JP2002156229A - Mobile displacement measuring method and device for structure - Google Patents

Mobile displacement measuring method and device for structure

Info

Publication number
JP2002156229A
JP2002156229A JP2000351789A JP2000351789A JP2002156229A JP 2002156229 A JP2002156229 A JP 2002156229A JP 2000351789 A JP2000351789 A JP 2000351789A JP 2000351789 A JP2000351789 A JP 2000351789A JP 2002156229 A JP2002156229 A JP 2002156229A
Authority
JP
Japan
Prior art keywords
dimensional coordinates
target
measurement
image
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000351789A
Other languages
Japanese (ja)
Other versions
JP3724786B2 (en
Inventor
Izuru Kuronuma
出 黒沼
Satoru Miura
悟 三浦
Michio Imai
道男 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2000351789A priority Critical patent/JP3724786B2/en
Publication of JP2002156229A publication Critical patent/JP2002156229A/en
Application granted granted Critical
Publication of JP3724786B2 publication Critical patent/JP3724786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure displacements of structures extended along a passage by a mobile body in a short time. SOLUTION: Reference targets 8 are fixed at three points or more regarded as immovable on a plurality of planes 51, 52, etc., which intersect the surfaces of the structures 1a and 1b facing the passage 3 at a distance in the direction of movement of the mobile body 4, and a plurality of measurement targets 7 are mounted to the surfaces of the structures 1a and 1b along each of the intersection lines 61, 62, etc., with the plane 51 and 52. A required number of a plurality of image pickup devices 10 are fixed to predetermined locations at predetermined attitudes in the front surface of the mobile body 4, and the mobile body 4 is moved onto the passage 3. Exposure stations Q1, Q2, etc., and attitudes at which all the targets 7 and 8 on the planes 51, 52, etc., are seen in front of each of the planes 51, 52, etc., in the screen of each image pickup device 10 when viewed from the direction of the movement of the mobile body 4 are determined, and forward directions are simultaneously photographed by the plurality of image pickup devices 10. By bundle adjustments based on the two-dimensional coordinates of each image of the targets 7 and 8 in the screen of each image pickup device 10, the location and attitude of each image pickup device 10 when photographed the fixed three-dimensional coordinates of each target 8, and the initial three-dimensional coordinates of each target 7, displacements of the three-dimensional coordinates in photographing and initial three-dimensional coordinates of each measurement target 7, are computed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は移動式変位計測方法
及び装置に関し、とくに移動体の通路に沿って延びる構
造物の変位を該通路上の移動体から撮影した画像を用い
て計測する移動式変位計測方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile displacement measuring method and apparatus, and more particularly to a mobile displacement measuring method for measuring the displacement of a structure extending along a path of a moving body using an image taken from the moving body on the path. The present invention relates to a displacement measurement method and device.

【0002】[0002]

【従来の技術】移動体の通路の安全を管理する上で、そ
の通路に沿った構造物の変位や変形の計測が求められる
場合がある。例えば鉄道では、列車の安全運行のため、
列車線路の施工基面上に敷設されたレール、枕木、道床
等の構造物(以下、軌条ということがある。)の管理が
不可欠であり、軌条の変位の定期的な計測が求められて
いる。更に地下鉄道等では、沈下等による地下トンネル
壁面の形状の変位も計測する必要がある。従来、鉄道に
おける軌条やトンネル壁面形状の変位は、光波測距儀等
の測量機器を利用した測量により計測している。
2. Description of the Related Art In order to manage the safety of a passage of a moving body, it is sometimes required to measure displacement and deformation of a structure along the passage. For example, in railways, for safe operation of trains,
Management of rails, sleepers, track beds, and other structures (hereinafter, sometimes referred to as rails) laid on the construction base of train tracks is essential, and periodic measurement of rail displacement is required. . Further, in a subway, etc., it is necessary to measure the displacement of the shape of the underground tunnel wall due to settlement or the like. 2. Description of the Related Art Conventionally, displacement of a rail or a tunnel wall shape in a railway has been measured by surveying using a surveying instrument such as a lightwave range finder.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の光波測
距儀等の測量機器による変位計測は、盛換え等に手間が
かかるため、計測に時間がかかる問題点がある。鉄道軌
道やトンネル壁面形状の変位計測作業は列車の終発から
始発までの限られた時間帯に行うことが求められるの
で、線路に沿って長い距離に亘る構造物の変位を計測す
る場合は、従来の測量機器による計測作業では多数の機
器と多くの人数・工数が必要であった。列車の終発から
始発までの時間は短くなる傾向にあり、計測精度を維持
しつつ、構造物の変位を短時間でしかも少人数で計測で
きる技術の開発が望まれている。
However, the conventional displacement measurement using a surveying instrument such as an optical distance measuring device has a problem that it takes a long time to change the relocation and the like, so that the measurement takes a long time. Since it is necessary to measure the displacement of railway tracks and tunnel wall shapes during a limited time period from the last train to the first train, when measuring the displacement of a structure over a long distance along the track, conventional methods are required. The measurement work with the surveying equipment required many devices and many people and man-hours. The time from the last train to the first train tends to be shorter, and it is desired to develop a technology that can measure the displacement of a structure in a short time and with a small number of people while maintaining the measurement accuracy.

【0004】そこで本発明の目的は、移動体の通路に沿
って延びる構造物の変位を短時間で計測できる移動式変
位計測方法及び装置を提供するにある。
An object of the present invention is to provide a mobile displacement measuring method and apparatus capable of measuring the displacement of a structure extending along the path of a moving body in a short time.

【0005】[0005]

【課題を解決するための手段】本発明者は、カメラを取
り付けた移動体を通路上で進行させ、通路に沿った軌条
やトンネル等の構造物の画像を移動体の進行に応じて撮
影し、撮影した画像から構造物の位置や形状を写真測量
することに注目した。移動体を進行させながら前記構造
物の位置や形状を写真測量することができれば、長い距
離に亘る構造物の変位の計測作業を短時間で行うことが
期待できる。
SUMMARY OF THE INVENTION The present inventor moves a moving body with a camera mounted thereon along a passage, and takes images of structures such as rails and tunnels along the passage according to the movement of the moving body. Attention was paid to photogrammetry of the position and shape of the structure from the captured image. If the position and shape of the structure can be photogrammetrically measured while moving the moving body, it is expected that the work of measuring the displacement of the structure over a long distance can be performed in a short time.

【0006】写真測量は、図7に示すように、対象点P
と撮像面上の像点pとカメラの撮像中心(原点)Oとの
3点が一本の直線上に存在するという幾何学的原理に基
づくものである。同図に示すように、地上座標系におけ
る対象点Pの三次元座標を(X,Y,Z)、地上座標系におけ
るカメラ中心Oの三次元座標を(X0,Y0,Z0)、撮像機の
焦点距離をc、カメラ座標系における撮像機のx軸、y軸
及びz軸の回りの回転角度をω、φ、κ、カメラ座標系
における像点pの三次元座標を(x,y,-c)とした場合、
前記幾何学的原理は式(1)〜(3)で示す共線条件式として
表すことができる。なお同図では、地上座標系における
像点pの三次元座標を(Xp,Yp,Zp)としている。また、
撮像機のレンズ歪(lens distortion)を考慮する場合
は、式(1)、(2)の共線条件式を変形して式(4)及び(5)と
することができる。式(4)及び(5)におけるΔx、Δyは、
レンズ歪係数により定まる補正項である。
In photogrammetry, as shown in FIG.
And an image point p on the imaging surface and an imaging center (origin) O of the camera are based on a geometric principle that three points exist on one straight line. As shown in the figure, the three-dimensional coordinates of the target point P in the ground coordinate system are (X, Y, Z), and the three-dimensional coordinates of the camera center O in the ground coordinate system are (X 0 , Y 0 , Z 0 ). The focal length of the imaging device is c, the rotation angles of the imaging device around the x-axis, y-axis, and z-axis in the camera coordinate system are ω, φ, κ, and the three-dimensional coordinates of the image point p in the camera coordinate system are (x, y, -c)
The geometric principle can be expressed as a collinear condition expression represented by Expressions (1) to (3). Note in the figure, the three-dimensional coordinates of an image point p on the ground coordinate system (X p, Y p, Z p) is set to. Also,
When considering lens distortion of the image pickup device, the collinear conditional expressions of Expressions (1) and (2) can be modified into Expressions (4) and (5). Δx and Δy in equations (4) and (5) are
This is a correction term determined by the lens distortion coefficient.

【0007】共線条件式(1)及び(2)はカメラ位置(X0,Y
0,Z0)及びカメラ角度(ω,φ,κ)の6つの未知数を含
む。一般的な写真測量では、測量等で求めた既知三次元
座標(X,Y,Z)の複数の対象点P(以下、基準点という
ことがある。)に視標を設置して写真に写し込み、撮像
面上における視標の像点pの二次元座標(x,y)を計測
することにより、共線条件式における未知数を標定す
る。2台のカメラによる写真測量では、1つの視標に対
し2つの像点p1、p2の座標が与えられるので、原理的
には1枚の写真の中に3点の視標があれば共線条件式
(1)及び(2)の6つの未知数を標定できる。共線条件式
(4)及び(5)を用いる場合は、カメラ位置(X0,Y 0,Z0)及
びカメラ角度(ω,φ,κ)に加えてレンズ歪係数が未知
数であるため、未知数の標定に更に多くの基準点を必要
とする。共線条件式における未知数が標定できれば、撮
像面上における任意点(以下、測定点ということがあ
る。)の二次元座標を共線条件式へ代入することによ
り、その測定点に対応する地上座標系の三次元座標を算
出することができる。
The collinear conditional expressions (1) and (2) correspond to the camera position (X0, Y
0, Z0) And camera angles (ω, φ, κ).
No. In general photogrammetry, known three-dimensional
A plurality of target points P of coordinates (X, Y, Z) (hereinafter referred to as reference points)
Sometimes. ) To set an optotype and imprint it on the photograph
Measures the two-dimensional coordinates (x, y) of the target image point p on the surface
To find the unknowns in the collinear condition
You. In photogrammetry with two cameras, one target
Two image points p1, PTwoGiven the coordinates of
Is a collinear condition if there are three optotypes in one photo
The six unknowns of (1) and (2) can be located. Collinear condition
When using (4) and (5), the camera position (X0, Y 0, Z0)
Unknown lens distortion coefficient in addition to camera angle (ω, φ, κ)
Because of the number, more reference points are needed for the orientation of the unknown
And If the unknowns in the collinear condition can be located,
Any point on the image plane (hereinafter sometimes referred to as a measurement point)
You. ) By substituting the two-dimensional coordinates of
And calculate the three-dimensional coordinates of the ground coordinate system corresponding to the measurement point.
Can be issued.

【0008】[0008]

【数1】 (Equation 1)

【0009】但し、基準点の三次元座標(X,Y,Z)や視
標像pの二次元座標(x,y)には誤差が含まれるので、
実際には必要な数以上の視標を設け、最小二乗法により
未知数標定の精度を高める必要がある。この場合、単独
の写真毎に未知数を標定するのではなく、図8に示すよ
うに、複数の写真の標定を最小二乗法によって同時に解
くバンドル調整法が開発されている。
However, since the three-dimensional coordinates (X, Y, Z) of the reference point and the two-dimensional coordinates (x, y) of the target image p include an error,
In practice, it is necessary to provide more targets than necessary and improve the accuracy of the unknown number orientation by the least squares method. In this case, as shown in FIG. 8, a bundle adjustment method has been developed which simultaneously solves the orientation of a plurality of photos by the least squares method, instead of locating the unknown value for each single photo.

【0010】バンドル調整法では、基準点及び測定点の
三次元座標、カメラ中心の三次元座標、及びカメラ角度
の真値を各々の近似値(X',Y',Z')(X'0,Y'0,Z'0)及
び(ω',φ',κ')に補正量を加えたもの(X'+ΔX,Y'
+ΔY,Z'+ΔZ)、(X'0+ΔX 0,Y'0+ΔY0,Z'0+ΔZ0
及び(ω'+Δω,φ'+Δφ,κ'+Δκ)とし、基準点
及び測定点に設けた視標の像点の真値をその計測値
(x',y')に誤差を加えたもの(x'+Δx,y'+Δy)とす
る。補正量を加えた近似値と誤差を含む計測値とを複数
の写真の共線条件式(式(1)及び(2))に代入し、複数の
共線条件式をテーラー展開により線形化した上で、各補
正量(ΔX,ΔY,ΔZ)、(ΔX0,ΔY0,ΔZ0)、(Δω,Δ
φ,Δκ)及び誤差(Δx,Δy)を最小にする解を逐次繰
り返し法の収束解として求める。共線条件式(4)及び(5)
を用いたバンドル調整法により、レンズ歪係数の補正量
を最小にする解を求めることもできる。このようにバン
ドル調整法では、共線条件式の未知数のみでなく、基準
点及び測定点の三次元座標(X,Y,Z)も未知数として同
時に解く。
In the bundle adjustment method, the reference point and the measurement point
3D coordinates, camera center 3D coordinates, and camera angle
Is calculated as the approximate value (X ', Y', Z ') (X'0, Y '0, Z '0)
(Ω ', φ', κ ') plus the correction amount (X' + ΔX, Y '
+ ΔY, Z '+ ΔZ), (X'0+ ΔX 0, Y '0+ ΔY0, Z '0+ ΔZ0)
And (ω ′ + Δω, φ ′ + Δφ, κ ′ + Δκ), and the reference point
And the true value of the image point of the optotype provided at the measurement point is the measured value
(X ', y') plus error (x '+ Δx, y' + Δy)
You. Multiple approximations with corrections and measured values with errors
Substituting into the collinear conditional expressions (Equations (1) and (2))
After linearizing the collinear condition by Taylor expansion,
Positive quantities (ΔX, ΔY, ΔZ), (ΔX0, ΔY0, ΔZ0), (Δω, Δ
φ, Δκ) and the solution minimizing the error (Δx, Δy)
Obtained as the convergence solution of the recursive method. Collinear condition (4) and (5)
Correction amount of lens distortion coefficient by bundle adjustment method using
It is also possible to find a solution that minimizes Like this van
In the dollar adjustment method, not only the unknown of the collinear condition
The three-dimensional coordinates (X, Y, Z) of the point and the measurement point are also
Sometimes solve.

【0011】バンドル調整法によれば、基準点の三次元
座標(X,Y,Z)を地上座標系における不動とみなし得る
既知座標とし、基準点の近似値の精度が測定点の近似値
の精度より高いとする重み付け(基準点の補正量(ΔX,
ΔY,ΔZ)を限りなく0とする重み付け)をすることに
より、各測定点の三次元座標(X,Y,Z)を正確に求める
ことができる。本発明者は、移動体を進行させながら撮
影した写真にバンドル調整法を適用する技術の開発研究
の結果、本発明の完成に至ったものである。
According to the bundle adjustment method, the three-dimensional coordinates (X, Y, Z) of the reference point are set to known coordinates that can be regarded as immovable in the ground coordinate system, and the accuracy of the approximate value of the reference point is equal to that of the approximate value of the measurement point. Weighting that is higher than accuracy (reference point correction amount (ΔX,
The weighting (ΔY, ΔZ) is infinitely set to 0), whereby the three-dimensional coordinates (X, Y, Z) of each measurement point can be accurately obtained. The inventor of the present invention has completed the present invention as a result of research and development of a technique for applying a bundle adjustment method to a photograph taken while moving a moving object.

【0012】図1の実施例及び図2の流れ図を参照する
に、本発明の構造物の移動式変位計測方法は、移動体4
により通路3に沿って延びる構造物1(図示例では1a及
び1b)の変位を計測する方法において、通路3に臨む構
造物1の表面と移動体進行方向に距離を隔てて交差する
複数平面51、52、……上にそれぞれ不動とみなせる3以
上の点を定めて基準視標8を固定し且つ各基準視標8の
固定三次元座標を求め、構造物1の表面に複数平面51
52、……との各交線61、62、……に沿って複数の測定視
標7を取り付け且つ各測定視標7の取り付け時の初期三
次元座標を求め、所要複数の撮像機10を移動体4の前面
の所定位置に所定姿勢で固定したのち該移動体4を通路
3上で進行させ、移動体進行方向から見て前記各平面
51、52、……の手前に該平面51、52、……上の全視標
7、8が各撮像機10の画面の広範囲に分散して写り込む
移動体4の撮影位置Q1、Q2、……及び姿勢を定め(図3
参照)、特定平面5iに対する撮影位置Qiへの移動体4の
到達時に前記複数の撮像機10で前方を同時に撮影し、移
動体4の撮影位置Qi及び姿勢から各撮像機10の撮影時位
置及び姿勢を算出し、各撮像機10の画面内における特定
平面5i上の各基準視標8及び測定視標7の像の二次元座
標(図3(B)参照)と各撮像機10の撮影時位置及び姿
勢と各基準視標8の固定三次元座標と各測定視標7の初
期三次元座標とに基づくバンドル調整により特定平面5i
上の各測定視標7の撮影時三次元座標と初期三次元座標
との変位を算出し、移動体4の進行に応じ前記前方の撮
影から各測定視標7の変位の算出までのサイクルを繰返
すことにより構造物1の変位を計測してなるものであ
る。
Referring to the embodiment of FIG. 1 and the flowchart of FIG. 2, the method for measuring the displacement of a structure according to the present invention comprises the steps of:
In the method for measuring the displacement of the structure 1 (1a and 1b in the illustrated example) extending along the passage 3, a plurality of planes 5 intersecting the surface of the structure 1 facing the passage 3 at a distance in the moving body traveling direction. 1 , 5 2 ,..., Three or more points that can be regarded as immovable are fixed on the reference target 8 and fixed three-dimensional coordinates of each reference target 8 are determined. 1 ,
A plurality of measurement targets 7 are attached along the respective intersections 6 1 , 6 2 ,... With 5 2 ,. After the machine 10 is fixed at a predetermined position on the front surface of the moving body 4 in a predetermined posture, the moving body 4 is advanced on the passage 3 and the planes are viewed from the moving body traveling direction.
5 1, 5 2, said plane 5 1 in front of ...., 5 2, the total target 7,8 on ... is widely distributed to the shooting position of the moving body 4 bleeds through the screen of each imaging device 10 Q 1 , Q 2 , ... and posture are determined (Fig. 3
See), at the same time taken forward by the plurality of imaging device 10 upon reaching of the movable body 4 to the photographing position Q i for the particular plane 5i, when shooting the image pickup device 10 from the photographing position Q i and orientation of the moving object 4 The position and orientation are calculated, and the two-dimensional coordinates (see FIG. 3B) of the images of the reference optotypes 8 and the measurement optotypes 7 on the specific plane 5i in the screen of each of the imaging devices 10 are calculated. The specific plane 5i is obtained by bundle adjustment based on the shooting position and orientation, the fixed three-dimensional coordinates of each reference target 8 and the initial three-dimensional coordinates of each measurement target 7.
The displacement between the three-dimensional coordinates at the time of photographing of each of the measurement targets 7 and the initial three-dimensional coordinates is calculated, and the cycle from the photographing in front to the calculation of the displacement of each measurement target 7 is calculated according to the progress of the moving object 4. By repeating the measurement, the displacement of the structure 1 is measured.

【0013】また図1の実施例を参照するに、本発明の
構造物の移動式変位計測装置は、移動体4により通路3
に沿って延びる構造物1の変位を計測する装置におい
て、通路3に臨む構造物1の表面と移動体進行方向に距
離を隔てて交差する複数平面51、52、……上にそれぞれ
不動とみなせる3以上の点を定めて固定される基準視標
8、構造物1の表面上に複数平面51、52、……との各交
線61、62、……に沿って取り付けられる複数の測定視標
7、各基準視標8の固定三次元座標及び各測定視標7の
取り付け時の初期三次元座標を記憶する記憶手段15、通
路3を進行する移動体4の前面の所定位置に所定姿勢で
固定する所要複数の撮像機10、移動体進行方向から見て
前記各平面51、52、……の手前に該平面51、52、……上
の全視標7、8が各撮像機10の画面の広範囲に分散して
写り込む移動体4の撮影位置Q1、Q2、……及び姿勢を定
め且つ特定平面5iに対する撮影位置Qiへの移動体4の到
達時に前記複数の撮像機10に対し前方の撮影を同時に指
示する撮像機制御手段13、各撮像機10の画面を入力し各
画面内における特定平面5i上の各視標7、8の像の二次
元座標を求める視標像座標抽出手段16、並びに移動体4
の撮影位置Q1、Q2、……及び姿勢から各撮像機10の撮影
時位置及び姿勢を算出し且つ座標抽出手段16による各基
準視標8及び測定視標7の像の二次元座標と各撮像機10
の撮影時位置及び姿勢と各基準視標8の固定三次元座標
と各測定視標7の初期三次元座標とに基づくバンドル調
整により特定平面5i上の各測定視標7の撮影時三次元座
標と初期三次元座標との変位を算出するバンドル調整手
段17を備えてなるものである。
Referring to the embodiment of FIG. 1, the moving displacement measuring apparatus for a structure according to the present invention comprises
In a device for measuring the displacement of a structure 1 extending along a plane, a plurality of planes 5 1 , 5 2 ,... Which intersect with the surface of the structure 1 facing the passage 3 at a distance in the moving body traveling direction are immovable, respectively. The reference optotype 8, which is fixed by defining three or more points that can be regarded as, along each intersection line 6 1 , 6 2 ,... On the surface of the structure 1 with the plurality of planes 5 1 , 5 2 ,. Storage means 15 for storing a plurality of measurement targets 7 to be attached, fixed three-dimensional coordinates of each reference target 8 and initial three-dimensional coordinates when each measurement target 7 is attached, the front surface of the moving body 4 traveling in the passage 3 , A plurality of required imaging devices 10 to be fixed in a predetermined position at predetermined positions, and all of the planes 5 1 , 5 2 ,... Before the planes 5 1 , 5 2 ,. imaging position of the target 7,8 moving body 4 bleeds through and widely distributed in the screen of each imaging device 10 Q 1, Q 2, and identify flat defines ...... and orientation Imaging device control unit 13 to the plurality of imaging device 10 upon reaching of the movable body 4 to the photographing position Q i against 5i instructing front of simultaneously photographed, the particular plane within each screen enter the screen of each imaging device 10 Optotype image coordinate extracting means 16 for obtaining two-dimensional coordinates of the images of the optotypes 7 and 8 on 5i;
The photographing position and posture of each imaging device 10 are calculated from the photographing positions Q 1 , Q 2 ,... And the postures, and the two-dimensional coordinates of the images of the reference visual targets 8 and the measurement visual targets 7 by the coordinate extracting means 16 are calculated. Each imager 10
3D coordinates of each measurement target 7 on the specific plane 5i by bundle adjustment based on the photographing position and orientation, the fixed three-dimensional coordinates of each reference target 8 and the initial three-dimensional coordinates of each measurement target 7 And a bundle adjusting means 17 for calculating a displacement between the coordinate and the initial three-dimensional coordinates.

【0014】[0014]

【発明の実施の形態】図1は、トンネル内の列車線路に
沿って延びるレール1a及びトンネル壁面1bの変位の計測
に本発明を適用した実施例を示す。但し、本発明は列車
線路のような軌条の通路3に限定されず、自動車道路等
の通路3に沿って延びる構造物にも適用可能である。図
1(B)は、本発明における計測用移動体4の構成を示
すブロック図の一例である。計測用移動体4には、所要
複数の撮像機10と撮像機制御手段13と視標像座標抽出手
段16とバンドル調整手段17とを設ける。図示例では移動
体4にコンピュータ11を設け、撮像機制御手段13、視標
像座標抽出手段16、及びバンドル調整手段17をコンピュ
ータ11に内臓のプログラムとしている。
FIG. 1 shows an embodiment in which the present invention is applied to measurement of displacement of a rail 1a and a tunnel wall 1b extending along a train line in a tunnel. However, the present invention is not limited to the rail-shaped passage 3 such as a train track, but is also applicable to a structure extending along the passage 3 such as an automobile road. FIG. 1B is an example of a block diagram illustrating a configuration of the measurement moving body 4 according to the present invention. The measurement moving body 4 is provided with a plurality of required imaging devices 10, imaging device control means 13, optotype image coordinate extraction means 16, and bundle adjustment means 17. In the illustrated example, a computer 11 is provided in the moving body 4, and the imaging device control unit 13, the optotype image coordinate extraction unit 16, and the bundle adjustment unit 17 are programs built in the computer 11.

【0015】図1(B)のブロック図では、撮像機10と
してCCDカメラ等のディジタルカメラを用い、撮像機
10が出力するディジタル画像データを視標像座標抽出手
段16に直接入力している。但し、撮像機10として従来の
光学フィルム式カメラを用いることも可能であり、その
場合は撮像機10と視標像座標抽出手段16との間にフィル
ム画像をディジタルデータに変換するスキャナー等を設
ける。複数の撮像機10は、移動体4の前面の所定位置
に、所定姿勢で固定する。移動体4上における各撮像機
10の固定位置及び姿勢は、移動体4上の記憶手段15に記
憶する(図1(B)参照)。各撮像機10の固定位置及び
姿勢は、後述する各撮像機10の撮影時位置及び姿勢の算
出に用いる。また、撮影中に撮像機10の焦点距離や画角
(内部パラメータ)が変化しないように、例えばレンズ
を固定することが望ましい。
In the block diagram of FIG. 1B, a digital camera such as a CCD camera is
The digital image data output by 10 is directly input to the optotype image coordinate extracting means 16. However, it is also possible to use a conventional optical film camera as the imaging device 10, in which case a scanner or the like for converting a film image into digital data is provided between the imaging device 10 and the optotype image coordinate extracting means 16. . The plurality of imaging devices 10 are fixed at predetermined positions on the front surface of the moving body 4 in a predetermined posture. Each imaging device on the moving body 4
The fixed position and the posture of 10 are stored in the storage means 15 on the moving body 4 (see FIG. 1B). The fixed position and orientation of each imaging device 10 are used for calculating the imaging position and orientation of each imaging device 10 described below. In addition, it is desirable to fix the lens, for example, so that the focal length and the angle of view (internal parameters) of the imaging device 10 do not change during shooting.

【0016】移動体4に固定する撮像機10の台数Mは、
標定が必要なカメラの内部パラメータの数Nk(レンズ歪
係数等)と、以下に述べる測定視標及び基準視標の数Nr
とに基づき、式(6)を満足する整数として定めることが
できる。但し、バンドル調整法では同時に撮影する画像
の数が多いほど計測精度が向上するので、必要な計測精
度が得られるように撮像機10の台数Mを定める。
The number M of the imaging devices 10 fixed to the moving body 4 is:
The number of internal parameters Nk (lens distortion coefficient, etc.) of the camera that requires orientation, and the number of measurement and reference targets Nr described below
And can be determined as an integer satisfying the expression (6). However, in the bundle adjustment method, the measurement accuracy is improved as the number of images photographed at the same time is large. Therefore, the number M of the imaging devices 10 is determined so that the required measurement accuracy is obtained.

【0017】また、移動体4上における撮像機10の設置
間隔L、及び撮像機10としてディジタルカメラを使用す
る場合の画素数aも、必要な計測精度が得られるように
適当に定める。一般に写真測量におけるカメラ光軸方向
及びその垂直方向の計測精度は、カメラ分解能a、カメ
ラと対象点Pとの間の撮影距離D、及びカメラ設置間隔
Lに基づき、式(7)及び(8)のように表すことができる。
同式から分かるように、撮像機10の設置間隔は広いほ
ど、また撮像機10のCCD画素数は多いほど、計測精度
は向上する。なお、式(7)及び(8)におけるカメラ分解能
aとは、ディジタルカメラの場合はCCD1ピクセル当
たりの実空間距離、フィルム式カメラの場合は当該カメ
ラのフィルム画像をディジタルデータに変換するスキャ
ナーの1ピクセル当たりの実空間距離である。
The installation interval L of the imaging device 10 on the moving body 4 and the number a of pixels when a digital camera is used as the imaging device 10 are also appropriately determined so that necessary measurement accuracy can be obtained. In general, the measurement accuracy in the camera optical axis direction and its vertical direction in photogrammetry is based on the camera resolution a, the shooting distance D between the camera and the target point P, and the camera installation interval L, and the equations (7) and (8) Can be expressed as
As can be seen from the equation, the greater the installation interval of the imaging device 10 and the greater the number of CCD pixels of the imaging device 10, the higher the measurement accuracy. Note that the camera resolution a in equations (7) and (8) is the real space distance per pixel of a CCD in the case of a digital camera, and is the value of one of the scanners that converts a film image of the camera into digital data in the case of a film camera. The real space distance per pixel.

【0018】[0018]

【数2】 M≧3Nr/(2Nr−Nk−6) …………………………………(6) カメラ光軸方向の計測精度=a・(D/L) ………………(7) カメラ光軸と垂直方向の計測精度=a …………………(8)[Equation 2] M ≧ 3Nr / (2Nr−Nk−6) (6) Measurement accuracy in the optical axis direction of the camera = a · (D / L) …… (7) Measurement accuracy in the direction perpendicular to the camera optical axis = a ………………… (8)

【0019】図2は、本発明における処理の流れ図の一
例を示す。以下、同流れ図を参照して本発明の変位計測
方法を説明する。先ずステップ201において、通路3に
臨む構造物表面(以下、通路隣接表面ということがあ
る。)の変位計測が必要な箇所に測定視標7を取り付け
る。本発明では、図1に示すように、移動体進行方向と
交差する複数平面51、52、……を想定し、構造物4の通
路隣接表面に、各平面51、52、……と通路隣接表面との
各交線61、62、……に沿って、複数の測定視標7を取り
付ける。図示例では、移動体進行方向と垂直な平面51
52、……を想定しているが、平面51、52、……は互いに
距離を隔てて移動体進行方向と交差するものであれば足
り、必ずしも移動体進行方向と垂直でなくても足りる。
図示例では、各平面51、52、……と交差するレール1aの
表面及びトンネル1bの内面上に測定視標7を取り付けて
いる。交線61、62、……上に取り付ける測定視標7の数
は、必要な計測精度が得られるように適宜定めることが
できる。
FIG. 2 shows an example of a flow chart of the processing in the present invention. Hereinafter, the displacement measuring method of the present invention will be described with reference to the flowchart. First, in step 201, the measurement target 7 is attached to a position where displacement measurement of a surface of a structure facing the passage 3 (hereinafter, sometimes referred to as a passage adjacent surface) is required. In the present invention, as shown in FIG. 1, assuming a plurality of planes 5 1 , 5 2 ,... That intersect with the moving body traveling direction, the planes 5 1 , 5 2 ,. ... each intersection line 61 between the passage adjacent the surface, 6 2, along ..., mounting a plurality of measurement optotypes 7. In the illustrated example, a plane 5 1 perpendicular to the moving body traveling direction,
Although it is assumed that 5 2 ,..., The planes 5 1 , 5 2 ,... Are sufficient if they intersect with the moving body traveling direction at a distance from each other, and are not necessarily perpendicular to the moving body traveling direction. Is enough.
In the illustrated example, each plane 5 1, 5 2, is attached to the measurement visual target 7 on the inner surface of the surface and the tunnel 1b rails 1a intersecting the ....... The number of the measurement targets 7 mounted on the intersection lines 6 1 , 6 2 ,... Can be appropriately determined so as to obtain necessary measurement accuracy.

【0020】ステップ202において、取り付けた測定視
標7の初期三次元座標を例えば測量等により求める。各
測定視標7の初期三次元座標は、移動体4上の記憶手段
15に記憶する。初期三次元座標は、後述する各測定視標
7の変位算出に利用すると共に、バンドル調整法におけ
る各測定視標7の近似値として用いる。
In step 202, initial three-dimensional coordinates of the attached measurement target 7 are obtained by, for example, surveying. The initial three-dimensional coordinates of each measurement target 7 are stored in a storage unit on the moving body 4.
Remember at 15. The initial three-dimensional coordinates are used for calculating a displacement of each measurement target 7 described later, and are used as an approximate value of each measurement target 7 in the bundle adjustment method.

【0021】次に、ステップ203〜204において、各平面
51、52、……上にそれぞれ地上座標系において変位しな
いとみなせる3以上の点を定め、その各点に基準視標8
を変位が生じ難い様に固定する。基準視標8は測定視標
7と識別可能なものとすることが望ましい。また、各基
準視標8の三次元座標を測量により求め、移動体4上の
記憶手段15に記憶する。変位が生じ難い基準視標8を設
けることにより、基準視標8をバンドル調整法の基準点
として利用することができる。3点以上の基準点を設け
ることにより、共線条件式(1)及び(2)、又は式(3)及び
(4)のカメラ位置(X0,Y0,Z0)及びカメラ角度(ω,φ,
κ)の6つの未知数を定めることができる。図1(A)
では、レール1bの左右及び中央部等、杭等の施工により
変位の生じるおそれが少ない地盤表面上の点を選択して
基準視標8を取り付けている。不動とみなせる電柱等に
基準視標8を取付けてもよい。
Next, in steps 203 to 204, each plane
5 1 , 5 2 , ... 3 or more points that can be regarded as not displaced in the ground coordinate system are defined on each of the points, and a reference optotype 8
Is fixed so that displacement does not easily occur. It is desirable that the reference target 8 be distinguishable from the measurement target 7. Further, the three-dimensional coordinates of each reference target 8 are obtained by surveying and stored in the storage means 15 on the moving body 4. By providing the reference target 8 in which displacement is unlikely to occur, the reference target 8 can be used as a reference point of the bundle adjustment method. By providing three or more reference points, the collinear conditional expressions (1) and (2), or the expression (3) and
The camera position (X 0 , Y 0 , Z 0 ) and camera angle (ω, φ,
κ) can be determined. FIG. 1 (A)
In the above, the reference target 8 is attached by selecting points on the ground surface that are less likely to be displaced due to the construction of the pile or the like, such as the left and right and the center of the rail 1b. The reference target 8 may be attached to a utility pole or the like that can be regarded as immovable.

【0022】ステップ205で、複数の撮像機10が取り付
けられた計測用移動体4を通路3上に進行させ、移動体
進行方向から見て各平面51、52、……の手前において、
各平面51、52、……上に設けた測定視標7及び基準視標
8の全てが含まれる画面を各撮像機10で撮影する。撮像
機10により撮影した画面の一例を図6に示す。バンドル
調整法において計測精度を上げるためには、各撮像機10
の画面内における各視標7,8の像が広範囲に分散して
いることが望ましい。本発明では、図3に示すように、
各平面5iの移動体進行方向手前に平面5i上の全視標7i1
〜7i10、8i1〜8i 3が各撮像機10の画面の広範囲に分散し
て写り込む移動体4の撮影位置Qi及び姿勢を定め、移動
体4が撮影位置Qiへ到達したときに複数の撮像機10で前
方を同時に撮影する(ステップ206)。移動体4の撮影
位置Qi及び姿勢は、例えば図3(B)に示すように、各
撮像機10の画面周縁部に全視標7i1〜7i10、8i1〜8i3
写り込むように定めることができるが、画面周縁部の歪
みが問題となる場合は、画面の歪みが生じない範囲内に
全視標7i1〜7i10、8i1〜8i3が分散して写り込むように
定める。
[0022] In step 205, the measurement for mobile 4 in which a plurality of imaging device 10 is mounted is allowed to proceed over path 3, 1 each plane 5 as viewed from the mobile traveling direction, 5 2, in front of ....,
Each plane 5 1, 5 2, the screen includes all measurement optotype 7 and reference optotype 8 provided on ...... shooting with the imaging device 10. FIG. 6 shows an example of a screen shot by the image pickup device 10. In order to increase the measurement accuracy in the bundle adjustment method, each imaging device 10
It is desirable that the images of the targets 7 and 8 in the screen of (1) are widely dispersed. In the present invention, as shown in FIG.
All targets 7 i1 on plane 5 i before moving direction of moving body on each plane 5 i
7 i10 , 8 i1 to 8 i 3 determine the photographing position Q i and posture of the moving body 4 on which the image of the image capturing device 10 is distributed over a wide area, and when the moving body 4 reaches the photographing position Q i Next, a plurality of image pickup devices 10 simultaneously photograph the front (step 206). Photographing position Q i and orientation of the moving body 4, for example, FIG. 3 (B) as shown in, the total target 7 i1 to 7-i10 screen peripheral portion of the imaging device 10, 8 i1 to 8 i3 so that bleeds through However, if distortion at the periphery of the screen is a problem, all targets 7 i1 to 7 i10 and 8 i1 to 8 i3 should be distributed and projected within the range where no screen distortion occurs. Determine.

【0023】図1(B)のブロック図では、撮影位置算
出手段14が、記憶装置15に記憶した各視標7、8の初期
三次元座標(平面5iの初期座標)と各撮像機10の画角と
に基づき、各平面5iの全視標7、8が含まれる画面の撮
影を可能とする平面5iと移動体4との間の撮影距離Diを
求め、初期三次元座標と撮影距離Diとに基づき移動体4
の撮影位置Qi及び姿勢を算出している。また、撮像機制
御手段13が撮影位置Qiへの移動体4の到達を検知し、撮
影位置Qiへの到達時に複数の撮像機10に対し撮影を同時
に指示する。移動体4の撮影位置Qiへの到達は、移動体
4の進行速度等に基づき検知できる。必要に応じて、移
動体4に位置計測器及び姿勢計測器等を取り付けてもよ
い。
In the block diagram of FIG. 1B, the photographing position calculating means 14 stores the initial three-dimensional coordinates (initial coordinates of the plane 5 i ) of the targets 7 and 8 stored in the storage device 15 and the , The shooting distance Di between the plane 5i and the moving object 4 that enables the screen including the targets 7 and 8 of each plane 5i to be obtained, and the initial three-dimensional coordinates and the shooting distance Mobile 4 based on Di
And calculates the photographing position Q i and attitude. Further, to detect the arrival of the moving body 4 to the imaging apparatus control unit 13 is photographed position Q i, simultaneously instructs the imaging for a plurality of image pickup device 10 when reaching the photographing position Q i. Reach the photographing position Q i of the moving body 4 may be detected based on the traveling speed of the moving body 4. If necessary, a position measuring device, a posture measuring device, and the like may be attached to the moving body 4.

【0024】ステップ207において、各撮像機10の画像
を視標像座標抽出手段16へ入力し,各画面内における各
視標7、8の像の二次元座標を求める。例えば視標7、
8の像の重心位置の二次元座標を求める。各視標7、8
の像の二次元座標を求めるためには、画面内における視
標像の検出と共に、各視標像と測定視標7又は基準視標
8との対応付けを行う必要がある。従来のバンドル調整
法では、視標像の検出及び対応付けの作業に時間がかか
り、変位計測作業の時間短縮上の問題となっていた。本
発明においては、図3(B)に示すように、各撮像機10
の撮影時位置Qi及び姿勢と各測定視標7の初期三次元座
標と各基準視標8の固定三次元座標とから、各視標7、
8に対応する視標像が各撮像機10の画面内で存在する範
囲(例えば画面の最外側部)を推定することが可能であ
る。
In step 207, the image of each imaging device 10 is input to the optotype image coordinate extracting means 16, and the two-dimensional coordinates of the images of the optotypes 7 and 8 in each screen are obtained. For example, optotype 7,
The two-dimensional coordinates of the position of the center of gravity of the image No. 8 are obtained. Each target 7, 8
In order to obtain the two-dimensional coordinates of the image, it is necessary to detect the target image in the screen and to associate each target image with the measurement target 7 or the reference target 8. In the conventional bundle adjustment method, the work of detecting and associating a target image takes time, which has been a problem in reducing the time of the displacement measurement work. In the present invention, as shown in FIG.
From the shooting position Q i and orientation and the initial three-dimensional coordinates of each measurement optotypes 7 and the fixed three-dimensional coordinates of each reference target 8, the optotypes 7,
It is possible to estimate the range (for example, the outermost part of the screen) in which the optotype image corresponding to 8 exists in the screen of each imaging device 10.

【0025】視標像座標抽出手段16は、推定した存在範
囲の走査により各視標7、8に対応する視標像を抽出
し、視標像の二次元座標を自動的に短時間で求める。例
えば、画面内における最外側の視標像を、撮影位置Qi
直前にある特定平面5i上の視標7、8の像として抽出す
る。また後述するように、測定視標7及び基準視標8を
それぞれID付き反射素材とすることにより、対応付け
の確実性を高め、視標像の二次元座標の算出時間を一層
短縮できる。視標像座標抽出手段16で求めた各視標の二
次元座標は、バンドル調整法において、真値に対して誤
差(Δx,Δy)を含む計測値(x',y')として用いる。
The target image coordinate extracting means 16 extracts a target image corresponding to each of the targets 7 and 8 by scanning the estimated existence range, and automatically obtains two-dimensional coordinates of the target image in a short time. . For example, the outermost optotype images in the screen are extracted as the images of the optotypes 7 and 8 on the specific plane 5 i immediately before the photographing position Q i . In addition, as will be described later, by using each of the measurement target 7 and the reference target 8 as a reflective material with an ID, the reliability of the association is increased, and the calculation time of the two-dimensional coordinates of the target image can be further reduced. The two-dimensional coordinates of each target obtained by the target image coordinate extracting means 16 are used as measurement values (x ′, y ′) including errors (Δx, Δy) with respect to the true values in the bundle adjustment method.

【0026】ステップ208において、移動体4の撮影位
置Qi及び姿勢から、各撮像機10の撮影時位置及び姿勢を
算出する。移動体4上における各撮像機10の固定位置及
び姿勢は記憶手段15に記憶されているので、撮影位置算
出手段14で求めた移動体4の撮影位置Qi及び姿勢と記憶
手段15に記憶した各撮像機10の固定位置及び姿勢とに基
づき、撮影機位置及び姿勢算出手段18(図1(B)参
照)により、各撮像機10の撮影時における地上座標系の
撮影時位置及び姿勢を算出することができる。各撮像機
10の撮影時位置及び姿勢は、バンドル調整法において、
カメラ中心及びカメラ角度の近似値(X'0,Y'0,Z'0)及
び(ω',φ',κ')として用いる。
In step 208, the photographing position and posture of each image pickup device 10 are calculated from the photographing position Qi and posture of the moving body 4. Since the fixed position and orientation of the imaging device 10 on the movable unit 4 are stored in the storage unit 15, and stores photographing position Q i and orientation of the moving body 4 obtained by the imaging position calculating unit 14 and the storage means 15 Based on the fixed position and orientation of each imaging device 10, the imaging device position and orientation calculating means 18 (see FIG. 1B) calculates the imaging position and orientation of the ground coordinate system at the time of imaging of each imaging device 10. can do. Each imager
The shooting position and orientation of 10 are based on the bundle adjustment method.
They are used as approximate values (X ′ 0 , Y ′ 0 , Z ′ 0 ) and (ω ′, φ ′, κ ′) of the camera center and the camera angle.

【0027】ステップ209において、バンドル調整法に
より、各測定視標7の地上座標系における三次元座標を
算出する。具体的には、先ず、記憶手段15に記憶した三
次元座標を各視標7、8の近似座標(X',Y',Z')とし、
撮影機位置及び姿勢算出手段18で算出した撮影時位置及
び姿勢をカメラ中心及びカメラ角度の近似値(X'0,Y' 0,
Z'0)及び(ω',φ',κ')とし、視標像座標抽出手段16
により各撮像機10の画像から抽出した各視標の二次元座
標を誤差が含まれる計測値(x',y')として式(1)及び
(2)、又は式(4)及び(5)の共線条件式に代入し、複数の
共線方程式を作る。次に、複数の共線方程式から、各視
標7、8の近似座標(X',Y',Z')に対する補正量(ΔX,
ΔY,ΔZ)と、カメラ中心及びカメラ角度の近似値
(X'0,Y'0,Z'0)及び(ω',φ',κ')に対する補正量
(ΔX0,ΔY0,ΔZ0)及び(Δω,Δφ,Δκ)と、計測値
(x',y')に対する誤差(Δx,Δy)とを最小にする解を
最小二乗法により求める。更に、求めた最小補正量及び
誤差を近似値及び計測値に加えたものを新たな近似値及
び計測値として採用し、再度補正量及び誤差を最小にす
る解を求める。この過程を補正量及び誤差が十分に小さ
くなるまで繰り返すことにより、各測定視標7の撮影時
の三次元座標の収束解を求める。
In step 209, the bundle adjustment method
From the three-dimensional coordinates of each measurement target 7 in the ground coordinate system.
calculate. Specifically, first, the three
Let the dimensional coordinates be the approximate coordinates (X ', Y', Z ') of each of the optotypes 7 and 8,
The photographing position and position calculated by the photographing device position and orientation calculating means 18
Camera position and camera angle and camera angle approximation (X '0, Y ' 0,
Z '0) And (ω ′, φ ′, κ ′), and the target image coordinate extracting means 16
2D coordinates of each target extracted from the image of each imager 10
Let the target be the measured value (x ', y') that contains the error, Equation (1) and
(2) or substituting into the collinear condition formulas of formulas (4) and (5),
Make a collinear equation. Next, from each of the collinear equations,
The correction amount (ΔX, に 対 す る) for the approximate coordinates (X ′, Y ′, Z ′) of the targets 7 and 8
ΔY, ΔZ) and approximate values of camera center and camera angle
(X '0, Y '0, Z '0) And (ω ', φ', κ ')
(ΔX0, ΔY0, ΔZ0) And (Δω, Δφ, Δκ) and measured values
A solution that minimizes the error (Δx, Δy) for (x ′, y ′)
Determined by the least squares method. Furthermore, the obtained minimum correction amount and
The error is added to the approximate value and the measured value to obtain the new approximate value and
And the measured value, and minimize the correction amount and error again.
To find a solution. This process is performed with sufficiently small correction amount and error.
By repeating until the measurement target 7 is photographed
Find the convergence solution of the three-dimensional coordinates of.

【0028】本発明では、基準視標8は不動とみなせる
点に固定されているので、最小二乗法による補正量の算
出時に基準視標8に対する補正量(ΔX,ΔY,ΔZ)を限
りなく0とする重み付けにより、基準視標8の座標値を
固定することで、基準視標8により定められる実際の三
次元座標系(地上座標系)における各測定視標7の撮影
時の三次元座標の収束解を正確に算出することができ
る。
In the present invention, since the reference target 8 is fixed to a point that can be regarded as immovable, the correction amount (ΔX, ΔY, ΔZ) for the reference target 8 is set to 0 without limitation when calculating the correction amount by the least square method. By fixing the coordinate values of the reference target 8 by weighting, the three-dimensional coordinates of each measurement target 7 in the actual three-dimensional coordinate system (terrestrial coordinate system) defined by the reference target 8 at the time of shooting are calculated. The convergence solution can be calculated accurately.

【0029】ステップ210において、バンドル調整法に
より算出した各測定視標7の三次元座標と各測定視標7
の初期三次元座標との偏差として、測定視標7の変位を
算出する。算出した測定視標7の変位は、例えばディス
プレイ又はプリンタである図1(B)の変位出力手段19
に表示又は印刷して確認することができる。
In step 210, the three-dimensional coordinates of each measurement target 7 calculated by the bundle adjustment method and each measurement target 7
The displacement of the measurement target 7 is calculated as the deviation from the initial three-dimensional coordinates. The calculated displacement of the measurement target 7 is represented by a displacement output unit 19 shown in FIG.
Can be displayed or printed.

【0030】ステップ211において、構造物の変位計測
が終了したか否か、この場合は全ての平面5iに取り付け
た測定視標7の変位計測が終了したか否かを判断し、変
位計測を継続する場合はステップ205へ戻り、更に移動
体4を前進させながら上述したステップ205〜210を繰り
返す。ステップ205〜210のサイクルを、測定視標が取り
付けられた全ての平面51、52、……に対して繰返すこと
により、構造物1の各平面51、52、……との交線61
62、……における変位を計測することができる。
[0030] In step 211, whether the displacement measurement of the structure is completed, it is determined whether the displacement measurement of the measurement visual target 7 in this case mounted on all planes 5 i is completed, the displacement measurement When continuing, it returns to step 205, and repeats steps 205 to 210 described above while further moving the moving body 4. The cycle of steps 205-210, the measurement view all planes target is attached 5 1, 5 2, by repeating respect ..., each plane 5 1, 5 2 of the structure 1, exchange with ... Line 6 1 ,
6 2 ,... Can be measured.

【0031】以上、移動体4に搭載したコンピュータ11
に内臓のプログラムにより各測定視標7の変位をリアル
タイムで計測する場合について説明したが、移動体4の
進行時にはステップ206において各撮像機10の画像をコ
ンピュータ11へ記憶し、ステップ207〜210の処理は撮影
後に別の場所で行うことも可能である。また、ステップ
206においてフィルムカメラにより画像を撮影し、現像
後の画像を別の場所でスキャナ等によりコンピュータ11
へ取り込んでステップ207〜210の処理を行ってもよい。
As described above, the computer 11 mounted on the moving body 4
The case where the displacement of each measurement target 7 is measured in real time by the built-in program has been described. However, when the moving object 4 advances, the image of each image pickup device 10 is stored in the computer 11 in step 206, and the processing in steps 207 to 210 is performed. The processing can be performed in another place after photographing. Also step
At 206, an image is taken with a film camera, and the developed image is
And the processing of steps 207 to 210 may be performed.

【0032】本発明によれば、構造物の通路隣接表面に
測定視標を取り付けた上で、通路上を進行する移動体か
ら測定視標の画像を撮影し、撮影した画像から構造物の
経時的な変位をコンピュータで求めることができるの
で、従来の光波測距儀等を用いた変位計測方法に比し、
現場作業の大幅な省力化を図ることができる。また、構
造物の変位をバンドル調整法により自動的に算出するこ
とができるので、変位計測時間も大幅に短縮できる。ま
た本発明のバンドル調整法によれば、各測定視標の三次
元座標を正確に求めることができるので、構造物の変位
計測精度の向上も期待できる。
According to the present invention, a measurement target is attached to a surface adjacent to a passage of a structure, and an image of the measurement target is photographed from a moving body traveling on the passage. Can be calculated by a computer, compared to the conventional displacement measurement method using a lightwave rangefinder, etc.
Significant labor saving on site work can be achieved. In addition, since the displacement of the structure can be automatically calculated by the bundle adjustment method, the displacement measurement time can be significantly reduced. Further, according to the bundle adjustment method of the present invention, since the three-dimensional coordinates of each measurement target can be accurately obtained, improvement in the displacement measurement accuracy of the structure can be expected.

【0033】こうして本発明の目的である「移動体の通
路に沿って延びる構造物の変位を短時間で計測できる移
動式変位計測方法及び装置」を提供することができる。
As described above, the object of the present invention is to provide a "movable displacement measuring method and apparatus capable of measuring the displacement of a structure extending along the path of a moving body in a short time".

【0034】[0034]

【実施例】図4は、構造物1a、1bの通路隣接表面への測
定視標7の取り付け方法の一例を示す。一般の写真測量
では、計測対象に対し様々な角度から撮影を行うため、
計測対象の面と平行に視標を設置する場合が多い。しか
し本発明では、移動体進行方向から撮影するので、構造
物1a、1bの通路隣接平面と平行に測定視標7を取り付け
ると、撮影された測定視標7の像が変形し、視標像座標
抽出手段16における誤差の原因となり得る。図4では、
アングル部材9により各測定視標7を移動体進行方向に
向けて取り付けている。測定視標7を移動体進行方向に
向けて取り付けることにより、各撮像機10の画面内にお
ける視標像の変形を最小化し、視標像座標抽出手段16に
おける誤差の発生を抑制することができる。
FIG. 4 shows an example of a method of attaching a measurement target 7 to a surface adjacent to a passage of structures 1a and 1b. In general photogrammetry, since the image is taken from various angles with respect to the measurement target,
In many cases, a target is set in parallel with the surface to be measured. However, in the present invention, since the image is taken from the traveling direction of the moving body, if the measurement target 7 is attached in parallel with the plane adjacent to the passage of the structures 1a, 1b, the image of the measurement target 7 is deformed and the target image This may cause an error in the coordinate extracting means 16. In FIG.
Each measurement target 7 is attached by an angle member 9 in the moving body traveling direction. By attaching the measurement target 7 in the moving body traveling direction, the deformation of the target image in the screen of each imaging device 10 can be minimized, and the occurrence of an error in the target image coordinate extracting means 16 can be suppressed. .

【0035】また、視標像座標抽出手段16における視標
像の二次元座標の精度を更に高めるためには、視標のみ
が画面上に浮き上がるように撮影することが理想的であ
る。このため図1の実施例では、移動体4の前面にフラ
ッシュ20を固定し、測定視標7及び基準視標8を光反射
率の高い素材製としている。この場合は、移動体4の撮
影位置Qiへの到達時に、撮像機制御手段13がフラッシュ
20に対して発光を指示すると共に、各撮像機10に対し撮
影を同時に指示する。上述したアングル部材9により各
反射素材をフラッシュの発光が反射され易い向きに取り
付け、各撮像機10の絞りを反射素材の撮影が可能な限り
絞ることにより、視標のみが写真上に浮き上がる画面を
撮影することができる。なお、移動しながら撮影するた
め、各撮像機10のシャッター速度は短く設定する。
Further, in order to further improve the accuracy of the two-dimensional coordinates of the target image in the target image coordinate extracting means 16, it is ideal to take an image so that only the target floats on the screen. For this reason, in the embodiment of FIG. 1, the flash 20 is fixed to the front of the moving body 4, and the measurement target 7 and the reference target 8 are made of a material having a high light reflectance. In this case, when the arrival of the photographing position Q i of the moving body 4, the imaging apparatus control unit 13 is a flash
At the same time, light emission is instructed to 20, and photographing is simultaneously instructed to each imaging device 10. The above-mentioned angle members 9 are used to attach each reflective material in a direction in which the light emission of the flash is easily reflected, and the aperture of each image pickup device 10 is reduced as much as possible to capture the reflective material, so that only the target appears on the photograph. You can shoot. Note that the shutter speed of each image capturing device 10 is set to be short in order to shoot while moving.

【0036】更に図1の実施例では、各測定視標7及び
基準視標8をそれぞれ異なるIDが付された反射素材と
している。ID付き反射素材を用いることにより、視標
像座標抽出手段16において、画像内の各視標像と測定視
標7及び基準視標8との対応付けの更なる容易化を図る
ことができる。図5は、ID付き反射素材付きシートの
一例を示す。図示例の反射素材付きシートは、通常の円
形反射素材を貼り付けたシートと異なり、複数の反射素
材21a〜21hを二次元形状に規則的に配置させ、その配置
の仕方によりID付けを行うものである。測定視標7及
び基準視標8毎に、例えば図5に示す内側の5つの小径
反射素材21d〜21hの配置を変えることにより、視標像の
識別を容易にすることができる。測定視標7のみをID
付き反射素材としてもよい。
Further, in the embodiment shown in FIG. 1, each of the measurement targets 7 and the reference targets 8 is made of a reflective material having a different ID. By using the reflective material with ID, the target image coordinate extracting means 16 can further facilitate the association of each target image in the image with the measurement target 7 and the reference target 8. FIG. 5 shows an example of a sheet with a reflective material with an ID. The sheet with a reflective material in the illustrated example is different from a sheet to which a normal circular reflective material is attached, in which a plurality of reflective materials 21a to 21h are regularly arranged in a two-dimensional shape, and an ID is assigned according to the arrangement method. It is. For example, by changing the arrangement of the five inner small-diameter reflective materials 21d to 21h shown in FIG. 5 for each of the measurement target 7 and the reference target 8, identification of the target image can be facilitated. ID of measurement target 7 only
A reflective material may be used.

【0037】[0037]

【発明の効果】以上説明したように、本発明の移動式変
位計測方法及び装置は、通路に臨む構造物表面と移動体
進行方向に距離を隔てて交差する複数平面との各交線上
に測定視標を取り付けと共に、その複数平面上にそれぞ
れ不動とみなせる3以上の点を定めて基準視標を固定
し、通路上を進行する移動体に固定の所要複数の撮像機
で同時に測定視標及び基準視標を撮影し、各撮像機の画
面内における各視標像の二次元座標からバンドル調整に
より各測定視標の三次元座標と初期三次元座標との変位
を算出するので、次の顕著な効果を奏する。
As described above, the mobile displacement measuring method and apparatus according to the present invention measure the displacement on each intersection line between the surface of the structure facing the passage and a plurality of planes intersecting at a distance in the traveling direction of the moving body. Attaching the optotype, fixing the reference optotype by defining three or more points that can be regarded as immovable on the plurality of planes, and simultaneously measuring the optotype with the required plurality of imaging devices fixed to the moving body traveling on the passage. Since the reference target is photographed and the displacement between the three-dimensional coordinates of each measurement target and the initial three-dimensional coordinates is calculated by the bundle adjustment from the two-dimensional coordinates of each target image in the screen of each imaging device, the following remarkable: Effect.

【0038】(イ)構造物に沿って移動体を進行させな
がら構造物の変位を計測することができるので、従来方
法に比し計測作業の大幅な簡易化・省力化が可能であ
る。 (ロ)撮影から変位の算出までを全てコンピュータで制
御及び処理することができるので、変位計測時間の短縮
が図れる。 (ハ)撮像機の分解能、撮像機の台数や設置間隔の調整
により、従来方法に比し、変位計測精度を高めることが
できる。 (ニ)現場では画像撮影のみを行い、画像の解析・計算
といった作業を撮影後に別の場所で行なうことにより、
現場作業の一層の簡易化、短時間化を図ることができ
る。 (ホ)測定データをコンピュータに蓄積保存することが
でき、構造物の経時的変位を容易に参照することができ
る。 (ヘ)移動体の通路に沿って延びる種々の構造物、例え
ば鉄道線路、トンネル、車両道路等の経時的変位の計測
に適用できる。
(A) Since the displacement of the structure can be measured while moving the moving body along the structure, the measuring operation can be greatly simplified and labor can be saved as compared with the conventional method. (B) Since everything from photographing to displacement calculation can be controlled and processed by a computer, the displacement measurement time can be shortened. (C) By adjusting the resolution of the imaging device, the number of the imaging devices, and the installation interval, the displacement measurement accuracy can be improved as compared with the conventional method. (D) By performing only image shooting at the site and performing work such as image analysis and calculation in another place after shooting,
The on-site work can be further simplified and shortened. (E) Measurement data can be stored in a computer, and the temporal displacement of the structure can be easily referred to. (F) The present invention can be applied to measurement of temporal displacement of various structures extending along a path of a moving body, for example, a railway track, a tunnel, a vehicle road, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図であるFIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、本発明の計測方法の流れ図の一例であるFIG. 2 is an example of a flowchart of the measurement method of the present invention.

【図3】は、撮像機の画面からの視標像座標抽出方法の
説明図である。
FIG. 3 is an explanatory diagram of a method of extracting a target image coordinate from a screen of an imaging device.

【図4】は、視標の取り付け方法の説明図である。FIG. 4 is an explanatory diagram of a method of attaching a target.

【図5】は、ID付き反射素材の一例である。FIG. 5 is an example of a reflective material with an ID.

【図6】は、撮像機により撮影した画面の一例である。FIG. 6 is an example of a screen shot by an imaging device.

【図7】は、共線条件式の説明図である。FIG. 7 is an explanatory diagram of a collinear conditional expression.

【図8】は、バンドル調整法の説明図である。FIG. 8 is an explanatory diagram of a bundle adjustment method.

【符号の説明】[Explanation of symbols]

1…構造物 1a…軌条 1b…トンネル 2…構造物表面 2a…軌条の表面 2b…トンネルの内側表面 3…移動体の通路 4…移動体 5…平面 6…交線 7…測定視標 8…基準視標 9…アングル部材 10…撮像機 11…コンピュータ 12…台車 13…撮像機制御手段 14…撮影位置算出手段 15…記憶手段 16…視標像座標抽出手段 17…バンドル調整手段 18…撮影機位置及び姿勢算出
手段 19…変位出力手段 20…フラッシュ 21…反射素材
DESCRIPTION OF SYMBOLS 1 ... Structure 1a ... Rail 1b ... Tunnel 2 ... Structure surface 2a ... Rail surface 2b ... Tunnel inner surface 3 ... Moving body passage 4 ... Moving body 5 ... Plane 6 ... Intersecting line 7 ... Measurement target 8 ... Reference optotype 9 ... Angle member 10 ... Imaging device 11 ... Computer 12 ... Carriage 13 ... Imaging device control means 14 ... Imaging position calculating means 15 ... Storage means 16 ... Optotype image coordinate extracting means 17 ... Bundle adjusting means 18 ... Imaging machine Position and orientation calculation means 19 ... Displacement output means 20 ... Flash 21 ... Reflective material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01C 7/06 G01C 7/06 (72)発明者 今井 道男 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 2F065 AA03 AA07 AA65 BB05 CC40 DD06 FF01 FF04 FF09 FF61 GG08 HH02 JJ03 JJ05 JJ09 JJ26 MM07 QQ23 QQ25 SS06 SS13 UU05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) G01C 7/06 G01C 7/06 (72) Inventor Michio Imai 1-2-7 Moto-Akasaka, Minato-ku, Tokyo No. F-term in Kashima Construction Co., Ltd. (reference) 2F065 AA03 AA07 AA65 BB05 CC40 DD06 FF01 FF04 FF09 FF61 GG08 HH02 JJ03 JJ05 JJ09 JJ26 MM07 QQ23 QQ25 SS06 SS13 UU05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】移動体により通路に沿って延びる構造物の
変位を計測する方法において、通路に臨む構造物表面と
移動体進行方向に距離を隔てて交差する複数平面上にそ
れぞれ不動とみなせる3以上の点を定めて基準視標を固
定し且つ各基準視標の固定三次元座標を求め、前記構造
物表面に前記複数平面との各交線に沿って複数の測定視
標を取り付け且つ各測定視標の取り付け時の初期三次元
座標を求め、所要複数の撮像機を移動体前面の所定位置
に所定姿勢で固定したのち該移動体を通路上で進行さ
せ、移動体進行方向から見て前記各平面の手前に該平面
上の全視標が各撮像機の画面の広範囲に分散して写り込
む移動体の撮影位置及び姿勢を定め、特定平面に対する
撮影位置への移動体到達時に前記複数の撮像機で前方を
同時に撮影し、前記移動体の撮影位置及び姿勢から各撮
像機の撮影時位置及び姿勢を算出し、前記各撮像機の画
面内における前記特定平面上の各基準視標及び測定視標
の像の二次元座標と前記各撮像機の撮影時位置及び姿勢
と前記各基準視標の固定三次元座標と前記各測定視標の
初期三次元座標とに基づくバンドル調整により前記特定
平面上の各測定視標の撮影時三次元座標と初期三次元座
標との変位を算出し、移動体の進行に応じ前記前方の撮
影から各測定視標の変位の算出までのサイクルを繰返す
ことにより前記構造物の変位を計測してなる構造物の移
動式変位計測方法。
In a method for measuring the displacement of a structure extending along a passage by a moving body, the moving body can be regarded as immovable on a plurality of planes which intersect with the surface of the structure facing the passage at a distance in the traveling direction of the moving body. Determine the above points and fix the reference optotypes and obtain fixed three-dimensional coordinates of each reference optotype, attach a plurality of measurement optotypes along the respective intersections with the plurality of planes on the structure surface, and Obtain the initial three-dimensional coordinates at the time of mounting the measurement target, fix a plurality of required imaging devices at a predetermined position on the front surface of the moving body in a predetermined posture, then advance the moving body on the passage, and see from the moving direction of the moving body. In front of each of the planes, all the targets on the plane determine the shooting position and posture of the moving body on which the image is distributed over a wide area of the screen of each imaging device, and the plurality of moving targets reach the shooting position with respect to the specific plane. Simultaneously photograph the front with the imager of The imaging position and orientation of each imaging device are calculated from the imaging position and orientation of the moving object, and the two-dimensional coordinates of the images of the reference and measurement targets on the specific plane in the screen of each of the imaging devices and the respective The three-dimensional photographing of each measurement target on the specific plane by bundle adjustment based on the photographing position and orientation of the imaging device, the fixed three-dimensional coordinates of each of the reference targets, and the initial three-dimensional coordinates of each measurement target. Calculate the displacement between the coordinates and the initial three-dimensional coordinates, and measure the displacement of the structure by repeating the cycle from the photographing in front to the calculation of the displacement of each measurement target according to the progress of the moving object. A mobile displacement measurement method for objects.
【請求項2】請求項1の計測方法において、前記各撮像
機の画面内における最外側の視標像を前記特定平面上の
各測定視標及び基準視標の像として抽出してなる構造物
の移動式変位計測方法。
2. A structure according to claim 1, wherein an outermost optotype image in a screen of each of said imaging devices is extracted as an image of each of the measurement optotype and the reference optotype on the specific plane. Mobile displacement measurement method.
【請求項3】請求項1又は2の計測方法において、前記
移動体前面にフラッシュを固定し、前記基準視標及び/
又は測定視標をID付き反射素材とし、前記撮影位置へ
の到達時にフラッシュを発光してなる構造物の移動式変
位計測方法。
3. The measurement method according to claim 1, wherein a flash is fixed to a front surface of the movable body, and the reference target and / or
Alternatively, a movable displacement measuring method for a structure, in which a measurement target is made of a reflective material with an ID and a flash is emitted upon reaching the photographing position.
【請求項4】請求項1から3の何れかの計測方法におい
て、前記基準視標及び/又は測定視標を、前記移動体進
行方向に向けて設けてなる構造物の移動式変位計測方
法。
4. A moving displacement measuring method for a structure according to claim 1, wherein the reference target and / or the measurement target is provided in a moving direction of the moving body.
【請求項5】移動体により通路に沿って延びる構造物の
変位を計測する装置において、通路に臨む構造物表面と
移動体進行方向に距離を隔てて交差する複数平面上にそ
れぞれ不動とみなせる3以上の点を定めて固定される基
準視標、前記構造物表面上に前記複数平面との各交線に
沿って取り付けられる複数の測定視標、各基準視標の固
定三次元座標及び各測定視標の取り付け時の初期三次元
座標を記憶する記憶手段、通路を進行する移動体前面の
所定位置に所定姿勢で固定する所要複数の撮像機、移動
体進行方向から見て前記各平面の手前に該平面上の全視
標が各撮像機の画面の広範囲に分散して写り込む移動体
の撮影位置及び姿勢を定め且つ特定平面に対する撮影位
置への移動体到達時に前記複数の撮像機に対し前方の撮
影を同時に指示する撮像機制御手段、各撮像機の画面を
入力し各画面内における前記特定平面上の各視標像の二
次元座標を求める視標像座標抽出手段、並びに前記移動
体の撮影位置及び姿勢から各撮像機の撮影時位置及び姿
勢を算出し且つ座標抽出手段による各基準視標及び測定
視標の像の二次元座標と各撮像機の撮影時位置及び姿勢
と前記各基準視標の固定三次元座標と前記各測定視標の
初期三次元座標とに基づくバンドル調整により前記特定
平面上の各測定視標の撮影時三次元座標と初期三次元座
標との変位を算出するバンドル調整手段を備えてなる構
造物の移動式変位計測装置。
5. An apparatus for measuring the displacement of a structure extending along a path by a moving body, wherein the apparatus can be regarded as immovable on a plurality of planes intersecting the surface of the structure facing the path at a distance in the traveling direction of the moving body. A reference target fixed by defining the above points, a plurality of measurement targets attached on the surface of the structure along each intersection with the plurality of planes, a fixed three-dimensional coordinate of each reference target, and each measurement Storage means for storing initial three-dimensional coordinates at the time of mounting the optotype, a plurality of required imaging devices fixed in a predetermined position at a predetermined position on the front surface of the moving body traveling in the path, before each of the planes as viewed from the moving body traveling direction In this manner, all the targets on the plane determine the photographing position and posture of the moving object in which the image is distributed over a wide range of the screen of each image pickup device, and when the moving object reaches the photographing position with respect to the specific plane, the plurality of image pickup devices Simultaneously indicate forward shooting Imager control means, optotype image coordinate extracting means for inputting the screen of each imager and obtaining the two-dimensional coordinates of each optotype image on the specific plane in each screen, and The photographing position and orientation of the imaging device are calculated, and the two-dimensional coordinates of the image of each reference target and the measurement target by the coordinate extracting means, the imaging position and posture of each imaging device, and the fixed three-dimensional of each of the reference targets are calculated. A bundle adjusting unit that calculates a displacement between the three-dimensional coordinates at the time of shooting of each measurement target on the specific plane and the initial three-dimensional coordinates by a bundle adjustment based on the coordinates and the initial three-dimensional coordinates of each measurement target. Mobile displacement measuring device.
【請求項6】請求項5の計測装置において、前記視標座
標抽出手段において、前記各撮像機の撮影時位置及び姿
勢と前記測定視標の初期三次元座標と前記基準視標の固
定三次元座標とから各撮像機の画面内における前記特定
平面上の視標像の存在範囲を推定し、前記推定した存在
範囲の走査により前記特定平面上の視標像を抽出し、抽
出した視標像の二次元座標を求めてなる構造物の移動式
変位計測装置。
6. The measuring device according to claim 5, wherein said target coordinate extracting means includes a position and a posture at the time of photographing of each of said image pickup devices, initial three-dimensional coordinates of said measured target, and fixed three-dimensional coordinates of said reference target. From the coordinates and the estimated range of the optotype image on the specific plane in the screen of each image pickup device, the optotype image on the specific plane is extracted by scanning the estimated existence range, and the extracted optotype image is extracted. A mobile displacement measuring device for a structure that obtains two-dimensional coordinates of
【請求項7】請求項5又は6の計測装置において、前記
移動体前面に前向きに固定するフラッシュを設け、前記
測定視標及び/又は基準視標をID付き反射素材として
なる構造物の移動式変位計測装置。
7. The measuring device according to claim 5, wherein a flash fixed forward is provided on the front surface of the movable body, and the measurement target and / or the reference target is a reflective material with an ID. Displacement measuring device.
JP2000351789A 2000-11-17 2000-11-17 Method and apparatus for moving displacement measurement of structure Expired - Fee Related JP3724786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351789A JP3724786B2 (en) 2000-11-17 2000-11-17 Method and apparatus for moving displacement measurement of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351789A JP3724786B2 (en) 2000-11-17 2000-11-17 Method and apparatus for moving displacement measurement of structure

Publications (2)

Publication Number Publication Date
JP2002156229A true JP2002156229A (en) 2002-05-31
JP3724786B2 JP3724786B2 (en) 2005-12-07

Family

ID=18824786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351789A Expired - Fee Related JP3724786B2 (en) 2000-11-17 2000-11-17 Method and apparatus for moving displacement measurement of structure

Country Status (1)

Country Link
JP (1) JP3724786B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085568A (en) * 2002-08-23 2004-03-18 Soldata System for monitoring movement
WO2006082825A1 (en) * 2005-02-02 2006-08-10 Canon Kabushiki Kaisha Mark arrangement measuring method, positional posture estimating method, mark arrangement measuring apparatus and positional posture estimating apparatus
JP2007147498A (en) * 2005-11-29 2007-06-14 Kajima Corp Method for measuring distortion shape of tubular ring, and program
JP2007170851A (en) * 2005-12-19 2007-07-05 Yokohama Rubber Co Ltd:The Method and system for measuring road surface shape
JP2007225423A (en) * 2006-02-23 2007-09-06 Basic Engineering:Kk Displacement measuring apparatus
JP2008255595A (en) * 2007-04-02 2008-10-23 Keisoku Net Service Kk Railway track displacement measuring device with cleaning function
JP2010025855A (en) * 2008-07-23 2010-02-04 Sakata Denki Track displacement measuring device
JP2010261867A (en) * 2009-05-08 2010-11-18 Furuno Electric Co Ltd Gnss radiowave observation device for measuring rail creep and rail creep measuring system
CN102620672A (en) * 2011-12-01 2012-08-01 中国人民解放军63653部队 Application of image mosaic technology in tunnel surrounding rock deformation noncontact measurement
KR101181382B1 (en) * 2010-06-28 2012-09-19 손규만 Method of measuring tunnel convergence displacements
KR101280960B1 (en) * 2012-06-12 2013-07-02 손규만 Apparatus for measuring tunnel convergence displacements
CN103217144A (en) * 2013-04-10 2013-07-24 广东欧珀移动通信有限公司 Method and device for monitoring height of building and distance between buildings
CN103512490A (en) * 2012-06-28 2014-01-15 中联重科股份有限公司 Box inner cavity size detection system
CN103727906A (en) * 2013-12-19 2014-04-16 河海大学 Track operation device for using ground penetrating radar to measure thickness of retaining wall
JP2016536580A (en) * 2013-10-09 2016-11-24 ヒルティ アクチエンゲゼルシャフト System and method for camera position and orientation measurement
CN108917694A (en) * 2018-07-16 2018-11-30 三峡大学 Deformation monitoring and the device and method of supporting after a kind of tunnel Rock And Soil excavates
CN109839073A (en) * 2019-03-06 2019-06-04 上海数久信息科技有限公司 A kind of the tunnel convergence deformation detection method and system of view-based access control model image
JP2020060508A (en) * 2018-10-12 2020-04-16 古河電気工業株式会社 Method for measuring piping route and piping route measuring system
WO2021065029A1 (en) * 2019-10-04 2021-04-08 三菱重工業株式会社 Image measurement method and image measurement system
CN112902863A (en) * 2021-02-07 2021-06-04 中国人民解放军军事科学院国防工程研究院工程防护研究所 Tunnel surrounding rock large deformation monitoring method based on automatic target finding and ranging system
CN112964188A (en) * 2021-02-07 2021-06-15 中国人民解放军军事科学院国防工程研究院工程防护研究所 Method for improving laser automatic measurement precision of tunnel deformation in construction period
CN114777661A (en) * 2022-04-08 2022-07-22 哈尔滨工业大学 Tunnel section convergence deformation quantitative calculation method based on high-density measuring point strain

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682492A (en) * 2012-05-14 2012-09-19 青岛秀山移动测量有限公司 Mobile polling method and device of coal mine vertical shaft

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085568A (en) * 2002-08-23 2004-03-18 Soldata System for monitoring movement
US7664341B2 (en) 2005-02-02 2010-02-16 Canon Kabushiki Kaisha Index layout measurement method, position and orientation estimation method, index layout measurement apparatus, and position and orientation estimation apparatus
WO2006082825A1 (en) * 2005-02-02 2006-08-10 Canon Kabushiki Kaisha Mark arrangement measuring method, positional posture estimating method, mark arrangement measuring apparatus and positional posture estimating apparatus
JP2006214832A (en) * 2005-02-02 2006-08-17 Canon Inc Method of measuring marker arrangement, method of assuming position/attitude, device for measuring marker arrangement, device for assuming position/attitude
JP4599184B2 (en) * 2005-02-02 2010-12-15 キヤノン株式会社 Index placement measurement method, index placement measurement device
JP2007147498A (en) * 2005-11-29 2007-06-14 Kajima Corp Method for measuring distortion shape of tubular ring, and program
JP2007170851A (en) * 2005-12-19 2007-07-05 Yokohama Rubber Co Ltd:The Method and system for measuring road surface shape
JP2007225423A (en) * 2006-02-23 2007-09-06 Basic Engineering:Kk Displacement measuring apparatus
JP2008255595A (en) * 2007-04-02 2008-10-23 Keisoku Net Service Kk Railway track displacement measuring device with cleaning function
JP2010025855A (en) * 2008-07-23 2010-02-04 Sakata Denki Track displacement measuring device
JP2010261867A (en) * 2009-05-08 2010-11-18 Furuno Electric Co Ltd Gnss radiowave observation device for measuring rail creep and rail creep measuring system
KR101181382B1 (en) * 2010-06-28 2012-09-19 손규만 Method of measuring tunnel convergence displacements
CN102620672A (en) * 2011-12-01 2012-08-01 中国人民解放军63653部队 Application of image mosaic technology in tunnel surrounding rock deformation noncontact measurement
KR101280960B1 (en) * 2012-06-12 2013-07-02 손규만 Apparatus for measuring tunnel convergence displacements
CN103512490A (en) * 2012-06-28 2014-01-15 中联重科股份有限公司 Box inner cavity size detection system
CN103217144A (en) * 2013-04-10 2013-07-24 广东欧珀移动通信有限公司 Method and device for monitoring height of building and distance between buildings
CN110455280A (en) * 2013-10-09 2019-11-15 喜利得股份公司 System and method for position and orientation measurement based on camera
JP2016536580A (en) * 2013-10-09 2016-11-24 ヒルティ アクチエンゲゼルシャフト System and method for camera position and orientation measurement
JP2019015739A (en) * 2013-10-09 2019-01-31 ヒルティ アクチエンゲゼルシャフト System and method for camera based position and orientation measurement
US10197675B2 (en) 2013-10-09 2019-02-05 Hilti Aktiengesellschaft System and method for camera based position and orientation measurement
CN103727906A (en) * 2013-12-19 2014-04-16 河海大学 Track operation device for using ground penetrating radar to measure thickness of retaining wall
CN108917694B (en) * 2018-07-16 2020-04-24 三峡大学 Device and method for monitoring and supporting deformation of tunnel rock-soil body after excavation
CN108917694A (en) * 2018-07-16 2018-11-30 三峡大学 Deformation monitoring and the device and method of supporting after a kind of tunnel Rock And Soil excavates
JP2020060508A (en) * 2018-10-12 2020-04-16 古河電気工業株式会社 Method for measuring piping route and piping route measuring system
CN109839073A (en) * 2019-03-06 2019-06-04 上海数久信息科技有限公司 A kind of the tunnel convergence deformation detection method and system of view-based access control model image
WO2021065029A1 (en) * 2019-10-04 2021-04-08 三菱重工業株式会社 Image measurement method and image measurement system
CN112902863A (en) * 2021-02-07 2021-06-04 中国人民解放军军事科学院国防工程研究院工程防护研究所 Tunnel surrounding rock large deformation monitoring method based on automatic target finding and ranging system
CN112964188A (en) * 2021-02-07 2021-06-15 中国人民解放军军事科学院国防工程研究院工程防护研究所 Method for improving laser automatic measurement precision of tunnel deformation in construction period
CN112964188B (en) * 2021-02-07 2022-03-25 中国人民解放军军事科学院国防工程研究院工程防护研究所 Method for improving laser automatic measurement precision of tunnel deformation in construction period
CN114777661A (en) * 2022-04-08 2022-07-22 哈尔滨工业大学 Tunnel section convergence deformation quantitative calculation method based on high-density measuring point strain
CN114777661B (en) * 2022-04-08 2022-10-21 哈尔滨工业大学 Tunnel section convergence deformation quantitative calculation method based on high-density measuring point strain

Also Published As

Publication number Publication date
JP3724786B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP2002156229A (en) Mobile displacement measuring method and device for structure
CN108171733B (en) Method of registering two or more three-dimensional 3D point clouds
KR100912715B1 (en) Method and apparatus of digital photogrammetry by integrated modeling for different types of sensors
JP3530978B2 (en) Image measurement method and recording medium recording image measurement program
CN104204721B (en) Single camera distance estimations
US8699005B2 (en) Indoor surveying apparatus
JP5992184B2 (en) Image data processing apparatus, image data processing method, and image data processing program
KR101308744B1 (en) System for drawing digital map
JP2019128175A (en) Tunnel wall inspection device and tunnel wall inspection program
CN103411587B (en) Positioning and orientation method and system
CN103003666A (en) Parallel online-offline reconstruction for three-dimensional space measurement
CN113124883B (en) Off-line punctuation method based on 3D panoramic camera
JP6135972B2 (en) Orientation method, orientation program, and orientation device
Perfetti et al. Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment
JP4152698B2 (en) 3D building model data generator
JP3808833B2 (en) Aerial photogrammetry
JP2003130642A (en) Telemetry and telemeter
KR101409802B1 (en) System for analysis space information using three dimensions 3d scanner
JP2001317915A (en) Three-dimensional measurement apparatus
JP2003042760A (en) Instrument, method, and system for measurement
Dupont et al. An improved calibration technique for coupled single-row telemeter and ccd camera
JP2980194B2 (en) Method and apparatus for measuring reinforcing bar position and posture
RU2726256C1 (en) Method of constructing three-dimensional model of terrain along railway track bed
JP2004309318A (en) Position detection method, its device and its program, and calibration information creation method
JP2013124954A (en) Method and system for measuring shape of civil engineering structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Ref document number: 3724786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees