JP2002147979A - Piping structure for heat storage material unit - Google Patents

Piping structure for heat storage material unit

Info

Publication number
JP2002147979A
JP2002147979A JP2000344858A JP2000344858A JP2002147979A JP 2002147979 A JP2002147979 A JP 2002147979A JP 2000344858 A JP2000344858 A JP 2000344858A JP 2000344858 A JP2000344858 A JP 2000344858A JP 2002147979 A JP2002147979 A JP 2002147979A
Authority
JP
Japan
Prior art keywords
heat storage
pipe
storage material
material unit
temperature liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000344858A
Other languages
Japanese (ja)
Inventor
Hitoo Morino
仁夫 森野
Katsuhiko Kimura
克彦 木村
Yoji Nishikawa
洋二 西川
Tadashi Takano
忠 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2000344858A priority Critical patent/JP2002147979A/en
Publication of JP2002147979A publication Critical patent/JP2002147979A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently aggregate and line up heat storage material units in a heat storage tank used for an LNG cold energy system. SOLUTION: The system consists of a vertical supply pipe 11 for flowing down low temperature liquid, a branch line network 12 which is connected to the lower end of the pipe 11, a heat exchange piping group 13 which communicates with the network 12 and in which a plurality of the pipes are set up parallel to the pipe 11 from the pipe surface so as to have substantially the same height therewith for flowing up the low temperature liquid, a header 14 wherein the upper end of the piping group 13 is connected to individual portions for collection of the low temperature liquid, and a return pipe 15 which is connected to the header 14. The system except its upper part is embedded in a curing thermal storage material unit 10 of substantially narrow and long rectangular shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蓄熱材ユニットの配
管構造に係り、冷熱液化ガスの熱交換を行う冷熱蓄熱槽
内において、その内部配管を効率よく配置し掘削空間内
に複数本の蓄熱材ユニットを整列して集合配置できるよ
うにした蓄熱材ユニットの配管構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe structure of a heat storage material unit. The present invention relates to a piping structure of a heat storage material unit in which units can be arranged collectively.

【0002】[0002]

【従来の技術】LNGエネルギー有効利用手段として、
LNG冷熱利用システムが計画されている。LNG冷熱
利用システムは、従来、積極利用されていなかったLN
G冷熱を高効率に利用することを目的とし、超低温まで
蓄熱可能な大規模な冷熱蓄熱槽と液化ガス貯槽がシステ
ム中に設けられ、LNG冷熱の蓄熱と蓄熱された冷熱に
よって空気をはじめとする他の有用な気体を液化させて
貯蔵することに使用される。LNG冷熱利用システム
は、昼間運転及び夜間運転の運転モードで運転されるた
め、常温から極低温までの熱サイクルを1日のサイクル
で経験する。このため、内部で大きな温度差が生じるの
で、大型の冷熱蓄熱槽の建設に際しては蓄熱槽構築技
術、熱遮蔽等の種々技術の確立が必要である。
2. Description of the Related Art As means for effectively utilizing LNG energy,
An LNG cold energy utilization system is being planned. The LNG cold energy utilization system has not been actively used in the past.
G Large-scale cold heat storage tank and liquefied gas storage tank capable of storing heat up to ultra-low temperatures are provided in the system for the purpose of using cold energy with high efficiency. Used to liquefy and store other useful gases. Since the LNG cold energy utilization system is operated in the daytime operation mode and the nighttime operation mode, it experiences a heat cycle from room temperature to extremely low temperature in a one-day cycle. For this reason, a large temperature difference occurs inside, and therefore, when constructing a large-sized cold heat storage tank, it is necessary to establish various techniques such as a heat storage tank construction technique and heat shielding.

【0003】ところで、このLNG冷熱利用システムの
蓄熱槽建屋内に構築される冷熱蓄熱槽は、図3,図4に
示したように、冷熱蓄熱槽は所定形状をなす複数本の蓄
熱材ユニット50を縦横に接するように整列して集合配
置させた蓄熱材集合体を主体構成としている。規模とし
ては平面積が30〜40m平方、深さ20m程度の容積の
ものを想定している。
As shown in FIGS. 3 and 4, a cold heat storage tank constructed in a heat storage tank building of this LNG cold heat utilization system is composed of a plurality of heat storage material units 50 having a predetermined shape. Is mainly composed of a heat storage material aggregate in which the heat storage materials are aligned and arranged so as to contact vertically and horizontally. It is assumed that the scale has a plane area of 30 to 40 m square and a volume of about 20 m depth.

【0004】個々の蓄熱材ユニット50は、内部に熱交
換配管51が配管され、その周囲に蓄熱材としてのコン
クリート54が充填された細長直方体形状からなり、そ
の大きさとしては平面寸法が1辺1m、約高さ20mで、外
側面が断熱材等で覆われた仕様となっている。図3に
は、この蓄熱材ユニット50を、地中連続壁52で囲ま
れた所定形状に掘削された掘削空間内に整列して埋設
し、64本(8×8列)の平面視して矩形の1ブロック
53として構築し、さらに複数のブロック53を集合さ
せて冷熱蓄熱槽とした例が示されている。図4に示した
ように、各蓄熱材ユニット50に配管された熱交換配管
51には、各ユニットの上部に配置されたヘッダ56
(56A,56B)を介して供給管57、戻り管58が
配管されている。
[0004] Each heat storage material unit 50 has an elongated rectangular parallelepiped shape in which a heat exchange pipe 51 is provided inside and a concrete 54 is filled as a heat storage material around the heat exchange pipe 51. The size of the heat storage material unit 50 is one side. It is 1m, about 20m high, and its outer surface is covered with heat insulating material. In FIG. 3, this heat storage material unit 50 is aligned and buried in an excavation space excavated into a predetermined shape surrounded by an underground continuous wall 52, and 64 (8 × 8 rows) plan views are shown. An example is shown in which a block 53 is constructed as a rectangular block, and a plurality of blocks 53 are assembled to form a cold / heat storage tank. As shown in FIG. 4, a heat exchange pipe 51 connected to each heat storage material unit 50 has a header 56 disposed above each unit.
A supply pipe 57 and a return pipe 58 are provided via (56A, 56B).

【0005】図5(a)は、蓄熱材ユニット50内のL
NG等の冷熱液化ガスの熱交換配管51の配管例を示し
た概略断面図である。同図に示したように、供給管57
内を送られてきた冷熱液化ガスの低温液体は、蓄熱材ユ
ニット50上部に配置された液体入口側ヘッダ56Aを
介して、所定液圧で蓄熱材ユニット50内の下端51a
でU字形をなすように全高にわたり配管された多数の熱
交換配管51内に送られ、下端でUターンさせて再度蓄
熱材ユニット50の上端の液体出口側ヘッダ56Bから
回収され、戻り管58により次プロセスへ送られる。こ
のような構成により、各蓄熱材ユニット50では、運転
時に熱交換配管51内の低温液体をその周囲の蓄熱材5
4と熱交換して気化させている。
FIG. 5 (a) shows the L in the heat storage material unit 50.
It is the schematic sectional drawing which showed the piping example of the heat exchange piping 51 of the cold liquefied gas, such as NG. As shown in FIG.
The low-temperature liquid of the cryogenic liquefied gas sent through the inside of the heat storage material unit 50 at a predetermined liquid pressure through a liquid inlet side header 56A disposed above the heat storage material unit 50 has a lower end 51a.
Is sent into a large number of heat exchange pipes 51 piped over the entire height so as to form a U-shape. It is sent to the next process. With such a configuration, in each heat storage material unit 50, during operation, the low-temperature liquid in the heat exchange pipe 51 is transferred to the heat storage material 5 around it.
It is vaporized by heat exchange with 4.

【0006】[0006]

【発明が解決しようとする課題】このとき、前記低温液
体を流す蓄熱材ユニットの配管では、配管中で低温液体
が気化すると、流下する液体の流路を閉塞することが予
想される。たとえば図5(a)に示したようなU字配管
状の熱交換配管は、下向流の配管部分で液体流量が分散
されるため、下向流の低温液体内でベーパーロックを起
こす可能性が高い。このため、液相から気相への変化が
起きる可能性があるLNG配管のような構造に適用する
には問題がある。そこで、低温液体の流れは、配管の下
方から上方へ上昇させるように流通させることが望まし
い。
At this time, in the pipe of the heat storage material unit through which the low-temperature liquid flows, when the low-temperature liquid is vaporized in the pipe, it is expected that the flow path of the liquid flowing down will be blocked. For example, in a U-shaped heat exchange pipe as shown in FIG. 5 (a), the liquid flow is dispersed in a downwardly flowing pipe portion, so that there is a possibility that vapor lock occurs in a downwardly flowing low-temperature liquid. Is high. For this reason, there is a problem when applied to a structure such as an LNG pipe in which a change from a liquid phase to a gas phase may occur. Therefore, it is desirable that the flow of the low-temperature liquid is circulated so as to rise upward from below the pipe.

【0007】その観点から考案された配管として図5
(b)に示した熱交換配管がある。すなわち、この熱交
換配管63は、蓄熱材ユニット60の側面に沿って下端
まで供給管61を配管し、ユニットの底部60a下に配
置された液体入口側ヘッダ62を介して蓄熱材ユニット
60内に上下方向に沿って並列配置された熱交換配管6
3とを接続し、その熱交換配管内に低温液体を供給し、
配管内を下端から上向へ液体を流し、ユニット上部の液
体出口ヘッダ58を介して戻り管58によって回収され
る構造となっている。しかし、この配管構造では蓄熱材
ユニットの側面に供給管61を設置したり、ユニット6
0底部に蓄熱材ユニット支持台64を設置することが必
要で、そのための作業空間も確保する必要があり、蓄熱
材ユニット全体の設置及び配管の施工性が低下するとい
う問題点があった。
FIG. 5 shows a pipe designed from this viewpoint.
There is a heat exchange pipe shown in FIG. In other words, this heat exchange pipe 63 connects the supply pipe 61 to the lower end thereof along the side surface of the heat storage material unit 60, and enters the heat storage material unit 60 through the liquid inlet side header 62 disposed below the bottom 60a of the unit. Heat exchange pipes 6 arranged in parallel along the vertical direction
3 and supply the low-temperature liquid into the heat exchange pipe,
The liquid flows upward from the lower end in the pipe, and is collected by the return pipe 58 via the liquid outlet header 58 at the upper part of the unit. However, in this piping structure, the supply pipe 61 is installed on the side of the heat storage material unit,
It is necessary to install the heat storage material unit support base 64 at the bottom, and it is necessary to secure a work space therefor, and there has been a problem that the installation of the entire heat storage material unit and the workability of piping are reduced.

【0008】そこで、本発明の目的は上述した従来の技
術が有する問題点を解消し、蓄熱材ユニットのスペース
を効率よく利用した低温液体の熱交換用配管を備えた蓄
熱材ユニットの配管構造を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a piping structure of a heat storage material unit having a low-temperature liquid heat exchange piping which efficiently utilizes the space of the heat storage material unit. To provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は冷熱液化ガスの低温液体を流下させる鉛直
供給管と、鉛直供給管の下端に接続された分岐配管網
と、該分岐管網と連通して管面から複数本が、前記鉛直
供給管と平行にその高さがほぼ等しくなるまで立設され
た前記低温液体を上向流させる熱交換配管群と、該熱交
換配管群の上端が各部に接続され前記低温液体を集合さ
せるヘッダと、該ヘッダに接続された戻り管とからなる
系統の上部以外が、略細長直方体状の硬化性蓄熱材内に
埋設されたことを特徴とする。
In order to achieve the above object, the present invention provides a vertical supply pipe for flowing a low-temperature liquid of a cryogenic liquefied gas, a branch pipe network connected to a lower end of the vertical supply pipe, and a branch pipe. A plurality of heat exchange pipes which communicate with the pipe network and are arranged in parallel from the pipe surface to stand in parallel with the vertical supply pipe until the height thereof is substantially equal, and which allows the low-temperature liquid to flow upward; The upper end of the group is connected to each part, the header for collecting the low-temperature liquid, and the upper part of the system consisting of the return pipe connected to the header, other than the upper part of the system, is embedded in the substantially elongated rectangular parallelepiped curable heat storage material. Features.

【0010】前記鉛直供給管は、前記硬化性蓄熱材内の
平面上ほぼ中央位置に、前記硬化性蓄熱材の長手方向に
沿って配管され、該鉛直供給管下端を中心として前記分
岐管網が放射状に配管することが好ましい。
[0010] The vertical supply pipe is piped at a substantially central position on a plane in the curable heat storage material along a longitudinal direction of the curable heat storage material, and the branch pipe network is formed around the lower end of the vertical supply pipe. Preferably, the pipes are arranged radially.

【0011】[0011]

【発明の実施の形態】以下、本発明の蓄熱材ユニットの
配管構造の一実施の形態について、添付図面を参照して
説明する。図1は、蓄熱材ユニット10内の配管状態が
わかるように蓄熱材1の一部を切り欠いて示した斜視図
である。同図に示したように、蓄熱材ユニット10内に
は低温液体を蓄熱材ユニット10内の底部まで流下させ
る供給管11と、底部で供給管11に連結され放射状及
び、あるいは周方向に配管が一体的に連結された底部分
岐管網12と、底部分岐管網12の所定位置に連結さ
れ、管体自体が蓄熱材ユニット10の上下方向に延在す
るように配管された熱交換配管13と、蓄熱材ユニット
10の上端まで配管された複数本の熱交換配管13を集
合させたヘッダ14と、ヘッダ14からの戻り流を合流
帰還させる戻り管15とが配管されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the piping structure of a heat storage material unit according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view in which a part of the heat storage material 1 is cut away so that a pipe state in the heat storage material unit 10 can be understood. As shown in the figure, a supply pipe 11 for flowing a low-temperature liquid to the bottom of the heat storage material unit 10 in the heat storage material unit 10 and a pipe connected radially and / or circumferentially to the supply pipe 11 at the bottom. A bottom branch pipe network 12 that is integrally connected; a heat exchange pipe 13 that is connected to a predetermined position of the bottom branch pipe network 12 and that is arranged so that the pipe itself extends in the vertical direction of the heat storage material unit 10. A header 14 in which a plurality of heat exchange pipes 13 connected to the upper end of the heat storage material unit 10 are gathered, and a return pipe 15 for joining and returning the return flow from the header 14 are provided.

【0012】供給管11は、図1に示したように、水平
管11Aと、エルボー11aで直角下向きに曲げられ蓄
熱材ユニット10の平面中心位置に鉛直方向に配管され
た鉛直管11Bとからなり、図示しない圧縮機を介して
管内に供給された低温液体を蓄熱材ユニット10の下端
まで流下させる。本実施の形態では直径150mm、肉厚
3mmのステンレス鋼管が用いられている。管材質として
は、ステンレス鋼以外、熱伝導性が高く、コンクリート
内で非腐食性能を示し、高熱伝導率を有する銅管等が好
適である。
As shown in FIG. 1, the supply pipe 11 comprises a horizontal pipe 11A and a vertical pipe 11B bent at a right angle downward by an elbow 11a and vertically piped to the center of the plane of the heat storage material unit 10. Then, the low-temperature liquid supplied into the pipe via a compressor not shown flows down to the lower end of the heat storage material unit 10. In this embodiment, a stainless steel tube having a diameter of 150 mm and a thickness of 3 mm is used. As a tube material, a copper tube having high thermal conductivity, exhibiting a non-corrosive property in concrete, and having a high thermal conductivity other than stainless steel is suitable.

【0013】底部分岐管網12は、本実施の形態では、
図1及び図2(a)に示したように、供給管11の下端
から放射状に8方向に延びた放射配管12Aと、各放射
配管12Aを周方向に連結する3重の周方向管12Bと
から構成され、各配管は供給管11と同様にステンレス
鋼管を溶接加工して組み立てられている。
In this embodiment, the bottom branch pipe network 12 is
As shown in FIGS. 1 and 2A, a radial pipe 12A extending radially from the lower end of the supply pipe 11 in eight directions, and a triple circumferential pipe 12B connecting the radial pipes 12A in the circumferential direction. Each pipe is assembled by welding a stainless steel pipe in the same manner as the supply pipe 11.

【0014】さらに底部分岐管網12の各管の上面に所
定間隔をあけて複数本の熱交換配管13の下端が接続さ
れている。この熱交換配管群13の一部を図1に図示し
たように、底部分岐管12から蓄熱材ユニット10の上
端まで延在し、上端で平行配置されたヘッダ14(図2
(c))に接合され、熱交換配管13内を上昇してきた
低温液体がヘッダ14に集合される。このとき図2
(b)に示したように、蓄熱材ユニット10の中間位置
では蓄熱材1内に各熱交換配管13はほぼ等間隔に離し
て配管されている。このため、熱交換配管13から放熱
される冷熱は周囲の蓄熱材1に対して均等に熱伝導し、
蓄熱材1全体を均等に冷却することができる。複数本の
ヘッダ14は、図2(c)に示したように、蓄熱槽上部
に配管された戻り管15に接続される。この戻り管15
までの系統を一巡して熱交換された低温液体の一部は、
他の蓄熱材ユニット10からの戻り流と合流し、サイク
ル内の次プロセス(図示せず)に供給される。
Further, the lower ends of a plurality of heat exchange pipes 13 are connected to the upper surface of each pipe of the bottom branch pipe network 12 at a predetermined interval. As shown in FIG. 1, a part of the heat exchange pipe group 13 extends from the bottom branch pipe 12 to the upper end of the heat storage material unit 10, and the header 14 (FIG.
The low-temperature liquid that has been joined in (c) and rises in the heat exchange pipe 13 is collected in the header 14. At this time, FIG.
As shown in (b), at the intermediate position of the heat storage material unit 10, the heat exchange pipes 13 are arranged in the heat storage material 1 at substantially equal intervals. For this reason, the cold heat radiated from the heat exchange pipe 13 conducts heat uniformly to the surrounding heat storage material 1,
The entire heat storage material 1 can be uniformly cooled. As shown in FIG. 2C, the plurality of headers 14 are connected to a return pipe 15 provided above the heat storage tank. This return pipe 15
A part of the cryogenic liquid that has been heat-exchanged
It merges with the return flow from another heat storage material unit 10 and is supplied to the next process (not shown) in the cycle.

【0015】上述した供給管11の本体、底部分岐管網
12及び熱交換配管13はすべて蓄熱材ユニット10の
ための型枠内であらかじめ組み立てられ、その周囲に硬
化性蓄熱充填材としてのコンクリートが充填され、所定
の養生時間経過後まで型枠内で養生し、コンクリートが
所定強度まで達した際に脱型して蓄熱材ユニット10が
製造される。コンクリートとしては、普通コンクリート
の他、熱伝導性を高める観点から非腐食性金属含有骨
材、スラグ等を混合したコンクリートの使用が考えられ
る。このように、蓄熱材ユニット10は内部に熱交換配
管13をすべて埋設し、外形が細長直方体形状となるよ
うにしたことにより、複数基を所定形状に掘削された掘
削ピット内に整然と並べ、ブロックを形成し、さらに複
数のブロックを集合させることでコンパクトな冷熱蓄熱
槽を構築でき、蓄熱槽の容積を最小限とすることができ
る。
The above-mentioned main body of the supply pipe 11, the bottom branch pipe network 12 and the heat exchange pipe 13 are all assembled in advance in a mold for the heat storage material unit 10, and concrete as a heat storage filler is hardened around the body. The heat storage material unit 10 is filled and cured in the mold until a predetermined curing time has elapsed, and when the concrete reaches a predetermined strength, the heat storage material unit 10 is manufactured. As concrete, in addition to ordinary concrete, use of concrete mixed with non-corrosive metal-containing aggregates, slag, and the like is considered from the viewpoint of enhancing thermal conductivity. As described above, the heat storage material unit 10 has the heat exchange pipes 13 buried therein so that the outer shape becomes an elongated rectangular parallelepiped. Is formed, and a plurality of blocks are assembled to form a compact cold heat storage tank, and the volume of the heat storage tank can be minimized.

【0016】なお、底部分岐管網12の管網レイアウ
ト、管径及び熱交換配管13の本数等は、設定された1
基当たりの蓄熱材ユニット10の容積、所要熱交換熱量
によって設計することが好ましい。このとき熱交換配管
13と蓄熱材1との熱交換効率を高めるために、配管周
囲に放熱フィンを設けることも好ましい。また、各配管
の材質は熱伝導性が良好でコンクリート内で非腐食性を
示す金属製管であれば種々のものが使用できることは言
うまでもない。
Note that the pipe network layout, the pipe diameter, the number of heat exchange pipes 13 and the like of the bottom branch pipe network 12 are set to one.
It is preferable to design according to the volume of the heat storage material unit 10 per unit and the required heat exchange heat quantity. At this time, in order to increase the heat exchange efficiency between the heat exchange pipe 13 and the heat storage material 1, it is preferable to provide a radiation fin around the pipe. It goes without saying that various pipes may be used as long as the pipes are made of a metal pipe having good thermal conductivity and non-corrosive properties in concrete.

【0017】[0017]

【発明の効果】以上に述べたように、蓄熱材ユニット内
に効率よく熱交換配管を埋設することができ、蓄熱材ユ
ニットを効率よく冷熱蓄熱槽内に整列させ、集合させる
ことができ、完成後の耐震性能等、設計、施工上で有効
となる。また、熱交換配管設備の保守管理面でも蓄熱材
ユニット下での作業をなくすことができるという効果を
奏する。
As described above, the heat exchange pipe can be efficiently buried in the heat storage material unit, and the heat storage material units can be efficiently aligned and assembled in the cold / heat storage tank. It is effective in design and construction such as later earthquake resistance. In addition, there is an effect that work under the heat storage material unit can be eliminated also in terms of maintenance management of the heat exchange piping equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による蓄熱材ユニットの配管構造の一実
施の形態を一部切り欠いて示した斜視図。
FIG. 1 is a partially cutaway perspective view showing a piping structure of a heat storage material unit according to an embodiment of the present invention.

【図2】図1に示した矢視線、断面線に沿って示した蓄
熱材ユニットの配管構造の端面図、断面図。
FIG. 2 is an end view and a cross-sectional view of the piping structure of the heat storage material unit shown along the arrows and the cross-sectional lines shown in FIG.

【図3】冷熱蓄熱槽の一例を示した概略平面図。FIG. 3 is a schematic plan view showing an example of a cold heat storage tank.

【図4】図3に示した冷熱蓄熱槽のIV-IV断面線に沿っ
て示した断面図。
FIG. 4 is a cross-sectional view of the cold heat storage tank shown in FIG. 3, taken along the line IV-IV.

【図5】従来の計画された蓄熱材ユニットの配管構造の
一例を示した断面図。
FIG. 5 is a cross-sectional view showing an example of a conventional planned piping structure of a heat storage material unit.

【符号の説明】 1 蓄熱材 10 蓄熱材ユニット 11 供給管 12 底部分岐管網 13 熱交換配管 14 ヘッダ 15 戻り管[Description of Signs] 1 heat storage material 10 heat storage material unit 11 supply pipe 12 bottom branch pipe network 13 heat exchange pipe 14 header 15 return pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 洋二 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 高野 忠 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 Fターム(参考) 3E070 AA02 AA13 AB32 DA03 EA04 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoji Nishikawa 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Tadashi 1-2-3 Shibaura, Minato-ku, Tokyo Shimizu Corporation F term in the company (reference) 3E070 AA02 AA13 AB32 DA03 EA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷熱液化ガスの低温液体を流下させる鉛直
供給管と、該鉛直供給管の下端に接続された分岐配管網
と、該分岐管網と連通して管面に複数本が、前記鉛直供
給管と平行にその高さがほぼ等しくなるまで立設された
前記低温液体を上向流させる熱交換配管群と、該熱交換
配管群の上端が各部に接続され前記低温液体を集合させ
るヘッダと、該ヘッダに接続された戻り管とからなる系
統の上部以外が、略細長直方体状の硬化性蓄熱材内に埋
設されたことを特徴とする蓄熱材ユニットの配管構造。
1. A vertical supply pipe through which a low-temperature liquid of a cryogenic liquefied gas flows down, a branch pipe network connected to a lower end of the vertical supply pipe, and a plurality of pipes connected to the branch pipe network on a pipe surface, A heat exchange pipe group that rises in parallel with the vertical supply pipe until the height thereof is substantially equal to the low temperature liquid, and an upper end of the heat exchange pipe group is connected to each part to collect the low temperature liquid. A piping structure of a heat storage material unit, characterized in that a part other than an upper part of a system including a header and a return pipe connected to the header is buried in a substantially elongated rectangular parallelepiped curable heat storage material.
【請求項2】前記鉛直供給管は、前記硬化性蓄熱材内の
平面上ほぼ中央位置に、前記硬化性蓄熱材の長手方向に
沿って配管され、該鉛直供給管下端を中心として前記分
岐管網が放射状に配管されたことを特徴とする請求項1
記載の蓄熱材ユニットの配管構造。
2. The vertical supply pipe is piped along a longitudinal direction of the hardenable heat storage material at a substantially central position on a plane in the hardenable heat storage material, and the branch pipe is provided around a lower end of the vertical supply pipe. 2. The net according to claim 1, wherein the net is radially piped.
The piping structure of the heat storage material unit described.
JP2000344858A 2000-11-13 2000-11-13 Piping structure for heat storage material unit Pending JP2002147979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344858A JP2002147979A (en) 2000-11-13 2000-11-13 Piping structure for heat storage material unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344858A JP2002147979A (en) 2000-11-13 2000-11-13 Piping structure for heat storage material unit

Publications (1)

Publication Number Publication Date
JP2002147979A true JP2002147979A (en) 2002-05-22

Family

ID=18818994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344858A Pending JP2002147979A (en) 2000-11-13 2000-11-13 Piping structure for heat storage material unit

Country Status (1)

Country Link
JP (1) JP2002147979A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253465A (en) * 2013-04-18 2013-08-21 重庆交通运输控股(集团)有限公司国际货运代理分公司 Energy storage insulation container
CN103508125A (en) * 2013-03-26 2014-01-15 新能(张家港)能源有限公司 Cooling device for crude dimethyl ether storage tank
CN106185084A (en) * 2016-07-21 2016-12-07 赵中元 Cold Chain Logistics preservation device
CN112393486A (en) * 2020-11-06 2021-02-23 中国海洋石油集团有限公司 Method for utilizing cold energy of liquefied natural gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508125A (en) * 2013-03-26 2014-01-15 新能(张家港)能源有限公司 Cooling device for crude dimethyl ether storage tank
CN103253465A (en) * 2013-04-18 2013-08-21 重庆交通运输控股(集团)有限公司国际货运代理分公司 Energy storage insulation container
CN103253465B (en) * 2013-04-18 2015-06-03 重庆交通运输控股(集团)有限公司国际货运代理分公司 Energy storage insulation container
CN106185084A (en) * 2016-07-21 2016-12-07 赵中元 Cold Chain Logistics preservation device
CN112393486A (en) * 2020-11-06 2021-02-23 中国海洋石油集团有限公司 Method for utilizing cold energy of liquefied natural gas
CN112393486B (en) * 2020-11-06 2022-06-21 中国海洋石油集团有限公司 Method for utilizing cold energy of liquefied natural gas

Similar Documents

Publication Publication Date Title
US6400896B1 (en) Phase change material heat exchanger with heat energy transfer elements extending through the phase change material
US4279294A (en) Heat pipe bag system
US6138746A (en) Cooling coil for a thermal storage tower
JP2014520243A (en) Thermal energy storage device and plant, method and use thereof
KR20090099517A (en) Geothermal heat exchange system and method
US4339929A (en) Heat pipe bag system
CN1464967A (en) Inertial energy storage device
JP2002147979A (en) Piping structure for heat storage material unit
CN205560271U (en) Cryogenic tank fluid pipeline cold insulation structure
JP6148433B2 (en) Heat storage and heat dissipation device container, heat storage and heat dissipation assembly, and energy production plant
CN201265827Y (en) Energy-saving stand
CN215490479U (en) Carbon dioxide ice making pipeline system for speed skating field
CN105546337B (en) A kind of cryogenic tank fluid pipeline cold insulation structure and method
CN1127604C (en) Stadium with arena such as ice rink and surrounding stands for spectators, and channel element for channel system in stadium
CN105735501A (en) Heat pipe network fire-preventing and collapse-preventing device for steel-structure building
Bernert Jr et al. Cryogenic ambient air vaporizers: frost growth, wind and seismic design for safety
JPH06136738A (en) Ground freezing construction method
JP2023160788A (en) Installation for storing cryogenic fluid
CN215635362U (en) Construction protection structure with gas pipe crossed above during laying of thermal pipe
CN110904781B (en) Structure and method for paving refrigeration pipeline of ice rink
RU2220257C2 (en) Process of formation of base of construction foundation on swamped territories
Darve et al. A He II Heat Exchanger Test Unit designed for the LHC interaction region magnets
JP3465195B2 (en) Cryopump
JP2777910B2 (en) Underground structure of superconducting power storage facility
US4920754A (en) System for dumping cryogens in a superconducting solenoid installation