JP2002153864A - Method for adsorbing and removing fluorine and/or boron dissolved in water - Google Patents

Method for adsorbing and removing fluorine and/or boron dissolved in water

Info

Publication number
JP2002153864A
JP2002153864A JP2000354704A JP2000354704A JP2002153864A JP 2002153864 A JP2002153864 A JP 2002153864A JP 2000354704 A JP2000354704 A JP 2000354704A JP 2000354704 A JP2000354704 A JP 2000354704A JP 2002153864 A JP2002153864 A JP 2002153864A
Authority
JP
Japan
Prior art keywords
adsorbent
boron
water
fluorine
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000354704A
Other languages
Japanese (ja)
Inventor
Seiya Hirohama
誠也 広浜
Ryuichi Inaba
隆一 稲葉
Kazushige Kawamura
和茂 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP2000354704A priority Critical patent/JP2002153864A/en
Publication of JP2002153864A publication Critical patent/JP2002153864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method using a low-cost adsorbent excellent in ability to adsorb fluorine and boron as harmful materials as a method for removing fluorine and/or boron contained in water by an adsorption method. SOLUTION: In the method for adsorbing and removing fluorine and/or boron in which water containing fluorine and/or boron is brought into contact with an adsorbent and the fluorine and/or boron is adsorbed on the adsorbent and removed from the water, the adsorbent is obtained by supporting 5-60 wt.% oxide or hydroxide of a rare earth metal on a γ-alumina carrier having >=150 m2/g surface area, >=0.55 cm3/g pore volume and 90-200 Å average pore diameter. In the γ-alumina carrier, pores each having 90-200 Å pore diameter occupy >=60% of the total pore volume.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素及び/又は
ホウ素(以下、これらを単に有害性物質とも言う)を含
有する水からそれに含まれるそれら有害性物質を吸着除
去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of adsorbing and removing harmful substances contained in water containing fluorine and / or boron (hereinafter referred to simply as harmful substances) from water.

【0002】[0002]

【従来の技術】従来、水中からフッ素(錯イオンなどの
形態も含む)を除去する方法としては凝集沈殿法、吸着
法等が使用されてきたが、凝集沈殿法はF-イオンを対
象とするのものであり、錯イオンなどの他のフッ素化合
物を除去する場合には効率が著しく低下するし、またホ
ウ素(錯イオンなどの形態も含む)を除去することはで
きない。また、フッ素やホウ素の吸着剤としては、アル
ミナやイオン交換樹脂の他に、希土類酸化物をイオン交
換樹脂に練りこんだものが用いられている。これはF-
イオンやホウ素を吸着できるがイオン交換樹脂を用いる
ため高価であり、希土類の溶出や樹脂の劣化を防ぐため
に処理水のpHや酸化還元電位を厳格にコントロールし
なければならないなどの欠点があった。
Conventionally, coagulating sedimentation method as the method for removing fluorine (including forms such as complex ions) from water, but adsorption method or the like have been used, coagulation precipitation method F - Target ion When removing other fluorine compounds such as complex ions, the efficiency is significantly reduced, and boron (including forms such as complex ions) cannot be removed. As the adsorbent for fluorine or boron, a material obtained by kneading a rare earth oxide into an ion exchange resin is used in addition to alumina and an ion exchange resin. This is F -
Although it can adsorb ions and boron, it is expensive because an ion exchange resin is used, and has the drawback that the pH and oxidation-reduction potential of treated water must be strictly controlled to prevent elution of rare earths and deterioration of the resin.

【0003】[0003]

【発明が解決しようとする課題】本発明は、水中に含ま
れるフッ素及び/又はホウ素を吸着法により除去する方
法において、それら有害性物質に対する吸着能にすぐれ
るとともに、低コストの吸着剤を用いる方法を提供する
ことをその課題とする。
SUMMARY OF THE INVENTION The present invention provides a method for removing fluorine and / or boron contained in water by an adsorption method, which uses an adsorbent which is excellent in the ability to adsorb such harmful substances and which is inexpensive. The task is to provide a method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、フッ素及び/又はホ
ウ素を含有する水を吸着剤に接触させて該フッ素及び/
又はホウ素を該吸着剤に吸着させて水中から除去する方
法において、該吸着剤として、表面積150m2/g以
上、細孔容積0.55cm3/g以上、平均細孔径90
〜200オングストロームを有し、かつ細孔径90〜2
00オングストロームの細孔が全細孔容積の60%以上
を占めるγ−アルミナ担体に希土類金属の酸化物又は水
酸化物を5〜60重量%担持したものを用いることを特
徴とするフッ素及び/又はホウ素の吸着除去方法が提供
される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, water containing fluorine and / or boron is brought into contact with an adsorbent to form the fluorine and / or boron.
Alternatively, in the method of removing boron from water by adsorbing boron on the adsorbent, the adsorbent may have a surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, and an average pore diameter of 90
Having a pore size of 90 to 2
A γ-alumina carrier having pores of 00 Å occupying 60% or more of the total pore volume, wherein 5 to 60% by weight of an oxide or hydroxide of a rare earth metal is supported, and fluorine and / or A method for adsorption removal of boron is provided.

【0005】[0005]

【発明の実施の形態】本発明で用いる多孔性γ−アルミ
ナ担体において、その表面積は150m2/g以上、好
ましくは180m2/g以上であり、その上限値は特に
制約されないが、通常、300m2/g程度である。そ
の細孔容積は0.55cm3/g以上、好ましくは0.
6cm3/g以上であり、その上限値は特に制約されな
いが、通常、1.0cm3/g程度である。その平均細
孔径は、90〜200Å、好ましくは100〜200Å
であり、かつその90〜200Åの細孔が全細孔容積の
60%以上、好ましくは70%を占めるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The porous γ-alumina carrier used in the present invention has a surface area of 150 m 2 / g or more, preferably 180 m 2 / g or more, and its upper limit is not particularly limited, but is usually 300 m 2 / g. It is about 2 / g. The pore volume is 0.55 cm 3 / g or more, preferably 0.15 cm 3 / g.
It is at least 6 cm 3 / g, and its upper limit is not particularly limited, but is usually about 1.0 cm 3 / g. Its average pore size is 90-200 °, preferably 100-200 °.
And the pores of 90 to 200 ° occupy 60% or more, preferably 70% of the total pore volume.

【0006】本発明で用いる吸着剤は、前記γ−アルミ
ナに希土類金属を担持させることによって得ることがで
きる。γ−アルミナに対する希土類金属の担持は、従来
公知の各種の方法により行うことができるが、一般的に
は、含浸法により実施される。この含浸法によれば、あ
らかじめ希土類金属を含有する溶液を作り、この溶液中
にγ−アルミナを浸漬してγ−アルミナ中に希土類金属
を含浸させ、次いで乾燥し、焼成することによって、所
望吸着剤を得ることができる。前記希土類金属を溶解さ
せるための溶剤としては、水、有機溶剤/水との混合
物、及び有機溶剤が用いられるが、好ましくは水が用い
られる。溶剤に溶解させる希土類金属は、その溶剤に溶
解する形態であればよく、一般的には、ハロゲン化物、
硝酸塩、硫酸塩、カルボン酸塩等であることができる。
溶液中の希土類金属の濃度は、金属換算量で、1〜30
重量%、好ましくは2〜20重量%である。希土類金属
を含浸させたγ−アルミナの乾燥温度は、50〜250
℃、好ましくは100〜200℃であり、その乾燥物の
焼成温度は200〜700℃、好ましくは200〜50
0℃である。
The adsorbent used in the present invention can be obtained by supporting a rare earth metal on the γ-alumina. The support of the rare earth metal on γ-alumina can be performed by various conventionally known methods, but is generally performed by an impregnation method. According to this impregnation method, a solution containing a rare earth metal is prepared in advance, γ-alumina is immersed in this solution to impregnate the rare earth metal in γ-alumina, and then dried and calcined to obtain the desired adsorption. Agent can be obtained. As the solvent for dissolving the rare earth metal, water, a mixture of an organic solvent / water, and an organic solvent are used, but water is preferably used. The rare earth metal to be dissolved in the solvent may be in any form as long as it is soluble in the solvent, and generally includes a halide,
It can be a nitrate, a sulfate, a carboxylate, or the like.
The concentration of the rare earth metal in the solution is 1 to 30 in terms of metal.
%, Preferably 2 to 20% by weight. The drying temperature of γ-alumina impregnated with rare earth metal is 50 to 250.
° C, preferably 100 to 200 ° C, and the calcination temperature of the dried product is 200 to 700 ° C, preferably 200 to 50 ° C.
0 ° C.

【0007】本発明で用いる吸着剤において、その希土
類金属の含有量は、金属換算量で、全吸着剤中、5〜6
0重量%、好ましくは5〜30重量%である。また、希
土類金属は、通常、吸着剤中、酸化物及び/又は水酸化
物の形態であり、例えば含水酸化物、塩基性塩で存在し
ていてもよい。希土類金属としては、セリウム、ランタ
ン、プラセオジム、ネオジム等が挙げられるが、本発明
の場合、特に、(i)セリウム及び/又はランタン、あ
るいは(ii)セリウム及び/又はランタンを含有する希
土類金属混合物が好ましい。本発明で用いる吸着剤にお
いて、その平均細孔径が90Åより小さいと、有害化合
物分子の細孔内拡散が律速になり、全吸着剤表面積を有
効に利用することができない。一方、その平均細孔径が
200Åより大きいと、表面積が大きくとれなくなる。
上記条件を満足するγ−アルミナ担体は、アルミニウム
塩の中和により生成した水酸化アルミニウムのスラリー
を濾過洗浄し、これを脱水乾燥した後、400〜800
℃で1〜6時間程度焼成することにより得ることができ
る。
In the adsorbent used in the present invention, the content of the rare earth metal is 5 to 6 of the total adsorbent in terms of metal.
0% by weight, preferably 5 to 30% by weight. The rare earth metal is usually in the form of an oxide and / or a hydroxide in the adsorbent, and may be present as a hydrated oxide or a basic salt. Examples of the rare earth metal include cerium, lanthanum, praseodymium, neodymium, and the like. In the case of the present invention, in particular, (i) a rare earth metal mixture containing cerium and / or lanthanum is used. preferable. If the average pore diameter of the adsorbent used in the present invention is smaller than 90 °, diffusion of the harmful compound molecules into the pores becomes rate-determining, and the total adsorbent surface area cannot be effectively used. On the other hand, if the average pore diameter is larger than 200 °, the surface area cannot be increased.
The γ-alumina carrier that satisfies the above conditions is obtained by filtering and washing a slurry of aluminum hydroxide generated by neutralization of an aluminum salt, and dehydrating and drying the slurry.
It can be obtained by baking at about 1 to 6 hours.

【0008】本発明で用いる吸着剤において、希土類金
属は酸化物又は水酸化物として存在し、アルミナ表面に
アルミナとの複合体を形成し、好ましい表面特性を与え
る役割を果たすと思われる。その含有量が5重量%より
低いとγ−アルミナ担体表面をアルミナと希土類金属と
の複合体が均一に覆うことができないため十分な効果が
得られず、一方、その含有量が60重量%を越えるとア
ルミナとの複合体の表面特性が変化するとともに表面積
自体の減少が著しいものとなる。γ−アルミナ担体上に
希土類金属酸化物を担持させるには、希土類金属のハロ
ゲン化物・硝酸塩などの水溶液を担体に含浸させた後、
乾燥して焼成する方法等がある。また、希土類金属水酸
化物をγ−アルミナ担体上に担持させるには、希土類金
属のハロゲン化物・硝酸塩の水溶液を担体に含浸させた
後、熱アンモニア水中に漬けてから水洗し、乾燥する方
法等がある。
[0008] In the adsorbent used in the present invention, the rare earth metal is present as an oxide or a hydroxide, and is considered to form a complex with alumina on the alumina surface and play a role of imparting favorable surface characteristics. If the content is less than 5% by weight, the surface of the γ-alumina carrier cannot be uniformly covered with the composite of alumina and the rare earth metal, so that a sufficient effect cannot be obtained. If it exceeds, the surface characteristics of the composite with alumina change, and the surface area itself decreases remarkably. To support the rare earth metal oxide on the γ-alumina support, the support is impregnated with an aqueous solution such as a rare earth metal halide / nitrate,
There is a method of drying and firing. In order to support a rare earth metal hydroxide on a γ-alumina carrier, a method of impregnating the carrier with an aqueous solution of a halide / nitrate of a rare earth metal, immersing the carrier in hot ammonia water, washing with water, and drying is used. There is.

【0009】本発明により水中に溶存するフッ素及び/
又はホウ素を除去するには、前記吸着剤に対して、それ
ら有害性物質を溶存する水を接触すればよい。この場合
の接触方法としては、吸着剤を充填した充填塔にそれら
有害性物質を含有する水を流通させる方法や、該有害性
物質含有水に吸着剤を投入し、撹拌する方法等があり、
特に制約されない。処理対象となる水中に含まれるフッ
素の濃度は、フッ素(F)として、通常、10〜300
mg/L、特に20〜100mg/L、である。また、
ホウ素の濃度は、ホウ素(B)として、10〜200m
g/L、特に20〜150mg/Lである。水中に含ま
れるフッ素の形態は、F-やBF4 -等であり、ホウ素の
形態は、H3BO3やBF4 -等である。本発明では、前記
したフッ素を含むホウ素化合物(BF4 -、BF3OH-
BF2(OH)2 -、BF(OH)3 -等)をも効果的に除去す
ることができる。前記有害性物質を含む水としては、火
力発電所や、半導体工場等からの排水を挙げることがで
きる。
According to the present invention, fluorine dissolved in water and / or
Alternatively, to remove boron, the adsorbent may be brought into contact with water in which the harmful substances are dissolved. Examples of the contact method in this case include a method in which the water containing the harmful substance is passed through a packed tower filled with the adsorbent, a method in which the adsorbent is charged into the water containing the harmful substance, and a method in which the mixture is stirred.
There is no particular restriction. The concentration of fluorine contained in water to be treated is usually 10 to 300 as fluorine (F).
mg / L, especially 20-100 mg / L. Also,
The concentration of boron is 10 to 200 m as boron (B).
g / L, especially 20-150 mg / L. The form of fluorine contained in water is F - or BF 4 - or the like, and the form of boron is H 3 BO 3 or BF 4 - or the like. In the present invention, the above-mentioned boron compounds containing fluorine (BF 4 , BF 3 OH ,
BF 2 (OH) 2 , BF (OH) 3 etc.) can also be effectively removed. Examples of the water containing the harmful substance include wastewater from a thermal power plant and a semiconductor factory.

【0010】[0010]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0011】参考例1 特公平6−72005号公報中の実施例1に記載される
ようにして、γ−アルミナ担体を製造した。この方法の
あらましを述べると、熱希硫酸中に激しく撹拌しながら
瞬時にアルミン酸ソーダ水溶液を加えることにより水酸
化アルミニウムスラリーの懸濁液(pH10)を得、こ
れを種子水酸化アルミニウムとして、撹拌を続けながら
熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間お
いて加える操作を繰り返し、濾過洗浄してケーキを得、
これを押し出し成形して乾燥した後、500℃で3時間
焼成するという方法である。こうして得られたγ−アル
ミナの性状は典型的には次の通りである。
Reference Example 1 A γ-alumina support was produced as described in Example 1 in JP-B-6-72005. Briefly, this method is described as follows. A sodium aluminate aqueous solution is instantaneously added to hot dilute sulfuric acid with vigorous stirring to obtain a suspension (pH 10) of an aluminum hydroxide slurry. The operation of alternately adding hot dilute sulfuric acid and aqueous sodium aluminate solution for a certain period of time is repeated, followed by filtration and washing to obtain a cake,
This is extruded, dried, and fired at 500 ° C. for 3 hours. The properties of the γ-alumina thus obtained are typically as follows.

【表1】 平均細孔径 119 Å 細孔容積 0.713 cm3/g 表面積 240 m2/g 全細孔容積に占める90〜200Åの細孔の割合 88 %Table 1 Average pore size 119 ° Pore volume 0.713 cm 3 / g Surface area 240 m 2 / g Ratio of 90-200 ° pores to total pore volume 88%

【0012】上記γ−アルミナ担体100gを取り、こ
れにCeO2/Al23の重量比が約50/100にな
るよう、30wt%濃度のCe(NO3)3水溶液を含浸さ
せ、水分除去後、400℃で焼成し吸着剤を調製した。
100 g of the above-mentioned γ-alumina carrier is taken, impregnated with a 30 wt% aqueous solution of Ce (NO 3 ) 3 so that the weight ratio of CeO 2 / Al 2 O 3 becomes about 50/100, and water is removed. Then, it was calcined at 400 ° C. to prepare an adsorbent.

【0013】参考例2 参考例1において、Ce(NO3)3の代わりにLa(N
3)3を用いた以外は同様にして、La23/Al23
の重量比が約50/100となるようLa23を含有す
る吸着剤を得た。
Reference Example 2 In Reference Example 1, La (N) was used instead of Ce (NO 3 ) 3.
La 2 O 3 / Al 2 O 3 was prepared in the same manner except that O 3 ) 3 was used.
To obtain an adsorbent containing La 2 O 3 such that the weight ratio of the adsorbent becomes about 50/100.

【0014】参考例3 参考例1と同じγ−アルミナ担体を用い、これにCe
(OH)3/AlO3の重量比が約55/100になるよう
30wt%濃度のCe(NO3)3水溶液を含浸させ、乾燥
した。この吸着剤1リットルをほぼ同量の10wt%熱
アンモニア水に95℃で1時間漬け、熱アンモニア水を
交換して同じ操作を2回繰り返した後水洗して乾燥し、
Ce(OH)3を含有する吸着剤を得た。
Reference Example 3 The same γ-alumina carrier as in Reference Example 1 was used,
A 30 wt% aqueous solution of Ce (NO 3 ) 3 was impregnated so that the weight ratio of (OH) 3 / AlO 3 became about 55/100, and dried. One liter of this adsorbent is immersed in approximately the same amount of 10 wt% hot ammonia water at 95 ° C. for 1 hour, the hot ammonia water is exchanged, and the same operation is repeated twice.
An adsorbent containing Ce (OH) 3 was obtained.

【0015】実施例1 石炭焚火力発電所の排煙脱硫排水700cm3(F濃度
250mg/L)にpHが7になるまでCa(OH)2
を加えた後、1時間放置し、pHが7以上であることを
確認してから1昼夜放置した。この液を濾過した液のF
濃度は30mg/Lであった。この液を塩酸でpH=3
に調整し、100cm3ずつフラスコに小分けして、上
記参考例1の吸着剤を添加したところpHは6程度まで
上昇した。これを室温で48時間撹拌した後、液を全量
サンプリングしてF分を定量した。その結果、表2に示
すように、吸着剤の投入量を増やせばF濃度は低下し、
Ca沈殿法では除去し難いF分を吸着除去できることが
判明した。
Example 1 Ca (OH) 2 was added to 700 cm 3 of flue gas desulfurization effluent from a coal-fired power plant (F concentration: 250 mg / L) until the pH reached 7.
Was added, and the mixture was allowed to stand for 1 hour. After confirming that the pH was 7 or more, the mixture was allowed to stand for 1 day and night. The F
The concentration was 30 mg / L. This solution is adjusted to pH 3 with hydrochloric acid.
Was adjusted to, in portions to the flask by 100 cm 3, pH was added an adsorbent of the Example 1 was raised to about 6. After stirring this at room temperature for 48 hours, the whole amount of the liquid was sampled to determine the F content. As a result, as shown in Table 2, if the input amount of the adsorbent is increased, the F concentration decreases,
It has been found that the F component which is difficult to remove by the Ca precipitation method can be adsorbed and removed.

【0016】[0016]

【表2】 [Table 2]

【0017】実施例2 石炭焚火力発電所の排煙脱硫排水約1000cm3にp
Hが7になるまでCa(OH)2を加えた後、1時間放置
し硫酸でpH=7に調整した。(液量 1200c
3)この液を濾過してから100cm3サンプリングし
てフッ素濃度を測定した結果、26mg/Lであった。
残りの液を塩酸でpH=3に調整し、参考例1の吸着剤
10gを添加して室温で48時間攪拌した結果、pHは
6程度まで上昇した。攪拌停止後、液中のフッ素濃度を
測定した結果、15mg/Lであった。デカンテーショ
ンによって吸着剤だけを回収し、これに0.1NのNa
OH水溶液100cm3を加えて室温で48時間撹拌し
た結果、液中のフッ素濃度は68mg/Lになった。こ
れらの結果から、pH=6程度で、約1.0g/Kgの
フッ素が吸着し、アルカリ再生でその約70%が脱着し
たことが判明した。
Example 2 The flue gas desulfurization wastewater from a coal-fired power plant was reduced to about 1000 cm 3
After adding Ca (OH) 2 until H became 7, it was left for 1 hour and adjusted to pH = 7 with sulfuric acid. (Liquid 1200c
m 3 ) After filtering this solution, 100 cm 3 was sampled and the fluorine concentration was measured. As a result, it was 26 mg / L.
The remaining liquid was adjusted to pH = 3 with hydrochloric acid, 10 g of the adsorbent of Reference Example 1 was added, and the mixture was stirred at room temperature for 48 hours. As a result, the pH increased to about 6. After the stirring was stopped, the fluorine concentration in the solution was measured to be 15 mg / L. Only the adsorbent was recovered by decantation, and 0.1N Na was added thereto.
As a result of adding 100 cm 3 of an OH aqueous solution and stirring at room temperature for 48 hours, the fluorine concentration in the liquid became 68 mg / L. From these results, it was found that at about pH = 6, about 1.0 g / Kg of fluorine was adsorbed, and about 70% of the fluorine was desorbed by alkali regeneration.

【0018】実施例3 石炭焚火力発電所の排水(B濃度 110mg/L)に
pHが7になるまでCa(OH)2を加えた後、1時間放
置し、pHが7以上であることを確認してから1昼夜放
置した。この液を濾過した液のB濃度は98mg/Lで
あった。この液を100cm3ずつフラスコに小分けし
て、参考例1の吸着剤を添加した。室温で48時間撹拌
した。この間に、pH調整を行い、最終到達pHは6程
度であった。攪拌停止後、液を全量サンプリングしてB
分を定量した。表3に示すように、吸着剤の投入量を増
やせば、液中のB濃度は低下した。
Example 3 Ca (OH) 2 was added to the wastewater (B concentration: 110 mg / L) of a coal-fired power plant until the pH reached 7, and then the mixture was allowed to stand for 1 hour to confirm that the pH was 7 or more. After checking, it was left overnight. The B concentration of the liquid obtained by filtering this liquid was 98 mg / L. This liquid was subdivided into 100 cm 3 flasks, and the adsorbent of Reference Example 1 was added. Stirred at room temperature for 48 hours. During this time, the pH was adjusted, and the final pH reached was about 6. After stopping the stirring, sample the whole amount of the solution and
The minute was quantified. As shown in Table 3, as the amount of the adsorbent added was increased, the B concentration in the liquid decreased.

【0019】[0019]

【表3】 [Table 3]

【0020】参考例4 純水、塩酸水溶液、食塩水ならびに排煙脱硫吸収液10
0cm3を準備し、pHを測定してからこの中に参考例
1の吸着剤5gを加えた。攪拌しながら一昼夜放置して
濾過し、濾過液中のCe濃度を測定した。その結果を表
4に示す。極端にpHを下げた場合を除き、Ceの溶出
量は僅かであった。
Reference Example 4 Pure water, aqueous hydrochloric acid, saline, and flue gas desulfurization absorbent 10
After preparing 0 cm 3 and measuring the pH, 5 g of the adsorbent of Reference Example 1 was added thereto. The mixture was left standing all day and night while stirring, and filtered, and the Ce concentration in the filtrate was measured. Table 4 shows the results. Except when the pH was extremely lowered, the elution amount of Ce was small.

【表4】 [Table 4]

【0021】なお、本発明で用いる吸着剤に関わる表面
積の測定は、カルロエルバ社製自動気体吸脱着装置「S
orptomatic 1800」を用いた窒素吸着に
より、BET法に従い行った。また、細孔容積及び平均
細孔径は、カルロエルバ社製細孔分布測定装置「Mer
cury pressure porosimeter
model 70」を用いて、いわゆる水銀圧入法で
求めた。
The surface area relating to the adsorbent used in the present invention was measured by an automatic gas adsorption / desorption apparatus “S” manufactured by Carlo Elba.
This was performed according to the BET method by nitrogen adsorption using "orptomatic 1800". Further, the pore volume and the average pore diameter are measured by a pore distribution measuring device “Mer” manufactured by Carlo Elba.
cury pressure porosimeter
Model 70 "and the so-called mercury intrusion method.

【0022】[0022]

【発明の効果】本発明によれば、水中に溶存するフッ素
及び/又はホウ素を効率よくかつ低コストで除去するこ
とができる。
According to the present invention, fluorine and / or boron dissolved in water can be efficiently removed at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川村 和茂 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 Fターム(参考) 4D024 AA04 AB11 AB14 BA14 4G066 AA20C AA37B AA53A BA23 BA24 BA25 FA05 FA11 FA12 FA21 FA22  ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazushige Kawamura 2-1-1, Tsurumichuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture F-term in Chiyoda Kako Construction Co., Ltd. 4D024 AA04 AB11 AB14 AB14 BA14 4G066 AA20C AA37B AA53A BA23 BA24 BA25 FA05 FA11 FA12 FA21 FA22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フッ素及び/又はホウ素を含有する水を
吸着剤に接触させて該フッ素及び/又はホウ素を該吸着
剤に吸着させて水中から除去する方法において、該吸着
剤として、表面積150m2/g以上、細孔容積0.5
5cm3/g以上、平均細孔径90〜200オングスト
ロームを有し、かつ細孔径90〜200オングストロー
ムの細孔が全細孔容積の60%以上を占めるγ−アルミ
ナ担体に希土類金属の酸化物又は水酸化物を5〜60重
量%担持したものを用いることを特徴とするフッ素及び
/又はホウ素の吸着除去方法。
1. A method for removing water from water by contacting water containing fluorine and / or boron with an adsorbent to adsorb the fluorine and / or boron on the adsorbent, wherein the adsorbent has a surface area of 150 m 2. / G or more, pore volume 0.5
A rare earth metal oxide or water on a γ-alumina support having a pore size of 5 cm 3 / g or more, an average pore size of 90 to 200 Å, and pores having a pore size of 90 to 200 Å occupying 60% or more of the total pore volume. A method for adsorbing and removing fluorine and / or boron, comprising using an oxide carrying 5 to 60% by weight of an oxide.
【請求項2】 該希土類金属が、セリウム及び/又はラ
ンタンである請求項1の方法。
2. The method according to claim 1, wherein said rare earth metal is cerium and / or lanthanum.
【請求項3】 該希土類金属が、セリウム及び/又はラ
ンタンを含む希土類金属混合物である請求項1の方法。
3. The method according to claim 1, wherein the rare earth metal is a rare earth metal mixture containing cerium and / or lanthanum.
JP2000354704A 2000-11-21 2000-11-21 Method for adsorbing and removing fluorine and/or boron dissolved in water Pending JP2002153864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000354704A JP2002153864A (en) 2000-11-21 2000-11-21 Method for adsorbing and removing fluorine and/or boron dissolved in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000354704A JP2002153864A (en) 2000-11-21 2000-11-21 Method for adsorbing and removing fluorine and/or boron dissolved in water

Publications (1)

Publication Number Publication Date
JP2002153864A true JP2002153864A (en) 2002-05-28

Family

ID=18827241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000354704A Pending JP2002153864A (en) 2000-11-21 2000-11-21 Method for adsorbing and removing fluorine and/or boron dissolved in water

Country Status (1)

Country Link
JP (1) JP2002153864A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205368A (en) * 2004-01-26 2005-08-04 Kurita Water Ind Ltd Adsorbent and water treatment method
US8557730B2 (en) 2007-10-31 2013-10-15 Molycorp Minerals, Llc Composition and process for making the composition
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
CN109078607A (en) * 2018-08-17 2018-12-25 广东璞睿泰科环保科技有限公司 The preparation method of rare earth combined oxidation aluminium ball

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132986A (en) * 1983-01-18 1984-07-31 Asahi Chem Ind Co Ltd Separation of borate ion
JPH02191543A (en) * 1989-01-19 1990-07-27 Agency Of Ind Science & Technol Method for removing fluoride ion
JP2000024647A (en) * 1998-07-08 2000-01-25 Chiyoda Corp Adsorbing and removing method of arsenic dissolved in water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132986A (en) * 1983-01-18 1984-07-31 Asahi Chem Ind Co Ltd Separation of borate ion
JPH02191543A (en) * 1989-01-19 1990-07-27 Agency Of Ind Science & Technol Method for removing fluoride ion
JP2000024647A (en) * 1998-07-08 2000-01-25 Chiyoda Corp Adsorbing and removing method of arsenic dissolved in water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205368A (en) * 2004-01-26 2005-08-04 Kurita Water Ind Ltd Adsorbent and water treatment method
US8557730B2 (en) 2007-10-31 2013-10-15 Molycorp Minerals, Llc Composition and process for making the composition
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10577259B2 (en) 2014-03-07 2020-03-03 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
CN109078607A (en) * 2018-08-17 2018-12-25 广东璞睿泰科环保科技有限公司 The preparation method of rare earth combined oxidation aluminium ball

Similar Documents

Publication Publication Date Title
Ramos et al. Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon
Raichur et al. Adsorption of fluoride onto mixed rare earth oxides
Yang et al. Fluoride removal by ordered and disordered mesoporous aluminas
Wu et al. Fluoride removal performance of a novel Fe–Al–Ce trimetal oxide adsorbent
Yang et al. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal
CN103706326B (en) A kind of preparation method of natural minerals loaded nano defluorinating agent
US20040050795A1 (en) Removal of arsenic and other anions using novel adsorbents
CN104525090A (en) Absorbent used in sewage phosphorus removal, and preparation method thereof
CN101119934A (en) Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
JP3924381B2 (en) Method for adsorbing and removing arsenic dissolved in water
US4234456A (en) Iodine adsorbent
CN105126738A (en) Preparation method of porous composite material for removal of fluorine ions from water
CN111203190B (en) Preparation method of high-unsaturation coordination system trivalent cerium phosphorus removal adsorbent
CN110327909B (en) Preparation method of cerium-zirconium composite oxide with high oxygen storage capacity
JP2002153864A (en) Method for adsorbing and removing fluorine and/or boron dissolved in water
Xu et al. Preparation and defluorination performance of activated cerium (IV) oxide/SiMCM-41 adsorbent in water
JP3932797B2 (en) Method for producing harmful anion adsorption particles
CN106110763B (en) A kind of air purifying filter mesh and preparation method thereof
JP4810792B2 (en) Adsorbent and water treatment method
US11865509B2 (en) Porous molding
CN104148004A (en) Magnetic fluorine ion adsorbent and preparation method thereof
CN116116388A (en) Preparation method and application of biochar/magnesium aerogel bead dephosphorization adsorbent
JP2008012516A (en) Anion adsorbent and its manufacturing method
CN106179231A (en) A kind of hollow cube ferrum aluminum is combined preparation and the application process of oxyhydroxide de-fluoridation adsorbent
CN108889265A (en) A kind of magnesium iron cerium composite oxides and its preparation method and application

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928