JP2002148099A - Molten metal level sensor - Google Patents

Molten metal level sensor

Info

Publication number
JP2002148099A
JP2002148099A JP2000345269A JP2000345269A JP2002148099A JP 2002148099 A JP2002148099 A JP 2002148099A JP 2000345269 A JP2000345269 A JP 2000345269A JP 2000345269 A JP2000345269 A JP 2000345269A JP 2002148099 A JP2002148099 A JP 2002148099A
Authority
JP
Japan
Prior art keywords
molten metal
coil
metal
sine wave
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345269A
Other languages
Japanese (ja)
Inventor
Shigehiro Sumiya
茂宏 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAAMARU ENG KK
SATO SHOJI CORP
SY SEIKI KK
Original Assignee
SAAMARU ENG KK
SATO SHOJI CORP
SY SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAAMARU ENG KK, SATO SHOJI CORP, SY SEIKI KK filed Critical SAAMARU ENG KK
Priority to JP2000345269A priority Critical patent/JP2002148099A/en
Publication of JP2002148099A publication Critical patent/JP2002148099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molten metal level sensor which can measure the upper surface position of various molten metals without being affected by adhesion of the metal or oxides thereof or the heat of the molten metal. SOLUTION: In a fine ceramic protective tube which is not affected by adhesion of the molten of a metal being measured or its oxides and the heat of the molten metal, a transmission coil and a receiving coil of sine wave are disposed. The measuring unit is inserted into the molten metal and the upper surface position of the molten metal is measured utilizing a transmission wave from the transmission coil located above the upper surface of the molten metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として鋳造に使
用される金属の溶解炉、溶融金属定量ポンプ、溶融金属
保持炉等における金属溶湯のレベル、即ち上面位置を電
気的に検知し、デジタル或はアナログの何れかの方式で
表示する溶融金属用のレベルセンサーの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for digitally or digitally detecting the level of a molten metal in a melting furnace for molten metal, a molten metal metering pump, a furnace for holding molten metal, that is, an upper surface position, which is mainly used for casting. Relates to an improvement of a level sensor for molten metal which displays in any analog manner.

【0002】[0002]

【従来の技術】金属の溶解炉、溶融金属定量ポンプ等に
おける金属溶湯の上面位置即ちレベルを検出するセンサ
ーとしては、フロート方式、超音波方式、レーザー方
式、或は電気容量方式等の各種のセンサーが提案されて
いる。
2. Description of the Related Art Various types of sensors, such as a float type, an ultrasonic type, a laser type, or an electric capacity type, are used as sensors for detecting the upper surface position or level of a molten metal in a metal melting furnace, a molten metal metering pump, or the like. Has been proposed.

【0003】[0003]

【発明が解決しようとする課題】前記フロート方式のセ
ンサーはフロート材質により、溶融金属や酸化物の付着
による計測誤差の拡大とか、熱の影響による計測誤差の
拡大等の問題があり、超音波方式のセンサーでは、高温
雰囲気内での測定の誤差が大きく、その補正が困難であ
るのみでなく、超音波センサー部を高温に曝し得ない問
題も有している。またレーザー方式のセンサーも、レー
ザーセンサー部を高温に曝し得ないし、電気容量方式の
センサーでは溶融金属皮膜や酸化皮膜の影響を過敏に受
け測定誤差が大となる等の問題を有している。
The above-mentioned float type sensor has problems such as an increase in measurement error due to adhesion of molten metal or oxide and an increase in measurement error due to heat due to the float material. The sensor described above has a large measurement error in a high-temperature atmosphere, which makes it difficult to correct, and also has a problem that the ultrasonic sensor cannot be exposed to high temperatures. Also, the laser type sensor has a problem that the laser sensor cannot be exposed to a high temperature, and the capacitance type sensor is sensitive to the influence of the molten metal film or the oxide film and the measurement error becomes large.

【0004】このため、本発明は、溶融金属や酸化皮膜
の付着とか、その測定値への影響、或は高温雰囲気内で
の測定によるセンサー自体への悪影響を受けることな
く、正確かつ容易に溶融金属の表面レベルを測定しうる
センサーを提供することを課題としている。
For this reason, the present invention provides a method for accurately and easily melting a molten metal or an oxide film without affecting the measured value or the sensor itself due to the measurement in a high-temperature atmosphere. It is an object of the present invention to provide a sensor capable of measuring a metal surface level.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明では、溶融金属用レベルセンサーを次の構成
とした。即ち、測定対象金属の溶融温度に耐え、かつ該
金属やその酸化物の付着が生じない、ファインセラミッ
クス製で有底の長筒形状の保護管内に配設されたファイ
ンセラミックス製のボビンに、正弦波を発信する発信コ
イルと、その正弦波を受信する受信コイルとを、同一コ
イル平均径で、同一のコイルピッチを半ピッチずらせた
二重螺旋形に捲回配置した。そして発信コイルの両端を
正弦波の発信機に接続し、受信コイルの両端を前記正弦
波の受信機に接続すると共に、発信コイルと受信コイル
とを内蔵する前記長筒形状の保護管を、上下に変動する
金属溶湯上面の変動範囲をカバーする深さまで、該上面
上方から溶湯内に挿入し、前記受信機の電圧出力端を、
金属溶湯上面位置の数値演算表示機に接続するという構
成とした。
In order to solve the above-mentioned problems, the present invention provides a molten metal level sensor having the following configuration. In other words, a sine-finished bobbin made of fine ceramics and placed in a long-bottomed bottomed protective tube made of fine ceramics that withstands the melting temperature of the metal to be measured and does not cause adhesion of the metal or its oxide. The transmitting coil for transmitting the wave and the receiving coil for receiving the sine wave were wound and arranged in a double spiral shape with the same coil average diameter and the same coil pitch shifted by a half pitch. Then, both ends of the transmission coil are connected to a sine-wave transmitter, and both ends of the reception coil are connected to the sine-wave receiver, and the long cylindrical protection tube containing the transmission coil and the reception coil is vertically moved. The metal melt is inserted from above the upper surface into the melt to a depth that covers the fluctuation range of the upper surface of the molten metal that fluctuates, and the voltage output terminal of the receiver is
The structure is such that it is connected to a numerical display at the top of the metal melt.

【0006】[0006]

【発明の実施の形態】図1は、本発明に係るレベルセン
サーの実施の一例を、一部断面として示した骨組図であ
り、ファインセラミックス製で、有底の長筒形状とされ
た保護管1内に、同じくファインセラミックス製のボビ
ン2が配設されており、このボビン2の外面に、正弦波
を発信する発信コイル3と、発信コイル3から発信され
た正弦波を受信する受信コイル4とが、同一のコイル平
均径Rで、同一のコイルピッチPを半ピッチずらせた二
重螺旋形に捲回配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a skeleton diagram showing an example of a level sensor according to the present invention as a partial cross section. The protective tube is made of fine ceramics and has a long cylindrical shape with a bottom. 1, a bobbin 2 also made of fine ceramics is arranged, and a transmitting coil 3 for transmitting a sine wave and a receiving coil 4 for receiving a sine wave transmitted from the transmitting coil 3 are provided on the outer surface of the bobbin 2. Are wound in a double spiral shape with the same coil average diameter R and the same coil pitch P shifted by half a pitch.

【0007】前記発信コイル3の両端5、6は、正弦波
の発信機7に接続され、前記受信コイル4両端8、9は
前記正弦波の受信機10に接続されており、該受信機1
0の電力出力端11は、受信機10からの入力に基づ
き、金属溶湯12の上面13の位置を表示する数値演算
表示機14に接続されている。
Both ends 5 and 6 of the transmitting coil 3 are connected to a sine-wave transmitter 7, and both ends 8 and 9 of the receiving coil 4 are connected to a sine-wave receiver 10.
The zero power output terminal 11 is connected to a numerical operation display 14 that displays the position of the upper surface 13 of the molten metal 12 based on the input from the receiver 10.

【0008】前記発信コイル3と受信コイル4とが捲装
されているボビン2が内装された保護管2は、上下に位
置変動する金属溶湯12の上面13の変動範囲を発信コ
イル3と受信コイル4とが完全にカバーできる深さまで
金属溶湯上面から挿入され、位置固定される。
The protection tube 2 in which the bobbin 2 on which the transmission coil 3 and the reception coil 4 are wound is mounted on the protection tube 2. 4 is inserted from the upper surface of the molten metal to a depth that can be completely covered, and the position is fixed.

【0009】前記発信機7は、100KHzないし500KH
zの正弦波を発信して発信コイル3に送り、受信機10
は受信コイル4で正弦波を受信し、余弦波たる誘起出力
を電圧変換し、数値演算表示機14に入力する。
The transmitter 7 has a frequency of 100 KHz to 500 KH.
z, and transmits the sine wave to the transmitting coil 3 so that the receiver 10
Receives a sine wave by the receiving coil 4, converts the induced output as a cosine wave into a voltage, and inputs the converted voltage to the numerical operation display 14.

【0010】図2、図3及び図4は金属溶湯12が取り
出されるに従って、その上面13が徐々に低下して行く
際の、保護管1内のボビン2に捲装されている発信コイ
ル3と受信コイル4との位置関係を模型的に示してい
る。
FIGS. 2, 3 and 4 show the transmitting coil 3 wound on the bobbin 2 in the protective tube 1 when the upper surface 13 of the molten metal 12 is gradually lowered as the molten metal 12 is taken out. The positional relationship with the receiving coil 4 is schematically shown.

【0011】発信コイル3から発信された正弦波(磁力
線)は金属溶湯12に吸収されるため、金属溶湯12の
上面13より上方に位置する発信コイル3部分から発信
された正弦波のみが受信コイル4によって受信される。
Since the sine wave (line of magnetic force) transmitted from the transmitting coil 3 is absorbed by the molten metal 12, only the sine wave transmitted from the transmitting coil 3 located above the upper surface 13 of the molten metal 12 receives the sine wave. 4.

【0012】本発明は、この原理を利用しており、図2
に示す状態では、金属溶湯12の上面13より上方に位
置する発信コイル3が存在しないので金属溶湯12が最
高位のレベルにあることが数値演算表示機14に表示さ
れ、金属溶湯12の消費が進出に従って発信コイル3
が、金属溶湯12の上面13により上方に位置する高さ
がH1、H2と順次長くなるので、このH1、H2の高
さの発信コイル3からの正弦波の発信により、該上面3
のレベルが連続して前記数値演算表示機14に表示され
ることとなる。
The present invention makes use of this principle, and FIG.
In the state shown in (1), since the transmitting coil 3 located above the upper surface 13 of the molten metal 12 does not exist, it is displayed on the numerical operation display 14 that the molten metal 12 is at the highest level, and the consumption of the molten metal 12 is reduced. Transmission coil 3 according to advance
However, since the height located above the metal melt 12 due to the upper surface 13 is sequentially increased to H1 and H2, the transmission coil 3 having the heights of H1 and H2 transmits the sine wave, thereby causing the upper surface 3 to become higher.
Are displayed on the numerical operation display 14 continuously.

【0013】[0013]

【発明の効果】本発明では、測定対象の金属の溶湯及び
その酸化物に対して少なくとも耐熱性、非付着性を備え
るファインセラミックスの保護管内に正弦波の発信コイ
ルと受信コイルとか配設されており、各コイルに対応す
る発信機、受信機及び数値演算表示機は、金属溶湯から
の熱の影響の無い場所に設置できるし、発信コイルと受
信コイルとは、耐熱性のファインセラミックス製のボビ
ンに捲装されて前記保護管内に配設されているので、こ
れ等のコイルも熱の影響を受けることが無く、長期にわ
たって正確に金属溶湯の上面のレベルを測定しうる効果
を奏する。
According to the present invention, a sine wave transmitting coil and a receiving coil are disposed in a fine ceramics protection tube having at least heat resistance and non-adhesiveness to a metal to be measured and its oxide. The transmitter, receiver, and numerical display corresponding to each coil can be installed in a place where there is no influence of heat from the molten metal.The transmission coil and the reception coil are heat-resistant fine ceramic bobbins. Since these coils are wound in the protective tube and disposed in the protective tube, these coils are not affected by heat, and have an effect of accurately measuring the level of the upper surface of the molten metal for a long period of time.

【0014】また発信コイルから金属溶湯内において発
信される正弦波を計測手段としているので、金属溶湯内
に位置する発信コイルから発信された正弦波は金属溶湯
に吸収されて受信コイルに受信されることが無く、該溶
湯の上面より上方に位置する発信コイルから発信された
正弦波のみが受信コイルによって受信され、測定値に変
換されるので、微細かつ正確な測定値が連続して得られ
る効果も有する。
Since the sine wave transmitted from the transmitting coil in the molten metal is used as the measuring means, the sine wave transmitted from the transmitting coil located in the molten metal is absorbed by the molten metal and received by the receiving coil. Since only the sine wave transmitted from the transmitting coil located above the upper surface of the molten metal is received by the receiving coil and converted into a measured value, fine and accurate measured values can be continuously obtained. Also have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の一例の要部を断面として示した骨格図で
ある。
FIG. 1 is a skeleton diagram showing a cross section of a main part of an embodiment.

【図2】金属溶湯の上面が最高位を占めている際の該上
面と発信コイルと受信コイルとの位置関係の説明図であ
る。
FIG. 2 is an explanatory diagram of a positional relationship between a transmitting coil and a receiving coil when the upper surface of a molten metal occupies the highest position.

【図3】金属溶湯がやや減量された際の金属溶湯の上面
と発信コイルと受信コイルとの位置関係の説明図であ
る。
FIG. 3 is an explanatory diagram of a positional relationship between an upper surface of the molten metal, a transmitting coil, and a receiving coil when the molten metal is slightly reduced.

【図4】金属溶湯が消尽しつくされた際の金属溶湯の上
面と発信コイルと受信コイルとの位置関係の説明図であ
る。
FIG. 4 is an explanatory diagram of a positional relationship between an upper surface of the molten metal, a transmitting coil, and a receiving coil when the molten metal is exhausted.

【符号の説明】[Explanation of symbols]

1 保護管 2 ボビン 3 発信コイル 4 受信コイル 5、6 発信コイルの両端 7 発信機 8、9 受信コイルの両端 10 受信機 11 電力出力端 12 金属溶湯 13 上面 14 数値演算表示機 DESCRIPTION OF SYMBOLS 1 Protective tube 2 Bobbin 3 Transmitting coil 4 Receiving coil 5, 6 Both ends of transmitting coil 7 Transmitter 8, 9 Both ends of receiving coil 10 Receiver 11 Power output end 12 Molten metal 13 Top surface 14 Numerical operation display

フロントページの続き Fターム(参考) 2F014 AB03 AC06 EB01 2F073 AA01 AB04 BB02 BC01 CC02 CD02 DD01 DE02 FF03 GG05Continuation of the front page F term (reference) 2F014 AB03 AC06 EB01 2F073 AA01 AB04 BB02 BC01 CC02 CD02 DD01 DE02 FF03 GG05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定対象金属の溶融温度に耐え、かつ該金
属やその酸化物の付着が生じないファインセラミックス
製で有底の長筒形状の保護管内に配設された少なくとも
前記金属の溶融温度に耐えうるファインセラミックス製
のボビンに、正弦波を発信する発信コイルと、その正弦
波を受信する受信コイルとが、同一のコイル平均径で、
同一のコイルピッチを半ピッチずらせた二重螺旋形に捲
回配置されており、発信コイルの両端が正弦波の発信機
に接続され、受信コイルの両端が前記正弦波の受信機に
接続されていると共に、発信コイルと受信コイルとを内
蔵する前記長筒形状の保護管が、上下に変動する金属溶
湯上面の変動範囲をカバーする深さまで、該上面上方か
ら溶湯内に挿入されており、前記受信機の電圧出力端
が、金属溶湯上面位置の数値演算表示機に接続されてい
る溶融金属用レベルセンサー。
1. The melting temperature of at least the metal disposed in a long-bottomed protective tube made of fine ceramics that withstands the melting temperature of the metal to be measured and does not cause adhesion of the metal or its oxide. The transmitting coil for transmitting a sine wave and the receiving coil for receiving the sine wave are the same coil average diameter on a bobbin made of fine ceramics that can withstand
The same coil pitch is wound and arranged in a double helix shifted by half a pitch, both ends of the transmitting coil are connected to a sine wave transmitter, and both ends of a receiving coil are connected to the sine wave receiver. And the long cylindrical protection tube containing the transmitting coil and the receiving coil is inserted into the molten metal from above the upper surface of the molten metal to a depth that covers the fluctuation range of the upper surface of the molten metal that moves vertically. A level sensor for molten metal in which the voltage output terminal of the receiver is connected to a numerical display at the top of the molten metal.
JP2000345269A 2000-11-13 2000-11-13 Molten metal level sensor Pending JP2002148099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345269A JP2002148099A (en) 2000-11-13 2000-11-13 Molten metal level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345269A JP2002148099A (en) 2000-11-13 2000-11-13 Molten metal level sensor

Publications (1)

Publication Number Publication Date
JP2002148099A true JP2002148099A (en) 2002-05-22

Family

ID=18819330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345269A Pending JP2002148099A (en) 2000-11-13 2000-11-13 Molten metal level sensor

Country Status (1)

Country Link
JP (1) JP2002148099A (en)

Similar Documents

Publication Publication Date Title
JP2004012308A (en) Position measuring device utilizing coil, float type flowmeter, and method of measuring position
US4188826A (en) Device for measuring the liquid level of an electrically conductive liquid
US20130269432A1 (en) Electromechanical Fill-Level Measuring Device
WO1991000494A1 (en) Sensor
EP2475964B1 (en) High temperature operation inductive position sensing device
CN110375632B (en) Magnetostrictive displacement sensor suitable for large temperature range/high temperature environment
JP3349739B2 (en) Displacement measuring device
GB1585496A (en) Coil arrangement for electro-magnetic measurements
JP2002148099A (en) Molten metal level sensor
US4874252A (en) Electronic thermometer
RU2356684C2 (en) Device for detection of slag content in molten metal stream
CN212030674U (en) Magnetostrictive guided wave liquid level meter for high-temperature liquid
US7148432B2 (en) Weight-measuring sensor
JP3138953B2 (en) Slag thickness measuring device
JPS6175201A (en) Temperature compensation method of position indicator
CN211824800U (en) Temperature measuring device of heating device
JP2001255224A (en) Physical quantity sensor
CN114150200A (en) Protective tube and application and temperature measuring device thereof
CN111521234A (en) Magnetostrictive guided wave liquid level meter for high-temperature liquid
SU1499128A1 (en) Level gauge for liquid media
JPH074491Y2 (en) Eddy current type displacement sensor
CN2274105Y (en) Vortex-type molten-steel level detecting-controlling device
CN110388994A (en) A kind of permanent magnetism temperature sensor
CN115468624A (en) Continuous high-temperature liquid metal liquid level sensor and preparation method of sensitive core thereof
JPS625603Y2 (en)