作器の先端負荷力の検出装置。
3. An activator, a shaft supporting the activator, an activator driving unit for driving the activator, a jacket covering the shaft, a force detector provided between the jacket and the shaft, and a top of the jacket. A robot hand supporting the operating device, a robot body controlling the robot hand, and a control unit controlling the active element driving unit and the robot body based on a detection signal from the force detector. Detector for detecting the load applied to the tip of a surgical operation device under the body cavity.
【請求項4】 前記力検出器はシャフトの先端部と外套
の間、あるいはロボットハンドが把持する近傍のシャフ
ト部分と外套との間、あるいは能動子駆動部と外套との
間、あるいはこれら複数の箇所に配置したことを特徴と
する請求項3に記載の躰腔鏡下外科手術操作器の先端負
荷力の検出装置。
4. The force detector according to claim 1, wherein the force detector is located between a tip of the shaft and the jacket, or between a shaft portion and a jacket held by the robot hand, or between the active element driving unit and the jacket, or a plurality of these. 4. The apparatus for detecting a tip load force of a laparoscopic surgical operation device according to claim 3, wherein the device is disposed at a position.
【請求項5】 前記力検出器は外套と能動子駆動部との
間に配置したことを特徴とする請求項3に記載の躰腔鏡
下外科手術操作器の先端負荷力の検出装置。
5. The apparatus according to claim 3, wherein the force detector is disposed between the mantle and the active element driving unit.
【請求項6】 前記力検出器はシャフトの直交3軸方向
とそれぞれの軸周りの偶力の全て、あるいはそれらの一
部の力成分を測定できる力検出器であることを特徴とす
る請求項5に記載の躰腔鏡下外科手術操作器の先端負荷
力の検出装置。
6. The force detector according to claim 1, wherein the force detector is capable of measuring all or a couple of force components in three orthogonal directions of the shaft and around the respective axes. 6. A device for detecting a tip load force of a surgical instrument for laparoscope operation according to claim 5.
【請求項7】 前記力検出器は外套と能動子駆動部との
間およびシャフト先端部と外套の間に配置したことを特
徴とする請求項3に記載の躰腔鏡下外科手術操作器の先
端負荷力の検出装置。
7. The surgical operation apparatus according to claim 3, wherein the force detector is disposed between the mantle and the active element driving part and between the tip of the shaft and the mantle. Tip load force detection device.
【請求項8】 前記外套と能動子駆動部との間に配置し
た力検出器は、外套に設けた揺動部材との間に設けたこ
とを特徴とする請求項7に記載の躰腔鏡下外科手術操作
器の先端負荷力の検出装置。
8. The body cavity mirror according to claim 7, wherein the force detector disposed between the mantle and the active element driving unit is provided between the mantle and a swing member provided on the mantle. A device for detecting the load applied to the tip of a lower surgical operation device.
【請求項9】 前記外套と能動子駆動部との間に配置し
た力検出器は、シャフトの軸方向の力を検出する力検出
器であることを特徴とする請求項8に記載の躰腔鏡下外
科手術操作器の先端負荷力の検出装置。
9. The body cavity according to claim 8, wherein the force detector disposed between the mantle and the active element driving unit is a force detector for detecting a force in an axial direction of a shaft. A device for detecting the load applied to the distal end of a mirror surgical operation device.
【請求項10】前記力検出器は外套と能動子駆動部との
間に配置するとともにシャフトの先端と外套との間には
軸受を配置したことを特徴とする請求項3に記載の躰腔
鏡下外科手術操作器の先端負荷力の検出装置。
10. The body cavity according to claim 3, wherein the force detector is arranged between the mantle and the active element driving part, and a bearing is arranged between the tip of the shaft and the mantle. A device for detecting the load applied to the distal end of a mirror surgical operation device.
【請求項11】 前記力検出器はシャフトの軸方向の力
を検出する力検出器であることを特徴とする請求項10
に記載の躰腔鏡下外科手術操作器の先端負荷力の検出装
置。
11. The force detector according to claim 10, wherein the force detector detects a force in an axial direction of a shaft.
4. A device for detecting a load applied to a distal end of a surgical instrument for laparoscopic surgery according to item 4.
【請求項12】ロボットハンドの支持力と躰穴壁から受
ける力を測定し、それらの力から能動子先端負荷力を求
めることを特徴とする躰腔鏡下外科手術操作器の先端負
荷力の検出方法。
12. The tip loading force of a body laparoscopic surgical operation device, wherein a supporting force of a robot hand and a force received from a body wall are measured, and a tip loading force of an active element is obtained from the measured forces. Detection method.
【請求項13】力覚センサーを、躰穴の近傍の前記外套
とシャフト通過管の間に取付け、またロボットハンドの
近傍に力検出器を設け、躰穴壁から受ける力とロボット
ハンドの支持力を測定し能動子先端負荷力を求めること
を特徴とする躰腔鏡下外科手術操作器の先端負荷力の検
出装置。
13. A force sensor is mounted between the jacket and the shaft passage tube near the body hole, and a force detector is provided near the robot hand, so that the force received from the body hole wall and the support force of the robot hand are provided. A device for detecting a tip load force of a body laparoscopic surgical operation device, which measures the tip load force of the active element by measuring the force.
【請求項14】前記外套を短くして躰穴の近傍に配置
し、トロッカとしての機能を有するようにしたことを特
徴とする請求項13に記載の躰腔鏡下外科手術操作器の
先端負荷力の検出装置。
14. The distal end load of a body-laparoscopic surgical operation device according to claim 13, wherein said outer jacket is shortened and arranged near a body hole to have a function as a trocar. Power detection device.
JP2001238893A 2000-08-09 2001-08-07 Detecting method and device of tip load of operating apparatus of surgery under celoscope Withdrawn JP2002159509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238893A JP2002159509A (en) 2000-08-09 2001-08-07 Detecting method and device of tip load of operating apparatus of surgery under celoscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-240640 2000-08-09
JP2000240640 2000-08-09
JP2001238893A JP2002159509A (en) 2000-08-09 2001-08-07 Detecting method and device of tip load of operating apparatus of surgery under celoscope

Publications (1)

Publication Number Publication Date
JP2002159509A true JP2002159509A (en) 2002-06-04

Family

ID=26597596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238893A Withdrawn JP2002159509A (en) 2000-08-09 2001-08-07 Detecting method and device of tip load of operating apparatus of surgery under celoscope

Country Status (1)

Country Link
JP (1) JP2002159509A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047503A (en) * 2007-08-17 2009-03-05 Nagaoka Univ Of Technology Method and apparatus for analysis of tactile sense
JP2009047504A (en) * 2007-08-17 2009-03-05 Nagaoka Univ Of Technology Method and apparatus for analysis of tactile sense
JP2009522016A (en) * 2005-12-30 2009-06-11 インテュイティブ サージカル インコーポレイテッド Force and torque sensor for surgical instruments
JP2009527344A (en) * 2006-02-22 2009-07-30 ハンセン メディカル,インク. System and apparatus for measuring distal force of a work implement
JP2010507792A (en) * 2006-10-25 2010-03-11 ザ ヨーロピアン アトミック エナジー コミュニティ(ユーラトム)、リプリゼンテッド バイ ザ ヨーロピアン コミッション Stress estimation method for minimally invasive robotic surgical system
US8375808B2 (en) 2005-12-30 2013-02-19 Intuitive Surgical Operations, Inc. Force sensing for surgical instruments
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US9308646B2 (en) 2012-04-30 2016-04-12 Samsung Electronics Co., Ltd. Apparatus and method for controlling force to be used for motion of surgical robot
JP2016537130A (en) * 2013-11-22 2016-12-01 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Features for coupling a surgical instrument shaft assembly to an instrument body
CN106955129A (en) * 2017-05-09 2017-07-18 佛山衡生医疗自动化有限公司 A kind of Minimally Invasive Surgery apparatus with force feedback
JP2018500058A (en) * 2014-10-24 2018-01-11 コヴィディエン リミテッド パートナーシップ Sensing system access ports for robotic surgery
JP2018094404A (en) * 2016-12-07 2018-06-21 グローバス メディカル インコーポレイティッド System and method for surgical tool insertion using multiaxis force and moment feedback
JP2019171123A (en) * 2014-07-29 2019-10-10 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Cannula with sensors to measure patient bodywall force
EP3685787A4 (en) * 2017-09-20 2020-11-18 Microport (Shanghai) Medbot Co., Ltd. Surgical robot system
US11432894B2 (en) 2017-11-15 2022-09-06 Intuitive Surgical Operations, Inc. Surgical instrument end effector with integral FBG

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
US11707335B2 (en) 2005-12-30 2023-07-25 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
KR101342917B1 (en) * 2005-12-30 2013-12-18 인튜어티브 서지컬 인코포레이티드 Force and torque sensing for surgical instruments
US9943375B2 (en) 2005-12-30 2018-04-17 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
JP2016083581A (en) * 2005-12-30 2016-05-19 インテュイティブ サージカル インコーポレイテッド Force and torque sensor for surgical instruments
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US8375808B2 (en) 2005-12-30 2013-02-19 Intuitive Surgical Operations, Inc. Force sensing for surgical instruments
JP2013075195A (en) * 2005-12-30 2013-04-25 Intuitive Surgical Inc Force and torque sensing for surgical instrument
US8613230B2 (en) 2005-12-30 2013-12-24 Intuitive Surgical Operations, Inc. Force sensing for surgical instruments
US10363107B2 (en) 2005-12-30 2019-07-30 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
JP2009522016A (en) * 2005-12-30 2009-06-11 インテュイティブ サージカル インコーポレイテッド Force and torque sensor for surgical instruments
US10905502B2 (en) 2005-12-30 2021-02-02 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
JP2009527344A (en) * 2006-02-22 2009-07-30 ハンセン メディカル,インク. System and apparatus for measuring distal force of a work implement
JP2012254303A (en) * 2006-10-25 2012-12-27 European Atomic Energy Community (Euratom) Represented By The European Commission Force estimation for minimally invasive robotic surgery system
JP2010507792A (en) * 2006-10-25 2010-03-11 ザ ヨーロピアン アトミック エナジー コミュニティ(ユーラトム)、リプリゼンテッド バイ ザ ヨーロピアン コミッション Stress estimation method for minimally invasive robotic surgical system
JP2009047503A (en) * 2007-08-17 2009-03-05 Nagaoka Univ Of Technology Method and apparatus for analysis of tactile sense
JP2009047504A (en) * 2007-08-17 2009-03-05 Nagaoka Univ Of Technology Method and apparatus for analysis of tactile sense
US9308646B2 (en) 2012-04-30 2016-04-12 Samsung Electronics Co., Ltd. Apparatus and method for controlling force to be used for motion of surgical robot
US11589887B2 (en) 2013-11-22 2023-02-28 Cilag Gmbh International Features for coupling surgical instrument shaft assembly with instrument body
JP2016537130A (en) * 2013-11-22 2016-12-01 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Features for coupling a surgical instrument shaft assembly to an instrument body
US10368892B2 (en) 2013-11-22 2019-08-06 Ethicon Llc Features for coupling surgical instrument shaft assembly with instrument body
JP2021065751A (en) * 2014-07-29 2021-04-30 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Cannula with sensors to measure patient bodywall force
US11369411B2 (en) 2014-07-29 2022-06-28 Intuitive Surgical Operations, Inc. Cannula with sensors to measure patient bodywall forces
CN110403651B (en) * 2014-07-29 2022-11-08 直观外科手术操作公司 Cannula with sensor for measuring body wall force of patient
JP2019171123A (en) * 2014-07-29 2019-10-10 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Cannula with sensors to measure patient bodywall force
JP2022107607A (en) * 2014-07-29 2022-07-22 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Cannula with sensors to measure patient bodywall force
CN110403651A (en) * 2014-07-29 2019-11-05 直观外科手术操作公司 The intubation of sensor with measurement patient's body wall power
JP7069370B2 (en) 2014-07-29 2022-05-17 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Cannula with sensors to measure patient wall strength
US10779856B2 (en) 2014-10-24 2020-09-22 Covidien Lp Sensorizing robotic surgical system access ports
JP2018500058A (en) * 2014-10-24 2018-01-11 コヴィディエン リミテッド パートナーシップ Sensing system access ports for robotic surgery
JP7065593B2 (en) 2016-12-07 2022-05-12 グローバス メディカル インコーポレイティッド Systems and methods for inserting surgical tools using multiaxial forces and moment feedback
JP2018094404A (en) * 2016-12-07 2018-06-21 グローバス メディカル インコーポレイティッド System and method for surgical tool insertion using multiaxis force and moment feedback
CN106955129A (en) * 2017-05-09 2017-07-18 佛山衡生医疗自动化有限公司 A kind of Minimally Invasive Surgery apparatus with force feedback
US11478316B2 (en) 2017-09-20 2022-10-25 Shanghai Microport Medbot (Group) Co., Ltd. Surgical robot system
JP2020534078A (en) * 2017-09-20 2020-11-26 マイクロポート(シャンハイ)メドボット カンパニー,リミティッド Surgical robot system
EP3685787A4 (en) * 2017-09-20 2020-11-18 Microport (Shanghai) Medbot Co., Ltd. Surgical robot system
US11432894B2 (en) 2017-11-15 2022-09-06 Intuitive Surgical Operations, Inc. Surgical instrument end effector with integral FBG

Similar Documents

Publication Publication Date Title
JP2002159509A (en) Detecting method and device of tip load of operating apparatus of surgery under celoscope
US11726106B2 (en) Integrated Fiber Bragg Grating accelerometer in a surgical instrument
JP4767175B2 (en) Trocar device for passing surgical instruments
EP3242622B1 (en) Isolated force/torque sensor assembly for force controlled robot
Hu et al. A novel methodology for comprehensive modeling of the kinetic behavior of steerable catheters
US9204928B2 (en) Coupler assembly for catheters
JP7455245B2 (en) Surgical robot system and its surgical instruments
KR101342917B1 (en) Force and torque sensing for surgical instruments
US7992910B2 (en) Robot structure
JP6091370B2 (en) Medical system and medical instrument control method
JP2009522017A (en) Modular force sensor
JP6631528B2 (en) Information processing apparatus, information processing method and program
EP3742261B1 (en) Tactile sensation presentation device and tactile sensation presentation system
He et al. Force sensing of multiple‐DOF cable‐driven instruments for minimally invasive robotic surgery
JP6935814B2 (en) Surgical systems, surgical systems, surgical instruments, and external force detection systems
CN112587240A (en) Drive assembly, surgical instrument system and surgical robot
JP2011182978A (en) Probe operation assisting device for ultrasonic diagnostic apparatus
WO2021075213A1 (en) Surgical robot system, external force estimation device, and program
CA2734522C (en) Surgical procedure device comprising an instrument capable of deforming
JPH06154153A (en) Detecting device for contact state of tubular body
JP2017029214A (en) Medical instrument and medical support arm device
JP2022548573A (en) Control of surgical instruments
CN113940714B (en) Minimally invasive surgery needle holding forceps with force sensing function
CN115153846A (en) Surgical robot and method for calculating stress of tail end of surgical robot instrument
CN117338434A (en) Two-dimensional force sensing sensor of percutaneous spinal surgery robot

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007