JP2002158418A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method

Info

Publication number
JP2002158418A
JP2002158418A JP2000356002A JP2000356002A JP2002158418A JP 2002158418 A JP2002158418 A JP 2002158418A JP 2000356002 A JP2000356002 A JP 2000356002A JP 2000356002 A JP2000356002 A JP 2000356002A JP 2002158418 A JP2002158418 A JP 2002158418A
Authority
JP
Japan
Prior art keywords
layer
state
wiring
photo
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000356002A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
拓 青山
Setsuya Iwashita
節也 岩下
Masato Kakihana
眞人 垣花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000356002A priority Critical patent/JP2002158418A/en
Publication of JP2002158418A publication Critical patent/JP2002158418A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problems of a prior art method for producing a multilayer wiring board that the work is troublesome because process steps of plating, etching, boring a blind hole, and the like, are required, that waste etchant causes environmental pollution, that the wiring cannot be revised after a wiring pattern is formed, once and that the utilization efficiency of resources is low. SOLUTION: A light induced phase transition substance is adopted for a substrate or a wiring part. A multilayer structure composed of a group of such substances having difference phase transition energies is formed on a substrate and an insulated initial state is brought about. A wiring pattern is then irradiated with light and converted into conductors, thus forming conductor wring. In order to return it to the initial state, it is heated and the conductor is converted into an insulator. According to the method, the process is simplified and mass productivity is enhanced significantly. Since the wiring pattern can be altered or modified easily after formation, the resources can be utilized effectively and an environmentally suitable process is obtained because no waste liquid is discharged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】電子、電気回路等間の素子間
の配線を有する配線基板に関する。特に多層配線手段に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board having wiring between elements between electronic circuits and electric circuits. In particular, it relates to multilayer wiring means.

【0002】[0002]

【従来の技術】代表的な従来の多層配線基板の構成を図
3に示す。図3を参照しながら従来の製造工程を簡単に
説明すると、まずガラスエポキシ系等の絶縁基板301
上に形成された導伝膜(主に銅、Cu)をエッチングし
て第1層の配線パターン302を得る。次に該配線パタ
ーン上にエポキシ樹脂等の絶縁層303を塗布等により
形成し、必要な部位にスポットレーザ等でブラインドホ
ール(穴)304を開け、前記配線第1層表面を露出さ
せる。銅等を全面にメッキし、これをエッチングするこ
とで第2配線層305を形成する。このとき、前記ブラ
インドホール304を通じて、配線第1層と第2層は電
気的導通がとれる。更に多層配線を要する場合は以上の
工程を繰り返しおこなう。
2. Description of the Related Art The structure of a typical conventional multilayer wiring board is shown in FIG. The conventional manufacturing process will be briefly described with reference to FIG.
The conductive film (mainly copper, Cu) formed thereon is etched to obtain a first layer wiring pattern 302. Next, an insulating layer 303 of an epoxy resin or the like is formed on the wiring pattern by coating or the like, and a blind hole (hole) 304 is formed in a necessary portion by a spot laser or the like to expose the surface of the wiring first layer. A second wiring layer 305 is formed by plating copper or the like on the entire surface and etching the same. At this time, the first and second wiring layers are electrically connected through the blind hole 304. If a multilayer wiring is required, the above steps are repeated.

【0003】[0003]

【発明が解決しようとする課題】従来例で述べたよう
に、これまでの基板配線だと、配線パターンを一層設け
る毎にエッチング工程を要し、作業が煩雑である。これ
は量産時の歩留まり低下や製造コストの増大に直結す
る。また、湿式のエッチング法では、大量の使用済みエ
ッチング液が環境に有害な廃液としてでるので問題があ
った。また、従来の多層配線方法だと、その工程から明
らかなように一度配線をおこなってしまうと後に設計変
更があった場合にこれに対応した配線のやり直しができ
ないという欠点がある。
As described in the prior art, in the case of conventional substrate wiring, an etching step is required every time a wiring pattern is provided, and the operation is complicated. This directly leads to a decrease in yield during mass production and an increase in manufacturing cost. In addition, the wet etching method has a problem that a large amount of used etching liquid is generated as waste liquid harmful to the environment. In addition, the conventional multilayer wiring method has a disadvantage that, once the wiring is performed once, as apparent from the process, if the design is changed later, the wiring cannot be redone correspondingly.

【0004】本発明はこれらの課題を解決するもので、
従来の基板配線方法を全面的に見直した。新規機能材料
を採用することで工程を簡素化し、これにより量産時の
歩留まり向上と製造コストの低下をもたらすものであ
る。また、湿式のエッチング工程がないので廃液をださ
ず、環境を汚染しない発明である。更に、一度配線パタ
ーンを形成した後でもこれらの変更や修正を容易ならし
める発明でもあり、従来に比して資源を大幅に有効活用
できる新規な環境適合型プロセスを提供するものであ
る。
The present invention solves these problems,
The conventional board wiring method was completely revised. The adoption of new functional materials simplifies the process, thereby improving the yield during mass production and lowering the manufacturing cost. Further, since there is no wet etching step, the invention does not generate waste liquid and does not pollute the environment. Further, the present invention facilitates these changes and corrections even after a wiring pattern is formed once, and provides a novel environment-compatible process that can use resources significantly more effectively than in the past.

【0005】[0005]

【課題を解決するための手段】このような目的は、下記
に述べる本発明により達成される。すなわち本発明の配
線基板は、素子間(例えば電子、電気回路等)の配線を
有する配線基板において、該配線部が、安定状態である
絶縁状態と準安定状態である導体状態のいずれの状態で
も存在可能な光誘起相転移物質の、導体状態で構成され
ていることを特徴とする。また、本発明の配線基板は、
前記光誘起相転移物質が異なる物質からなる多層構造を
なし、各層に対して絶縁状態を導体化する最低光励起エ
ネルギーが存在し、該最低光励起エネルギーが上層ほど
低くなることを特徴とする。また、本発明の配線基板
は、前記光誘起相転移物質が異なる物質からなる多層構
造をなし、各層に対して導体状態を絶縁化するのに要す
る最低の光または熱エネルギーが存在し、該最低の光ま
たは熱エネルギーが上層ほど低くなることを特徴とす
る。また、本発明の配線基板は、前記光励起相転移物質
の絶縁状態と導体状態はそれぞれ安定状態と寿命が一年
以上と長い準安定状態であり、光または熱により可逆的
に互いの状態をとり得ることを特徴とする。また、本発
明の配線基板は、前記光誘起相転移物質よりなる一層が
基板自体であることを特徴とする。
This and other objects are achieved by the present invention described below. That is, in the wiring board of the present invention, in a wiring board having wiring between elements (for example, an electronic circuit, an electric circuit, or the like), the wiring portion may be in any of an insulated state, which is a stable state, and a conductor state, which is a metastable state. It is characterized in that it is composed of a light-induced phase change substance that can exist and is in a conductor state. Further, the wiring board of the present invention,
The photo-induced phase change material has a multilayer structure composed of different materials, and each layer has a minimum photo-excitation energy for converting an insulating state into a conductive state, and the lower photo-excitation energy is lower in an upper layer. Further, the wiring board of the present invention has a multi-layer structure in which the photo-induced phase change material is made of a different material, and each layer has a minimum light or heat energy required to insulate a conductive state, and Is characterized in that light or heat energy of the upper layer becomes lower. Further, in the wiring board of the present invention, the insulating state and the conductive state of the photoexcited phase transition material are a stable state and a metastable state having a long life of one year or more, respectively, and take a reversible state by light or heat. It is characterized by obtaining. Further, the wiring board of the present invention is characterized in that one layer made of the photoinduced phase change material is the board itself.

【0006】更に、本発明の配線基板の製造方法は、少
なくとも(1)絶縁状態にある光誘起相転移物質層をn
層(nは1以上の整数)形成する工程と、(2)第k層
(kは1以上の整数でn以下。最下層を第1層とし、最
上層を第n層とする。初期値はk=1)の配線パターン
を、第k層を構成する光誘起相転移物質に対する最低励
起エネルギー以上かつk>1の時は第(k―1)層を構
成する光誘起相転移物質に対する最低励起エネルギー未
満のエネルギーを有する光の照射により導体化する工程
と、(3)第k層を絶縁化するエネルギー未満かつ第
(k+1)層の絶縁化エネルギー以上のエネルギーを外
部から加える工程と、(4)前記(2)から(3)工程
をkを(k+1)に置き換えて順に第n層(最上層)ま
で繰り返す工程とを含むことを特徴とする。また、本発
明の配線基板の製造方法は、少なくとも(1)絶縁状態
にある光誘起相転移物質からなる第k層(kは1以上の
整数でn以下。最下層を第1層とし、最上層を第n層と
する。初期値はk=1)を形成する工程と、(2)第k
層の配線パターンを第k層を構成する光誘起相転移物質
に対する最低励起エネルギー以上かつk>1の時は第
(k―1)層を構成する光誘起相転移物質に対する最低
励起エネルギー未満のエネルギーを有する光の照射によ
り導体化する工程と、(3)前記(1)から(2)工程
をkを(k+1)に置き換えて順に第n層(最上層)ま
で繰り返す工程とを含むことを特徴とする。また、本発
明の配線基板の製造方法は、光誘起相転移物質の光によ
る導体化工程で、配線パターンをマスクを用いて形成す
るか直接レーザ走査照射で形成することを特徴とする。
Further, in the method for manufacturing a wiring board according to the present invention, at least (1) the photo-induced phase change material layer in an insulated state is formed by n
A step of forming a layer (n is an integer of 1 or more), and (2) a k-th layer (k is an integer of 1 or more and n or less. The lowermost layer is the first layer, and the uppermost layer is the nth layer. Indicates that the wiring pattern of k = 1) is not less than the lowest excitation energy for the photo-induced phase change material constituting the k-th layer and that k> 1 is the minimum excitation energy for the photo-induced phase change material constituting the (k-1) -th layer. (3) externally applying energy less than the energy for insulating the k-th layer and greater than or equal to the insulating energy for the (k + 1) -th layer, by irradiation with light having energy less than the excitation energy; 4) a step of repeating the steps (2) to (3) up to the n-th layer (uppermost layer) by replacing k with (k + 1). Further, the method for manufacturing a wiring board according to the present invention is characterized in that: (1) a k-th layer (k is an integer of 1 or more and n or less; a lowermost layer is a first layer; Forming an upper layer as an n-th layer, an initial value is k = 1), and (2) a k-th layer.
When the wiring pattern of the layer is equal to or more than the minimum excitation energy for the photo-induced phase change material constituting the k-th layer and k> 1, the energy is less than the minimum excitation energy for the photo-induced phase change material constituting the (k-1) -th layer. And (3) repeating the steps (1) and (2) in order from k to (k + 1) until the n-th layer (uppermost layer). And Further, the method of manufacturing a wiring board according to the present invention is characterized in that, in the step of converting the photo-induced phase change substance into a conductor using light, the wiring pattern is formed using a mask or directly by laser scanning irradiation.

【0007】[0007]

【作用】ここでは本発明の特徴をなす、電子基板内の配
線部位に用いる光誘起相転移物質について説明する。
The following is a description of a photo-induced phase change material used for a wiring portion in an electronic substrate, which is a feature of the present invention.

【0008】本発明において、配線部に用いられる材料
は、光を照射または熱を加えることにより相転移が生じ
る主として遷移金属またはその酸化物で構成されるもの
である。該遷移金属酸化物としては、一般式Ax By O
z (式中、x、y、zはそれぞれ、1≦x≦14、1≦
y≦24、1≦z≦41であり、A、Bは同じ元素であ
っても異なる元素であってもよい)で表されるものが一
般的である。このような遷移金属酸化物は、光を照射す
ることにより原子系のエネルギー状態が変化し、結晶格
子の変位が起こり、これに基づいて相転移現象が発現す
るものと考えられる。
In the present invention, the material used for the wiring portion is mainly composed of a transition metal or an oxide thereof which undergoes a phase transition when irradiated with light or heated. As the transition metal oxide, a general formula Ax ByO
z (where x, y, and z are 1 ≦ x ≦ 14, 1 ≦
y ≦ 24, 1 ≦ z ≦ 41, and A and B may be the same element or different elements). It is considered that the energy state of the atomic system of such a transition metal oxide is changed by light irradiation, the crystal lattice is displaced, and a phase transition phenomenon is caused based on the displacement.

【0009】このような遷移金属酸化物について、その
結晶構造は特に限定されないが、結晶構造内に+の電荷
をもつAイオンから構成される−X- −A+ −X- (X
=O,BOx)の直線配位をもち、この一次元(直線)
構造で物性を特徴づけられる低次元酸化物が好ましい。
これは、変位する格子原子が柔らかく格子に結合してい
るもの、すなわち、変位による格子歪のエネルギーが小
さいほうが好ましく、一般に低次元物質は格子が柔らか
いと考えられているからである。
[0009] Such transition metal oxide, the crystal structure is not particularly limited, and a A ions with a + charge on the crystal structure -X - -A + -X - (X
= O, BOx), and this one-dimensional (straight line)
A low-dimensional oxide whose structure is characterized by physical properties is preferred.
This is because it is preferable that the displaced lattice atoms are softly bonded to the lattice, that is, the energy of the lattice strain due to the displacement is smaller, and it is generally considered that a low-dimensional substance has a soft lattice.

【0010】このような低次元物質の一例として、一般
式ABO2 で表されるデラフォサイト型酸化物が挙げら
れる。デラフォサイト型酸化物は、上述の低次元構造
が、−(BO2- −A+ −(BO2- −で表される
単純な鎖状秩序構造を持つものである。このような単純
構造は、低次元物質の特徴である格子の柔らかさをさら
に強調する作用があると考えられ、光誘起相転移の応答
速度が極めて速いという特徴を有する。さらに、デラフ
ォサイト型酸化物は、その単純な低次元構造により光誘
起相転移に必要なエネルギーを決定するバンドギャップ
を小さく調節できるという利点も有する。バンドギャッ
プとは、光誘起相転移が生じる最低光子エネルギーのこ
とである。バンドギャップが小さければ、より低エネル
ギーの光、例えば可視・紫外領域はもとより赤外領域の
波長を有するレーザ光でも相転移を起こすことが可能に
なり、光源の選択の幅が飛躍的に拡がる。
An example of such a low-dimensional substance is a delafossite-type oxide represented by the general formula ABO 2 . In the delafossite-type oxide, the above-mentioned low-dimensional structure has a simple chain-order structure represented by-(BO 2 ) -- A + -(BO 2 ) -- . Such a simple structure is considered to have an effect of further enhancing the softness of the lattice, which is a characteristic of a low-dimensional substance, and has a characteristic that the response speed of light-induced phase transition is extremely high. Furthermore, the delafossite-type oxide has an advantage that its simple low-dimensional structure allows a small adjustment of the band gap that determines the energy required for the photoinduced phase transition. The band gap is the lowest photon energy at which a light-induced phase transition occurs. If the band gap is small, it becomes possible to cause phase transition even with lower energy light, for example, laser light having a wavelength in the infrared region as well as in the visible / ultraviolet region, and the range of light source choices is greatly expanded.

【0011】ここでいう光誘起相転移とは、固体に入射
した光エネルギーにより系を励起して電子状態を変化さ
せ、これにより格子変位を生じることを意味する。この
ような格子変位によってもたらされる物質の物理的特性
の変化のうち、特に電気伝導率が劇的に変化する性質、
すなわち導体状態と絶縁状態を光照射や加熱温度変化で
制御できる性質に着目し、これを積極的に電子基板内の
配線部位に利用したのが本発明の特徴である。因みに可
逆的に変化する固体結晶の物性としては、この電気伝導
率以外にも、吸収スペクトル、誘電率、屈折率、反射
率、磁気特性等が挙げられる。
[0011] The light-induced phase transition means that the system is excited by light energy incident on a solid to change an electronic state, thereby causing a lattice displacement. Of the changes in the physical properties of the material caused by such lattice displacement, especially the property that the electrical conductivity changes dramatically,
That is, it is a feature of the present invention that attention is paid to the property that the conductor state and the insulation state can be controlled by light irradiation and heating temperature change, and this is positively used for a wiring portion in the electronic board. Incidentally, the physical properties of the solid crystal which reversibly change include an absorption spectrum, a dielectric constant, a refractive index, a reflectance, a magnetic property, and the like in addition to the electric conductivity.

【0012】さて、光による電気伝導率の変化を利用す
れば、絶縁体を導体化したり逆に導体を絶縁体に戻すと
いった相互間の可逆的な相転移を制御することが可能に
なる。ここで導体化とは、絶縁体の満ちた価電子帯と伝
導帯の間にあるバンドギャップを光励起により閉じるこ
とを意味する。言い換えれば、光によりブリルアン域の
大きさを2倍に拡大し、価電子帯と伝導帯とを結合させ
てしまうのである。このためには、絶縁体の格子の繰返
し周期の長さを光により半分にすることができればよ
い。例えば、バンドの半分まで電子がつまっている導体
がある温度以下ではパイエルス絶縁体になるのは、導体
の格子周期aが格子変位と電子の局在化により2aにな
り、このため波数π/2aにギャップが生じるためであ
る。この逆の過程を光を照射することにより行い、パイ
エルス絶縁体の格子周期を半分にし、局在化した電子を
結晶中に一様に拡げてやれば、絶縁体のバンドギャップ
は閉じ導体化することができる。また、材料設計次第で
相変化の方向を逆にすることも可能である。すなわち、
導体に光を照射することにより絶縁化することもでき
る。このような双方向の相転移は光照射だけで可能なの
だが、熱による作用を併せて利用してもよい。光源とし
てレーザを用いた場合、絶縁体を導体化するときにはレ
ーザの波長(エネルギー)を利用し、導体を絶縁体に戻
すときにはレーザのパワー(熱)を利用するといった具
合である。
By utilizing the change in electric conductivity due to light, it is possible to control reversible phase transition between each other, such as converting an insulator into a conductor or returning the conductor to an insulator. Here, “conducting” means closing a band gap between a valence band and a conduction band filled with an insulator by photoexcitation. In other words, the size of the Brillouin region is doubled by light, and the valence band and the conduction band are coupled. For this purpose, it is only required that the length of the repetition period of the insulator lattice can be reduced to half by light. For example, at a certain temperature or lower, a conductor in which electrons are occupied in half of the band becomes a Peierls insulator because the lattice period a of the conductor becomes 2a due to the lattice displacement and the localization of electrons, and therefore the wave number π / 2a This is because there is a gap in The reverse process is performed by irradiating light, halving the lattice period of the Peierls insulator, and spreading localized electrons uniformly in the crystal, the band gap of the insulator becomes a closed conductor. be able to. Further, the direction of the phase change can be reversed depending on the material design. That is,
The conductor can be insulated by irradiating the conductor with light. Such bidirectional phase transition is possible only by light irradiation, but the effect of heat may be used together. When a laser is used as the light source, the wavelength (energy) of the laser is used when the insulator is converted into a conductor, and the power (heat) of the laser is used when the conductor is returned to the insulator.

【0013】最後に、双安定性について補足する。ここ
でいう双安定性とは、光の照射等による格子の変化に基
づき安定状態から準安定状態に移行したとし、ここで光
を消光しても、もとの安定状態に戻るまでに要する時間
(緩和時間)が非常に長い(例えば、1年以上)ことを
意味する。尚、準安定状態を保っていられる時間、すな
わち寿命は材料の設計次第で自在に制御することが可能
である。
Finally, a supplementary note is made on bistability. The term “bistability” as used herein refers to the time required for a transition from a stable state to a metastable state based on a change in the lattice due to light irradiation or the like, and for returning to the original stable state even if the light is extinguished here. (Relaxation time) means very long (for example, one year or more). The time during which the metastable state is maintained, that is, the life can be freely controlled depending on the material design.

【0014】[0014]

【発明の実施の形態】以下、本発明の詳細をいくつかの
実施例に基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on some embodiments.

【0015】(実施例1)作用で述べたデラフォサイト
に属する物質の内、波長700nm以下で絶縁状態から
導体状態に相転移し、600℃以上の加熱で導体状態か
らもとの絶縁状態に相転移する物質11と、波長720
nm以下で絶縁状態から導体状態に相転移し、580℃
以上の加熱で導体状態からもとの絶縁状態に相転移する
物質12と、波長740nm以下で絶縁状態から導体状
態に相転移し、560℃以上の加熱で導体状態からもと
の絶縁状態に相転移する物質13と、波長760nm以
下で絶縁状態から導体状態に相転移し、540℃以上の
加熱で導体状態からもとの絶縁状態に相転移する物質1
4とを用意し以下の本実施例の実験に供した。物質11
〜14はいずれも初期状態においてはそれぞれの安定状
態である絶縁状態であり、また、準安定状態である導体
状態は十分に寿命が長く、従って実質双安定物質とみな
せる。ここでいう寿命とは、導体状態の電気伝導率が初
期値の二分の一になるまでに要する期間をさす。
(Embodiment 1) Among the substances belonging to delafossite described in the operation, the phase transition from an insulating state to a conductive state occurs at a wavelength of 700 nm or less, and from the conductive state to the original insulating state by heating at 600 ° C. or more. Substance 11 which undergoes a phase transition, wavelength 720
The phase transition from the insulating state to the conductive state occurs at 580 ° C.
The substance 12 undergoes a phase transition from the conductor state to the original insulation state by the above heating, and the phase transition from the insulation state to the conductor state at a wavelength of 740 nm or less, and the phase from the conductor state to the original insulation state by heating at 560 ° C. or more. The substance 13 that undergoes a transition and the substance 1 that undergoes a phase transition from an insulating state to a conducting state at a wavelength of 760 nm or less, and undergoes a phase transition from the conducting state to the original insulating state by heating at 540 ° C. or more.
4 were prepared and subjected to the following experiment of this example. Substance 11
14 to 14 are insulating states which are stable states in an initial state, and a conductor state which is a metastable state has a sufficiently long life and can be regarded as a substantially bistable substance. The term "life" as used herein refers to a period required until the electric conductivity in the conductor state becomes half the initial value.

【0016】ガラスエポキシ基板10の表面に前記物質
11で構成される厚み0.3mmtの層21を形成し
た。層21の上面に前記物質12で構成される厚み0.
3mmtの層22を形成し、以下同様に物質13、物質
14による層23、24を各々0.3mmtの厚みで積
層した。このようにしてシリコン基板上に積層膜試料が
得られた。細長い長方形のパターンを切り抜いた金属マ
スクを用意しこれを層24の上部の表面に密着させ、更
にその上部より波長720nmの平行光を基板に対し垂
直方向に照射した。この時、物質11で構成される層2
1は相転移を起こさず絶縁状態を保持するが、層22〜
24はマスクパターンにしたがって導体状態に相転移す
る。その後、試料を560℃で加熱する。すると層22
の導体状態は保持されるが、層23、24はまた初期状
態(安定状態)に相転移する。金属マスクを90度ずら
し、切り抜きパターンをいままでと直交するように配置
し、層24の上部より波長760nmの平行光を基板に
対し垂直方向に照射した。これにより層24のみマスク
パターンに沿って導体状態に相転移した。この一連の操
作で得られた導体配線パターンは図1(a)に示した平
面図、及び図1(b)に示した断面図の斜線部の如くで
ある。
On the surface of the glass epoxy substrate 10, a layer 21 composed of the substance 11 and having a thickness of 0.3 mm was formed. On the upper surface of the layer 21, a thickness of 0.
A layer 22 having a thickness of 3 mmt was formed, and layers 23 and 24 made of the substance 13 and the substance 14 were similarly laminated with a thickness of 0.3 mmt. Thus, a laminated film sample was obtained on the silicon substrate. A metal mask cut out from an elongated rectangular pattern was prepared, adhered to the upper surface of the layer 24, and parallel light having a wavelength of 720 nm was irradiated from above on the substrate in the vertical direction. At this time, the layer 2 composed of the substance 11
1 retains the insulating state without causing a phase transition,
The phase transitions to a conductor state according to the mask pattern. Thereafter, the sample is heated at 560 ° C. Then layer 22
Is maintained, but the layers 23 and 24 also undergo a phase transition to the initial state (stable state). The metal mask was shifted by 90 degrees, the cutout pattern was arranged so as to be orthogonal to the conventional one, and the substrate was irradiated with parallel light having a wavelength of 760 nm from above the layer 24 in the vertical direction. As a result, only the layer 24 undergoes a phase transition to a conductor state along the mask pattern. The conductor wiring pattern obtained by this series of operations is as shown in the plan view shown in FIG. 1A and the hatched portion in the cross-sectional view shown in FIG.

【0017】このようにして絶縁層23を挟んで直交す
る導体状態パターンについて、試料積層部の断面より電
極をあてて導通を調べたところ、確かに図1(a)、
(b)の斜線部に沿って低抵抗配線が得られていること
が確認された。
In the conductive state pattern orthogonal to the insulating layer 23 as described above, the conduction was examined by applying an electrode from the cross section of the sample laminated portion.
It was confirmed that a low-resistance wiring was obtained along the hatched portion in (b).

【0018】更に、導体配線パターンを変更したい場合
は、試料を600℃以上に加熱することで一旦全層を絶
縁状態に戻し、本実施例の手順に従って再度新しい配線
パターンを構築できることは容易に理解できる。
Further, when it is desired to change the conductor wiring pattern, it is easy to understand that a new wiring pattern can be constructed again by heating the sample to 600 ° C. or higher to return all the layers to the insulating state once and following the procedure of this embodiment. it can.

【0019】本実施例では、異なる相転移エネルギーを
持つ物質11〜14を説明の為に用いたが、本発明がこ
れらの4種類の物質に限定されることはない。また、物
質11〜14は準安定状態である導体状態の寿命が一年
以上と非常に長い。長期間配線パターンを維持する必要
がある場合は、このような長寿命(1年以上)物質、即
ち双安定とみなせるような物質群で多層配線部が構成さ
れることが望ましい。
In this embodiment, the substances 11 to 14 having different phase transition energies are used for explanation, but the present invention is not limited to these four kinds of substances. In addition, the substances 11 to 14 have an extremely long lifetime of one year or more in a conductor state that is a metastable state. When it is necessary to maintain the wiring pattern for a long period of time, it is desirable that the multi-layer wiring portion be formed of such a long-lived (one year or more) substance, that is, a group of substances that can be regarded as bistable.

【0020】(実施例2)作用で述べたデラフォサイト
に属する物質の内、波長700nm以下で絶縁状態から
導体状態に相転移し、600℃以上の加熱で導体状態か
らもとの絶縁状態に相転移する物質11と、波長720
nm以下で絶縁状態から導体状態に相転移し、580℃
以上の加熱で導体状態からもとの絶縁状態に相転移する
物質12と、波長740nm以下で絶縁状態から導体状
態に相転移し、560℃以上の加熱で導体状態からもと
の絶縁状態に相転移する物質13と、波長760nm以
下で絶縁状態から導体状態に相転移し、540℃以上の
加熱で導体状態からもとの絶縁状態に相転移する物質1
4とを用意し以下の本実施例の実験に供した。物質11
〜14はいずれも初期状態においてはそれぞれの安定状
態である絶縁状態であり、また、準安定状態である導体
状態は十分に寿命が長く、従って実質双安定物質とみな
せる。ここでいう寿命とは、導体状態の電気伝導率が初
期値の二分の一になるまでに要する期間をさす。
(Embodiment 2) Among the substances belonging to delafossite described in the operation, a phase transition from an insulating state to a conductive state occurs at a wavelength of 700 nm or less, and from a conductive state to an original insulating state by heating at 600 ° C. or more. Substance 11 which undergoes a phase transition, wavelength 720
The phase transition from the insulating state to the conductive state occurs at 580 ° C.
The substance 12 undergoes a phase transition from the conductor state to the original insulation state by the above heating, and the phase transition from the insulation state to the conductor state at a wavelength of 740 nm or less, and the phase from the conductor state to the original insulation state by heating at 560 ° C. or more. The substance 13 that undergoes a transition and the substance 1 that undergoes a phase transition from an insulating state to a conducting state at a wavelength of 760 nm or less, and undergoes a phase transition from the conducting state to the original insulating state by heating at 540 ° C. or more.
4 were prepared and subjected to the following experiment of this example. Substance 11
14 to 14 are insulating states which are stable states in an initial state, and a conductor state which is a metastable state has a sufficiently long life and can be regarded as a substantially bistable substance. The term "life" as used herein refers to a period required until the electric conductivity in the conductor state becomes half the initial value.

【0021】ガラスエポキシ基板10の表面に前記物質
11で構成される厚み0.3mmtの層21を形成し
た。層21の上面に前記物質12で構成される厚み0.
3mmtの層22を形成し、以下同様に物質13、物質
14による層23、24を各々0.3mmtの厚みで積
層した。このようにしてシリコン基板上に積層膜試料が
得られた。試料上部より直径0.1mm、波長720n
mのレーザ光を基板に対し垂直方向に照射し図1(a)
の平面図に示したA−B間を走査した。。この時、物質
11で構成される層21は相転移を起こさず絶縁状態を
保持するが、層22〜24はレーザで走査した直線パタ
ーンにしたがって導体状態に相転移する。その後、試料
を560℃で加熱する。すると層22の導体状態は保持
されるが、層23、24はまた初期状態(安定状態)に
相転移する。続いて、直径0.1mm、波長760nm
のレーザを用いて先の走査と垂直方向に走査しながらレ
ーザ照射をおこなった。これにより層24のみ走査した
奇跡に沿って導体状態に相転移した。この一連の操作で
得られた導体配線パターンは図1(a)に示した平面
図、及び図1(b)に示した断面図の斜線部の如くであ
る。
On the surface of the glass epoxy substrate 10, a layer 21 made of the substance 11 and having a thickness of 0.3 mm was formed. On the upper surface of the layer 21, a thickness of 0.
A layer 22 having a thickness of 3 mmt was formed, and layers 23 and 24 made of the substance 13 and the substance 14 were similarly laminated with a thickness of 0.3 mmt. Thus, a laminated film sample was obtained on the silicon substrate. 0.1mm diameter from the top of the sample, wavelength 720n
FIG. 1 (a) by irradiating a laser beam of m
Was scanned between AB shown in the plan view of FIG. . At this time, the layer 21 made of the substance 11 does not undergo a phase transition and maintains an insulating state, but the layers 22 to 24 undergo a phase transition to a conductor state according to a linear pattern scanned by a laser. Thereafter, the sample is heated at 560 ° C. Then, the conductor state of the layer 22 is maintained, but the layers 23 and 24 also undergo a phase transition to the initial state (stable state). Subsequently, the diameter is 0.1 mm, the wavelength is 760 nm.
Laser irradiation was performed while scanning in the vertical direction with respect to the previous scanning using the laser. This resulted in a phase transition to the conductor state along the miracle of scanning only layer 24. The conductor wiring pattern obtained by this series of operations is as shown in the plan view shown in FIG. 1A and the hatched portion in the cross-sectional view shown in FIG.

【0022】このようにして絶縁層23を挟んで直交す
る導体状態パターンについて、試料積層部の断面より電
極をあてて導通を調べたところ、確かに図1(a)、
(b)の斜線部に沿って低抵抗配線が得られていること
が確認された。
In the conductive state pattern orthogonal to the insulating layer 23 as described above, the conduction was examined by applying an electrode from the cross section of the sample laminated portion.
It was confirmed that a low-resistance wiring was obtained along the hatched portion in (b).

【0023】更に、導体配線パターンを変更したい場合
は、試料を600℃以上に加熱することで一旦全層を絶
縁状態に戻し、本実施例の手順に従って再度新しい配線
パターンを構築できることは容易に理解できる。
Further, when it is desired to change the conductor wiring pattern, it is easy to understand that a new wiring pattern can be constructed again by heating the sample to 600 ° C. or higher to return all the layers to the insulating state once and following the procedure of this embodiment. it can.

【0024】本実施例のように、光誘起相転移物質層上
を微細口径を有するレーザで任意の曲線に沿って走査す
ることにより、マスクを用いない簡便な方法で多層導体
配線が可能であることが判明した。
As in this embodiment, by scanning the photo-induced phase change material layer along an arbitrary curve with a laser having a fine aperture, a multilayer conductor wiring can be formed by a simple method without using a mask. It has been found.

【0025】本実施例では、異なる相転移エネルギーを
持つ物質11〜14を説明の為に用いたが、本発明がこ
れらの4種類の物質に限定されることはない。また、物
質11〜14は準安定状態である導体状態の寿命が一年
以上と非常に長い。長期間配線パターンを維持する必要
がある場合は、このような長寿命(1年以上)物質、即
ち双安定とみなせるような物質群で多層配線部が構成さ
れることが望ましい。
In the present embodiment, substances 11 to 14 having different phase transition energies are used for explanation, but the present invention is not limited to these four kinds of substances. In addition, the substances 11 to 14 have an extremely long lifetime of one year or more in a conductor state that is a metastable state. When it is necessary to maintain the wiring pattern for a long period of time, it is desirable that the multi-layer wiring portion be formed of such a long-lived (one year or more) substance, that is, a group of substances that can be regarded as bistable.

【0026】(実施例3)作用で述べたデラフォサイト
に属する物質の内、波長700nm以下で絶縁状態から
導体状態に相転移する物質41と、波長720nm以下
で絶縁状態から導体状態に相転移する物質42と、波長
740nm以下で絶縁状態から導体状態に相転移する物
質43と、波長760nm以下で絶縁状態から導体状態
に相転移する物質44とを用意し以下の本実施例の実験
に供した。物質41〜44はいずれも初期状態において
はそれぞれの安定状態である絶縁状態であり、また、準
安定状態である導体状態は十分に寿命が長く、従って実
質双安定物質とみなせる。ここでいう寿命とは、導体状
態の電気伝導率が初期値の二分の一になるまでに要する
期間をさす。
(Embodiment 3) Of the substances belonging to delafossite described in the operation, a substance 41 which undergoes a phase transition from an insulating state to a conducting state at a wavelength of 700 nm or less, and a phase transition from an insulating state to a conducting state at a wavelength of 720 nm or less. And a substance 43 that undergoes a phase transition from an insulating state to a conductive state at a wavelength of 740 nm or less, and a substance 44 that undergoes a phase transition from an insulating state to a conductive state at a wavelength of 760 nm or less. did. Each of the substances 41 to 44 is in an insulating state, which is a stable state in the initial state, and a conductor state, which is a metastable state, has a sufficiently long life and can be regarded as a substantially bistable substance. The term "life" as used herein refers to a period required until the electric conductivity in the conductor state becomes half the initial value.

【0027】前記物質41で構成される厚み0.3mm
tの基板51を用意し、該基板51表面に前記物質42
で構成される厚み0.3mmtの層52を形成した。こ
こで、細長い長方形のパターンを切り抜いた金属マスク
を用意しこれを層52の上部の表面に密着させ、更にそ
の上部より波長720nmの平行光を基板に対し垂直方
向に照射した。この時、物質41で構成される層51は
相転移を起こさず絶縁状態を保持するが、層52のみマ
スクパターンにしたがって導体状態に相転移する。その
後、前記物質43で構成される厚み0.3mmtの層5
3を形成した。ここで波長740nmの平行光を用い
て、適当なマスクをあてて基板垂直方向に照射をおこな
った。このとき露出された照射部で導体化するのはこの
時点で最も低エネルギーで相転移が起きる層53のみで
ある。最後に同様に物質44を最上層に厚み0.3mm
t設け(層54)、同様な導体化処理をおこなった。こ
の一連の操作で得られた導体配線パターンは図2(a)
に示した平面図、及び図2(b)に示した断面図の斜線
部の如くである。
The thickness of the material 41 is 0.3 mm.
t, a substrate 51 is prepared, and the substance 42 is provided on the surface of the substrate 51.
The layer 52 having a thickness of 0.3 mmt was formed. Here, a metal mask from which an elongated rectangular pattern was cut out was prepared and adhered to the upper surface of the layer 52, and parallel light having a wavelength of 720 nm was irradiated from above on the substrate in the vertical direction. At this time, the layer 51 made of the substance 41 does not undergo a phase transition and maintains an insulating state, but only the layer 52 undergoes a phase transition to a conductive state according to the mask pattern. Thereafter, a layer 5 of 0.3 mmt thickness composed of the substance 43 is formed.
3 was formed. Here, irradiation was performed in the vertical direction of the substrate by using a parallel light having a wavelength of 740 nm and applying an appropriate mask. At this time, only the layer 53 where the phase transition occurs at the lowest energy at this time becomes conductive in the exposed portion exposed. Finally, the material 44 is similarly formed on the top layer with a thickness of 0.3 mm.
t was provided (layer 54), and a similar conductive treatment was performed. The conductor wiring pattern obtained by this series of operations is shown in FIG.
2B and the cross-sectional view shown in FIG. 2B.

【0028】このようにして層53を介した層52と層
54の異なる層間の短絡も含めた導体状態パターンにつ
いて、試料積層部の断面に電極をあてて導通を調べたと
ころ、確かに図2(a)、(b)の斜線部に沿って低抵
抗配線が得られていることが確認された。ここでは、異
層間の電気的導通をとるのに従来のようなブラインドホ
ールの形成工程を必要とせず、簡便な方法で異層間導通
がとれることが示された。
The conduction state of the conductor pattern including the short circuit between the different layers 52 and 54 via the layer 53 was examined by applying an electrode to the cross section of the sample stacking section. It was confirmed that a low-resistance wiring was obtained along the hatched portions of (a) and (b). Here, it has been shown that the electrical conduction between the different layers does not require the step of forming a blind hole as in the prior art, and the electrical connection between the different layers can be obtained by a simple method.

【0029】本実施例の方法では、実施例1及び実施例
2の場合と異なり、必ずしも配線パターンの変更が可能
なわけではないが、光誘起相転移物質に対し、導体状態
から絶縁状態への相転移に必要な条件が要求されないの
で、材料選択の自由度が大きいといった特長がある。
In the method according to the present embodiment, unlike the first and second embodiments, it is not always possible to change the wiring pattern. Since the conditions required for the phase transition are not required, there is a feature that the degree of freedom in material selection is large.

【0030】本実施例では、異なる相転移エネルギーを
持つ物質41〜44を説明の為に用いたが、本発明がこ
れらの4種類の物質に限定されることはない。また、物
質41〜44は準安定状態である導体状態の寿命が一年
以上と非常に長い。長期間配線パターンを維持する必要
がある場合は、このような長寿命(1年以上)物質、即
ち双安定とみなせるような物質群で多層配線部が構成さ
れることが望ましい。
In the present embodiment, the substances 41 to 44 having different phase transition energies are used for explanation, but the present invention is not limited to these four kinds of substances. In addition, the substances 41 to 44 have a very long lifetime of one year or more in a conductor state that is a metastable state. When it is necessary to maintain the wiring pattern for a long period of time, it is desirable that the multi-layer wiring portion be formed of such a long-lived (one year or more) substance, that is, a group of substances that can be regarded as bistable.

【0031】本実施例では、基板自身も光誘起相転移物
質で構成される。該基板単体でも任意の一次元配線パタ
ーンが形成できることは自明である。この場合、基板裏
面(光照射面と反対の面)も導体化部が露出する場合も
あるが、その時には裏面を樹脂等の絶縁膜で被覆する
か、基板を任意の曲面上に固定する際、絶縁性のスぺー
サー等を使用すれば良い。他の方法としては、導体化工
程で使用する光のパワーを調節することで、基板の光照
射面の表面近傍のみ所望のパターンで導体化し、裏面は
絶縁状態を保った状態にすることもできる。
In this embodiment, the substrate itself is also made of a photo-induced phase change material. It is obvious that an arbitrary one-dimensional wiring pattern can be formed even with the substrate alone. In this case, the conductive portion may also be exposed on the back surface of the substrate (the surface opposite to the light irradiation surface). In this case, when the back surface is covered with an insulating film such as a resin, or when the substrate is fixed on an arbitrary curved surface. An insulating spacer or the like may be used. As another method, by adjusting the power of light used in the conductive step, only the vicinity of the surface of the light irradiation surface of the substrate can be made conductive in a desired pattern, and the back surface can be kept in an insulated state. .

【0032】(実施例4)作用で述べたデラフォサイト
に属する物質の内、波長700nm以下で絶縁状態から
導体状態に相転移する物質41と、波長720nm以下
で絶縁状態から導体状態に相転移する物質42と、波長
740nm以下で絶縁状態から導体状態に相転移する物
質43と、波長760nm以下で絶縁状態から導体状態
に相転移する物質44とを用意し以下の本実施例の実験
に供した。物質41〜44はいずれも初期状態において
はそれぞれの安定状態である絶縁状態であり、また、準
安定状態である導体状態は十分に寿命が長く、従って実
質双安定物質とみなせる。ここでいう寿命とは、導体状
態の電気伝導率が初期値の二分の一になるまでに要する
期間をさす。
(Embodiment 4) Of the substances belonging to delafossite described in the operation, a substance 41 which undergoes a phase transition from an insulating state to a conducting state at a wavelength of 700 nm or less, and a phase transition from an insulating state to a conducting state at a wavelength of 720 nm or less. And a substance 43 that undergoes a phase transition from an insulating state to a conductive state at a wavelength of 740 nm or less, and a substance 44 that undergoes a phase transition from an insulating state to a conductive state at a wavelength of 760 nm or less. did. Each of the substances 41 to 44 is in an insulating state, which is a stable state in the initial state, and a conductor state, which is a metastable state, has a sufficiently long life and can be regarded as a substantially bistable substance. The term "life" as used herein refers to a period required until the electric conductivity in the conductor state becomes half the initial value.

【0033】前記物質41で構成される厚み0.3mm
tの基板51を用意し、該基板51表面に前記物質42
で構成される厚み0.3mmtの層52を形成した。こ
こで、直径0.1mm、波長720nmのレーザを基板
に対し垂直方向に照射し、直線上に適当な距離走査をお
こなった。この時、物質41で構成される層51は相転
移を起こさず絶縁状態を保持するが、層52のみレーザ
走査の奇跡に従って導体状態に相転移する。その後、前
記物質43で構成される厚み0.3mmtの層53を形
成した。ここで波長740nmのレーザ光を用いて、適
当なパターンに沿って照射をおこなった。このときレー
ザ照射部で導体化するのはこの時点で最も低エネルギー
で相転移が起きる層53のみである。最後に同様に物質
44を最上層に厚み0.3mmt設け(層54)、レー
ザ走査による同様な導体化処理をおこなった。この一連
の操作で得られた導体配線パターンは図2(a)に示し
た平面図、及び図2(b)に示した断面図の斜線部の如
くである。
The thickness of the material 41 is 0.3 mm.
t, a substrate 51 is prepared, and the substance 42 is provided on the surface of the substrate 51.
The layer 52 having a thickness of 0.3 mmt was formed. Here, a laser having a diameter of 0.1 mm and a wavelength of 720 nm was irradiated on the substrate in the vertical direction, and a proper distance scan was performed on a straight line. At this time, the layer 51 composed of the substance 41 does not cause a phase transition and maintains an insulating state, but only the layer 52 undergoes a phase transition to a conductor state according to a miracle of laser scanning. Thereafter, a layer 53 made of the substance 43 and having a thickness of 0.3 mmt was formed. Here, irradiation was performed along an appropriate pattern using laser light having a wavelength of 740 nm. At this time, only the layer 53 where the phase transition occurs with the lowest energy at this time is made conductive in the laser irradiation part. Finally, the material 44 was similarly provided on the uppermost layer with a thickness of 0.3 mmt (layer 54), and a similar conductive treatment was performed by laser scanning. The conductor wiring pattern obtained by this series of operations is as shown by the hatched portion in the plan view shown in FIG. 2A and the cross-sectional view shown in FIG. 2B.

【0034】このようにして層53を介した層52と層
54の異なる層間の短絡も含めた導体状態パターンにつ
いて、試料積層部の断面に電極をあてて導通を調べたと
ころ、確かに図2(a)、(b)の斜線部に沿って低抵
抗配線が得られていることが確認された。ここでは、異
層間の電気的導通をとるのに従来のようなブラインドホ
ールの形成工程を必要とせず、簡便な方法で異層間導通
がとれることが示された。
The conduction state of the conductor pattern including the short-circuit between different layers of the layers 52 and 54 via the layer 53 was examined by applying an electrode to the cross section of the sample laminated portion. It was confirmed that a low-resistance wiring was obtained along the hatched portions of (a) and (b). Here, it has been shown that the electrical conduction between the different layers does not require the step of forming a blind hole as in the prior art, and the electrical connection between the different layers can be obtained by a simple method.

【0035】本実施例の方法では、実施例1及び実施例
2の場合と異なり、必ずしも配線パターンの変更が可能
なわけではないが、光誘起相転移物質に対し、導体状態
から絶縁状態への相転移に必要な条件が要求されないの
で、材料選択の自由度が大きいといった特長がある。併
せて、マスクを用いない手法なので製造工程の簡略化に
効果がある。
In the method of the present embodiment, unlike in the first and second embodiments, it is not always possible to change the wiring pattern. Since the conditions required for the phase transition are not required, there is a feature that the degree of freedom in material selection is large. In addition, since the method does not use a mask, it is effective in simplifying the manufacturing process.

【0036】本実施例では、異なる相転移エネルギーを
持つ物質41〜44を説明の為に用いたが、本発明がこ
れらの4種類の物質に限定されることはない。また、物
質41〜44は準安定状態である導体状態の寿命が一年
以上と非常に長い。長期間配線パターンを維持する必要
がある場合は、このような長寿命(1年以上)物質、即
ち双安定とみなせるような物質群で多層配線部が構成さ
れることが望ましい。
In the present embodiment, the substances 41 to 44 having different phase transition energies are used for explanation, but the present invention is not limited to these four kinds of substances. In addition, the substances 41 to 44 have a very long lifetime of one year or more in a conductor state that is a metastable state. When it is necessary to maintain the wiring pattern for a long period of time, it is desirable that the multi-layer wiring portion be formed of such a long-lived (one year or more) substance, that is, a group of substances that can be regarded as bistable.

【0037】本実施例では、基板自身も光誘起相転移物
質で構成される。該基板単体でも任意の一次元配線パタ
ーンが形成できることは自明である。この場合、基板裏
面(光照射面と反対の面)も導体化部が露出する場合も
あるが、その時には裏面を樹脂等の絶縁膜で被覆する
か、基板を任意の曲面上に固定する際、絶縁性のスぺー
サー等を使用すれば良い。他の方法としては、導体化工
程で使用する光のパワーを調節することで、基板の光照
射面の表面近傍のみ所望のパターンで導体化し、裏面は
絶縁状態を保った状態にすることもできる。
In this embodiment, the substrate itself is also made of a photo-induced phase change material. It is obvious that an arbitrary one-dimensional wiring pattern can be formed even with the substrate alone. In this case, the conductive portion may also be exposed on the back surface of the substrate (the surface opposite to the light irradiation surface). In this case, when the back surface is covered with an insulating film such as a resin, or when the substrate is fixed on an arbitrary curved surface. An insulating spacer or the like may be used. As another method, by adjusting the power of light used in the conductive step, only the vicinity of the surface of the light irradiation surface of the substrate can be made conductive in a desired pattern, and the back surface can be kept in an insulated state. .

【0038】[0038]

【発明の効果】従来の配線基板製造方法では、配線パタ
ーンを一層設ける毎にエッチング工程を要し、作業が煩
雑であり使用済みエッチング廃液が環境を汚染してい
た。また、従来法では一度配線パターンを形成すると配
線のやり直しができなかった。
According to the conventional method of manufacturing a wiring board, an etching step is required every time one wiring pattern is provided, the operation is complicated, and the used etching waste liquid pollutes the environment. Further, in the conventional method, once the wiring pattern is formed, the wiring cannot be redone.

【0039】本発明によれば、配線基板に光誘起相転移
物質を用いることで工程を簡素化し、これにより量産時
の歩留まり向上と製造コストの低下をもたらすことがで
きる。上述の如くエッチング工程がないので廃液をださ
ず、環境を汚染しないという効果を有する。一度配線パ
ターンを形成した後でもこれらの変更や修正を容易に実
行できる本発明は、近年求められている資源の有効利用
等に多大な貢献をするものである。
According to the present invention, the process can be simplified by using a photo-induced phase change material for the wiring board, thereby improving the yield during mass production and reducing the manufacturing cost. Since there is no etching step as described above, there is an effect that waste liquid is not discharged and the environment is not polluted. The present invention, in which these changes and corrections can be easily performed even after a wiring pattern has been formed once, greatly contributes to the effective use of resources and the like that has been required in recent years.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光誘起相転移物質による二層導電路形
成を示した図。(a)平面図。(b)断面図。
FIG. 1 is a diagram showing the formation of a two-layer conductive path using the photoinduced phase change material of the present invention. (A) Plan view. (B) Sectional view.

【図2】本発明の二層導電路間を光誘起相転移物質の導
体状態で短絡させた状態を示した図。(a)平面図。
(b)断面図。
FIG. 2 is a diagram showing a state in which the two-layer conductive paths of the present invention are short-circuited by a conductor state of a photo-induced phase change substance. (A) Plan view.
(B) Sectional view.

【図3】従来の多層配線基板の断面図。FIG. 3 is a cross-sectional view of a conventional multilayer wiring board.

【符号の説明】[Explanation of symbols]

10.ガラスエポキシ基板 21.光誘起相転移物質11で構成された第1層 22.光誘起相転移物質12で構成された第2層 23.光誘起相転移物質13で構成された第3層 24.光誘起相転移物質14で構成された第4層 32.光誘起相転移物質12で構成された第2層目の導
体化部 34.光誘起相転移物質14で構成された第4層目の導
体化部 51.光誘起相転移物質41で構成された第1層 52.光誘起相転移物質42で構成された第2層 53.光誘起相転移物質43で構成された第3層 54.光誘起相転移物質44で構成された第4層 62.光誘起相転移物質42で構成された第2層目の導
体化部 63.光誘起相転移物質43で構成された第3層目の導
体化部 64.光誘起相転移物質44で構成された第4層目の導
体化部 301.絶縁基板 302.第1配線層 303.絶縁層 304.ブラインドホール 305.第2配線層
10. Glass epoxy substrate 21. First layer composed of photoinduced phase change material 11 22. 22. Second layer composed of photoinduced phase change material 12 13. Third layer composed of photoinduced phase change material 13 4. fourth layer composed of photoinduced phase change material 14 34. Second-layer conductive portion made of light-induced phase change material 12 51. Fourth-layer conductive portion made of photoinduced phase change material 14 First layer made of photoinduced phase change material 41 52. Second layer composed of photoinduced phase change material 42 53. Third layer composed of photoinduced phase change material 43 54. Fourth layer made of photoinduced phase change material 44 62. 63. Second-layer conductive portion made of photoinduced phase change material 42 64. Third-layer conductive portion made of light-induced phase change material 43 301. Fourth-layer conductive portion made of photoinduced phase change material 44 Insulating substrate 302. First wiring layer 303. Insulating layer 304. Blind hole 305. Second wiring layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 垣花 眞人 神奈川県横浜市青葉区榎が丘6−1エスポ ワール青葉台C−603 Fターム(参考) 4E351 AA01 AA07 BB01 BB24 BB26 BB29 BB46 CC27 DD31 GG20 5E317 AA24 BB01 BB04 BB30 CC53 CD40 GG20 5E346 AA15 CC04 CC09 CC31 HH32 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masato Kakihana 6-1 Espoir Aobadai Aobadai C-603 F-term (reference) 4E351 AA01 AA07 BB01 BB24 BB26 BB29 BB46 CC27 DD31 GG20 5E317 AA24 BB01 BB04 BB30 CC53 CD40 GG20 5E346 AA15 CC04 CC09 CC31 HH32

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 素子間の配線を有する配線基板におい
て、該配線部が、安定状態である絶縁状態と準安定状態
である導体状態のいずれの状態でも存在可能な光誘起相
転移物質の、導体状態で構成されていることを特徴とす
る配線基板。
1. A wiring board having a wiring between elements, wherein a wiring portion is made of a conductor made of a photo-induced phase transition material that can exist in any of a stable insulating state and a metastable conductive state. A wiring board characterized by being configured in a state.
【請求項2】 前記光誘起相転移物質が異なる物質から
なる多層構造をなし、各層に対して絶縁状態を導体化す
る最低光励起エネルギーが存在し、該最低光励起エネル
ギーが上層ほど低くなることを特徴とする請求項1記載
の配線基板。
2. The photo-induced phase transition material has a multilayer structure composed of different materials, and each layer has a minimum photo-excitation energy for converting an insulating state into a conductive state, and the lowest photo-excitation energy is lower in an upper layer. The wiring board according to claim 1, wherein
【請求項3】 前記光誘起相転移物質が異なる物質から
なる多層構造をなし、各層に対して導体状態を絶縁化す
るのに要する最低の光または熱エネルギーが存在し、該
最低の光または熱エネルギーが上層ほど低くなることを
特徴とする請求項2記載の配線基板。
3. The light-induced phase change material has a multilayer structure composed of different materials, and each layer has a minimum light or heat energy required to insulate a conductive state, and the minimum light or heat energy is present. 3. The wiring board according to claim 2, wherein the energy is lower in the upper layer.
【請求項4】 前記光誘起相転移物質の安定状態である
絶縁状態と準安定状態である導体状態は、光または熱に
より可逆的に相転移して互いの状態をとり得ることを特
徴とする請求項1乃至3のいずれかに記載の配線基板。
4. The photo-induced phase change material according to claim 1, wherein the insulated state, which is a stable state, and the conductor state, which is a meta-stable state, can be reversibly phase-changed by light or heat to be in a mutual state. The wiring board according to claim 1.
【請求項5】 前記記載の準安定状態である導体状態の
寿命、即ち導体状態の電気伝導率が初期値の二分の一に
なるまでに要する期間は1年以上であることを特徴とす
る請求項4記載の配線基板。
5. The method according to claim 1, wherein the life of the conductor state in the metastable state, that is, the time required for the electric conductivity of the conductor state to become half of the initial value, is one year or more. Item 5. The wiring board according to item 4.
【請求項6】 前記光誘起相転移物質よりなる一層が基
板自体であることを特徴とする請求項4又は5記載の配
線基板。
6. The wiring substrate according to claim 4, wherein one layer of the photo-induced phase change material is a substrate itself.
【請求項7】 請求項5又は6記載の配線基板の製造方
法において、少なくとも(1)絶縁状態にある光誘起相
転移物質層をn層(nは1以上の整数)形成する工程
と、(2)第k層(kは1以上の整数でn以下。最下層
を第1層とし、最上層を第n層とする。初期値はk=
1)の配線パターンを、第k層を構成する光誘起相転移
物質に対する最低励起エネルギー以上かつk>1の時は
第(k―1)層を構成する光誘起相転移物質に対する最
低励起エネルギー未満のエネルギーを有する光の照射に
より導体化する工程と、(3)第k層を絶縁化するエネ
ルギー未満かつ第(k+1)層の絶縁化エネルギー以上
のエネルギーを外部から加える工程と、(4)前記
(2)から(3)工程をkを(k+1)に置き換えて順
に第n層(最上層)まで繰り返す工程とを含むことを特
徴とする、配線基板の製造方法。
7. The method for manufacturing a wiring board according to claim 5, wherein at least (1) a step of forming an n-layer (n is an integer of 1 or more) of a photoinduced phase change material layer in an insulating state; 2) The k-th layer (k is an integer of 1 or more and n or less. The lowermost layer is the first layer, and the uppermost layer is the n-th layer. The initial value is k =
The wiring pattern of 1) is set to have a minimum excitation energy not less than the minimum excitation energy for the photo-induced phase change material constituting the k-th layer and less than the minimum excitation energy for the photo-induced phase change material constituting the (k-1) -th layer when k> 1. (3) applying external energy less than the energy for insulating the k-th layer and greater than or equal to the insulating energy for the (k + 1) -th layer; (2) to (3), wherein k is replaced by (k + 1) and the process is sequentially repeated up to the n-th layer (uppermost layer).
【請求項8】 請求項5又は6記載のn層配線(nは1
以上の整数)基板の製造方法において、少なくとも
(1)絶縁状態にある光誘起相転移物質からなる第k層
(kは1以上の整数でn以下。最下層を第1層とし、最
上層を第n層とする。初期値はk=1)を形成する工程
と、(2)第k層の配線パターンを第k層を構成する光
誘起相転移物質に対する最低励起エネルギー以上かつk
>1の時は第(k―1)層を構成する光誘起相転移物質
に対する最低励起エネルギー未満のエネルギーを有する
光の照射により導体化する工程と、(3)前記(1)か
ら(2)工程をkを(k+1)に置き換えて順に第n層
(最上層)まで繰り返す工程とを含むことを特徴とす
る、配線基板の製造方法。
8. The n-layer wiring according to claim 5, wherein n is 1
In the method of manufacturing a substrate, at least (1) a k-th layer (k is an integer of 1 or more and n or less; a lowermost layer is a first layer, and a lowermost layer is a first layer; And (2) setting the wiring pattern of the k-th layer to a value not less than the lowest excitation energy for the photo-induced phase change material constituting the k-th layer and k
When> 1, a step of converting the photo-induced phase change material constituting the (k-1) -th layer into a conductor by irradiating light having energy less than the lowest excitation energy to the (k-1) layer; and (3) the steps (1) to (2) A process in which k is replaced with (k + 1) and the process is sequentially repeated up to the n-th layer (uppermost layer).
【請求項9】 光誘起相転移物質の光による導体化工程
で、配線パターンをマスクを用いて形成することを特徴
とする、請求項7又は8記載の配線基板の製造方法。
9. The method for manufacturing a wiring board according to claim 7, wherein the wiring pattern is formed using a mask in the step of converting the photo-induced phase change substance into a conductor using light.
【請求項10】 光誘起相転移物質の光による導体化工
程で、マスクを用いず、予め設計された配線パターンに
沿って直接レーザを走査照射することで配線形成するこ
とを特徴とする、請求項7又は8記載の配線基板の製造
方法。
10. A process for forming a wiring by directly scanning and irradiating a laser along a previously designed wiring pattern without using a mask in a step of converting a photo-induced phase change material into a conductor using light. Item 7. The method for manufacturing a wiring board according to Item 7 or 8.
JP2000356002A 2000-11-22 2000-11-22 Wiring board and its manufacturing method Withdrawn JP2002158418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000356002A JP2002158418A (en) 2000-11-22 2000-11-22 Wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000356002A JP2002158418A (en) 2000-11-22 2000-11-22 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002158418A true JP2002158418A (en) 2002-05-31

Family

ID=18828323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356002A Withdrawn JP2002158418A (en) 2000-11-22 2000-11-22 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002158418A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095139A (en) * 2005-09-28 2007-04-12 Hitachi Computer Peripherals Co Ltd Method for processing electronic circuit member, and method and device for processing magnetic disk head
US8298905B2 (en) 2009-03-16 2012-10-30 Sony Corporation Method for forming functional element using metal-to-insulator transition material, functional element formed by method, method for producing functional device, and functional device produced by method
US9659682B2 (en) 2013-11-29 2017-05-23 Lg Chem, Ltd. Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon
US9668342B2 (en) 2013-09-27 2017-05-30 Lg Chem, Ltd. Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon
US9756725B2 (en) 2013-11-25 2017-09-05 Lg Chem, Ltd. Composition for forming conductive pattern and resin structure having conductive pattern thereon
US9967974B2 (en) 2013-04-26 2018-05-08 Lg Chem, Ltd. Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095139A (en) * 2005-09-28 2007-04-12 Hitachi Computer Peripherals Co Ltd Method for processing electronic circuit member, and method and device for processing magnetic disk head
US8298905B2 (en) 2009-03-16 2012-10-30 Sony Corporation Method for forming functional element using metal-to-insulator transition material, functional element formed by method, method for producing functional device, and functional device produced by method
US9967974B2 (en) 2013-04-26 2018-05-08 Lg Chem, Ltd. Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon
US9668342B2 (en) 2013-09-27 2017-05-30 Lg Chem, Ltd. Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon
US9756725B2 (en) 2013-11-25 2017-09-05 Lg Chem, Ltd. Composition for forming conductive pattern and resin structure having conductive pattern thereon
US9659682B2 (en) 2013-11-29 2017-05-23 Lg Chem, Ltd. Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon

Similar Documents

Publication Publication Date Title
US8298905B2 (en) Method for forming functional element using metal-to-insulator transition material, functional element formed by method, method for producing functional device, and functional device produced by method
RU2183882C2 (en) Method for producing three-dimensional electricity conducting or semiconducting structures and methods for destroying them
CN1550048B (en) Non-volatile adjustable resistor device and programmable memory cell manufacture method
US4572843A (en) Method for producing a capacitor with precise capacitance
JP2002158418A (en) Wiring board and its manufacturing method
CN108565337B (en) Method for preparing resistive random access memory by using nano shielding layer to perform positioning plasma processing
Rehman et al. Optically reconfigurable complementary logic gates enabled by bipolar photoresponse in gallium selenide memtransistor
Hu et al. In situ vulcanization synthesis of CuInS 2 nanosheet arrays for a memristor with a high on–off ratio and low power consumption
CN113078262B (en) Memristor with superlattice-like material functional layer and preparation method thereof
JP2002158229A (en) Multilayer wiring and method for wiring the same
CN102738387A (en) Memristor based on TiOx structure and manufacturing method of memristor
Abbas et al. A Low Power‐consumption and Transient Nonvolatile Memory Based on Highly Dense All‐Inorganic Perovskite Films
JP5371010B2 (en) Switching elements and their applications
JP5099616B2 (en) Method for manufacturing transparent substrate with circuit pattern
CN113078260B (en) Complementary memristor based on two-dimensional electron gas and preparation method thereof
Kamitsos et al. Spectroscopic Investigations of Transformation Phenomena Exhibited by Metal-TCNQ Materials
JP2002158228A (en) Gate array and method for forming logic circuit
CN110556475B (en) Low-density variable phase-change material, phase-change memory and preparation method
CN110571329B (en) High-reliability phase-change material, phase-change memory and preparation method
JP2001273778A (en) Memory device, its manufacturing method, and recording method for memory device
JP2002158314A (en) Semiconductor package and its manufacturing method
Liu et al. Electrical Switching and Memory Phenomena in Electrodeposited [TBA] x [Ni (DMID) 2] Thin Films
KR101826419B1 (en) MODIFYING METHOD FOR TMDs TWO-DIMENSIONAL SHEET BASED ON ION BEAM IRRADIATION
JP2006093385A (en) Photoelectric conversion structure and its manufacturing method
KR100526672B1 (en) Fabrication method of electrical phase-change memory element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205