JP2002153738A - Method for controlling particle position, method for manufacturing particle film by using the method, and particle film - Google Patents

Method for controlling particle position, method for manufacturing particle film by using the method, and particle film

Info

Publication number
JP2002153738A
JP2002153738A JP2000352766A JP2000352766A JP2002153738A JP 2002153738 A JP2002153738 A JP 2002153738A JP 2000352766 A JP2000352766 A JP 2000352766A JP 2000352766 A JP2000352766 A JP 2000352766A JP 2002153738 A JP2002153738 A JP 2002153738A
Authority
JP
Japan
Prior art keywords
particles
particle
magnetic field
solvent
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000352766A
Other languages
Japanese (ja)
Other versions
JP3418731B2 (en
Inventor
Seiichiro Nakabayashi
誠一郎 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2000352766A priority Critical patent/JP3418731B2/en
Publication of JP2002153738A publication Critical patent/JP2002153738A/en
Application granted granted Critical
Publication of JP3418731B2 publication Critical patent/JP3418731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/32Magnetic separation acting on the medium containing the substance being separated, e.g. magneto-gravimetric-, magnetohydrostatic-, or magnetohydrodynamic separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling apparent gravity and buoyancy of a particle by acting a magnetic field vertically and changing the strength and direction of the magnetic field, and to provide a method for manufacturing a particle film, which can manufacture a particle film where particles in the nanometer range are accumulated two-dimensionally, and a particle film manufactured by the method. SOLUTION: In this method for controlling the positions of particles, a magnetic field is added to a solvent in which particles are dispersed, and the positions of the particles in the solvent are controlled by the strength and direction of the magnetic field. In this method for manufacturing a particle film, a solvent in which particles are dispersed is applied to a substrate, and the solvent is evaporated by using the method for controlling the positions of the particles with respect to the liquid level of the solvent by the strength and direction of the magnetic field, thereby accumulating the particles two- dimensionally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒子位置の制御方
法、その制御方法を用いた粒子膜の製造方法および粒子
膜に関し、より詳細には磁場の強度および方向により溶
媒に分散させた粒子位置を制御する方法、磁場の強度お
よび方向により粒子の位置を制御して粒子を二次元に集
積させた粒子膜の製造方法、および粒子膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a particle position, a method for producing a particle film using the control method, and a particle film. More particularly, the present invention relates to a method for controlling a particle position dispersed in a solvent depending on the strength and direction of a magnetic field. The present invention relates to a method for controlling particle size, a method for manufacturing a particle film in which particles are two-dimensionally integrated by controlling the position of particles by the intensity and direction of a magnetic field, and a particle film.

【0002】[0002]

【従来の技術】従来、粒子を二次元に集積させて粒子膜
を製造する方法として、移流集積法が用いられている。
図1を用いて、移流集積法による粒子膜の製造方法を説
明する。図1(a)は、基板1上に塗布された溶媒3を
蒸発させているところを示した図である。有機溶媒また
は有機溶媒と無機溶媒との混合溶液などといった溶媒2
に、粒子3を分散させた溶液が基板1に滴下するなどし
て塗布されている。また、基板1を図示しない加熱装置
または減圧装置などに入れ、基板1上に塗布された溶媒
2を蒸発させている。溶媒2の蒸発速度は、図示しない
加熱装置の温度または減圧装置の圧力を調節することに
よって行われる。また、図示しない加熱装置または減圧
装置を用いないで、自然蒸発により溶媒2を蒸発させる
こともでき、また容器に蓋をするなどして溶媒2の蒸発
速度を減少させて行うこともできる。
2. Description of the Related Art Hitherto, advection accumulation has been used as a method for producing a particle film by accumulating particles two-dimensionally.
A method for producing a particle film by the advection accumulation method will be described with reference to FIG. FIG. 1A is a diagram showing a state where a solvent 3 applied on a substrate 1 is evaporated. Solvent 2 such as an organic solvent or a mixed solution of an organic solvent and an inorganic solvent
The solution in which the particles 3 are dispersed is applied to the substrate 1 by dropping. Further, the substrate 1 is placed in a heating device or a decompression device (not shown) to evaporate the solvent 2 applied on the substrate 1. The evaporation rate of the solvent 2 is adjusted by adjusting the temperature of a heating device (not shown) or the pressure of a pressure reducing device. Further, the solvent 2 can be evaporated by natural evaporation without using a heating device or a decompression device (not shown), or the evaporation can be performed by reducing the evaporation speed of the solvent 2 by covering the container.

【0003】図1(b)は、溶媒2の蒸発が進み、粒子
3が溶媒1の界面4から現れてきたところを示す図であ
る。溶媒2と雰囲気を取り巻く気体5との界面4は、粒
子3の存在によって変形され、変形により増大した界面
エネルギーが最小となるように粒子3が移流する。溶媒
2の蒸発が進むと、図1(b)に示すように粒子3が溶
媒2から界面4を分断して突き出し、溶媒2と、雰囲気
を取り巻く気体5とにより形成される界面4において作
用する横毛管力により、粒子3が集積するように移流す
ると考えられている。
FIG. 1B is a view showing a state in which the evaporation of the solvent 2 has progressed and the particles 3 have emerged from the interface 4 of the solvent 1. The interface 4 between the solvent 2 and the gas 5 surrounding the atmosphere is deformed by the presence of the particles 3, and the particles 3 are advected so that the interfacial energy increased by the deformation is minimized. As the solvent 2 evaporates, the particles 3 break off from the solvent 2 and protrude from the interface 4 as shown in FIG. 1B, and act on the interface 4 formed by the solvent 2 and the gas 5 surrounding the atmosphere. It is considered that the particles 3 are advected by the lateral capillary force so as to accumulate.

【0004】図1(c)は、粒子3が二次元に集積した
粒子膜を示す図である。溶媒2の蒸発速度を制御して図
1(b)に示す溶媒2の蒸発を行うと、溶媒2と、雰囲
気を取り巻く気体5との界面4に横毛管力が作用し、粒
子3が移流して二次元的に集積される。集積した粒子3
から溶媒2がすべて蒸発すると、図1(c)に示す粒子
膜が形成される。
FIG. 1C shows a particle film in which particles 3 are two-dimensionally integrated. When the evaporation rate of the solvent 2 shown in FIG. 1B is controlled by controlling the evaporation rate of the solvent 2, a horizontal capillary force acts on the interface 4 between the solvent 2 and the gas 5 surrounding the atmosphere, and the particles 3 are advected. And two-dimensionally integrated. Accumulated particles 3
When all of the solvent 2 evaporates, a particle film shown in FIG. 1C is formed.

【0005】上述した移流集積法における粒子位置は、
溶媒の蒸発速度の制御により、横毛管力といった粒子の
水平方向への制御が行われている。移流集積法では、こ
の溶媒の蒸発速度を制御することにより、マイクロメー
タ域までの粒子径の粒子を二次元に集積させた粒子膜が
製造されている。
[0005] The particle position in the above-mentioned advection accumulation method is as follows.
By controlling the evaporation rate of the solvent, horizontal control of particles such as horizontal capillary force is performed. In the advection accumulation method, by controlling the evaporation rate of the solvent, a particle film in which particles having a particle diameter up to the micrometer range are two-dimensionally accumulated is manufactured.

【0006】粒子に対して鉛直方向に作用する力につい
ては、重力と、溶媒中において粒子が排除する体積によ
り見かけ重量を軽くするように作用する浮力とがある。
しかしながら、重力および浮力は、粒子の質量および密
度によって一義的に定まるため、移流集積法では鉛直方
向に作用する力を制御することはできず、従って液面に
対する鉛直方向の粒子位置を制御することができなかっ
た。また、鉛直方向の粒子位置を制御することができな
いため、マイクロメータ域以下の、例えばナノメータ域
といった粒子径を持つ粒子を二次元に集積させて粒子膜
を製造することはできなかった。
[0006] The force acting on the particles in the vertical direction includes gravity and buoyancy acting to reduce the apparent weight by the volume excluded by the particles in the solvent.
However, gravity and buoyancy are uniquely determined by the mass and density of the particles, so the advection and accumulation method cannot control the forces acting in the vertical direction, and therefore control the position of the particles in the vertical direction relative to the liquid surface. Could not. In addition, since the position of the particles in the vertical direction cannot be controlled, it has not been possible to manufacture a particle film by two-dimensionally accumulating particles having a particle diameter of a micrometer range or less, for example, a nanometer range.

【0007】また、反磁性物体に対して強磁場を加える
ことにより、物体を浮上させる、いわゆる磁気アルキメ
デス浮上が知られている(たとえば、東京大学工学部北
沢ら、「磁気アルキメデス浮上法を利用した反・常磁性
物質の磁気浮上」、SNMS’98(Symposiu
m on New Magneto−Science’
98)Proceeding of The Seco
nd MeetingNov.25−27 ’98 J
apan p27−31)。しかしながら、これまでの
磁気アルキメデス浮上は、木片や生物などを水中または
空気中において浮上させるといった現象を観測するのみ
に適用されているのが現状である。
[0007] A so-called magnetic Archimedes levitation in which an object is levitated by applying a strong magnetic field to a diamagnetic object is known (for example, Kitazawa et al., Faculty of Engineering, The University of Tokyo;・ Magnetic levitation of paramagnetic substances ”, SNMS'98 (Symposiu
mon New Magneto-Science '
98) Proceeding of The Seco
nd MeetingNov. 25-27 '98 J
ap. p27-31). However, magnetic Archimedes levitation so far is currently applied only to observing phenomena such as floating of wood pieces and living things in water or in the air.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明は、上
述の問題点に鑑み、鉛直方向に磁場を作用させ、磁場の
強度および方向により溶媒における粒子位置を制御する
方法を提供し、その制御方法を用いてナノメータ域の粒
子を二次元に集積させた粒子膜を製造することが可能な
粒子膜の製造方法、および該方法により製造される粒子
膜を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above-mentioned problems, and provides a method of controlling a particle position in a solvent by applying a magnetic field in a vertical direction and controlling the strength and direction of the magnetic field. An object of the present invention is to provide a method for producing a particle film capable of producing a particle film in which particles in the nanometer range are two-dimensionally integrated using the method, and a particle film produced by the method.

【0009】[0009]

【課題を解決するための手段】本発明は、溶液中に分散
させた粒子に対して強磁場を加えることにより、特に気
液界面における粒子位置を制御することが可能であるこ
とを見出すことによりなされたものである。気体と液体
の界面においては、液体の表面自由エネルギーにより表
面積が最も小さくなるように作用する表面張力と、粒子
間に発生する横毛管力とが存在する。この横毛管力は、
液面に対する粒子位置、すなわち粒子間の距離に依存す
る。本発明は、上述した磁気アルキメデス浮上を用いて
気液界面における粒子位置を制御することにより、粒子
に加えられる横毛管力を制御することが可能であること
を見出すことによってなされたものである。すなわち、
本発明の上記目的は、本発明の粒子位置の制御方法およ
びその制御方法を用いた粒子膜の製造方法および粒子膜
を提供することによって解決される。
SUMMARY OF THE INVENTION The present invention is based on the finding that it is possible to control the position of particles, particularly at the gas-liquid interface, by applying a strong magnetic field to the particles dispersed in a solution. It was done. At the interface between the gas and the liquid, there are a surface tension acting to minimize the surface area by the surface free energy of the liquid, and a horizontal capillary force generated between the particles. This transverse capillary force is
It depends on the particle position with respect to the liquid surface, that is, the distance between the particles. The present invention has been made by finding that it is possible to control the transverse capillary force applied to a particle by controlling the position of the particle at the gas-liquid interface using the magnetic Archimedes levitation described above. That is,
The above object of the present invention is solved by providing a method for controlling a particle position according to the present invention, a method for producing a particle film using the control method, and a particle film.

【0010】本発明の請求項1の発明によれば、粒子を
分散させた溶媒に磁場を加え、磁場の強度および方向に
より溶媒における粒子位置を制御する粒子位置の制御方
法が提供される。
According to the first aspect of the present invention, there is provided a method for controlling a particle position in which a magnetic field is applied to a solvent in which particles are dispersed, and the particle position in the solvent is controlled by the strength and direction of the magnetic field.

【0011】本発明の請求項2の発明によれば、上記粒
子は、反磁性体粒子または常磁性体粒子または強磁性体
粒子である粒子位置の制御方法が提供される。
According to the invention of claim 2 of the present invention, there is provided a method for controlling the position of particles, wherein the particles are diamagnetic particles, paramagnetic particles or ferromagnetic particles.

【0012】本発明の請求項3の発明によれば、上記磁
場は、磁束密度が0.5〜20Tである粒子位置の制御
方法が提供される。
According to the third aspect of the present invention, there is provided a method for controlling the position of a particle in which the magnetic field has a magnetic flux density of 0.5 to 20T.

【0013】本発明の請求項4の発明によれば、上記粒
子は、1〜100nmの粒子径である粒子位置の制御方
法が提供される。
According to a fourth aspect of the present invention, there is provided a method for controlling a position of a particle, wherein the particle has a particle diameter of 1 to 100 nm.

【0014】本発明の請求項5の発明によれば、上記粒
子は、硫黄を含む有機化合物により保護されたコロイド
粒子である粒子位置の制御方法が提供される。
According to a fifth aspect of the present invention, there is provided a method for controlling the position of a particle, wherein the particle is a colloid particle protected by an organic compound containing sulfur.

【0015】本発明の請求項6の発明によれば、粒子を
溶媒に分散させ、粒子を分散させた溶媒を基板上に塗布
し、磁場の強度および方向により溶媒の液面に対する粒
子位置を制御して溶媒を蒸発させ、粒子を二次元に集積
させることを特徴とする粒子膜の製造方法が提供され
る。
According to the invention of claim 6 of the present invention, the particles are dispersed in a solvent, the solvent in which the particles are dispersed is applied on a substrate, and the position of the particles relative to the liquid surface of the solvent is controlled by the strength and direction of the magnetic field. And evaporating the solvent to accumulate the particles two-dimensionally.

【0016】本発明の請求項7の発明によれば、上記粒
子は、反磁性体粒子または常磁性体粒子または強磁性体
粒子である粒子膜の製造方法が提供される。
According to a seventh aspect of the present invention, there is provided a method for producing a particle film, wherein the particles are diamagnetic particles, paramagnetic particles or ferromagnetic particles.

【0017】本発明の請求項8の発明によれば、上記磁
場は、磁束密度が0.5〜20Tである粒子膜の製造方
法が提供される。
According to an eighth aspect of the present invention, there is provided a method for producing a particle film, wherein the magnetic field has a magnetic flux density of 0.5 to 20 T.

【0018】本発明の請求項9の発明によれば、上記粒
子は、1〜100nmの粒子径である粒子膜の製造方法
が提供される。
According to the ninth aspect of the present invention, there is provided a method for producing a particle film, wherein the particles have a particle diameter of 1 to 100 nm.

【0019】本発明の請求項10の発明によれば、上記
粒子は、硫黄を含む有機化合物により保護されたコロイ
ド粒子である粒子膜の製造方法が提供される。
According to a tenth aspect of the present invention, there is provided a method for producing a particle membrane, wherein the particles are colloidal particles protected by an organic compound containing sulfur.

【0020】本発明の請求項11の発明によれば、上記
硫黄を含む有機化合物は、炭素数2〜20のアルキルチ
オールである粒子膜の製造方法が提供される。
According to the eleventh aspect of the present invention, there is provided a method for producing a particle membrane in which the organic compound containing sulfur is an alkylthiol having 2 to 20 carbon atoms.

【0021】本発明の請求項12の発明によれば、上記
粒子は、Ag、Au、Cu、Pb、Zn、Sn、Bi、
Pt、Ti、Pd、Cr、Mn、Al、Fe、Co、N
iを含む群から選択される金属のコロイド粒子である粒
子膜の製造方法が提供される。
According to the twelfth aspect of the present invention, the particles are made of Ag, Au, Cu, Pb, Zn, Sn, Bi,
Pt, Ti, Pd, Cr, Mn, Al, Fe, Co, N
A method for producing a particle film, which is a colloidal particle of a metal selected from the group including i.

【0022】本発明の請求項13の発明によれば、粒子
を溶媒に分散させ、粒子を分散させた溶媒を基板上に塗
布し、磁場の強度および方向により溶媒の液面に対する
粒子位置を制御して溶媒を蒸発させ、粒子を二次元に集
積させた粒子膜が提供される。
According to the thirteenth aspect of the present invention, the particles are dispersed in a solvent, the solvent in which the particles are dispersed is applied onto a substrate, and the position of the particles with respect to the liquid surface of the solvent is controlled by the strength and direction of the magnetic field. Then, the solvent is evaporated to provide a particle film in which the particles are two-dimensionally accumulated.

【0023】本発明の請求項14の発明によれば、上記
粒子は、反磁性体粒子または常磁性体粒子または強磁性
体粒子である、粒子膜が提供される。
According to a fourteenth aspect of the present invention, there is provided a particle film, wherein the particles are diamagnetic particles, paramagnetic particles, or ferromagnetic particles.

【0024】本発明の請求項15の発明によれば、上記
粒子膜の膜厚は、1〜100nmである粒子膜が提供さ
れる。
According to the fifteenth aspect of the present invention, there is provided a particle film having a thickness of 1 to 100 nm.

【0025】本発明の請求項16の発明によれば、上記
粒子は、硫黄を含む有機化合物により保護されたコロイ
ド粒子である粒子膜が提供される。
According to the sixteenth aspect of the present invention, there is provided a particle membrane, wherein the particles are colloidal particles protected by an organic compound containing sulfur.

【0026】本発明の請求項17の発明によれば、上記
硫黄を含む有機化合物は、炭素数2〜20のアルキルチ
オールである粒子膜が提供される。
According to the seventeenth aspect of the present invention, there is provided a particle membrane in which the organic compound containing sulfur is an alkylthiol having 2 to 20 carbon atoms.

【0027】本発明の請求項18の発明によれば、上記
粒子は、Ag、Au、Cu、Pb、Zn、Sn、Bi、
Pt、Ti、Pd、Cr、Mn、Al、Fe、Co、N
iを含む群から選択される金属のコロイド粒子である粒
子膜が提供される。
According to the eighteenth aspect of the present invention, the particles are made of Ag, Au, Cu, Pb, Zn, Sn, Bi,
Pt, Ti, Pd, Cr, Mn, Al, Fe, Co, N
There is provided a particle membrane which is a colloidal particle of a metal selected from the group comprising i.

【0028】[0028]

【発明の実施の形態】以下本発明を詳細に説明するが、
本発明は後述する実施の形態に限定されるわけではな
い。本発明の磁場により溶媒における粒子位置を制御す
る方法について図2および図3を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail,
The present invention is not limited to the embodiments described below. The method for controlling the particle position in the solvent by the magnetic field according to the present invention will be described with reference to FIGS.

【0029】図2は、本発明の粒子位置の制御方法に用
いる装置の構成および磁場により位置制御される粒子6
a、6bを示した図である。本発明においては、磁場を
発生させるためにいかなる磁場発生手段でも用いること
ができる。このような磁場発生手段としては、電磁石、
超電導磁石、永久磁石などいかなるものでも用いること
ができる。また、本発明の実施の形態では、磁場発生手
段として超電導磁石7を用いるものとして説明する。
FIG. 2 shows the structure of an apparatus used in the method for controlling the position of a particle according to the present invention and particles 6 whose position is controlled by a magnetic field.
It is the figure which showed a and 6b. In the present invention, any magnetic field generating means can be used to generate a magnetic field. As such a magnetic field generating means, an electromagnet,
Any material such as a superconducting magnet and a permanent magnet can be used. Further, in the embodiment of the present invention, description will be made assuming that the superconducting magnet 7 is used as the magnetic field generating means.

【0030】図2に示すように中心にボア8をもつ円筒
形の超電導磁石7の内部には、磁場中心9が形成されて
いる。ここで磁場中心9とは、磁場勾配dBz/dzが
0となる位置のことをいう。Bzは磁束密度を示し、z
は磁場中心9を0として図2中のzで示される方向への
距離を示す。また、超電導磁石7のボア8内には、粒子
6a、6bを分散させた図示しない溶媒を収容した容器
が配置されていて、溶媒中に分散された粒子6a、6b
に対して磁場が加えられるようになされている。図2に
は、磁場中心9より上側に粒子6aが、下側に粒子6b
が示され、さらに粒子6a、6bに作用する磁場により
加えられる力の向きが示されている。
As shown in FIG. 2, a magnetic field center 9 is formed inside a cylindrical superconducting magnet 7 having a bore 8 at the center. Here, the magnetic field center 9 refers to a position where the magnetic field gradient dBz / dz becomes zero. Bz indicates a magnetic flux density, z
Indicates the distance in the direction indicated by z in FIG. In the bore 8 of the superconducting magnet 7, a container containing a solvent (not shown) in which the particles 6a and 6b are dispersed is disposed, and the particles 6a and 6b dispersed in the solvent are disposed.
Is applied to the magnetic field. In FIG. 2, the particle 6a is above the magnetic field center 9 and the particle 6b is below.
, And the direction of the force applied by the magnetic field acting on the particles 6a, 6b.

【0031】粒子6a、6bが反磁性体粒子である場合
には、磁場を図2中のz方向に加えると、超電導磁石7
の磁場中心9よりも上側に存在する粒子6aには、z方
向に磁束密度Bzが減少するような磁場が加えられる。
また、磁場中心9よりも下側に存在する粒子6bには、
z方向に磁束密度Bzが増加するような磁場が加えられ
る。反磁性体は、外部磁場に対して反対向きに磁化され
るので、磁場が減少する方向への力を受けるようにな
る。このような反磁性体としては、Ag、Au、Cu、
Pb、Zn、Sn、Biなどを挙げることができ、本発
明においては、これら金属から形成される粒子を用いる
ことができる。
When the particles 6a and 6b are diamagnetic particles, when a magnetic field is applied in the z direction in FIG.
A magnetic field such that the magnetic flux density Bz decreases in the z direction is applied to the particles 6a existing above the magnetic field center 9 of the magnetic field.
In addition, particles 6 b existing below the magnetic field center 9 include:
A magnetic field that increases the magnetic flux density Bz in the z direction is applied. Since the diamagnetic material is magnetized in the opposite direction to the external magnetic field, it receives a force in the direction in which the magnetic field decreases. Such diamagnetic materials include Ag, Au, Cu,
Examples thereof include Pb, Zn, Sn, and Bi. In the present invention, particles formed from these metals can be used.

【0032】また、本発明においては、常磁性または強
磁性の材料から形成される粒子を用いることもできる。
常磁性体または強磁性体は、磁場と同一方向に磁化され
る材料であり、この材料としては、Pt、Ti、Pd、
Cr、Mn、Al、Fe、Co、Niなどを挙げること
ができる。本発明において、粒子6a、6bとして常磁
性体または強磁性体を用いる場合には、図2に示したz
方向に磁場が形成された場合には、粒子6a、6bに対
して破線で示した向きに力が加えられることとなる。
In the present invention, particles formed from a paramagnetic or ferromagnetic material can also be used.
Paramagnetic or ferromagnetic materials are materials that are magnetized in the same direction as the magnetic field, such as Pt, Ti, Pd,
Examples thereof include Cr, Mn, Al, Fe, Co, and Ni. In the present invention, when a paramagnetic substance or a ferromagnetic substance is used as the particles 6a and 6b, z shown in FIG.
When a magnetic field is formed in the direction, a force is applied to the particles 6a and 6b in the direction shown by the broken line.

【0033】本発明において用いることができる上述し
た金属粒子、セラミック粒子、ポリマー粒子は、気相
法、沈降法、溶媒蒸発法、ゾル−ゲル法、有機金属から
の分解法、抵抗加熱法、プラズマ加熱法、溶融プール蒸
発法、粉末蒸発法、活性プラズマアーク蒸発法、高周波
誘導加熱法、電子ビーム加熱法、レーザビーム加熱法、
スパッタリング法などにより製造することができる。こ
のような超微粒子または粒子の製造方法としては、例え
ば、化学総説、「超微粒子−化学と応用」、No.4
8、1985年、学会出版センターおよび「湿式プロセ
スハンドブック」、1996年、3月初版発行、財団法
人新世代研究所編、日刊工業新聞社発行に記載されてい
る方法を挙げることができる。また、本発明においては
粒子3は、溶液中で製造されたものをそのまま分散溶液
として用いることもできるし、粒子3を別途後述する溶
媒中に分散させたものを分散溶液として用いることもで
きる。本発明において用いる粒子3は、分散液としてい
かなる濃度で存在していても良い。
The above-mentioned metal particles, ceramic particles, and polymer particles which can be used in the present invention are prepared by a gas phase method, a sedimentation method, a solvent evaporation method, a sol-gel method, a decomposition method from an organic metal, a resistance heating method, a plasma method. Heating method, molten pool evaporation method, powder evaporation method, active plasma arc evaporation method, high frequency induction heating method, electron beam heating method, laser beam heating method,
It can be manufactured by a sputtering method or the like. Examples of the method for producing such ultrafine particles or particles include, for example, Chemical Review, “Ultrafine Particles-Chemistry and Applications”, 4
8, 1985, Gakkai Shuppan Center and "Wet Process Handbook", March 1996, first edition published by New Generation Research Institute, published by Nikkan Kogyo Shimbun. In the present invention, as the particles 3, those produced in a solution can be used as they are as a dispersion solution, or those in which the particles 3 are separately dispersed in a solvent described later can be used as a dispersion solution. The particles 3 used in the present invention may be present at any concentration as a dispersion.

【0034】超電導磁石7の内部に配置された粒子3に
は、反磁性、常磁性および強磁性といった磁気的特性に
応じて以下で示される力Fが加えられる。
A force F shown below is applied to the particles 3 disposed inside the superconducting magnet 7 in accordance with magnetic properties such as diamagnetism, paramagnetism and ferromagnetism.

【0035】[0035]

【数1】 (Equation 1)

【0036】式(1)中、Fはz方向に作用する磁場の
力であり、Cは粒子3を形成する材料の磁気モーメント
を含む係数、Bzはz方向の磁束密度、dBz/dzは
磁場勾配を示す。Cは反磁性体粒子の場合には負、常磁
性および強磁性体粒子の場合には正となる係数である。
上述したように、反磁性体粒子を用いる本発明の実施の
形態においては、磁場中心9を境としてz方向に上側に
おいて磁場勾配dBz/dzが負、かつCも負となるた
め、z方向への力Fが発生する。一方、磁場中心9より
もz方向に下側ではCが負、磁場勾配dBz/dzが正
となるため、z方向とは反対向きの力Fが加えられるこ
とになる。
In the equation (1), F is the force of the magnetic field acting in the z direction, C is a coefficient including the magnetic moment of the material forming the particles 3, Bz is the magnetic flux density in the z direction, and dBz / dz is the magnetic field. Shows the gradient. C is a coefficient that is negative for diamagnetic particles and positive for paramagnetic and ferromagnetic particles.
As described above, in the embodiment of the present invention using the diamagnetic particles, the magnetic field gradient dBz / dz is negative and C is negative on the upper side in the z direction with the magnetic field center 9 as a boundary. The force F is generated. On the other hand, since C is negative below the magnetic field center 9 in the z direction and the magnetic field gradient dBz / dz is positive, a force F in the direction opposite to the z direction is applied.

【0037】図3には、図2に示した超電導磁石7のボ
ア8内の磁場中心9の上下に、反磁性体粒子から形成し
た粒子6a、6bを分散させた溶媒10a、10bを基
板11a、11bに塗布したものを配置し、磁場をz方
向に加えた場合の溶媒10a、10bの液面に対する粒
子6a、6bの位置を示す。図3(a)は、基板11a
を図2に示す磁場中心9より上側に配置した場合の、粒
子6aの液面に対する位置を示した図である。図3
(a)に示すように、上向きに力Fが作用することによ
って、粒子6aは磁気アルキメデス浮上による効果で、
溶媒10aの液面に浮かぶように、上向きに見かけの浮
力を受ける。
FIG. 3 shows a solvent 11a and 10b in which particles 6a and 6b formed of diamagnetic particles are dispersed above and below a magnetic field center 9 in a bore 8 of the superconducting magnet 7 shown in FIG. 11b show the positions of the particles 6a and 6b with respect to the liquid surface of the solvents 10a and 10b when a magnetic field is applied in the z direction. FIG. 3A shows the substrate 11a.
FIG. 3 is a diagram showing a position of a particle 6a with respect to a liquid surface in a case where is disposed above a magnetic field center 9 shown in FIG. FIG.
As shown in (a), when the force F acts upward, the particles 6a are caused by the magnetic Archimedes floating effect,
It receives an apparent buoyancy upward so as to float on the liquid surface of the solvent 10a.

【0038】また、粒子6aに対して上向きの力Fが加
えられることにより粒子6a、6a’の間の相対距離が
減少するため、粒子6a、6a’に加えられる横毛管力
は大きくなり、粒子6aと6a’とは互いに引き寄せら
れる。この横毛管力は、溶媒10aの蒸発速度にも依存
するため、溶媒10aの蒸発速度を制御することによっ
て制御できることが見出された。本発明においては、磁
場による力Fによって粒子6aに見かけの浮力を与え、
横毛管力で集積させることにより、粒子6aをより密に
集積させることができることが見出された。
Further, since the relative distance between the particles 6a and 6a 'is reduced by applying the upward force F to the particles 6a, the horizontal capillary force applied to the particles 6a and 6a' is increased, and 6a and 6a 'are attracted to each other. Since this transverse capillary force also depends on the evaporation rate of the solvent 10a, it has been found that it can be controlled by controlling the evaporation rate of the solvent 10a. In the present invention, the particle 6a is given an apparent buoyancy by the force F due to the magnetic field,
It has been found that the particles 6a can be more densely accumulated by accumulating them by the transverse capillary force.

【0039】図3(b)は、基板11bを図2に示す磁
場中心9より下側に配置した場合の、粒子6bの液面に
対する位置を示した図である。図3(b)に示す下向き
の力Fが作用することによって、粒子6bは基板11b
に押しつけられるように、下向きの力Fが加えられる。
また、粒子6bは、横毛管力を受けて粒子6bと6b’
とが互いに引き寄せられるが、磁場により加えられる力
Fにより粒子6bは基板11bに押しつけられて、粒子
6bと6b’との相対的間隔が粗となり、横毛管力が小
さくなって粒子6b、6b’は粗に集積される。従っ
て、基板11a、11bを配置する位置を変えることに
より、磁場の強度および方向を変えることができ、かつ
粒子6a、6bの集積密度を制御することが可能とな
る。
FIG. 3B is a diagram showing the position of the particles 6b with respect to the liquid surface when the substrate 11b is arranged below the magnetic field center 9 shown in FIG. By the action of the downward force F shown in FIG. 3B, the particles 6b
, A downward force F is applied.
Further, the particles 6b receive the transverse capillary force, and the particles 6b and 6b '
Are attracted to each other, but the particles 6b are pressed against the substrate 11b by the force F applied by the magnetic field, so that the relative distance between the particles 6b and 6b 'becomes coarse, the horizontal capillary force becomes small, and the particles 6b, 6b' Are coarsely integrated. Therefore, by changing the position where the substrates 11a and 11b are arranged, the intensity and direction of the magnetic field can be changed, and the integration density of the particles 6a and 6b can be controlled.

【0040】また、粒子6a、6bを常磁性体粒子また
は強磁性体粒子とすると、磁場中心9より上側では、粒
子6aに下向きの力Fが作用することによって、図3
(b)に示すように基板11aに押しつけられるよう
に、下向きの力Fが加えられることになる。また、粒子
6bは磁場中心より下側では、上向きの力Fが作用する
ことによって、図3(a)に示すように溶媒10bの液
面に浮かぶように、見かけの浮力が加えられることとな
る。
Assuming that the particles 6a and 6b are paramagnetic particles or ferromagnetic particles, a downward force F acts on the particles 6a above the center 9 of the magnetic field.
As shown in (b), a downward force F is applied so as to be pressed against the substrate 11a. Also, the particles 6b are applied with an upward force F below the center of the magnetic field, so that apparent buoyancy is applied so that the particles 6b float on the surface of the solvent 10b as shown in FIG. 3A. .

【0041】次に、上述した本発明の磁場により溶媒の
液面に対する粒子位置を制御する方法を用いて、粒子膜
を製造する方法について説明する。図4に、本発明の粒
子膜を製造するための装置断面図を示す。粒子3を分散
させた溶媒2は、基板1に滴下、スピンコート、ワイヤ
ーバーコート、スプレー塗布など適切な方法により塗布
することができる。図4に示した実施の形態において
は、溶媒2を塗布した基板1を容器12に収容して蓋1
3をし、この容器12は鉛直方向にボア8をもつ円筒形
の超電導磁石7のボア8内に設けられた台14の上に配
置される。本発明において、溶媒2の蒸発速度を調節す
るためには、容器12に温度調節装置を設けて容器12
内の温度を制御することもできるし、また図4に示す装
置全体を加熱装置に入れるなどして温度を制御すること
もできる。また、容器12に圧力調節装置を設けて容器
12内の圧力を調節することで、溶媒2の蒸発速度を制
御することもできるし、図4に示す装置全体を減圧装置
に入れるなどして圧力を制御しても良い。
Next, a method for producing a particle film by using the above-described method of controlling the position of particles with respect to the liquid surface of the solvent by the magnetic field according to the present invention will be described. FIG. 4 shows a sectional view of an apparatus for producing the particle membrane of the present invention. The solvent 2 in which the particles 3 are dispersed can be applied to the substrate 1 by an appropriate method such as dropping, spin coating, wire bar coating, spray coating, or the like. In the embodiment shown in FIG. 4, the substrate 1 on which the solvent 2 has been
The container 12 is placed on a table 14 provided in the bore 8 of the cylindrical superconducting magnet 7 having the bore 8 in the vertical direction. In the present invention, in order to adjust the evaporation rate of the solvent 2, the
The temperature in the inside can be controlled, and the temperature can be controlled by putting the entire apparatus shown in FIG. 4 into a heating device. Further, by providing a pressure adjusting device in the container 12 to adjust the pressure in the container 12, the evaporation rate of the solvent 2 can be controlled, or the pressure can be controlled by putting the entire device shown in FIG. May be controlled.

【0042】また、本発明における基板1としては、粒
子3を二次元に集積した粒子膜を製造するため、平滑な
平板を用いるのが好ましい。しかしながら、本発明に用
いる基板1は、適切に溶媒2を保持できるものであれ
ば、球面、円筒面、双曲面など、またはこれら以外のさ
らに複雑な、いかなる曲面を有するものでも用いること
ができる。さらに、本発明に用いる基板1には、有機物
あるいは無機物でコーティングしたものを用いても良
い。
As the substrate 1 in the present invention, it is preferable to use a smooth flat plate in order to produce a particle film in which the particles 3 are two-dimensionally integrated. However, as the substrate 1 used in the present invention, a substrate having a spherical surface, a cylindrical surface, a hyperboloid, or any other complicated curved surface other than these can be used as long as it can appropriately hold the solvent 2. Further, as the substrate 1 used in the present invention, a substrate coated with an organic or inorganic substance may be used.

【0043】本発明の図4に示した実施の形態におい
て、本発明に用いる容器12としては、基板1を収容で
き、かつ超電導磁石7のボア8内に配置できるものであ
ればいかなる形状のものでも用いることができる。ま
た、蓋13には、超電導磁石7のボア8内に配置でき、
容器12の上部から蒸発していく溶媒2の蒸気を抑制で
きるものであれば、いかなるものでも用いることができ
る。また、台14は基板1を鉛直方向の磁場に対して水
平に保てるものであれば、水平な台のほか、かごといっ
た上部から釣り下げ可能なものでも良い。さらに、本発
明に用いる容器12および蓋13には、図4に示す装置
全体を収容できるものを用いても良い。本発明に用いる
基板1、容器12、蓋13および台14には、ガラス
製、アルミニウム製、高分子樹脂製などのものを用いる
ことができる。
In the embodiment shown in FIG. 4 of the present invention, the container 12 used in the present invention has any shape as long as it can accommodate the substrate 1 and can be arranged in the bore 8 of the superconducting magnet 7. However, it can be used. Further, the lid 13 can be disposed in the bore 8 of the superconducting magnet 7,
Any material can be used as long as it can suppress the vapor of the solvent 2 evaporating from the upper part of the container 12. The table 14 may be a horizontal table or a basket such as a car that can be hung from the top as long as it can keep the substrate 1 horizontal to the vertical magnetic field. Further, as the container 12 and the lid 13 used in the present invention, those capable of accommodating the entire apparatus shown in FIG. 4 may be used. The substrate 1, the container 12, the lid 13, and the base 14 used in the present invention may be made of glass, aluminum, polymer resin, or the like.

【0044】本発明に用いることができる粒子3として
反磁性体粒子を用いる場合には、反磁性体粒子としてA
g、Au、Cu、Pb、Zn、Sn、Mg、Biなどの
金属粒子やビニルポリマー類、ポリオレフィン類、ポリ
ジエン類、ポリアミドポリエステル類、ポリウレタン
類、付加縮合ポリマー類、開環重合ポリマー類、ポリペ
プチド類などのポリマー粒子、GeO、PbOなどの
セラミック粒子などを挙げることができる。同様に、常
磁性体粒子としては、Pt、Ti、Pd、Cr、Al、
Mnなど、強磁性体粒子としては、Fe、Co、Ni、
鉄酸化物などを挙げることができる。
When diamagnetic particles are used as the particles 3 that can be used in the present invention, A
g, Au, Cu, Pb, Zn, Sn, Mg, Bi and other metal particles, vinyl polymers, polyolefins, polydienes, polyamide polyesters, polyurethanes, addition condensation polymers, ring-opening polymerization polymers, polypeptides And ceramic particles such as GeO 2 and PbO. Similarly, as the paramagnetic particles, Pt, Ti, Pd, Cr, Al,
As ferromagnetic particles such as Mn, Fe, Co, Ni,
Iron oxide and the like can be mentioned.

【0045】本発明において粒子3を分散させる溶媒2
としては、種々の有機溶媒を用いることができ、このよ
うな有機溶媒としては、具体的には例えば、アミルベン
ゼン、イソプロピルベンゼン、エチルベンゼン、オクタ
ン、ガソリン、キシレン、ジエチルベンゼン、シクロヘ
キサン、シクロヘキシルベンゼン、シクロヘキセン、シ
クロペンタン、ジペンテン、ジメチルナフタレン、シメ
ン類、樟脳油、スチレン、石油エーテル、石油ベンジ
ン、ソルベントナフサ、デカリン、デカン、テトラリ
ン、テレピン油、灯油、ドデカン、ドデシルベンゼン、
トルエン、ナフタレン、ノナン、パインオイル、ピネ
ン、ヘキサン、ヘプタン、ベンゼン、ペンタン、メチル
シクロヘキサン、メチルシクロペンタン、p−メンタ
ン、イグロインといった炭化水素系溶剤を挙げることが
できる。
In the present invention, the solvent 2 in which the particles 3 are dispersed
Can be used various organic solvents, and specific examples of such organic solvents include, for example, amylbenzene, isopropylbenzene, ethylbenzene, octane, gasoline, xylene, diethylbenzene, cyclohexane, cyclohexylbenzene, cyclohexene, Cyclopentane, dipentene, dimethylnaphthalene, cymes, camphor oil, styrene, petroleum ether, petroleum benzine, solvent naphtha, decalin, decane, tetralin, turpentine, kerosene, dodecane, dodecylbenzene,
Examples thereof include hydrocarbon solvents such as toluene, naphthalene, nonane, pine oil, pinene, hexane, heptane, benzene, pentane, methylcyclohexane, methylcyclopentane, p-menthane, and igloin.

【0046】上記有機溶媒としてはさらに、アリルクロ
イド、2−エチルヘキシルクロリド、塩化アミル、塩化
イソプロピル、塩化エチル、塩化ブチル、塩化ナフタレ
ン、塩化ヘキシル、塩化メチレン、o−クロロトルエ
ン、p−クロロトルエン、クロロベンゼン、クロロホル
ム、四塩化炭素、ジクロロエタン、ジクロロエチレン、
ジクロロトルエン、ジクロロブタン、ジクロロプロパ
ン、ジクロロベンゼン、ジブロモエタン、ジブロモブタ
ン、ジブロモプロパン、ジブロモベンゼン、ジブロモペ
ンタン、臭化アリル、臭化イソプロピル、臭化エチル、
臭化オクチル、臭化ブチル、臭化メチル、臭化ラウリ
ル、テトラクロロエタン、テトラクロロエチレン、テト
ラブロモエタン、テトラメチレンクロロブロミド、トリ
クロロエタン、トリクロロベンゼン、ブロモクロロエタ
ン、1−ブロモ−3−クロロプロパン、ブロモナフタレ
ン、ブロモベンゼン、ヘキサクロロエタン、ペンタメチ
レンクロロブロミド等のハロゲン化炭化水素系溶剤を用
いることが可能である。
The above organic solvents further include allyl chloride, 2-ethylhexyl chloride, amyl chloride, isopropyl chloride, ethyl chloride, butyl chloride, naphthalene chloride, hexyl chloride, methylene chloride, o-chlorotoluene, p-chlorotoluene, chlorobenzene. , Chloroform, carbon tetrachloride, dichloroethane, dichloroethylene,
Dichlorotoluene, dichlorobutane, dichloropropane, dichlorobenzene, dibromoethane, dibromobutane, dibromopropane, dibromobenzene, dibromopentane, allyl bromide, isopropyl bromide, ethyl bromide,
Octyl bromide, butyl bromide, methyl bromide, lauryl bromide, tetrachloroethane, tetrachloroethylene, tetrabromoethane, tetramethylenechlorobromide, trichloroethane, trichlorobenzene, bromochloroethane, 1-bromo-3-chloropropane, bromonaphthalene, bromo Halogenated hydrocarbon solvents such as benzene, hexachloroethane and pentamethylenechlorobromide can be used.

【0047】また、上記有機溶媒としては、アミルアル
コール、アリルアルコール、イソアミルアルコール、イ
ソブチルアルコール、イソプロピルアルコール、ウンデ
カノール、エタノール、2−エチルブタノール、2−エ
チルヘキサノール、2−オクタノール、n−オクタノー
ル、グリシドール、シクロヘキサノール、3,5−ジメ
チル−1−ヘキシン−3−オール、n−デカノール、テ
トラヒドロフルフリルアルコール、α−テルピネオー
ル、ネオペンチルアルコール、ノナノール、フーゼル
油、ブタノール、フルフリルアルコール、プロパギルア
ルコール、プロパノール、ヘキサノール、ヘプタノー
ル、ベンジルアルコール、ペンタノール、メタノール、
メチルシクロヘキサノール、2−メチル−1−ブタノー
ル、3−メチル−2−ブタノール、3−メチル−1−ブ
チン−3−オール、4−メチル−2−ペンタノール、3
−メチル−1−ペンチン−3−オールといったアルコー
ル類も挙げることができる。
Examples of the organic solvent include amyl alcohol, allyl alcohol, isoamyl alcohol, isobutyl alcohol, isopropyl alcohol, undecanol, ethanol, 2-ethylbutanol, 2-ethylhexanol, 2-octanol, n-octanol, glycidol, Cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol, n-decanol, tetrahydrofurfuryl alcohol, α-terpineol, neopentyl alcohol, nonanol, fusel oil, butanol, furfuryl alcohol, propargyl alcohol, propanol , Hexanol, heptanol, benzyl alcohol, pentanol, methanol,
Methylcyclohexanol, 2-methyl-1-butanol, 3-methyl-2-butanol, 3-methyl-1-butyn-3-ol, 4-methyl-2-pentanol, 3
Alcohols such as -methyl-1-pentyn-3-ol can also be mentioned.

【0048】上記有機溶媒としては、さらにアニソー
ル、エチルイソアミルエーテル、エチル−t−ブチルエ
ーテル、エチルベンジルエーテル、エピクロロヒドリ
ン、1,2−エポキシブタン、クラウンエーテル類、ク
レジルメチルエーテル、ジイソアミルエーテル、酸化プ
ロピレン、ジイソアミルエーテル、ジイソプロピルエー
テル、ジエチルアセタール、ジエチルエーテル、ジオキ
サン、ジグリシジルエーテル、1,8−シネオール、ジ
フェニルエーテル、ジブチルエーテル、ジプロピルエー
テル、ジベンジルエーテル、ジメチルエーテル、テトラ
ヒドロピラン、トリオキサン、ビス(2−クロロエチ
ル)エーテル、ビニルエチルエーテル、ビニルメチルエ
ーテル、フェネトール、ブチルフェニルエーテル、フラ
ン、フルフラール、メチラール、メチル−t−ブチルエ
ーテル、2−メチルフラン、モノクロロジエチルエーテ
ルといったエーテル・アセタール系溶剤も挙げることが
できる。
Examples of the organic solvent include anisole, ethyl isoamyl ether, ethyl t-butyl ether, ethyl benzyl ether, epichlorohydrin, 1,2-epoxybutane, crown ethers, cresyl methyl ether, and diisoamyl ether. , Propylene oxide, diisoamyl ether, diisopropyl ether, diethyl acetal, diethyl ether, dioxane, diglycidyl ether, 1,8-cineole, diphenyl ether, dibutyl ether, dipropyl ether, dibenzyl ether, dimethyl ether, tetrahydropyran, trioxane, bis (2-chloroethyl) ether, vinyl ethyl ether, vinyl methyl ether, phenetole, butyl phenyl ether, furan, furfural, methyl Lumpur, methyl -t- butyl ether, 2-methylfuran, ether acetal solvents such monochloro diethyl ether can be exemplified.

【0049】上述の有機溶媒としては、アクロレイン、
アセチルアセトン、アセトフェノン、アセトアルデヒ
ド、アセトン、イソホロン、エチル−n−ブチルケト
ン、ジアセトンアルコール、ジイソブチルケトン、ジイ
ソプロピルケトン、ジエチルケトン、シクロヘキサノ
ン、ジ−n−プロピルケトン、ホロン、メシチルオキシ
ド、メチル−n−アミルケトン、エチルメチルケトン、
メチルイソブチルケトン、メチルシクロヘキサノン、メ
チル−n−ブチルケトン、メチル−n−プロピルケト
ン、メチル−n−ヘキシルケトン、メチル−n−へプチ
ルケトンといったケトン・アルデヒド系溶剤も同様に用
いることができる。
As the above-mentioned organic solvent, acrolein,
Acetylacetone, acetophenone, acetaldehyde, acetone, isophorone, ethyl-n-butyl ketone, diacetone alcohol, diisobutyl ketone, diisopropyl ketone, diethyl ketone, cyclohexanone, di-n-propyl ketone, holone, mesityl oxide, methyl-n-amyl ketone, Ethyl methyl ketone,
Ketone / aldehyde solvents such as methyl isobutyl ketone, methyl cyclohexanone, methyl-n-butyl ketone, methyl-n-propyl ketone, methyl-n-hexyl ketone, and methyl-n-heptyl ketone can also be used.

【0050】本発明に用いることができる溶媒として
は、さらにアジピン酸ジエチル、アジピン酸ジオクチ
ル、アセチルクエン酸トリエチル、アセチルクエン酸ト
リブチル、アセト酢酸エチル、アセト酢酸アリル、アセ
ト酢酸メチル、アビエチン酸メチル、安息香酸イソアミ
ル、安息香酸エチル、安息香酸ブチル、安息香酸プロピ
ル、安息香酸ベンジル、安息香酸メチル、イソ吉草酸イ
ソアミル、イソ吉草酸エチル、ギ酸イソアミル、ギ酸イ
ソブチル、ギ酸エチル、ギ酸ブチル、ギ酸プロピル、ギ
酸ヘキシル、ギ酸ベンジル、クエン酸トリブチル、テト
ラエトキシシラン、テトラメトキシシラン、ケイ皮酸エ
ステル、ケイ皮酸メチル、ケイ皮酸エチル、酢酸アミ
ル、酢酸アリル、酢酸イソアミル、酢酸イソブチル、酢
酸イソプロピル、酢酸エチル、酢酸−2−エチルヘキシ
ル、酢酸シクロヘキシル、酢酸ブチル、酢酸プロピル、
酢酸ベンジル、酢酸メチル、酢酸メチルシクロヘキシ
ル、サリチル酸イソアミル、サリチル酸ベンジル、サリ
チル酸メチル、サリチル酸エチル、蓚酸ジアミル、蓚酸
ジエチル、蓚酸ジブチル、酒石酸ジエチル、酒石酸ジブ
チル、ステアリン酸アミル、ステアリン酸エチル、ステ
アリン酸ブチル、セパシン酸ジオクチル、セパシン酸ジ
ブチル、炭酸ジフェニル、炭酸ジメチル、乳酸イソアミ
ル、乳酸エチル、乳酸メチル、フタル酸ジエチル、フタ
ル酸ジオクチル、フタル酸ジブチル、フタル酸ジメチ
ル、γ−ブチロラクトン、プロピオン酸イソアミル、プ
ロピオン酸エチル、プロピオン酸ブチル、プロピオン酸
ベンジル、プロピオン酸メチル、ホウ酸エステル類、マ
レイン酸ジオクチル、マレイン酸ジブチル、マロン酸ジ
イソプロピル、マロン酸ジエチル、マロン酸ジメチル、
酪酸イソアミル、酪酸イソプロピル、酪酸エチル、酪酸
ブチル、燐酸エステル類といったエステル系溶剤も挙げ
ることができる。
Solvents that can be used in the present invention include diethyl adipate, dioctyl adipate, triethyl acetyl citrate, tributyl acetyl citrate, ethyl acetoacetate, allyl acetoacetate, methyl acetoacetate, methyl abietate, and benzoate. Isoamyl acid, ethyl benzoate, butyl benzoate, propyl benzoate, benzyl benzoate, methyl benzoate, isoamyl isovalerate, ethyl isovalerate, isoamyl formate, isobutyl formate, ethyl formate, butyl formate, propyl formate, hexyl formate , Benzyl formate, tributyl citrate, tetraethoxysilane, tetramethoxysilane, cinnamate, methyl cinnamate, ethyl cinnamate, amyl acetate, allyl acetate, isoamyl acetate, isobutyl acetate, isopropyl acetate, ethyl acetate Le, acetate-2-ethylhexyl, cyclohexyl acetate, butyl acetate, propyl acetate,
Benzyl acetate, methyl acetate, methyl cyclohexyl acetate, isoamyl salicylate, benzyl salicylate, methyl salicylate, ethyl salicylate, diamyl oxalate, diethyl oxalate, dibutyl oxalate, diethyl tartrate, dibutyl tartrate, amyl stearate, ethyl stearate, ethyl stearate, butyl stearate, sepacin Dioctyl acid, dibutyl sebacate, diphenyl carbonate, dimethyl carbonate, isoamyl lactate, ethyl lactate, methyl lactate, diethyl phthalate, dioctyl phthalate, dibutyl phthalate, dimethyl phthalate, γ-butyrolactone, isoamyl propionate, ethyl propionate, Butyl propionate, Benzyl propionate, Methyl propionate, Borates, Dioctyl maleate, Dibutyl maleate, Diisopropyl malonate, Malon Diethyl, dimethyl malonate,
Ester solvents such as isoamyl butyrate, isopropyl butyrate, ethyl butyrate, butyl butyrate, and phosphoric esters can also be mentioned.

【0051】上述の溶媒としては、エチレンカルボナー
ト、エチレングリコール、エチレングリコールジエチル
エーテル、エチレングリコールジアセタート、エチレン
グリコールジブチルエーテル、エチレングリコールジグ
リシジルエーテル、エチレングリコールモノアセター
ト、エチレングリコールジメチルエーテル、エチレング
リコールモノイソプロピルエータル、エチレングリコー
ルモノエチルエーテル、エチレングリコールモノエチル
エーテルアセタート、エチレングリコールモノフェニル
エーテル、エチレングリコールモノブチルエーテル、エ
チレングリコールモノブチルエーテルアセタート、エチ
レングリコールモノヘキシルエーテル、エチレングリコ
ールモノメチルエーテル、エチレングリコールモノメチ
ルエーテルアセタート、エチレングリコールモノメトキ
シメチルエーテル、エチレンクロロヒドリン、1,3−
オクチレングリコール、グリセリン、グリセリン1,3
−ジアセタート、グリセリンジアルキルエーテル、グリ
セリン脂肪酸エステル、グリセリントリアセタート、グ
リセリントリラウラート、グリセリンモノアセタート、
2−クロロ−1,3−プロパンジオール、3−クロロ−
1,2−プロパンジオール、ジエチレングリコール、ジ
エチレングリコールエチルメチルエーテル、ポリプロピ
レングリコールといった多価アルコール及びそれらの誘
導体を挙げることができる。
As the above-mentioned solvent, ethylene carbonate, ethylene glycol, ethylene glycol diethyl ether, ethylene glycol diacetate, ethylene glycol dibutyl ether, ethylene glycol diglycidyl ether, ethylene glycol monoacetate, ethylene glycol dimethyl ether, ethylene glycol Monoisopropyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monophenyl ether, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol monohexyl ether, ethylene glycol monomethyl ether, ethylene glycol Monomethyl ether acetate , Ethylene glycol monomethyl methoxymethyl ether, ethylene chlorohydrin, 1,3
Octylene glycol, glycerin, glycerin 1,3
-Diacetate, glycerin dialkyl ether, glycerin fatty acid ester, glycerin triacetate, glycerin trilaurate, glycerin monoacetate,
2-chloro-1,3-propanediol, 3-chloro-
Examples include polyhydric alcohols such as 1,2-propanediol, diethylene glycol, diethylene glycol ethyl methyl ether, and polypropylene glycol, and derivatives thereof.

【0052】さらに上述の溶媒としては、イソ吉草酸、
イソ酪酸、イタコン酸、2−エチルヘキサン酸、2−エ
チル酢酸、オレイン酸、カプリル酸、カプロン酸、吉草
酸、酢酸、乳酸、ピバリン酸、プロピオン酸、といった
カルボン酸誘導体、エチルフェノール、オクチルフェノ
ール、グアヤコール、キシレノール、p−クミルフェノ
ール、クレゾール、ドデシルフェノール、ナフトール、
ノニルフェノール、フェノール、ベンジルフェノール、
p−メトキシエチルフェノールといったフェノール類、
アセトアミド、アセトニトリル、アセトンシアノヒドリ
ン、アニリン、アリルアミン、イソキノリン、イソブチ
ルアミン、イソプロパノールアミン類、イミダゾール、
N−エチルエタノールアミン、2−エチルヘキシルアミ
ン、N−エチルモルホリン、エチレンジアミン、カプロ
ラクタム、キノリン、クロロアニリン、シアノ酢酸エチ
ル、ジアミルアミン、イソブチルアミン、ジアエタノー
ルアミン、N,N−ジエチルアニリン、ジエチルベンジ
ルアミン、ジエチレントリアミン、ジオクチルアミン、
シクロヘキシルアミン、トリエチルアミン、トリアミル
アミン、トリオクチルアミン、トリエタノールアミン、
トリオクチルアミン、トリ−n−ブチルアミン、トリプ
ロピルアミン、トルイジン、ニトロアニソール、ピコリ
ン、ピペラジン、ピラジン、ピリジン、ピロリジン、N
−フェニルモルホリン、モルホリン、ブチルアミン、ヘ
プチルアミン、ルチジンといった含窒素化合物、これら
の溶媒の他、含硫黄化合物系溶剤、フッ素系溶剤等も挙
げることができる。
Further, as the above-mentioned solvent, isovaleric acid,
Carboxylic acid derivatives such as isobutyric acid, itaconic acid, 2-ethylhexanoic acid, 2-ethylacetic acid, oleic acid, caprylic acid, caproic acid, valeric acid, acetic acid, lactic acid, pivalic acid, propionic acid, ethylphenol, octylphenol, and guaiacol , Xylenol, p-cumylphenol, cresol, dodecylphenol, naphthol,
Nonylphenol, phenol, benzylphenol,
phenols such as p-methoxyethylphenol,
Acetamide, acetonitrile, acetone cyanohydrin, aniline, allylamine, isoquinoline, isobutylamine, isopropanolamines, imidazole,
N-ethylethanolamine, 2-ethylhexylamine, N-ethylmorpholine, ethylenediamine, caprolactam, quinoline, chloroaniline, ethyl cyanoacetate, diamylamine, isobutylamine, diaethanolamine, N, N-diethylaniline, diethylbenzylamine, diethylenetriamine , Dioctylamine,
Cyclohexylamine, triethylamine, triamylamine, trioctylamine, triethanolamine,
Trioctylamine, tri-n-butylamine, tripropylamine, toluidine, nitroanisole, picoline, piperazine, pyrazine, pyridine, pyrrolidine, N
-Nitrogen-containing compounds such as phenylmorpholine, morpholine, butylamine, heptylamine, and lutidine; in addition to these solvents, sulfur-containing compound-based solvents, fluorine-based solvents and the like can also be mentioned.

【0053】さらに、上記した有機溶媒の混合溶媒を用
いることもできる。また、有機溶媒のほか、無機溶媒と
して水なども用いることができる。
Further, a mixed solvent of the above-mentioned organic solvents can be used. In addition to the organic solvent, water and the like can be used as the inorganic solvent.

【0054】図5には、粒子3に硫黄を含む有機化合物
15で保護したコロイド粒子を示す。図5では、粒子3
がAg粒子であり、粒子3は硫黄を含む有機化合物15
としてドデカンチオールでまわりを保護されている。本
発明においては、硫黄を含む有機化合物15であればい
かなるものでも用いることができる。しかしながら、本
発明においては、粒子3にAu、Agといった金属コロ
イドを用いる場合には、ドデカンチオールなど、炭素数
2〜20のアルキルチオールを用いることが好ましい。
また、本発明で用いることができる粒子3としては、粒
子径が1〜100nmの範囲のものを用いることができ
る。このような粒子3としては、上記した金属粒子、ポ
リマー粒子、セラミック粒子のほか、硫黄を含む有機化
合物で上記した金属粒子、ポリマー粒子およびセラミッ
ク粒子を保護したコロイド粒子などを混合して用いるこ
とができる。このように反磁性体粒子、常磁性体粒子を
混合した粒子混合系に対して本発明を適用することによ
り、粒子膜の構造を制御することも可能である。また、
本発明の粒子3の位置の制御方法は、反磁性体粒子、常
磁性体粒子および強磁性体粒子の分離にも適用すること
ができる。
FIG. 5 shows colloid particles in which the particles 3 are protected by an organic compound 15 containing sulfur. In FIG. 5, the particles 3
Are Ag particles, and the particles 3 are organic compounds 15 containing sulfur.
As protected around with dodecanethiol. In the present invention, any organic compound 15 containing sulfur can be used. However, in the present invention, when a metal colloid such as Au or Ag is used for the particles 3, it is preferable to use an alkylthiol having 2 to 20 carbon atoms such as dodecanethiol.
In addition, as the particles 3 that can be used in the present invention, those having a particle diameter in the range of 1 to 100 nm can be used. As such particles 3, in addition to the above-described metal particles, polymer particles, and ceramic particles, a mixture of the above-described metal particles, polymer particles, and colloid particles that protect the ceramic particles with an organic compound containing sulfur may be used. it can. By applying the present invention to a particle mixture system in which diamagnetic particles and paramagnetic particles are mixed, it is also possible to control the structure of a particle film. Also,
The method for controlling the position of the particles 3 of the present invention can also be applied to separation of diamagnetic particles, paramagnetic particles, and ferromagnetic particles.

【0055】本発明において用いることのできる粒子3
を製造する方法においては、今まで知られているいかな
る方法でも用いることができる。また、本発明に用いる
ことのできる粒子3またはコロイドの粒子径は、レーザ
ー光散乱法、電子顕微鏡法、沈降法などを用いて測定す
ることができる。
Particles 3 usable in the present invention
In the method for producing a compound, any method known so far can be used. The particle size of the particles 3 or colloids that can be used in the present invention can be measured by using a laser light scattering method, an electron microscope method, a sedimentation method, or the like.

【0056】上述した粒子3またはコロイドに対して
は、溶液中における粒子3またはコロイドの安定性を向
上させるために、これまで知られているいかなる疎水性
基−親水性基を併せ持つ化合物、界面活性剤および分散
剤でも用いることができる。本発明において用いること
のできる上述した化合物、界面活性剤および分散剤とし
ては、例えば、ラウリン酸、ミリスチン酸、パルミチン
酸、ステアリン酸、ベヘン酸、ステアリン酸ブチル、オ
レイン酸、リノール酸、リノレン酸、エライジン酸、ス
テアリン酸オクチル、ステアリン酸アミル、ステアリン
酸イソオクチル、ミリスチン酸オクチル、ステアリン酸
ブトキシエチル、アンヒドロソルビタンモノステアレー
ト、アンヒドロソルビタンジステアレート、アンヒドロ
ソルビタントリステアレート、オレイルアルコール、ラ
ウリルアルコールがあげられる。
In order to improve the stability of the particles 3 or colloid in a solution, any of the compounds having a combination of a hydrophobic group and a hydrophilic group, a surfactant, Agents and dispersants can also be used. The above-mentioned compounds, surfactants and dispersants which can be used in the present invention include, for example, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, butyl stearate, oleic acid, linoleic acid, linolenic acid, Elaidic acid, octyl stearate, amyl stearate, isooctyl stearate, octyl myristate, butoxyethyl stearate, anhydrosorbitan monostearate, anhydrosorbitan distearate, anhydrosorbitan tristearate, oleyl alcohol, lauryl alcohol Is raised.

【0057】また、上述した化合物、界面活性剤および
分散剤としては、アルキレンオキサイド系、グリセリン
系、グリシドール系、アルキルフェノールエチレンオキ
サイド付加体、また、より具体的には日本油脂社製、N
AA−102、NAA−415、NAA−312、NA
A−160、NAA−180、NAA−174、NAA
−175、NAA−222、NAA−34、NAA−3
5、NAA−171、NAA−122、NAA−14
2、NAA−160、NAA−173K、ヒマシ硬化脂
肪酸、NAA−42,NAA−44、カチオンSA、カ
チオンMA、カチオンAB、カチオンBB、ナイミ−ン
L−201、ナイミ−ンL−202、ナイミ−ンS−2
02、ノニオンE−208、ノニオンP−208、ノニ
オンS−207、ノニオンK−204、ノニオンNS−
202、ノニオンNS−210、ノニオンHS−20
6、ノニオンL−2、ノニオンS−2、ノニオンS−
4、ノニオンO−2、ノニオンLP−20R、ノニオン
PP−40R、ノニオンSP−60R、ノニオンOP−
80R、ノニオンOP−85R、ノニオンLT−22
1、ノニオンST−221、ノニオンOT−221、モ
ノグリMB、ノニオンDS−60、アノンBF、アノン
LG、ブチルステアレ−ト、ブチルラウレート、エルカ
酸、関東化学社製、オレイン酸、竹本油脂社製、FAL
−205、FAL−123、新日本理化社製、エヌジェ
ルブLO、エヌジョルブIPM、サンソサイザーE40
30、信越化学社製、TA−3、KF−96、KF−9
6L、KF96H、KF410、KF420、KF96
5、KF54、KF50、KF56、KF907、KF
851、X−22−819、X−22−822、KF9
05、KF700、KF393、KF−857、KF−
860、KF−865、X−22−980、KF−10
1、KF−102、KF−103、X−22−371
0、X−22−3715、KF−910、KF−393
5、ライオンアーマー社製、アーマイドP、アーマイド
C、アーモスリップCP、ライオン油脂社製、デュオミ
ンTDO、日清製油社製、BA−41G、三洋化成社
製、プロファン2012E、ニューポールPE61、イ
オネットMS−400、イオネットMO−200イオネ
ットDL−200、イオネットDS−300、イオネッ
トDS−1000イオネットDO−200などの、ノニ
オン界面活性剤、環状アミン、エステルアミド、第四級
アンモニウム塩類、ヒダントイン誘導体、複素環類、ホ
スホニウムまたはスルホニウム類等のカチオン系界面活
性剤、カルボン酸、スルフォン酸、燐酸、硫酸エステル
基、燐酸エステル基などの酸性基を含むアニオン界面活
性剤、アミノ酸類、アミノスルホン酸類、アミノアルコ
ールの硫酸または燐酸エステル類、アルキルベタイン型
の両性界面活性剤等を挙げることができる。
The compounds, surfactants and dispersants mentioned above include alkylene oxides, glycerins, glycidols, alkylphenol ethylene oxide adducts, and more specifically, Nippon Oil & Fats Co., Ltd.
AA-102, NAA-415, NAA-312, NA
A-160, NAA-180, NAA-174, NAA
-175, NAA-222, NAA-34, NAA-3
5, NAA-171, NAA-122, NAA-14
2, NAA-160, NAA-173K, castor hardened fatty acid, NAA-42, NAA-44, cation SA, cation MA, cation AB, cation BB, Nymin L-201, Nymin L-202, Nymin S-2
02, Nonion E-208, Nonion P-208, Nonion S-207, Nonion K-204, Nonion NS-
202, Nonion NS-210, Nonion HS-20
6, Nonion L-2, Nonion S-2, Nonion S-
4, Nonion O-2, Nonion LP-20R, Nonion PP-40R, Nonion SP-60R, Nonion OP-
80R, Nonion OP-85R, Nonion LT-22
1, Nonionic ST-221, Nonionic OT-221, Monogly MB, Nonionic DS-60, Anone BF, Anone LG, Butyl stearate, Butyl laurate, Erucic acid, Kanto Chemical, Oleic acid, Takemoto Yushi, FAL
-205, FAL-123, manufactured by Nippon Rika Co., Ltd., Njerbu LO, Njolbu IPM, Sansocizer E40
30, Shin-Etsu Chemical Co., Ltd., TA-3, KF-96, KF-9
6L, KF96H, KF410, KF420, KF96
5, KF54, KF50, KF56, KF907, KF
851, X-22-819, X-22-822, KF9
05, KF700, KF393, KF-857, KF-
860, KF-865, X-22-980, KF-10
1, KF-102, KF-103, X-22-371
0, X-22-3715, KF-910, KF-393
5. Lion Armor, Armide P, Armide C, Armoslip CP, Lion Yushi, Duomin TDO, Nisshin Oil, BA-41G, Sanyo Kasei, Profan 2012E, New Pole PE61, Ionnet MS Nonionic surfactants, cyclic amines, ester amides, quaternary ammonium salts, hydantoin derivatives, heterocycles, such as -400, Ionnet MO-200, Ionnet DL-200, Ionnet DS-300, and Ionnet DS-1000 Ionnet DO-200 , A cationic surfactant such as a phosphonium or a sulfonium, an anionic surfactant containing an acidic group such as a carboxylic acid, a sulfonic acid, a phosphoric acid, a sulfate group, a phosphate group, an amino acid, an aminosulfonic acid, and an amino alcohol. Sulfuric acid or phosphorus Esters, alkyl betaine type amphoteric surfactants and the like.

【0058】本発明の粒子膜の製造方法について再度図
4を用いてさらに説明すると、粒子3に反磁性体粒子を
用いて、磁場中心9より上側に、容器12に収容された
基板1を配置する。磁場中心9で磁束密度で20Tを作
用させることのできる超電導磁石7を用いて、容器12
の位置を磁場中心9より上方へ移動させることで、容器
12内の粒子3に加えられる磁場の強度である磁束密度
を0.5〜20Tまで変えることができる。また、粒子
3に磁性体粒子または強磁性体粒子を用いる場合には、
磁場中心9より下側に容器12に収容された基板1を配
置し、容器12の位置を磁場中心9より下方へ移動させ
ることによって、容器12内の粒子3に加えられる磁束
密度を0.5〜20Tまで変えることができる。超電導
磁石7には、鉛直方向に磁場が加えることのできるもの
であれば、鉛直方向にボア8をもつもの以外の、例えば
板状、円柱状などといったものでも用いることができ
る。また、超電導磁石7以外にも本発明においては、磁
場中心9で磁束密度で20Tを作用させることができる
もの以外に、磁場中心9において0.5〜20Tの磁束
密度を作用させるものであればいかなるものでも用いる
ことができる。
The manufacturing method of the particle film of the present invention will be further described with reference to FIG. 4 again. The diamagnetic particles are used as the particles 3 and the substrate 1 accommodated in the container 12 is arranged above the center 9 of the magnetic field. I do. The container 12 is formed by using a superconducting magnet 7 capable of applying 20 T with a magnetic flux density at a magnetic field center 9.
Is moved above the magnetic field center 9, the magnetic flux density, which is the strength of the magnetic field applied to the particles 3 in the container 12, can be changed from 0.5 to 20T. When magnetic particles or ferromagnetic particles are used for the particles 3,
By disposing the substrate 1 accommodated in the container 12 below the magnetic field center 9 and moving the position of the container 12 below the magnetic field center 9, the magnetic flux density applied to the particles 3 in the container 12 is reduced by 0.5. Can be changed up to 20T. As the superconducting magnet 7, other than those having a bore 8 in the vertical direction, for example, those having a plate shape, a columnar shape, or the like can be used as long as a magnetic field can be applied in the vertical direction. In addition to the superconducting magnet 7, in the present invention, other than those capable of applying a magnetic flux density of 20T at the magnetic field center 9, any other magnetic flux density of 0.5 to 20 T may be applied at the magnetic field center 9. Anything can be used.

【0059】本発明の粒子膜の製造方法において、1〜
100nmの粒子径の粒子膜を製造するためには、溶媒
2の蒸気圧を高くして溶媒2の蒸発速度を抑制するなど
して、制御しても良い。本発明の実施の形態において
は、図4に示すように基板1を容器12に収容して蓋1
3をし、溶媒2の蒸気圧を高くすることで溶媒2の蒸発
速度を抑制させることができる。容器12内の溶媒2
は、蓋13の隙間を通して蒸発が行われる。溶媒2がす
べて蒸発した後には粒子3のみが基板1上に残され、粒
子膜が製造される。
In the method for producing a particle membrane according to the present invention,
In order to produce a particle film having a particle diameter of 100 nm, control may be performed by increasing the vapor pressure of the solvent 2 to suppress the evaporation rate of the solvent 2. In the embodiment of the present invention, as shown in FIG.
In step 3, the evaporation rate of the solvent 2 can be suppressed by increasing the vapor pressure of the solvent 2. Solvent 2 in container 12
Is evaporated through the gap of the lid 13. After all of the solvent 2 evaporates, only the particles 3 are left on the substrate 1 to produce a particle film.

【0060】容器12内に、上部の開いたビーカなどの
容器を別に設けて溶媒2を満たしておくなどして、溶媒
2の蒸気圧をさらに高め、溶媒2の蒸発速度を抑制させ
ることもできる。また、容器12に密閉できるものを用
い、弁などを設けて、容器12内の溶媒2の蒸発速度を
制御させることも可能である。その他、上述したように
加熱装置を設けて温度制御させたり、減圧装置を設けて
圧力制御させることによって溶媒2の蒸発速度を制御す
ることも可能である。
The vapor pressure of the solvent 2 can be further increased by providing a separate container such as a beaker with an open top inside the container 12 and filling the solvent 2, thereby suppressing the evaporation rate of the solvent 2. . It is also possible to control the evaporation rate of the solvent 2 in the container 12 by using a container that can be hermetically sealed and providing a valve or the like. In addition, it is also possible to control the evaporation rate of the solvent 2 by providing a heating device to control the temperature as described above, or by providing a pressure reducing device to control the pressure.

【0061】図6に、本発明の粒子膜の製造方法により
製造された粒子膜の概略図を示す。図4に示す装置を用
いて磁場の強度および方向により溶媒2の液面に対する
粒子3の位置制御を行い、さらに容器12に収容するな
どして溶媒2の蒸発速度を抑制させることにより、図6
に示すように基板1に粒子3を二次元に集積させた粒子
膜を製造することができる。また、本発明は、基板1上
に粒子3が単一層を形成する粒子膜ばかりではなく、複
数の層が重畳された積層膜を形成することもできる。
FIG. 6 is a schematic view of a particle film produced by the method for producing a particle film of the present invention. By controlling the position of the particles 3 with respect to the liquid surface of the solvent 2 by using the intensity and direction of the magnetic field using the apparatus shown in FIG. 4, and further suppressing the evaporation rate of the solvent 2 by storing the particles 3 in the container 12 as shown in FIG.
As shown in (1), a particle film in which the particles 3 are two-dimensionally integrated on the substrate 1 can be manufactured. According to the present invention, not only a particle film in which the particles 3 form a single layer on the substrate 1 but also a laminated film in which a plurality of layers are superposed can be formed.

【0062】[0062]

【実施例】以下本発明について、実施例を用いてより具
体的に説明するが、本発明は下記の実施例に限定される
ものではない。 (実施例1)本発明の粒子膜を図4に示す装置を用いて
製造した。超電導磁石7には、ボア8の径が150m
m、磁場中心9に10Tの磁場を加えることができる超
電導磁石(神戸製鋼(株)社製10T 150径)を用
いた。また、粒子3には、ドデカンチオールによって保
護された粒子径10nmのAg粒子を用いた。また、粒
子3を分散させる溶媒2としては、トルエンを用いた。
さらに、容器12として、蓋13の外径が120mmの
ガラス製の蓋付きシャーレを用いた。基板1には、スラ
イドガラスにコロジオン膜を貼付したものに、炭素を蒸
着させた炭素蒸着膜で、幅26mm、長さ76mm、厚
さ1mmのものを用いた。また、容器12は、水平に配
置できる台14に載せて、超電導磁石7のボア8内に配
置した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. (Example 1) The particle membrane of the present invention was produced using the apparatus shown in FIG. The diameter of the bore 8 is 150 m in the superconducting magnet 7.
m, a superconducting magnet (10T 150 diameter, manufactured by Kobe Steel Co., Ltd.) capable of applying a magnetic field of 10T to the magnetic field center 9 was used. Ag particles having a particle diameter of 10 nm protected by dodecanethiol were used as the particles 3. Further, toluene was used as the solvent 2 in which the particles 3 were dispersed.
Further, as the container 12, a glass petri dish with a lid 13 having an outer diameter of 120 mm was used. As the substrate 1, a carbon vapor-deposited film obtained by vapor-depositing carbon on a collodion film adhered to a slide glass, having a width of 26 mm, a length of 76 mm, and a thickness of 1 mm was used. The container 12 was placed on a table 14 which can be placed horizontally, and was placed in the bore 8 of the superconducting magnet 7.

【0063】次いで、トルエンにAg粒子が分散した液
体を、平滑な基板1に1滴滴下して円状に展開させた
後、この基板1をシャーレに収容して蓋13をした。超
電導磁石7のボア8内に台14を設置してシャーレを磁
場中心9より上側0.15mの位置に配置した。その
後、超電動磁石7に電流を通じ、磁場中心9に10Tの
磁場を鉛直上向きに発生させて粒子膜を製造した。
Next, a drop of a liquid in which Ag particles were dispersed in toluene was dropped on a smooth substrate 1 and developed in a circular shape. The substrate 1 was housed in a petri dish and covered with a lid 13. The table 14 was placed in the bore 8 of the superconducting magnet 7 and the petri dish was arranged at a position 0.15 m above the magnetic field center 9. Thereafter, a current was passed through the super-electric magnet 7 to generate a magnetic field of 10 T vertically upward at the magnetic field center 9 to produce a particle film.

【0064】(実施例2)超電導磁石7のボア8の中に
台14の高さを変えて磁場中心9にシャーレを配置した
ことを除き、実施例1と同様に、磁場中心9に10Tの
磁場を鉛直上向きに発生させて粒子膜を製造した。
(Example 2) In the same manner as in Example 1 except that a petri dish was arranged at the center of the magnetic field 9 by changing the height of the base 14 in the bore 8 of the superconducting magnet 7, a 10 T A magnetic field was generated vertically upward to produce a particle film.

【0065】(実施例3)超電導磁石7のボア8の中に
台14の高さを変えて磁場中心9より下側0.15mの
位置に容器12のシャーレを配置したことを除き、実施
例1と同様に、磁場中心9には10Tの磁場を鉛直上向
きに発生させて粒子膜を製造した。
(Example 3) Except that the height of the base 14 was changed in the bore 8 of the superconducting magnet 7 and the petri dish of the container 12 was arranged at 0.15 m below the center 9 of the magnetic field. Similarly to 1, a 10 T magnetic field was generated vertically upward at the magnetic field center 9 to produce a particle film.

【0066】(超電導磁石のボア内の磁場勾配)図4に
示す超電導磁石7の磁場中心9に10Tの磁場を鉛直方
向の上向きに加えると、図7に示すように磁場勾配を生
じた。図7の縦軸zは、磁場中心9を0とし、磁場中心
9から鉛直方向への距離を示し、図7の下部に示す横軸
Bzは、磁場の強度である磁束密度を示す。また、図7
の上部に示す横軸BzdBz/dzは、磁場により加え
られる力のうちの磁場に起因する値で、磁場と磁場勾配
との積の値を示す。図7中の実線は、鉛直方向への距離
zと、磁束密度Bzとの関係を示す。また、破線は、鉛
直方向への距離zと、磁場勾配との積BzdBz/dz
との関係を示す。図7に示す磁場では、磁場中心9では
磁場勾配が0となり、磁場中心9から上下に0.15m
の位置に変極点を生じ、本発明において説明する実施例
では、ドデカンチオールに保護されたAg粒子は、反磁
性体粒子であるために、実施例1の磁場中心9より上
側、図7では0.15mの位置において磁場と磁場勾配
との積が最小値−300T/mであり、磁場により加
えられる力が上向き(浮力として作用する方向)に最大
であった。実施例3の磁場中心9の下側、図7では−
0.15mの位置において磁場と磁場勾配との積が最大
値300T/mであり、磁場により加えられる力が下
向き(重力の方向)に最大であった。なお、磁場により
加えられる力の正・負は、本発明においては重力の方向
を正、浮力として作用する方向、すなわち重力とは反対
方向を負として定義するものである。また、実施例2の
磁場中心9においては、磁場により加えられる力が0で
あった。
(Magnetic field gradient in bore of superconducting magnet) When a magnetic field of 10 T was applied vertically to the magnetic field center 9 of the superconducting magnet 7 shown in FIG. 4, a magnetic field gradient was generated as shown in FIG. The vertical axis z in FIG. 7 indicates the distance in the vertical direction from the magnetic field center 9 with the magnetic field center 9 as 0, and the horizontal axis Bz shown at the bottom of FIG. 7 indicates the magnetic flux density which is the strength of the magnetic field. FIG.
The horizontal axis BzdBz / dz shown in the upper part of the figure is a value of the force applied by the magnetic field, which is caused by the magnetic field, and indicates the value of the product of the magnetic field and the magnetic field gradient. The solid line in FIG. 7 shows the relationship between the distance z in the vertical direction and the magnetic flux density Bz. The broken line indicates the product BzdBz / dz of the distance z in the vertical direction and the magnetic field gradient.
The relationship is shown below. In the magnetic field shown in FIG. 7, the magnetic field gradient becomes 0 at the magnetic field center 9 and is 0.15 m above and below the magnetic field center 9.
In the examples described in the present invention, the Ag particles protected by dodecanethiol are diamagnetic particles, so that the Ag particles are above the magnetic field center 9 in Example 1 and 0 in FIG. At the position of .15 m, the product of the magnetic field and the magnetic field gradient was the minimum value -300 T 2 / m, and the force applied by the magnetic field was maximum upward (in the direction acting as buoyancy). The lower side of the magnetic field center 9 of the third embodiment, in FIG.
At a position of 0.15 m, the product of the magnetic field and the magnetic field gradient had a maximum value of 300 T 2 / m, and the force applied by the magnetic field was maximum downward (in the direction of gravity). In the present invention, the positive / negative force applied by the magnetic field defines the direction of gravity as positive and the direction acting as buoyancy, that is, the direction opposite to gravity as negative. Further, at the magnetic field center 9 in Example 2, the force applied by the magnetic field was zero.

【0067】(粒子膜の磁場効果)図8(a)、
(b)、(c)は、実施例1、2、3で製造された粒子
膜を透過型電子顕微鏡(日立製作所(株)製 HITA
CHI H−7500)で観測した図である。図8
(a)に示すように、磁場により加えられる力が最大と
なる位置に基板1を収容した容器12を配置することに
よって、Ag粒子が密に集積した粒子膜が製造されるこ
とが見出された。また、図8(a)、図8(b)、図8
(c)の順に粒子3に浮力を与えるように磁場により加
えられる力が低下するに従い、Ag粒子が粗に集積して
粒子膜が製造されることが見出された。従って、本発明
の粒子位置の制御方法を用いた粒子膜の製造方法を用い
ることで、粒子を集積させる横毛管力を有効に利用し
て、粒子の配列規則性を著しく向上させることが見出さ
れた。
(Magnetic Field Effect of Particle Film) FIG.
(B) and (c) show the particle membranes manufactured in Examples 1, 2, and 3 using a transmission electron microscope (HITA, manufactured by Hitachi, Ltd.).
CHI H-7500). FIG.
As shown in (a), it is found that a particle film in which Ag particles are densely accumulated is manufactured by disposing the container 12 containing the substrate 1 at a position where the force applied by the magnetic field is maximized. Was. 8 (a), 8 (b) and 8
It was found that as the force applied by the magnetic field decreases so as to give buoyancy to the particles 3 in the order of (c), the Ag particles are coarsely accumulated to produce a particle film. Therefore, it has been found that by using the method for producing a particle film using the method for controlling the position of particles of the present invention, the horizontal capillary force for accumulating particles is effectively used, and the arrangement regularity of particles is significantly improved. Was done.

【0068】[0068]

【発明の効果】上述したように本発明は、粒子を分散さ
せた溶媒に磁場を加え、磁場の強度および方向により溶
媒の液面に対する粒子位置を制御する粒子位置の制御方
法が提供できるとともに、粒子を分散させた溶媒を基板
上に塗布し、磁場の強度および方向により溶媒の液面に
対する粒子位置を制御する粒子位置の制御方法を用いて
溶媒を蒸発させ、粒子を二次元に集積させることを特徴
とする粒子膜の製造方法が提供できる。
As described above, the present invention can provide a method for controlling a particle position in which a magnetic field is applied to a solvent in which particles are dispersed, and the particle position with respect to the liquid surface of the solvent is controlled by the strength and direction of the magnetic field. Applying a solvent in which particles are dispersed on a substrate, evaporating the solvent using a particle position control method that controls the particle position with respect to the liquid surface of the solvent according to the strength and direction of a magnetic field, and accumulating the particles in two dimensions. Can be provided.

【0069】従って、本発明の粒子位置の制御方法およ
びその制御方法を用いた粒子膜の製造方法を用いること
で、粒子を集積させる横毛管力を有効に利用して粒子の
配列規則性を著しく向上させることが可能となり、マイ
クロメータ域以下の、ナノメータ域といった粒子径をも
つ粒子を二次元に集積させて粒子膜を製造することが可
能となる。
Therefore, by using the method for controlling the position of particles and the method for producing a particle film using the control method of the present invention, the arrangement regularity of particles can be significantly improved by effectively utilizing the lateral capillary force for accumulating particles. It is possible to manufacture a particle film by two-dimensionally accumulating particles having a particle diameter of a nanometer range or less, which is smaller than a micrometer range.

【0070】また、本発明により製造された粒子膜は、
単電子デバイス、光デバイス、触媒、磁気記録媒体、電
極あるいはセンサーのほか、磁気的、電気的および光学
的に用いられるものにはいかなるものにも利用が可能で
あり、本発明は、電気、電子、半導体、触媒、分析、分
離、化学、記憶、記録の各分野に対して有用である。
Further, the particle membrane produced according to the present invention comprises:
A single-electron device, an optical device, a catalyst, a magnetic recording medium, an electrode or a sensor, as well as anything used magnetically, electrically and optically, can be used. , Semiconductor, catalyst, analysis, separation, chemistry, storage, and recording.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 移流集積法による粒子膜の製造段階を示した
図。
FIG. 1 is a view showing a stage of manufacturing a particle film by an advection accumulation method.

【図2】 超電導磁石のボア内で粒子に作用する磁場の
力の方向を示した図。
FIG. 2 is a diagram showing directions of magnetic field forces acting on particles in a bore of a superconducting magnet.

【図3】 本発明の磁場による力の方向による溶媒の液
面に対する粒子の位置を示した図。
FIG. 3 is a diagram illustrating a position of a particle with respect to a liquid surface of a solvent according to a direction of force by a magnetic field according to the present invention.

【図4】 本発明の粒子膜を製造するための装置断面
図。
FIG. 4 is a cross-sectional view of an apparatus for producing the particle membrane of the present invention.

【図5】 本発明に用いる硫黄を含む有機化合物で保護
したコロイド粒子を示した図。
FIG. 5 is a view showing colloid particles protected by an organic compound containing sulfur used in the present invention.

【図6】 本発明の粒子膜の製造方法により製造された
粒子膜を示した図。
FIG. 6 is a view showing a particle membrane produced by the method for producing a particle membrane of the present invention.

【図7】 本発明の実施例で用いた超電導磁石の磁場勾
配を示した図。
FIG. 7 is a diagram showing a magnetic field gradient of a superconducting magnet used in an example of the present invention.

【図8】 本発明の実施例1、2、3で製造された粒子
膜を示した図。
FIG. 8 is a view showing a particle membrane manufactured in Examples 1, 2, and 3 of the present invention.

【符号の説明】[Explanation of symbols]

1…基板 2…溶媒 3…粒子 4…界面 5…気体 6a、6a’、6b、6b’…粒子 7…超電導磁石 8…ボア 9…磁場中心 10a、10b…溶媒 11a、11b…基板 12…容器 13…蓋 14…台 15…硫黄を含む有機化合物 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Solvent 3 ... Particle 4 ... Interface 5 ... Gas 6a, 6a ', 6b, 6b' ... Particle 7 ... Superconducting magnet 8 ... Bore 9 ... Center of magnetic field 10a, 10b ... Solvent 11a, 11b ... Substrate 12 ... Container 13: lid 14: table 15: organic compound containing sulfur

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/16 H01F 41/16 5E049 // B22F 1/02 B22F 1/02 C Fターム(参考) 4D006 GA41 HA41 MA03 MC02X NA46 NA50 NA51 NA64 4G065 AA04 AB21X BA07 BB01 BB06 CA01 DA02 DA06 DA09 DA10 EA03 FA03 4G075 AA24 AA35 AA61 BB02 BB05 BD16 BD17 CA42 CA51 FB02 4K018 BA01 BA02 BA04 BA08 BA10 BA13 BA20 BC23 BC29 BD02 BD10 4K022 AA02 AA03 AA13 BA01 BA03 BA08 BA17 BA21 BA25 BA27 BA28 BA31 DA09 DB12 DB19 EA01 EA04 5E049 AC08 BA06 EB01 FC10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 41/16 H01F 41/16 5E049 // B22F 1/02 B22F 1/02 CF term (Reference) 4D006 GA41 HA41 MA03 MC02X NA46 NA50 NA51 NA64 4G065 AA04 AB21X BA07 BB01 BB06 CA01 DA02 DA06 DA09 DA10 EA03 FA03 4G075 AA24 AA35 AA61 BB02 BB05 BD16 BD17 CA42 CA51 FB02 4K018 BA01 BA02 BA04 BA08 BA10 BA13 BA20 BA23 BA02 A03A BA17 BA21 BA25 BA27 BA28 BA31 DA09 DB12 DB19 EA01 EA04 5E049 AC08 BA06 EB01 FC10

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 粒子を分散させた溶媒に磁場を加え、前
記磁場の強度および方向により前記溶媒における粒子位
置を制御する、粒子位置の制御方法。
1. A method for controlling a particle position, wherein a magnetic field is applied to a solvent in which particles are dispersed, and a particle position in the solvent is controlled by an intensity and a direction of the magnetic field.
【請求項2】 前記粒子は、反磁性体粒子または常磁性
体粒子または強磁性体粒子である、請求項1に記載の粒
子位置の制御方法。
2. The method according to claim 1, wherein the particles are diamagnetic particles, paramagnetic particles, or ferromagnetic particles.
【請求項3】 前記磁場は、磁束密度が0.5〜20T
である、請求項1または2に記載の粒子位置の制御方
法。
3. The magnetic field has a magnetic flux density of 0.5 to 20T.
The method for controlling a particle position according to claim 1 or 2, wherein
【請求項4】 前記粒子は、1〜100nmの粒子径で
ある、請求項1〜3のいずれか1項に記載の粒子位置の
制御方法。
4. The method according to claim 1, wherein said particles have a particle diameter of 1 to 100 nm.
【請求項5】 前記粒子は、硫黄を含む有機化合物によ
り保護されたコロイド粒子である、請求項1〜4のいず
れか1項に記載の粒子位置の制御方法。
5. The method according to claim 1, wherein the particles are colloidal particles protected by an organic compound containing sulfur.
【請求項6】 粒子を溶媒に分散させ、前記粒子を分散
させた溶媒を基板上に塗布し、磁場の強度および方向に
より前記溶媒の液面に対する粒子位置を制御して前記溶
媒を蒸発させ、前記粒子を二次元に集積させることを特
徴とする、粒子膜の製造方法。
6. dispersing particles in a solvent, applying the solvent in which the particles are dispersed on a substrate, evaporating the solvent by controlling the position of the particles with respect to the liquid surface of the solvent by the intensity and direction of a magnetic field, A method for producing a particle film, wherein the particles are two-dimensionally integrated.
【請求項7】 前記粒子は、反磁性体粒子または常磁性
体粒子または強磁性体粒子である、請求項6に記載の粒
子膜の製造方法。
7. The method according to claim 6, wherein the particles are diamagnetic particles, paramagnetic particles, or ferromagnetic particles.
【請求項8】 前記磁場は、磁束密度が0.5〜20T
である、請求項6または7に記載の粒子膜の製造方法。
8. The magnetic field has a magnetic flux density of 0.5 to 20T.
The method for producing a particle membrane according to claim 6, wherein:
【請求項9】 前記粒子は、1〜100nmの粒子径で
ある、請求項6〜8のいずれか1項に記載の粒子膜の製
造方法。
9. The method according to claim 6, wherein the particles have a particle diameter of 1 to 100 nm.
【請求項10】 前記粒子は、硫黄を含む有機化合物に
より保護されたコロイド粒子である、請求項6〜9のい
ずれか1項に記載の粒子膜の製造方法。
10. The method according to claim 6, wherein the particles are colloid particles protected by an organic compound containing sulfur.
【請求項11】 前記硫黄を含む有機化合物は、炭素数
2〜20のアルキルチオールである、請求項10に記載
の粒子膜の製造方法。
11. The method according to claim 10, wherein the organic compound containing sulfur is an alkylthiol having 2 to 20 carbon atoms.
【請求項12】 前記粒子は、Ag、Au、Cu、P
b、Zn、Sn、Bi、Pt、Ti、Pd、Cr、M
n、Al、Fe、Co、Niを含む群から選択される金
属のコロイド粒子である、請求項6〜9のいずれか1項
に記載の粒子膜の製造方法。
12. The particles are made of Ag, Au, Cu, P.
b, Zn, Sn, Bi, Pt, Ti, Pd, Cr, M
The method for producing a particle film according to any one of claims 6 to 9, wherein the method is a colloidal particle of a metal selected from the group including n, Al, Fe, Co, and Ni.
【請求項13】 粒子を溶媒に分散させ、前記粒子を分
散させた溶媒を基板上に塗布し、磁場の強度および方向
により前記溶媒の液面に対する粒子位置を制御して前記
溶媒を蒸発させ、前記粒子を二次元に集積させた、粒子
膜。
13. dispersing particles in a solvent, applying the solvent in which the particles are dispersed on a substrate, evaporating the solvent by controlling the position of the particles with respect to the liquid surface of the solvent by the intensity and direction of a magnetic field, A particle film in which the particles are two-dimensionally integrated.
【請求項14】 前記粒子は、反磁性体粒子または常磁
性体粒子または強磁性体粒子である、請求項13に記載
の粒子膜。
14. The particle film according to claim 13, wherein the particles are diamagnetic particles, paramagnetic particles, or ferromagnetic particles.
【請求項15】 前記粒子膜の膜厚は、1〜100nm
である、請求項13または14に記載の粒子膜。
15. The film thickness of the particle film is 1 to 100 nm.
The particle membrane according to claim 13, wherein
【請求項16】 前記粒子は、硫黄を含む有機化合物に
より保護されたコロイド粒子である、請求項13〜15
のいずれか1項に記載の粒子膜。
16. The particles according to claim 13, wherein the particles are colloid particles protected by an organic compound containing sulfur.
The particle membrane according to any one of the above.
【請求項17】 前記硫黄を含む有機化合物は、炭素数
2〜20のアルキルチオールである、請求項16に記載
の粒子膜。
17. The particle membrane according to claim 16, wherein the organic compound containing sulfur is an alkylthiol having 2 to 20 carbon atoms.
【請求項18】 前記粒子は、Ag、Au、Cu、P
b、Zn、Sn、Bi、Pt、Ti、Pd、Cr、M
n、Al、Fe、Co、Niを含む群から選択される金
属のコロイド粒子である、請求項13〜15のいずれか
1項に記載の粒子膜。
18. The method of claim 18, wherein the particles are Ag, Au, Cu, P
b, Zn, Sn, Bi, Pt, Ti, Pd, Cr, M
The particle membrane according to any one of claims 13 to 15, wherein the particle membrane is a colloidal particle of a metal selected from the group including n, Al, Fe, Co, and Ni.
JP2000352766A 2000-11-20 2000-11-20 Control method of particle position, method of manufacturing particle film using the control method, and particle film Expired - Lifetime JP3418731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000352766A JP3418731B2 (en) 2000-11-20 2000-11-20 Control method of particle position, method of manufacturing particle film using the control method, and particle film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000352766A JP3418731B2 (en) 2000-11-20 2000-11-20 Control method of particle position, method of manufacturing particle film using the control method, and particle film

Publications (2)

Publication Number Publication Date
JP2002153738A true JP2002153738A (en) 2002-05-28
JP3418731B2 JP3418731B2 (en) 2003-06-23

Family

ID=18825611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000352766A Expired - Lifetime JP3418731B2 (en) 2000-11-20 2000-11-20 Control method of particle position, method of manufacturing particle film using the control method, and particle film

Country Status (1)

Country Link
JP (1) JP3418731B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078598A (en) * 2005-09-16 2007-03-29 National Institute Of Advanced Industrial & Technology Measuring method of susceptibility
JP2009091663A (en) * 2005-03-18 2009-04-30 Seiko Epson Corp Metal particle dispersion liquid, method of manufacturing metal particle dispersion liquid, method of manufacturing conductive film-formed substrate, and electronic device and electronic equipment
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US9174221B2 (en) 2011-03-31 2015-11-03 Osaka University Method and apparatus for separation of mixture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091663A (en) * 2005-03-18 2009-04-30 Seiko Epson Corp Metal particle dispersion liquid, method of manufacturing metal particle dispersion liquid, method of manufacturing conductive film-formed substrate, and electronic device and electronic equipment
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US7767115B2 (en) 2005-03-18 2010-08-03 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2007078598A (en) * 2005-09-16 2007-03-29 National Institute Of Advanced Industrial & Technology Measuring method of susceptibility
US9174221B2 (en) 2011-03-31 2015-11-03 Osaka University Method and apparatus for separation of mixture

Also Published As

Publication number Publication date
JP3418731B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
Mou et al. Magnetically modulated pot‐like MnFe2O4 micromotors: nanoparticle assembly fabrication and their capability for direct oil removal
Liddle et al. Lithographically directed self-assembly of nanostructures
US7520933B2 (en) Method for manufacturing colloidal crystals via confined convective assembly
Sotiriou et al. Flexible, multifunctional, magnetically actuated nanocomposite films
US20110284745A1 (en) Sample Holder, Inspection Apparatus, and Inspection Method
Mirsaidov et al. Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution
JP2002153738A (en) Method for controlling particle position, method for manufacturing particle film by using the method, and particle film
US9597290B2 (en) Particle functionalization
US20130004761A1 (en) Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof
JPH11510314A (en) Manufacturing method of metal quantum dots
Zhang et al. Enhanced Coffee‐Ring Effect via Substrate Roughness in Evaporation of Colloidal Droplets
US7935297B2 (en) Method of forming pointed structures
KR20060013638A (en) Adjustable implantation angle workpiece support structure for an ion beam implanter utilizing a linear scan motor
WO2016191542A1 (en) System and method for providing a clean environment in an electron-optical system
Moroshkin et al. Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium
Fischer et al. A versatile apparatus for the fine-tuned synthesis of cluster-based materials
JP4234768B2 (en) Electron beam drawing device
Dzlieva et al. Direct observation of dynamics of single spinning dust grains in weakly magnetized complex plasma
JP3585789B2 (en) Material evaluation apparatus and method using positron
Liang et al. Sculpting Tiered Micro‐Nanogradient Structure by Anisotropic Stepped Anodization for Mediating Water Distribution and Transportation
Gong et al. Magnetic field-directed hybrid anisotropic nanocomposites
CN113436777A (en) Method and device for supporting dielectrophoresis force optical trap based on probe and application
CN106206990B (en) OLED device and production method, evaporation method for preparing substrate
Ichihashi Generation of fine-particle beams and their applications
Priesner et al. Nanoscale Writing of Gold Nanoparticle Assemblies at the Liquid‐Vapor Interface Using a Focused Electron Beam

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3418731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term