JP2002156361A - Magnetic characteristics distribution estimating method for magnetic material and quality evaluation method - Google Patents

Magnetic characteristics distribution estimating method for magnetic material and quality evaluation method

Info

Publication number
JP2002156361A
JP2002156361A JP2000352881A JP2000352881A JP2002156361A JP 2002156361 A JP2002156361 A JP 2002156361A JP 2000352881 A JP2000352881 A JP 2000352881A JP 2000352881 A JP2000352881 A JP 2000352881A JP 2002156361 A JP2002156361 A JP 2002156361A
Authority
JP
Japan
Prior art keywords
magnetic
image
magnetic material
flux density
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000352881A
Other languages
Japanese (ja)
Inventor
Tsutomu Kaido
力 開道
Masahiro Fujikura
昌浩 藤倉
Yoshifuru Saito
兆古 斎藤
Hisashi Endo
久 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000352881A priority Critical patent/JP2002156361A/en
Publication of JP2002156361A publication Critical patent/JP2002156361A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide magnetic characteristics distribution estimation method of a magnetic material, capable of quantitatively expressing microscopic magnetic characteristics distribution, and to provide a quality evaluation method using it. SOLUTION: In an excitation process of a magnetic circuit and a magnetic material excited by a drive coil, the magnetic characteristics of respective image points are estimated by two or more visualized images made to correspond to the excited state, so that two-dimensional or three-dimensional magnetic characteristics distribution of the magnetic material is estimated. When an image average magnetic flux density is known in the two or more visualized images of the excited state, it is desirable that the magnetic flux density be determined, using the known magnetic flux density by the image processing and that the Helmholtz equation be used for the estimation of the magnetic characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性材料の磁気特
性分布推定法及びこれを用いた品質評価法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a magnetic property distribution of a magnetic material and a quality evaluation method using the same.

【0002】[0002]

【従来の技術】磁性材料としては、電磁鋼板、ソフトフ
ェライト、パーマロイなどの軟質磁性材料と、永久磁石
の硬質磁性材料などがある。これらの磁性材料の品質
は、磁化曲線やヒステリシスループで評価される。特
に、電磁鋼板などの軟質磁性材料では、エプシュタイン
試験やリング試験により評価され、試料全体の平均値と
して、磁化曲線、ヒステリシスループをはじめ、透磁
率、鉄損などが測られている。
2. Description of the Related Art Magnetic materials include soft magnetic materials such as electromagnetic steel sheets, soft ferrite, and permalloy, and hard magnetic materials such as permanent magnets. The quality of these magnetic materials is evaluated by a magnetization curve and a hysteresis loop. In particular, a soft magnetic material such as an electromagnetic steel sheet is evaluated by an Epstein test or a ring test, and a magnetization curve, a hysteresis loop, a magnetic permeability, an iron loss, and the like are measured as an average value of the entire sample.

【0003】これらの磁性材料には、更なる高性能化が
求められているので、以上のような試料全体の平均値に
よる巨視的な評価によって、磁気特性の改善がなされて
いる。しかし、一般の磁性材料は多結晶体であり、材料
内部の個々の結晶粒による磁気特性の分布が生じ、試料
全体の磁気特性に大きく影響するので、磁性材料の磁気
特性の高性能化には、局部的な部分の磁気特性を評価す
ることも重要である。このため、局部の磁束密度や磁界
をサーチコイル等で検出し磁気特性分布を測定すること
も行われている。サーチコイルによる方法では、検出で
きる最小領域が結晶粒より大きい場合が多いので、更に
微小な解析には、磁区観察が行われる。
[0003] Since higher performance is required for these magnetic materials, the magnetic properties have been improved by macroscopic evaluation based on the average value of the entire sample as described above. However, general magnetic materials are polycrystalline, and the distribution of magnetic characteristics is caused by individual crystal grains inside the material, which greatly affects the magnetic characteristics of the entire sample. It is also important to evaluate the magnetic properties of local parts. For this reason, a local magnetic flux density or a magnetic field is detected by a search coil or the like, and the magnetic characteristic distribution is measured. In the method using a search coil, the minimum area that can be detected is often larger than a crystal grain, so that a magnetic domain observation is performed for further minute analysis.

【0004】この磁区観察方法としては、SEMによる
試料入射電子の反射あるいは散乱状況の違いにより磁化
方向を検出し磁区画像を得る方法、カー効果により磁化
方向による光反射の相違を活用して磁区画像を得る方法
や、試料表面からの磁束漏れを磁性粉で検出し磁化状態
を知る方法などがある。これらの磁区観察により、磁壁
の動きや磁化分布を推察することがなされている。
The magnetic domain observation method includes a method of detecting a magnetization direction based on a difference in the state of reflection or scattering of electrons incident on a sample by an SEM to obtain a magnetic domain image, and a method of utilizing a difference in light reflection depending on the magnetization direction by the Kerr effect. And a method of detecting magnetic flux leakage from the sample surface with magnetic powder to know the magnetization state. By observing these magnetic domains, the motion of the domain wall and the magnetization distribution are estimated.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの画像
から得られる結果は定量的でないため、画像間の比較が
取り難く、経験的な評価になり個人差が現われ易い。ま
た、画像全体の評価(磁化方向、磁区の大きさ、磁壁の
動き易さ等の2次元分布の定量評価)があまりなされて
いない。一方、カー効果による磁区観察では反射光全体
を取り込み、磁化曲線などの測定が為されているが、反
射領域が結晶粒の大きさに比べると比較的大きく、領域
を一つの結晶粒などに絞ると、感度が低くなり、得られ
る磁化曲線の精度が得られていない。
However, since the results obtained from these images are not quantitative, it is difficult to compare the images, it is an empirical evaluation, and individual differences are likely to appear. Further, evaluation of the entire image (quantitative evaluation of two-dimensional distribution such as magnetization direction, size of magnetic domain, ease of movement of domain wall, etc.) has not been performed much. On the other hand, in the magnetic domain observation by the Kerr effect, the whole reflected light is taken in and the magnetization curve and the like are measured, but the reflection area is relatively large compared to the size of the crystal grain, and the area is narrowed down to one crystal grain or the like. , The sensitivity is lowered, and the accuracy of the obtained magnetization curve is not obtained.

【0006】本発明は、このような従来技術の問題点に
鑑みなされたもので、磁性材料の微視的な磁気特性分布
を定量的に表現することができる磁気特性分布推定法と
磁性材料の品質評価を精度良く行うことを可能とする方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and a magnetic property distribution estimating method capable of quantitatively expressing a microscopic magnetic property distribution of a magnetic material and a magnetic material distribution estimating method. It is an object of the present invention to provide a method capable of performing quality evaluation with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下のとおりである。 (1)磁性材料の励磁過程において、2つ以上の励磁状
態に対応した可視化画像から画像各点の磁気特性を推定
することにより、磁性材料の2次元的或いは3次元的な
磁気特性分布を推定することを特徴とする磁性材料の磁
気特性分布推定法。 (2)2つ以上の励磁状態の可視化画像において画像平
均の磁束密度が既知であるとき、前記の既知磁束密度を
用いて、画像処理による磁束密度を決定することを特徴
とする上記(1)記載の磁性材料の磁気特性分布推定
法。 (3)上記(1)或いは(2)記載の磁性材料の磁気特
性分布推定法を用いて、指定した領域において、その領
域内の各点の磁気特性を平均し平均的な磁気特性を推定
することを特徴とする磁気特性の推定法。 (4)磁気特性の推定にヘルムホルツの式を用いること
を特徴とする上記(1)〜(3)のいずれか1項記載の
磁性材料の磁気特性推定法。 (5)上記(1)〜(4)のいずれか1項記の方法を用
いて、材料や部材の品質を評価することを特徴とする磁
性材料の品質評価法。
The gist of the present invention is as follows. (1) In the excitation process of the magnetic material, two-dimensional or three-dimensional magnetic characteristic distribution of the magnetic material is estimated by estimating the magnetic characteristics of each point of the image from the visualized images corresponding to two or more excitation states. A method for estimating a magnetic property distribution of a magnetic material. (2) When the average magnetic flux density of the visualized images in two or more excited states is known, the magnetic flux density by image processing is determined using the known magnetic flux density. A method for estimating magnetic property distribution of a magnetic material as described in the above. (3) Using the magnetic property distribution estimation method of the magnetic material described in (1) or (2) above, in a specified area, average the magnetic properties of each point in the area to estimate an average magnetic property. A method for estimating magnetic properties. (4) The method for estimating magnetic properties of a magnetic material according to any one of the above (1) to (3), wherein the Helmholtz equation is used for estimating the magnetic properties. (5) A quality evaluation method for a magnetic material, wherein the quality of a material or a member is evaluated using the method according to any one of the above (1) to (4).

【0008】[0008]

【発明の実施の形態】本発明の磁性材料は、電磁鋼板を
はじめとするパーマロイ、アモルファス磁性材料、フェ
ライトなどの軟質磁性材料、永久磁石の硬質磁性材料で
あり、更に半硬質磁性材料でも良い。励磁状態に対応し
た可視化画像とは、SEM法、カー効果法などによる磁
区観察画像、ビッター法による磁区画像、その他の方法
による磁区画像であり、微視的な磁化状態がアナログあ
るいはディジタルで示される画像であればどのような方
法、手法によっても良い。
BEST MODE FOR CARRYING OUT THE INVENTION The magnetic material of the present invention is a soft magnetic material such as a permalloy such as an electromagnetic steel sheet, an amorphous magnetic material, a ferrite, or a hard magnetic material of a permanent magnet, and may be a semi-hard magnetic material. The visualized image corresponding to the excitation state is a magnetic domain observation image by the SEM method, the Kerr effect method, a magnetic domain image by the Bitter method, or a magnetic domain image by another method, and the microscopic magnetization state is indicated by analog or digital. Any method and method may be used for an image.

【0009】SEMによる磁区画像は、試料入射電子の
反射(あるいは散乱)状況の違いにより磁化方向を検出
でき、磁性材料の表面からある程度の深さにおける磁化
状態が検出され、磁区画像が得られる。加速電圧(入射
エネルギー)を変化させると検出される深さを変化させ
ることもできる。カー効果による磁区画像は、磁化方向
による光反射の相違を活用して磁区画像を得る方法であ
り、磁性材料の表面近傍の磁化状態を知ることができ
る。ビッター法による画像では磁性材料表面からの磁束
漏れを磁性粉で検出し磁化状態を検出できる。
In the magnetic domain image obtained by the SEM, the magnetization direction can be detected based on the difference in the reflection (or scattering) state of the sample incident electrons, and the magnetization state at a certain depth from the surface of the magnetic material is detected, thereby obtaining a magnetic domain image. By changing the acceleration voltage (incident energy), the detected depth can be changed. The magnetic domain image by the Kerr effect is a method of obtaining a magnetic domain image by utilizing a difference in light reflection depending on a magnetization direction, and it is possible to know a magnetization state near a surface of a magnetic material. In the image by the bitter method, the magnetic state can be detected by detecting the magnetic flux leakage from the magnetic material surface with the magnetic powder.

【0010】磁区画像を得るために、透過型電子顕微鏡
が適用できるならば、磁性材料の深さ方向全体の平均的
な磁化状態を知ることができる。従って、ある一つの励
磁状態において、加速電圧を変えたSEM磁区画像や、
上記2種類以上の磁区画像を組み合わせることにより、
3次元的な磁区画像も推定可能であるので、磁気特性の
2次元的な処理ができるだけでなく、深さ方向を含めた
3次元的なデータ処理も可能になる。
If a transmission electron microscope can be applied to obtain a magnetic domain image, the average magnetization state of the entire magnetic material in the depth direction can be known. Therefore, in one excitation state, an SEM magnetic domain image in which the acceleration voltage is changed,
By combining the two or more types of magnetic domain images,
Since a three-dimensional magnetic domain image can also be estimated, not only two-dimensional processing of magnetic characteristics but also three-dimensional data processing including the depth direction can be performed.

【0011】以上の方法により得られる可視化画像にお
ける各点の画像データは、磁化に対応し検出される電子
量、光量、磁束漏れ量(或いは磁性粉量)に対応したア
ナログやディジタル量である。SEM法やカー効果法等
では画像データは励磁方向に対し磁化方向あるいは励磁
方向に対する余弦成分の大きさに対応し、ビッター法で
は磁束漏れの大きさに対応するので、検出点、線、領域
等の磁束密度に対応する。
The image data at each point in the visualized image obtained by the above method is an analog or digital amount corresponding to the amount of electrons, the amount of light, and the amount of magnetic flux leakage (or the amount of magnetic powder) detected corresponding to the magnetization. In the SEM method, the Kerr effect method, etc., the image data corresponds to the magnitude of the magnetization direction with respect to the excitation direction or the magnitude of the cosine component with respect to the excitation direction, and the bitter method corresponds to the magnitude of the magnetic flux leakage. Corresponding to the magnetic flux density of

【0012】本発明においては、2つ以上の励磁状態に
対応した2次元的な可視化画像や、画像の組み合わせに
より推定される3次元画像により、磁性材料の表面或い
は表面近傍の任意の領域(点、線、面、体積を含む)に
おける磁気特性を推定する。励磁状態が2つ以上あれ
ば、磁化曲線における2点以上に対応させることができ
るので、画像の任意の領域における画像データより磁束
密度を推定すれば、磁化曲線やヒステリシスループの全
体あるいは一部を求めることができる。
In the present invention, a two-dimensional visualized image corresponding to two or more excitation states or a three-dimensional image estimated by a combination of images can be used to arbitrarily determine the surface of the magnetic material or an arbitrary region (point) near the surface. , Lines, planes, and volumes). If there are two or more excitation states, it is possible to correspond to two or more points in the magnetization curve. Therefore, if the magnetic flux density is estimated from image data in an arbitrary area of the image, the whole or a part of the magnetization curve or the hysteresis loop can be obtained. You can ask.

【0013】励磁状態に対応する磁界(或いは磁界の大
きさ)Hは、外部から励磁される電流、磁界検出用コイ
ルの誘起起電力、ホール素子や磁気抵抗素子などによる
電圧から求められる。励磁電流を用いると、試料におけ
る平均的な磁界になり、磁界検出用コイルや素子を用い
ると、その大きさに対応した領域の平均的な磁界とな
る。また、事前に磁壁移動と局部磁界の関係が明らかで
あれば磁壁移動から推定できる磁界を用いても良い。こ
れら磁界の種類は、目的に応じて選ぶ必要があることは
言うまでもない。
The magnetic field (or the magnitude of the magnetic field) H corresponding to the excitation state is obtained from the current excited from the outside, the induced electromotive force of the magnetic field detecting coil, and the voltage generated by a Hall element, a magnetoresistive element, or the like. When the exciting current is used, the average magnetic field in the sample is obtained, and when the coil or element for detecting the magnetic field is used, the average magnetic field in a region corresponding to the size is obtained. If the relationship between the domain wall motion and the local magnetic field is known in advance, a magnetic field that can be estimated from the domain wall motion may be used. It goes without saying that these types of magnetic fields need to be selected according to the purpose.

【0014】画像の任意の点におけるデータUに対応す
る磁束密度Bは、UとBの対応が明らかであれば、直接
画像データUを磁束密度Bに変換すれば良いが、2つ以
上の励磁状態の可視化画像において画像全体の平均磁束
密度が既知であるとき、この既知の平均磁束密度とUの
画像全体の平均値とから、画像処理による磁束密度を決
定しても良い。
The magnetic flux density B corresponding to the data U at an arbitrary point on the image may be obtained by directly converting the image data U to the magnetic flux density B if the correspondence between U and B is clear. When the average magnetic flux density of the entire image in the visualized image of the state is known, the magnetic flux density by image processing may be determined from the known average magnetic flux density and the average value of the entire image of U.

【0015】励磁状態としては、消磁状態(磁束密度=
0)、磁気飽和状態(磁化の大きさが飽和磁化である)
を用いても良いし、ある磁界に対して磁束密度が測定さ
れている状態でも良い。この画像データや磁束密度は励
磁点に対して存在しており、この励磁点だけでも目的が
達成されるならばそれだけでも良いが、必要であれば、
励磁点間は色々な方法で補間しても良い。例えば2励磁
点を直線近似する方法や、3つの励磁点H1 、H2 、H
3 とそれに対応した画像データU1 (H1 )、U2 (H
2 )、U3 (H3 )より、次式の定数a、Λ、bを決定
し、これらの磁界の間、或いは近傍の画像データU
(H)を求め、磁束密度を求めても良い。 U(H)=a・ exp(−ΛH)+b
As the excitation state, a demagnetization state (magnetic flux density =
0), magnetic saturation state (magnitude is saturation magnetization)
Or a state in which the magnetic flux density is measured for a certain magnetic field. The image data and the magnetic flux density exist for the excitation point, and the excitation point alone may be sufficient if the object is achieved, but if necessary,
The interpolation between the excitation points may be performed by various methods. For example, a method of linearly approximating two excitation points, or three excitation points H 1 , H 2 , H
3 and the corresponding image data U 1 (H 1 ), U 2 (H
2 ), U 3 (H 3 ), constants a, Λ, and b of the following equation are determined, and image data U between or near these magnetic fields is determined.
(H) may be obtained, and the magnetic flux density may be obtained. U (H) = a · exp (−ΛH) + b

【0016】この方法は、次のヘルムホルツ(Helmholt
z )の式に対応している。 ▽2 U+ε∂U/∂H=−σ ここで、Uは画像の任意の点におけるスカラーデータ
で、磁界Hの関数であり、左辺第1項は空間広がりを表
し、第2項は磁界などによる変化を表す部分であり、右
辺は最終画像の画像のソース密度で、最終画像データを
Final とすると、 ▽2 Final =−σ となる。いま、初期値をHStart 、UStart とすると、
一般的に、 U(H)=(UStart −UFinal ) exp{−Λ(H−H
Start )}+UFinal となり、求めることができるので、この方法を用いても
良い。
This method is based on the following Helmholt method.
z). ▽ 2 U + ε∂U / ∂H = −σ where U is scalar data at an arbitrary point in the image, is a function of the magnetic field H, the first term on the left side represents spatial spread, and the second term is based on the magnetic field or the like. The right side is the source density of the image of the final image. If the final image data is U Final , ▽ 2 U Final = −σ. Now, assuming that the initial values are H Start and U Start ,
In general, U (H) = (U Start −U Final ) exp {−Λ (H−H
Start )} + U Final , which can be obtained, so this method may be used.

【0017】このように、画像データに対応して磁束密
度が求まれば、磁気特性は可視化画像に対応して2次元
分布、或いは3次元分布として求まる。ここで、磁気特
性とは磁化曲線、ヒステリシスループであり、これらよ
り求められる残留磁化、保磁力、透磁率、鉄損等であ
る。
As described above, if the magnetic flux density is determined corresponding to the image data, the magnetic characteristic is determined as a two-dimensional distribution or a three-dimensional distribution corresponding to the visualized image. Here, the magnetic characteristics are a magnetization curve and a hysteresis loop, and are a residual magnetization, a coercive force, a magnetic permeability, an iron loss and the like obtained from these.

【0018】本発明では、この磁気特性の2次元分布と
3次元分布を求めるだけでなく、この磁気特性分布よ
り、画像の任意の点における磁気特性を瞬時に求められ
る。また、必要な領域を指定して、その指定した領域で
の平均的な磁気特性を求めることもできる。指定した領
域とは、点以外に、線、面、更には空間(体積)で、結
晶粒界、結晶粒や一定大きさで分割した領域、測定範囲
の全体やその一部である。
According to the present invention, not only the two-dimensional distribution and the three-dimensional distribution of the magnetic characteristics are obtained, but also the magnetic characteristics at an arbitrary point of the image can be obtained instantaneously from the magnetic characteristics distribution. In addition, it is also possible to specify a necessary area and obtain an average magnetic characteristic in the specified area. The designated region is a line, a plane, or a space (volume) other than a point, a crystal grain boundary, a crystal grain, a region divided by a certain size, and the whole or a part of a measurement range.

【0019】このような方法を用いて、磁性材料や磁性
材料からなる部材の品質を評価することができる。磁気
特性は材料の結晶粒(粒界、大きさ)や集合組織に影響
されるだけでなく、歪、応力、また材料内の欠陥にも影
響される。また、表面性状(表面形状、皮膜性状など)
にも影響される。従って、材料としては、結晶粒の大き
さ、粒界、また集合組織、材料内の析出物、介在物や、
転位などの結晶欠陥の検出が可能であり、これらの結果
より、磁性材料を使用した部材の非破壊検査が可能にな
り、形状欠陥、亀裂や破壊に関係する情報が求まる。
Using such a method, the quality of a magnetic material or a member made of a magnetic material can be evaluated. Magnetic properties are affected not only by the crystal grains (grain boundaries, size) and texture of the material, but also by strain, stress, and defects in the material. Surface properties (surface shape, film properties, etc.)
Is also affected. Therefore, as a material, the size of crystal grains, grain boundaries, and texture, precipitates and inclusions in the material,
Crystal defects such as dislocations can be detected, and from these results, nondestructive inspection of members using a magnetic material becomes possible, and information relating to shape defects, cracks and fractures can be obtained.

【0020】[0020]

【実施例】[実施例1]絶縁皮膜を除去した方向性電磁
鋼板の試験片に、消磁状態から324A/m まで順次励磁
したときの磁区画像をSEMで測定した。このとき同時
に各励磁状態の磁束密度を測定した結果を表1に示す。
またSEM画像のうち、画像番号1〜10の磁区写真を
図1〜図10に示す。
EXAMPLES Example 1 Magnetic domain images of a test piece of grain-oriented electrical steel sheet from which the insulating film had been removed were sequentially excited from a demagnetized state to 324 A / m, and measured by SEM. Table 1 shows the results of the measurement of the magnetic flux density in each excitation state at the same time.
Further, among the SEM images, magnetic domain photographs of image numbers 1 to 10 are shown in FIGS.

【0021】磁区の画像データのUk 、Uk+1 、Uk+2
を用いて、次式よりΛk を求めた。 Λk =−(1/ΔH)ln{(Uk+1 −Uk+2 )/(Uk
−Uk+2 )} ΔH=Hk+1 −Hk このΛk を用いて、 U=(Uk −Uk+2 ) exp{−Λk (H−Hk )}+U
k+2 として、Hk <H<Hk+1 における任意の磁界Hにおけ
る画像データを求めた。磁束密度への変換は画像kとk
+1の画像データUk とUk+1 の画像面の平均値を画像
kとk+1の励磁状態の磁束密度Bk とBk+1 とし、こ
の2点を用いた線形補間をおこなった。
U k , U k + 1 , U k + 2 of magnetic domain image data
Was used to determine Λ k from the following equation. Λ k = − (1 / ΔH) ln {(U k + 1 −U k + 2 ) / (U k
−U k + 2 )} ΔH = H k + 1 −H k Using this Λ k , U = (U k −U k + 2 ) exp {−Λ k (H−H k )} + U
As k + 2 , image data at an arbitrary magnetic field H in H k <H <H k + 1 was obtained. Conversion to magnetic flux density is performed by using images k and k
The average values of the image planes of the image data U k and U k + 1 of +1 are defined as the magnetic flux densities B k and B k + 1 in the excited state of the images k and k + 1, and linear interpolation using these two points is performed.

【0022】このようにして、磁界0A/m 〜324A/m
〜−11A/m における磁区画像を磁界に対して連続的に
推定し、画像全体を平均することにより方向性電磁鋼板
の磁化曲線を推定した。推定した磁区画像と磁化曲線を
図11〜図17に示す。また、図1における各点の推定
磁化曲線を図18、19、20に示す。指定点1、2は
180°磁区の部分の磁化曲線であるが、磁化し易く
(図18)、ランセット磁区の部分3、4や歪が入って
いる部分5、6では磁化し難い様子(図19及び図2
0)が分る。また、歪の入っている部分は高磁界でもヒ
ステリシスが大きくなっている様子がうかがえる。
In this manner, the magnetic field is from 0 A / m to 324 A / m
The magnetic domain image at ~ -11 A / m was continuously estimated with respect to the magnetic field, and the entire image was averaged to estimate the magnetization curve of the grain-oriented electrical steel sheet. FIGS. 11 to 17 show the estimated magnetic domain images and magnetization curves. FIGS. 18, 19, and 20 show estimated magnetization curves at respective points in FIG. The designated points 1 and 2 are the magnetization curves of the 180 ° magnetic domain portion, but are easily magnetized (FIG. 18), and are hardly magnetized in the lancet domain portions 3 and 4 and the strained portions 5 and 6 (FIG. 18). 19 and FIG.
0) is known. In addition, it can be seen that the hysteresis of the strained portion is increased even in a high magnetic field.

【0023】[0023]

【表1】 [Table 1]

【0024】[実施例2]実施例1の磁区画像から瞬時
的な鉄損分布に相当するものを求めた。Λk の虚数部は
磁界に対する磁区変化の遅れを表し、損失即ち鉄損に関
係する。その結果を図21、図22に示した。図21は
磁束上昇時の磁束密度1.7Tのときの鉄損分布、図2
2は同じく磁束上昇時の1.9Tのときの鉄損分布に対
応したものである。より高磁束密度の図22において鉄
損の発生が大きく、観察鋼板面全体に鉄損が発生してい
る様子がわかる。
Example 2 An image corresponding to an instantaneous iron loss distribution was obtained from the magnetic domain image of Example 1. The imaginary part of the lambda k denotes the delay of the magnetic domain changes to the magnetic field, relate to the loss i.e. iron loss. The results are shown in FIGS. 21 and 22. FIG. 21 shows an iron loss distribution at a magnetic flux density of 1.7 T when the magnetic flux rises.
2 corresponds to the iron loss distribution at 1.9 T when the magnetic flux rises. In FIG. 22 with a higher magnetic flux density, the occurrence of iron loss is large, and it can be seen that the iron loss occurs on the entire surface of the observed steel sheet.

【0025】[0025]

【発明の効果】以上のように本発明の磁性材料の分布推
定法は、2次元的或いは3次元的な磁気特性分布を推定
するものであり、微視的な磁気特性分布を定量的に表現
することができる。また、従来のサーチコイルやホール
素子などを用いた手法に比べると、非常に微視的な表現
ができる。従って、磁性材料における磁気特性への材質
の影響を微視的に調査できる。
As described above, the magnetic material distribution estimation method of the present invention estimates a two-dimensional or three-dimensional magnetic characteristic distribution, and quantitatively expresses a microscopic magnetic characteristic distribution. can do. Also, a very microscopic expression can be obtained as compared with a conventional method using a search coil, a Hall element, or the like. Therefore, the effect of the magnetic material on the magnetic characteristics of the magnetic material can be microscopically investigated.

【0026】例えば、各結晶粒の磁気特性を個別に求め
ることができるので、結晶粒間の磁気特性の差違を調べ
たり、結晶粒界の磁気的影響度の定量化が可能となる。
粒界でもサブバウンダリの影響や定量化にも使用でき、
結晶構造の微小な歪みなども検出できる可能性がある。
また、材料内の改善物、析出物の定量化や、改善物、析
出物が磁気的に影響する領域の大きさの定量化等の可能
になる可能性があり、磁性材料において重要な表面性状
の定量化にも使用できる。この方法を磁性材料を用いた
部材に使用すると、非破壊検査に適用でき、欠陥場所の
特定、定量化が行えると考えられ、自動車、電気機器、
製造機器、原子力関係機器などのあらゆる分野の磁性部
材の非破壊検査、品質評価に使用できる。
For example, since the magnetic characteristics of each crystal grain can be obtained individually, it is possible to examine the difference in the magnetic characteristics between crystal grains and to quantify the magnetic influence of the crystal grain boundary.
It can also be used for subboundary effects and quantification at grain boundaries,
There is a possibility that minute distortion of the crystal structure can be detected.
In addition, there is a possibility that it is possible to quantify the improvements and precipitates in the material, and to quantify the size of the area where the improvements and precipitates magnetically influence, etc. Can also be used for quantification of When this method is applied to a member using a magnetic material, it can be applied to nondestructive inspection, and it is considered that defect locations can be specified and quantified.
It can be used for nondestructive inspection and quality evaluation of magnetic members in all fields such as manufacturing equipment and nuclear power equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実測SEM磁区画像(画像番号1)を示す図。FIG. 1 is a view showing an actually measured SEM magnetic domain image (image number 1).

【図2】実測SEM磁区画像(画像番号2)を示す図。FIG. 2 is a view showing an actually measured SEM magnetic domain image (image number 2).

【図3】実測SEM磁区画像(画像番号3)を示す図。FIG. 3 is a view showing an actually measured SEM magnetic domain image (image number 3).

【図4】実測SEM磁区画像(画像番号4)を示す図。FIG. 4 is a view showing an actually measured SEM magnetic domain image (image number 4).

【図5】実測SEM磁区画像(画像番号5)を示す図。FIG. 5 is a view showing an actually measured SEM magnetic domain image (image number 5).

【図6】実測SEM磁区画像(画像番号6)を示す図。FIG. 6 is a view showing an actually measured SEM magnetic domain image (image number 6).

【図7】実測SEM磁区画像(画像番号7)を示す図。FIG. 7 is a view showing an actually measured SEM magnetic domain image (image number 7).

【図8】実測SEM磁区画像(画像番号8)を示す図。FIG. 8 is a view showing an actually measured SEM magnetic domain image (image number 8).

【図9】実測SEM磁区画像(画像番号9)を示す図。FIG. 9 is a view showing an actually measured SEM magnetic domain image (image number 9).

【図10】実測SEM磁区画像(画像番号10)を示す
図。
FIG. 10 is a view showing an actually measured SEM magnetic domain image (image number 10).

【図11】推定した磁区画像と磁化曲線(0.06
T)。
FIG. 11 shows an estimated magnetic domain image and a magnetization curve (0.06
T).

【図12】推定した磁区画像と磁化曲線(0.69
T)。
FIG. 12 shows an estimated magnetic domain image and a magnetization curve (0.69).
T).

【図13】推定した磁区画像と磁化曲線(1.78
T)。
FIG. 13 shows an estimated magnetic domain image and a magnetization curve (1.78).
T).

【図14】推定した磁区画像と磁化曲線(1.95
T)。
FIG. 14 shows an estimated magnetic domain image and a magnetization curve (1.95).
T).

【図15】推定した磁区画像と磁化曲線(1.77
T)。
FIG. 15 shows an estimated magnetic domain image and a magnetization curve (1.77).
T).

【図16】推定した磁区画像と磁化曲線(0.61
T)。
FIG. 16 shows an estimated magnetic domain image and a magnetization curve (0.61).
T).

【図17】推定した磁区画像と磁化曲線(−1.55
T)。
FIG. 17 shows an estimated magnetic domain image and a magnetization curve (−1.55).
T).

【図18】指定点の推定磁化曲線(指定点1、2)。FIG. 18 is an estimated magnetization curve of a designated point (designated points 1 and 2).

【図19】指定点の推定磁化曲線(指定点3、4)。FIG. 19 is an estimated magnetization curve of a designated point (designated points 3 and 4).

【図20】指定点の推定磁化曲線(指定点5、6)。FIG. 20 shows estimated magnetization curves of designated points (designated points 5 and 6).

【図21】鉄損分布に相当するもの(1.7T)。FIG. 21 is a graph corresponding to iron loss distribution (1.7T).

【図22】鉄損分布に相当するもの(1.9T)。FIG. 22 is a graph corresponding to iron loss distribution (1.9 T).

【符号の説明】[Explanation of symbols]

1、2:180°磁区部分(図18) 3、4:ランセット磁区部分(図19) 5、6:歪が入っている部分(図20) 1, 2: 180 ° magnetic domain portion (FIG. 18) 3, 4: Lancet magnetic domain portion (FIG. 19) 5, 6: Strain-containing portion (FIG. 20)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 兆古 東京都小金井市梶野町3−7−2 法政大 学工学部内 (72)発明者 遠藤 久 東京都小金井市梶野町3−7−2 法政大 学工学部内 Fターム(参考) 2G001 AA03 AA09 BA15 CA03 GA08 GA09 GA10 KA03 LA02 MA05 NA21 RA10 2G017 AA08 BA15 BA16 CA12 CB15 CC01 CD00 2G053 AA11 AA21 AB02 AB10 AB11 AB13 AB19 BC14 CA03 CA18 CB22 CB27 5B057 AA20 BA06 BA24 CA08 CA12 CB08 CB13 CC03 DB02 DB09 DC16  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Choko Saito 3-7-2 Kajino-cho, Koganei-shi, Tokyo Faculty of Engineering, Hosei University (72) Inventor Hisashi Endo 3-7-2, Kajino-cho, Koganei-shi, Tokyo Hosei F-term within the Faculty of Engineering (reference) CB13 CC03 DB02 DB09 DC16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁性材料の励磁過程において、2つ以上
の励磁状態に対応した可視化画像から画像各点の磁気特
性を推定することにより、磁性材料の2次元的或いは3
次元的な磁気特性分布を推定することを特徴とする磁性
材料の磁気特性分布推定法。
In the exciting process of a magnetic material, a magnetic property of each point of an image is estimated from a visualized image corresponding to two or more exciting states, thereby obtaining a two-dimensional or three-dimensional magnetic material.
A method for estimating a magnetic property distribution of a magnetic material, comprising estimating a two-dimensional magnetic property distribution.
【請求項2】 2つ以上の励磁状態の可視化画像におい
て画像平均の磁束密度が既知であるとき、前記の既知磁
束密度を用いて、画像処理による磁束密度を決定するこ
とを特徴とする請求項第1記載の磁性材料の磁気特性分
布推定法。
2. The method according to claim 1, wherein when the average magnetic flux density is known in two or more excited visualized images, the known magnetic flux density is used to determine the magnetic flux density by image processing. 2. A method for estimating a magnetic property distribution of a magnetic material according to the first aspect.
【請求項3】 請求項第1或いは2記載の磁性材料の磁
気特性分布推定法を用いて、指定した領域において、そ
の領域内の各点の磁気特性を平均し平均的な磁気特性を
推定することを特徴とする磁気特性の推定法。
3. A method for estimating a magnetic property distribution of a magnetic material according to claim 1 or 2, wherein a magnetic property of each point in the designated area is averaged to estimate an average magnetic property. A method for estimating magnetic properties.
【請求項4】 磁気特性の推定にヘルムホルツの式を用
いることを特徴とする請求項1〜3のいずれか1項記載
の磁性材料の磁気特性推定法。
4. The method for estimating magnetic properties of a magnetic material according to claim 1, wherein a Helmholtz equation is used for estimating the magnetic properties.
【請求項5】 特許請求項第1〜4のいずれか1項に記
載の方法を用いて、材料や部材の品質を評価することを
特徴とする磁性材料の品質評価法。
5. A quality evaluation method for a magnetic material, wherein the quality of a material or a member is evaluated using the method according to any one of claims 1 to 4.
JP2000352881A 2000-11-20 2000-11-20 Magnetic characteristics distribution estimating method for magnetic material and quality evaluation method Withdrawn JP2002156361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000352881A JP2002156361A (en) 2000-11-20 2000-11-20 Magnetic characteristics distribution estimating method for magnetic material and quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000352881A JP2002156361A (en) 2000-11-20 2000-11-20 Magnetic characteristics distribution estimating method for magnetic material and quality evaluation method

Publications (1)

Publication Number Publication Date
JP2002156361A true JP2002156361A (en) 2002-05-31

Family

ID=18825720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000352881A Withdrawn JP2002156361A (en) 2000-11-20 2000-11-20 Magnetic characteristics distribution estimating method for magnetic material and quality evaluation method

Country Status (1)

Country Link
JP (1) JP2002156361A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298127A (en) * 2010-06-22 2011-12-28 宝山钢铁股份有限公司 Method for detecting electromagnetic performance of oriented silicon steel
CN108535354A (en) * 2018-04-13 2018-09-14 哈尔滨工业大学深圳研究生院 A kind of damaging judge and localization method of steel wire rope Magnetic Flux Leakage Inspecting and magnetic transmitting detection
JP2021101157A (en) * 2019-12-24 2021-07-08 株式会社日立製作所 Image acquisition system and image acquisition method
JP7457239B2 (en) 2020-04-16 2024-03-28 日本製鉄株式会社 Analysis method and system for magnetic domain structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298127A (en) * 2010-06-22 2011-12-28 宝山钢铁股份有限公司 Method for detecting electromagnetic performance of oriented silicon steel
WO2011160482A1 (en) * 2010-06-22 2011-12-29 宝山钢铁股份有限公司 Electromagnetic performance detection method for oriented silicon steel
JP2013532271A (en) * 2010-06-22 2013-08-15 宝山鋼鉄股▲分▼有限公司 Measuring method of electromagnetic performance of grain oriented silicon steel sheet
KR101383786B1 (en) 2010-06-22 2014-04-10 바오샨 아이론 앤 스틸 유한공사 Method For Detecting Electromagnetic Property of Oriented Silicon Steel
US9460054B2 (en) 2010-06-22 2016-10-04 Baoshan Iron & Steel Co., Ltd. Method for detecting electromagnetic property of oriented silicon steel
CN108535354A (en) * 2018-04-13 2018-09-14 哈尔滨工业大学深圳研究生院 A kind of damaging judge and localization method of steel wire rope Magnetic Flux Leakage Inspecting and magnetic transmitting detection
JP2021101157A (en) * 2019-12-24 2021-07-08 株式会社日立製作所 Image acquisition system and image acquisition method
US11163974B2 (en) 2019-12-24 2021-11-02 Hitachi, Ltd. Image acquisition system and image acquisition method
DE102020127895B4 (en) 2019-12-24 2023-06-15 Hitachi, Ltd. IMAGE CAPTURE SYSTEM AND IMAGE CAPTURE METHOD
JP7291618B2 (en) 2019-12-24 2023-06-15 株式会社日立製作所 Image acquisition system and image acquisition method
JP7457239B2 (en) 2020-04-16 2024-03-28 日本製鉄株式会社 Analysis method and system for magnetic domain structure

Similar Documents

Publication Publication Date Title
Qiu et al. Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel
Vacher et al. Eddy current nondestructive testing with giant magneto-impedance sensor
Amineh et al. Characterization of surface-breaking cracks using one tangential component of magnetic leakage field measurements
Kostin et al. DIUS-1.15 M Mobile hardware–software structuroscopy system
Qiu et al. Influence of magnetic domain wall orientation on Barkhausen noise and magneto-mechanical behavior in electrical steel
Samimi et al. Multi-parameter evaluation of magnetic Barkhausen noise in carbon steel
JP2001141701A (en) Method for measuring coercive force
JP2002156361A (en) Magnetic characteristics distribution estimating method for magnetic material and quality evaluation method
Stupakov et al. Optimization of single-yoke magnetic testing by surface fields measurement
Singh et al. Finite element model-based approach for magnetic flux leakage testing of steel plates using 2D tandem GMR array sensors
Miyagi et al. Development of measurement system of magnetic properties at high flux density using novel single-sheet tester
US11163974B2 (en) Image acquisition system and image acquisition method
Gotoh et al. Evaluation of electromagnetic inspection of hardened depth of spheroidal graphite cast iron using 3-D nonlinear FEM
Nencib et al. 2D analysis of rotational loss tester
Lee et al. Examination of magnetic properties of nonoriented electrical steels using ring-type specimens
Fujisaki et al. Three-dimensional polycrystal magnetic field analysis of thin steel
Xiao et al. A method of magnetic scanning imaging for detecting defects in ferromagnetic materials
Gaunkar Magnetic hysteresis and Barkhausen noise emission analysis of magnetic materials and composites
McNairnay Magnetic Barkhausen noise measurements using tetrapole probe designs
Ogneva et al. Local determination of the field of induced magnetic anisotropy and the level of residual mechanical stresses in tensile-deformed bodies made of low-carbon steels
Liu et al. Study on local magnetization of magnetic flux leakage testing for storage tank floors
Takahashi et al. Analysis of minor hysteresis loops of cold rolled low carbon steel
Aguila-Munoz et al. Crack detection in steel using a GMR-based MFL probe with radial magnetization
Nichipuruk et al. Decrease in the effect of a gap on coercimetry results when taking the properties of an attachable transducer into account
US20230018264A1 (en) Method for determining a materials characteristic value of magnetizable metal bodies by means of a micromagnetic sensor assembly, and corresponding sensor assembly

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205