JP2002143601A - Method and apparatus for concentrating solvent - Google Patents

Method and apparatus for concentrating solvent

Info

Publication number
JP2002143601A
JP2002143601A JP2000345418A JP2000345418A JP2002143601A JP 2002143601 A JP2002143601 A JP 2002143601A JP 2000345418 A JP2000345418 A JP 2000345418A JP 2000345418 A JP2000345418 A JP 2000345418A JP 2002143601 A JP2002143601 A JP 2002143601A
Authority
JP
Japan
Prior art keywords
container
solvent
inert gas
concentrating
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345418A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tomaru
勝彦 外丸
Teruaki Nakayama
照明 中山
Takeshi Tatsukuchi
健 辰口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2000345418A priority Critical patent/JP2002143601A/en
Publication of JP2002143601A publication Critical patent/JP2002143601A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply concentrate a solvent used at the time of analyzing a chemical substance. SOLUTION: The solvent is concentrated so as not to dry a sample in a narrow pipe formed in the lowermost part of a vessel by keeping the temperature of the vessel at a prescribed temperature and reducing the pressure in the vessel by discharging the vapor of the solvent while supplying an inert gas in the vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、化学物質の分析
を行う際に、溶媒抽出や抽出液のクリーンアップ(精
製)したものを少量の溶媒量になるまで濃縮する溶媒濃
縮方法及び装置に関するものである。
TECHNICAL FIELD The present invention relates to a method and an apparatus for concentrating a solvent which is subjected to solvent extraction or cleanup (purification) of an extract to a small amount of a solvent when analyzing a chemical substance. It is.

【0002】[0002]

【従来の技術】有機溶媒を濃縮する方法として、大量の
溶媒を濃縮する場合は、ロータリーエバポレータが一般
的に使用され、少量の溶媒を濃縮する場合は、クデルナ
ーダニッシュの濃縮装置を使用したり、開放系で加熱及
び窒素ガスを吹付けて、大気中に放出する濃縮装置が使
用されている。又、密閉系の大気圧で加熱濃縮する装置
も開発されている。
2. Description of the Related Art As a method for concentrating an organic solvent, a rotary evaporator is generally used when a large amount of a solvent is concentrated, and a Kuderner Danish concentrator is used when a small amount of a solvent is concentrated. A concentrating device is used in which an open system is used for heating and blowing nitrogen gas to release the air into the atmosphere. Further, a device for heating and concentrating at atmospheric pressure in a closed system has been developed.

【0003】ロータリーエバポレータは装置として古く
からあり、溶媒を扱う殆どの実験室で利用されている。
原理は冷却器の付いた回転する器具にナスフラスコを接
続して、ナスフラスコの底部を温浴に浸けて加熱加温し
ながら濃縮する。又、濃縮スピードを上げるために、冷
却器の後にアスピレータ等を接続して減圧状態にしなが
ら加熱することにより、溶媒を早く濃縮する方法が取ら
れている。
[0003] Rotary evaporators have been around for a long time and are used in most laboratories dealing with solvents.
The principle is that an eggplant flask is connected to a rotating device equipped with a cooler, and the bottom of the eggplant flask is immersed in a warm bath and concentrated while heating and heating. Further, in order to increase the concentration speed, a method has been adopted in which an aspirator or the like is connected after a cooler and heating is performed under reduced pressure, thereby quickly concentrating the solvent.

【0004】[0004]

【発明が解決しようとする課題】ロータリーエバポレー
タやクデルナーダニッシュの装置では、一台の装置で一
検体しか濃縮できず、必要な台数揃えるには多くの費用
が掛かり実験室のスペースを広く取る。又一度使用した
装置は用いたフラスコだけでなく、複雑な装置内部まで
も洗浄して汚染防止の処置をしなければ、次の濃縮に使
用することができないため、非常に効率が悪い。
In a rotary evaporator or a Kudelner Danish device, only one sample can be concentrated by one device, and it takes a lot of cost to prepare a necessary number of devices and requires a large space in a laboratory. Also, once used, not only the used flask, but also the inside of a complicated apparatus must be washed and treated to prevent contamination, so that it cannot be used for the next concentration, which is very inefficient.

【0005】一方、大氣開放系の濃縮装置は、大気中に
有機溶剤を放出してしまい、環境汚染の基になる。又、
同時多検体の処理ができるが、開放系であり、大気圧状
態での濃縮のために、溶媒の沸点まで加熱しなければな
らない。更に、比較的低沸点成分や熱分解し易い成分の
入ったサンプルでは、高温にできないため、濃縮時間が
非常に長くなるという問題がある。又、蒸発溶媒は多検
体でまじり合う結果となり、サンプル間での汚染の可能
性も考えられる。
[0005] On the other hand, an open-air type concentrator releases an organic solvent into the atmosphere, which is a source of environmental pollution. or,
Although multiple samples can be processed simultaneously, it is an open system and must be heated to the boiling point of the solvent for concentration under atmospheric pressure. Furthermore, a sample containing a relatively low-boiling component or a component that is easily decomposed by heat cannot be heated to a high temperature, so that there is a problem that the concentration time is extremely long. In addition, the evaporating solvent results in a mixture of multiple samples, and there is a possibility of contamination between samples.

【0006】密閉系での大気圧の濃縮装置は、濃縮する
のに溶媒の沸点まで加熱しなければならず、非常に時間
がかかることや高い温度にしたくない溶媒や試料を扱う
には向いていない。
[0006] Atmospheric pressure concentrators in closed systems must be heated to the boiling point of the solvent to condense, which is very time consuming and is suitable for handling solvents and samples that do not require elevated temperatures. Absent.

【0007】更に、現在ある濃縮装置の殆どは、濃縮し
た試料がフラスコなどの容器の内壁に試料が付着する構
造と成っている。そのため目的成分を、全量回収するた
めには、濃縮溶液を回収した後、更に清浄な溶媒で何度
もフラスコ内又は濃縮容器内を洗浄して回収する必要が
あり、全面に付着した試料を洗い流すためにはかなりの
溶媒を必要とする。例えば、1mlに濃縮しても、数回洗
浄すると、その洗浄液だけで数mlを必要とするため、全
部の洗浄液を回収すると5mlまでに増加してしまい、微
量濃縮に不向きという問題もある。特に、ダイオキシン
分析においては、200ml程度の溶液を数百μlまで濃
縮しなければならない上に、極度の汚染防止と、操作上
の扱い易さが要求される。又、40℃以上に加熱する
と、4塩化物以下のダイオキシン類等が飛散して、サン
プルのロスが生じるので、取扱いにも細心の注意が要求
される。
Further, most of the existing concentrators have a structure in which the concentrated sample adheres to the inner wall of a container such as a flask. Therefore, in order to collect the entire target component, after collecting the concentrated solution, it is necessary to wash and collect the inside of the flask or the concentrating container with a clean solvent many times, and wash away the sample attached to the entire surface. Requires a considerable amount of solvent. For example, even if it is concentrated to 1 ml, if it is washed several times, only a few ml of the washing liquid is required, and if the entire washing liquid is recovered, it will increase to 5 ml, which is not suitable for micro concentration. In particular, in dioxin analysis, about 200 ml of a solution must be concentrated to several hundred μl, and furthermore, extreme prevention of contamination and easy handling in operation are required. Further, when heated to 40 ° C. or more, dioxins of 4 chloride or less are scattered, resulting in loss of the sample, so that careful handling is required.

【0008】更に、どの濃縮装置でも迅速な溶媒蒸発が
必要とされる反面、ダイオキシン分析のように低沸点化
合物を目的成分とする場合には、溶媒が全て蒸発し、乾
固してしまわないことが重要となる。その蒸発溶媒と共
に目的成分までが蒸発し、飛散する可能性が大きくなる
からである。従って、濃縮の最終段階で目視により溶媒
の状態を確認し、蒸発操作を停止させることになるが、
一定の少量で確実に停止させることは困難であった。
[0008] Further, while rapid evaporation of the solvent is required in any concentrator, when a low-boiling point compound is used as the target component as in dioxin analysis, the solvent is completely evaporated and does not dry out. Is important. This is because the possibility that the target component evaporates together with the evaporation solvent and scatters increases. Therefore, at the final stage of concentration, the state of the solvent is visually confirmed, and the evaporation operation is stopped.
It was difficult to stop the operation reliably with a small amount.

【0009】[0009]

【課題を解決するための手段】そこで本発明は、同時に
多検体の溶媒濃縮と短時間での濃縮処理が可能であると
共に、設置面積が小さくて済み、コンパクトに形成で
き、又、開放系の環境にも影響を及ぼさず、他のサンプ
ルにも影響を及ぼさない、更には容器の洗浄の手間がな
くて済み、且つ洗浄溶媒も少なくて済み、その溶媒の乾
固を防ぐ溶媒濃縮方法及び装置を提案せんとするもの
で、第1に容器を所望温度に保つと共に、該容器に不活
性ガスを供給しつつ溶媒蒸気排出により容器内を減圧さ
せながら、容器の最下部に形成した細管に試料を乾固さ
せない状態で濃縮させることを特徴とし、第2に容器を
所望温度に保つと共に、該容器に不活性ガスを供給しつ
つ溶媒蒸気排出により容器内を減圧させながら、容器を
振動させることにより、試料の容器への付着を防ぐこと
を特徴とし、第3に加温装置に容器を着脱自在に装着す
ると共に、容器には減圧吸引装置と不活性ガス供給装置
との接続コネクターを着脱自在に装着する一方、前記吸
引流路と前記供給流路とを各容器ごと独立して設けたこ
とを特徴とし、第4に加温装置に容器を着脱自在に装着
すると共に、加温装置を振とう台上に設置する一方、容
器には減圧吸引装置と不活性ガス供給装置との接続コネ
クターを着脱自在に装着すると共に、接続コネクターに
は減圧吸引装置と不活性ガス供給装置を各容器ごとに独
立して連結自在としたことを特徴とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is capable of simultaneously concentrating a large number of samples and concentrating the solvent in a short period of time, has a small installation area, can be formed compact, and has an open system. A solvent concentration method and apparatus that does not affect the environment and does not affect other samples, furthermore, does not require washing of the container and requires less washing solvent, and prevents the solvent from drying out. First, while keeping the container at a desired temperature, while supplying the inert gas to the container and depressurizing the inside of the container by discharging the solvent vapor, the sample is placed in the thin tube formed at the bottom of the container. Second, the container is vibrated while keeping the container at a desired temperature and depressurizing the container by discharging solvent vapor while supplying an inert gas to the container. By The feature is to prevent the sample from adhering to the container. Third, the container is detachably attached to the heating device, and the connector for connecting the vacuum suction device and the inert gas supply device is detachably attached to the container. On the other hand, the suction flow path and the supply flow path are provided independently for each container. Fourthly, the container is detachably mounted on the heating device, and the heating device is shaken. On the other hand, the connection connector for the vacuum suction device and the inert gas supply device is detachably mounted on the container, and the vacuum suction device and the inert gas supply device are independently provided for each container. It can be connected freely.

【0010】[0010]

【発明の実施の形態】以下、本発明を図に示す実施例に
より詳細に説明する。1は容器で、濃縮用フラスコを使
用する。この口部11には接続コネクター2を着脱自在
に設置してある。この接続コネクター2は、口部11へ
の嵌合部21を透明摺りにて嵌合自在とし、且つガス連
結口22及びその下方に延ばした管23よりなる不活性
ガス供給部24と、溶媒吸引口25及び管23の周囲の
通孔26よりなる溶媒吸引部27とを構成してある。容
器1の最下部に、内径8mm以下の細管12を形成させ
る。この細管12では溶媒の表面積が小さくなるため、
蒸発速度が極端に遅くなり、長時間放置しなければ蒸発
乾固することはない。更に、この細管12の周辺に何ら
かの冷却の仕組み121、例えば冷却水循環装置、冷媒
循環装置、冷却ブロックを設けることは推奨される。そ
のことにより乾固を防ぐことが確実に行われるようにな
り、目視による溶媒量のチェックや時間による自動制御
などを不要とすることもできることから簡便な操作が可
能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. 1 is a container, which uses a flask for concentration. The connection connector 2 is detachably installed in the mouth portion 11. The connection connector 2 has a fitting portion 21 to the mouth portion 11 which can be freely fitted by transparent sliding, and an inert gas supply portion 24 including a gas connection port 22 and a pipe 23 extending below the gas connection port 22; A solvent suction unit 27 is formed by a port 25 and a through hole 26 around the tube 23. A thin tube 12 having an inner diameter of 8 mm or less is formed at the lowermost part of the container 1. Since the surface area of the solvent is small in the thin tube 12,
The evaporation rate becomes extremely slow, and it does not evaporate to dryness unless left for a long time. Further, it is recommended to provide some kind of cooling mechanism 121 around the narrow tube 12, for example, a cooling water circulating device, a refrigerant circulating device, and a cooling block. As a result, drying can be reliably prevented, and a simple operation becomes possible because it is not necessary to visually check the amount of the solvent or to automatically control the time.

【0011】ガス連結口22には、不活性ガス供給管3
0が着脱自在に連結してある。該不活性ガス供給管30
は、供給源31よりストップバルブ32、調圧器33、
圧力計34、フローメータ35、マスフローコントロー
ラ36、活性炭37を連結してあり、これらで不活性ガ
ス供給装置3を構成している。又、前述したストップバ
ルブ32を各容器1の吸引流路に設けることにより、容
器1の数が少ない場合にも、無駄に不活性ガスを消費す
ることを防ぐことができる。
An inert gas supply pipe 3 is connected to the gas connection port 22.
0 is detachably connected. The inert gas supply pipe 30
Is a stop valve 32, a pressure regulator 33,
The pressure gauge 34, the flow meter 35, the mass flow controller 36, and the activated carbon 37 are connected to each other, and these constitute the inert gas supply device 3. Further, by providing the above-described stop valve 32 in the suction flow path of each container 1, it is possible to prevent wasteful consumption of inert gas even when the number of containers 1 is small.

【0012】4は加温装置で、アルミブロック方式、マ
ントルヒータ、ウォーターバスを使用するが、恒温水槽
も使用できる。アルミブロックを使用する場合、容器1
をその透孔に挿通支承させる形で使用される。
Reference numeral 4 denotes a heating device which uses an aluminum block system, a mantle heater, and a water bath, but can also use a constant temperature water tank. Container 1 when using aluminum block
Is inserted into the through hole and used.

【0013】5は振とう装置で、適宜の振とう装置、例
えばバイブレータ方式、牽引装置等所望の形式を用いる
ことができる。前記加温装置4は振とう装置5に固定さ
れ、振とう装置5の振とう台51は基体6上に振とう自
在に載置されている。恒温水槽を加温装置4として使用
する場合、その全体を振とうする振とう恒温水槽41と
することができる。
Reference numeral 5 denotes a shaking device, which can use an appropriate shaking device, for example, a vibrator system, a traction device or the like. The heating device 4 is fixed to a shaking device 5, and a shaking table 51 of the shaking device 5 is mounted on the base body 6 so as to be able to shake. When using the constant temperature water tank as the heating device 4, the shaking constant temperature water tank 41 for shaking the whole can be used.

【0014】7は減圧吸引装置として作用する溶媒回収
装置で、吸引ポンプ71と、それに連通するキュラー7
2、必要に応じて設ける圧力計73により構成され、キ
ュラー72下部には液溜め74が着脱自在或いは設置自
在としてある。8は減圧吸引装置としての減圧コンデン
サーで、排出管9に連通してある。該減圧コンデンサー
8を設置せず、接続コネクター2のガス連結口22と排
出管9を介して溶媒回収装置7を連結してもよい。又、
減圧コンデンサー8下部には液溜め81を設置しておく
のがよい。溶媒回収装置7のキュラー72には排出口9
1を設けてある。又、濃縮装置全体を自動制御する機構
として図2に示すフロー図を一例として示す。
Reference numeral 7 denotes a solvent recovery device which functions as a reduced-pressure suction device.
2. A pressure gauge 73 provided as necessary, and a liquid reservoir 74 is detachable or installable below the curl 72. Reference numeral 8 denotes a decompression condenser as a decompression suction device, which communicates with the discharge pipe 9. The solvent recovery device 7 may be connected via the gas connection port 22 of the connection connector 2 and the discharge pipe 9 without installing the decompression condenser 8. or,
It is preferable to install a liquid reservoir 81 below the decompression condenser 8. The outlet 72 is provided in the curl 72 of the solvent recovery device 7.
1 is provided. In addition, as a mechanism for automatically controlling the entire concentrator, a flowchart shown in FIG. 2 is shown as an example.

【0015】10はコントローラで、以下の制御器の各
種を制御するコントローラの一括した概念を示してい
る。恒温水槽等のヒーターの温度センサー等を含む温度
コントローラ、振とう装置の速度コントローラ、不活性
ガス供給管3のマスフローコントローラ36との連結に
よる不活性ガス供給量の制御、溶媒回収装置7の吸引ポ
ンプ71の制御による溶媒排出量乃至減圧度の制御、更
にはその圧力計73の信号を吸引ポンプ71の制御等の
夫々の制御度及びそれらを予め組込むプログラムに則っ
た制御によって一部自動乃至全自動が可能になり、例え
ば、溶媒の蒸発速度の調節、減圧の程度の制御により、
濃縮速度の調節が可能になる。図において、101は容
器1の収納部を示し、恒温水槽や振とう装置を含む広範
な場所を示している。
Reference numeral 10 denotes a controller, which indicates a general concept of a controller that controls various types of the following controllers. A temperature controller including a temperature sensor of a heater such as a constant temperature water tank, a speed controller of a shaking device, a control of an inert gas supply amount by connecting the inert gas supply pipe 3 to a mass flow controller 36, and a suction pump of a solvent recovery device 7. Partially automatic or fully automatic according to the control of the solvent discharge amount or the degree of depressurization by the control of 71 and the control of the signal of the pressure gauge 73 according to the respective control degrees such as the control of the suction pump 71 and a program incorporating them in advance. It becomes possible, for example, by adjusting the evaporation rate of the solvent, by controlling the degree of reduced pressure,
The rate of concentration can be adjusted. In the figure, reference numeral 101 denotes a storage section of the container 1 and indicates a wide area including a constant temperature water tank and a shaking device.

【0016】[0016]

【実施例】実際の使用に際しては、容器1を所望数設置
できる加温装置4を使用する。各容器1には接続コネク
ター2を嵌合させ、そのガス連結口22には不活性ガス
供給管30を、溶媒吸引口25には排出管9を接続自在
としてある。不活性供給管30や排出管9の接続には、
螺子式、嵌合式等所望の接続方式が採用される。勿論、
試料は予め容器1に入れられ、容器1を加温装置4にセ
ットし、不活性ガス供給管30、排出管9をセットする
加温装置4により容器1を加温し、溶媒に応じた適温に
加温する。一方、不活性ガス供給管30からは試料に合
わせて必要量の窒素ガス等の不活性ガスを供給する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In actual use, a heating device 4 capable of installing a desired number of containers 1 is used. A connection connector 2 is fitted into each container 1, and an inert gas supply pipe 30 is connected to the gas connection port 22 and a discharge pipe 9 is connected to the solvent suction port 25. For connection of the inert supply pipe 30 and the discharge pipe 9,
A desired connection method such as a screw type or a fitting type is adopted. Of course,
The sample is put in the container 1 in advance, the container 1 is set in the heating device 4, and the container 1 is heated by the heating device 4 in which the inert gas supply pipe 30 and the discharge pipe 9 are set. Warm up. On the other hand, a required amount of inert gas such as nitrogen gas is supplied from the inert gas supply pipe 30 in accordance with the sample.

【0017】供給する窒素の量は、濃縮する溶媒の量に
よるが、大量に流す必要がない。溶媒200mlを濃縮す
る場合でも、50から100mL/min程度の窒素ガスで
充分である。窒素ガスの流れが、蒸発してきた有機溶媒
の移動をスムーズにし、容易に冷却器の方へ導く役目を
するので、大量に流す必要がない。窒素ガスの流量と溶
媒濃縮速度にはあまり関係がなく、窒素ガスは溶媒蒸気
のスムーズな移動を助けるための補助として働いている
と考えられる。
The amount of nitrogen to be supplied depends on the amount of the solvent to be concentrated, but it is not necessary to flow a large amount. Even when concentrating 200 ml of the solvent, about 50 to 100 ml / min of nitrogen gas is sufficient. Since the flow of the nitrogen gas serves to smooth the movement of the evaporated organic solvent and to easily guide the organic solvent toward the cooler, it is not necessary to flow a large amount. There is little relation between the flow rate of the nitrogen gas and the concentration rate of the solvent, and it is considered that the nitrogen gas serves as an aid to assist the smooth movement of the solvent vapor.

【0018】例えば、試料溶液の溶媒がトルエンである
場合、振とうさせずに窒素ガスを流しながら加熱濃縮す
るには、沸点の関係から減圧度がー97Kpa以下にな
らないように流す窒素ガスの流量をおおよそ10から1
00ml程度に調整しつつ、濃縮を行う。液面が容器の
底に近づくにつれて濃縮速度が遅くなり、特に容器の最
下部に設けた細管まで濃縮が進むと、溶媒の表面積が減
少して、より一層濃縮速度が減少する。そのため、試料
溶液の溶媒を濃縮して除く場合に乾固するのを防ぐ効果
が高くなる。
For example, when the solvent of the sample solution is toluene, to heat and concentrate while flowing a nitrogen gas without shaking, the flow rate of the nitrogen gas to be flowed so that the degree of reduced pressure does not become -97 Kpa or less due to the boiling point. About 10 to 1
Concentration is performed while adjusting to about 00 ml. As the liquid level approaches the bottom of the vessel, the rate of concentration becomes slower. In particular, when concentration progresses to the thin tube provided at the bottom of the vessel, the surface area of the solvent decreases, and the rate of concentration further decreases. Therefore, when the solvent of the sample solution is concentrated and removed, the effect of preventing the sample solution from being dried is increased.

【0019】又、振とうして濃縮を行った場合、溶媒の
濃縮速度は窒素ガスを流したときより速くなる。しか
し、50rpmの振とう速度であまり効果が少ないこと
が分った。100rpmの振とう速度では、濃縮時間を
約半分まで減らすことができた。これらの実験結果を図
7により示す。又、それ以上に振とうスピードが速くな
ると、溶媒がフラスコ内部で不規則な振動を起こし、容
器1の内壁上部まで跳ね上り、容器1を汚してしまうの
で、100rpm程度の振とう速度が最適であることが
判った。但し、溶媒の種類、粘度等により、振とうの最
適値は多少変わる。
Further, when concentration is performed by shaking, the concentration rate of the solvent is higher than when nitrogen gas is flown. However, it was found that at a shaking speed of 50 rpm, the effect was not so large. At a shaking speed of 100 rpm, the concentration time could be reduced by about half. The results of these experiments are shown in FIG. Further, if the shaking speed is higher than that, the solvent causes irregular vibration inside the flask and jumps up to the upper part of the inner wall of the container 1 and contaminates the container 1. Therefore, the shaking speed of about 100 rpm is optimal. I found it to be. However, the optimum value of the shaking slightly varies depending on the type of the solvent, the viscosity and the like.

【0020】更に、一定の量まで溶媒を濃縮したら、細
管部分に冷媒を循環させるなどして溶媒の蒸発速度を遅
らせ、目的とするサンプル量になったことを確認し、濃
縮操作を終了する。又、濃縮装置に振とう速度の自動調
節機構と、窒素ガス流量の時間及び減圧度による自動調
節機構を設けてやれば、最短の濃縮時間で蒸発乾固を防
ぐ条件を設定することができる。即ち、濃縮開始時にお
いては、極微少量の窒素ガスを流し、振とう速度を10
0rpmにセットし、溶媒が数グラムまで減少する時間
にセットして振とうを止める。振とうを停止したら、窒
素ガス流量を、減圧度が−97kpa(溶媒がトルエン
の場合)より悪くならないように制御させながら増加さ
せる。最終濃縮で数百マイクロリッターまでの極少量を
乾固することなく行うことができる。
Further, after the solvent is concentrated to a certain amount, the evaporation rate of the solvent is reduced by circulating a refrigerant through the thin tube portion, and it is confirmed that the target sample amount has been obtained, and the concentration operation is terminated. If the concentrating device is provided with an automatic adjusting mechanism of the shaking speed and an automatic adjusting mechanism based on the nitrogen gas flow time and the degree of reduced pressure, conditions for preventing evaporation to dryness can be set in the shortest enrichment time. That is, at the start of concentration, a very small amount of nitrogen gas is flowed, and the shaking speed is set at 10%.
Set to 0 rpm and stop shaking at the time when the solvent decreases to a few grams. After the shaking is stopped, the nitrogen gas flow rate is increased while controlling the degree of decompression so as not to be lower than -97 kpa (when the solvent is toluene). The final concentration can be carried out without drying down to very small amounts up to several hundred microliters.

【0021】[0021]

【発明の効果】以上述べたように本発明の請求項1によ
れば、容器を所望温度に保つと共に、該容器に不活性ガ
スを供給しつつ溶媒蒸気排出により容器内を減圧させな
がら、容器の最下部に形成した細管に試料を乾固させな
い状態で濃縮させたので、溶媒蒸発に都合よい温度に加
温し、不活性ガスの注入による気流により、溶媒蒸気を
移動させ、溶媒排出を徐々に促進させ、試料の容器内壁
への付着防止、突沸防止が図れる。又、溶媒吸引等の容
器内への減圧により、溶媒蒸発促進が図れる。排出溶媒
等は完全に回収され、かつ沸点まで加熱し、時間が掛か
るのを相乗作用によって短縮できる効果がある。
As described above, according to the first aspect of the present invention, the container is maintained at a desired temperature, and while the inside of the container is depressurized by discharging the solvent vapor while supplying an inert gas to the container, Since the sample was concentrated in a thin tube formed at the bottom of the sample without drying it, the sample was heated to a temperature convenient for evaporation of the solvent, and the solvent vapor was moved by the gas flow by the injection of the inert gas, and the solvent was gradually discharged. To prevent the sample from adhering to the inner wall of the container and prevent bumping. Further, the evaporation of the solvent can be promoted by reducing the pressure in the container such as by suctioning the solvent. The discharged solvent and the like are completely recovered and heated to the boiling point, which has the effect of shortening the time taken by synergy.

【0022】又、請求項2によれば、容器の最下部に、
直径8mm以下の細管を設けたので、容器の最下部の細
管まで濃縮が進むと、溶媒の表面積が減少してより一層
濃縮速度が減少する。そのため、試料溶液の溶媒を濃縮
して行く場合に、蒸発乾固するのを防ぐ効果が高くな
る。
According to the second aspect, at the bottom of the container,
Since the capillary having a diameter of 8 mm or less is provided, when the concentration proceeds to the bottom of the container, the surface area of the solvent is reduced, and the concentration rate is further reduced. Therefore, when the solvent of the sample solution is concentrated, the effect of preventing the solvent from evaporating to dryness is enhanced.

【0023】又、請求項3によれば、容器を所望温度に
保つと共に、該容器に不活性ガスを供給しつつ溶媒蒸気
排出により容器内を減圧させながら、容器を振動させる
ことにより、試料の容器への付着を防ぐので、溶媒蒸発
に都合よい温度に加温しつつ、不活性ガスの注入による
気流により溶媒蒸気を移動させて溶媒排出を促進させ
る。又、容器の振とうにより蒸発速度の促進と共に、試
料の容器内壁への付着防止、更には突沸の防止が図れ
る。
According to the third aspect of the present invention, the container is kept at a desired temperature, and the container is vibrated while supplying an inert gas to the container and reducing the pressure inside the container by discharging the solvent vapor. In order to prevent the solvent from adhering to the container, the solvent vapor is moved by the gas flow generated by the injection of the inert gas while heating the solvent to a temperature convenient for evaporating the solvent, thereby promoting the solvent discharge. In addition, the evaporation speed can be enhanced by shaking the container, the sample can be prevented from adhering to the inner wall of the container, and bumping can be prevented.

【0024】又、溶媒吸引等の容器内の減圧により、溶
媒蒸発促進が図れる。然も、これらが単独でなく、夫々
が同時に作用することによって、相乗的に働き、顕著な
濃縮操作ができたのである。又、排出溶媒等は、完全に
回収され、且つ沸点まで加熱し時間がかかるのを、相乗
作用によって短縮できる効果がある。
Further, the evaporation of the solvent can be promoted by reducing the pressure in the container such as by suctioning the solvent. Of course, they act not synergistically but simultaneously and act synergistically to perform a remarkable concentration operation. Further, the discharged solvent and the like are completely recovered, and there is an effect that the time required for heating to the boiling point and for taking a long time can be shortened by a synergistic action.

【0025】又、請求項4によれば、加温装置に容器を
着脱自在に装着すると共に、容器には減圧吸引装置と不
活性ガス供給装置との接続コネクターを着脱自在に装着
する一方、前記吸引流路と前記供給流路とを各容器ごと
独立して設けたので、請求項1の効果の他に、更に多数
の試料の濃縮のための必要な容器を必要個数装置に設置
でき極めて小型化でき、設定費用の節約とスペースの効
率的使用が可能となった。容器への不活性ガス供給装置
と溶媒吸引に減圧装置とを別々に設けるのでクロスコン
タミの防止ができる。更に、試料に接する部分の構成が
簡単であり、且つ分割形成してあり、洗浄作業が極めて
容易である。
According to a fourth aspect of the present invention, a container is removably mounted on the heating device, and a connector for connecting a reduced-pressure suction device and an inert gas supply device is removably mounted on the container. Since the suction flow path and the supply flow path are provided independently for each container, in addition to the effect of claim 1, a required number of containers for concentrating a larger number of samples can be installed in the required number of devices, and the size is extremely small. This saves setup costs and makes efficient use of space possible. Since a device for supplying an inert gas to the container and a pressure reducing device are separately provided for suctioning the solvent, cross contamination can be prevented. Further, the structure of the portion in contact with the sample is simple and is formed separately, so that the cleaning operation is extremely easy.

【0026】更に、請求項5によれば、加温装置に容器
を着脱自在に装着すると共に、加温装置を振とう台上に
設置する一方、容器には減圧吸引装置と不活性ガス供給
装置との接続コネクターを着脱自在に装着すると共に、
接続コネクターには減圧吸引装置と不活性ガス供給装置
を各容器ごとに独立して連結自在としたので、請求項4
に記載の効果の他に、振とう台と他の減圧吸引装置、不
活性ガス供給装置、加温装置と組合せ、従来より濃縮速
度を速く、然も容器の内壁への試料の残留防止、突沸の
防止ができ、効率の良い溶媒濃縮方法を実現できた。
According to a fifth aspect of the present invention, the container is detachably mounted on the heating device, and the heating device is installed on a shaking table, while the container has a reduced pressure suction device and an inert gas supply device. Attaching the connection connector with the detachable,
A vacuum connector and an inert gas supply device can be independently connected to the connection connector for each container.
In addition to the effects described in the above, in combination with a shaking table and other vacuum suction device, inert gas supply device, heating device, the concentration rate is faster than before, naturally preventing the sample from remaining on the inner wall of the container, bumping And an efficient solvent concentration method could be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明一実施例フロー説明図FIG. 1 is an explanatory diagram of a flow of an embodiment of the present invention.

【図2】本発明他実施例フロー説明図FIG. 2 is an explanatory diagram of a flow of another embodiment of the present invention.

【図3】本発明一実施例装置概略正面図FIG. 3 is a schematic front view of an apparatus according to an embodiment of the present invention.

【図4】同上側面図FIG. 4 is a side view of the same.

【図5】本発明一要部正面説明図FIG. 5 is an explanatory front view of a main part of the present invention.

【図6】同上一部拡大説明図FIG. 6 is a partially enlarged explanatory view of the above.

【図7】容器振とう速度による濃縮速度比較表FIG. 7 is a comparison table of concentration rates depending on the shaking speed of the container.

【符号の説明】[Explanation of symbols]

1 容器 2 接続コネクター 3 不活性ガス供給装置 4 加温装置 5 振とう装置 6 基体 7 溶媒回収装置 8 減圧コンデンサー 9 排出管 10 コントローラ Reference Signs List 1 container 2 connection connector 3 inert gas supply device 4 heating device 5 shaking device 6 base 7 solvent recovery device 8 decompression condenser 9 discharge pipe 10 controller

フロントページの続き (72)発明者 辰口 健 福島県福島市岡島字長岬5番3号 ジーエ ルサイエンス株式会社福島工場内 Fターム(参考) 2G052 AD26 EB11 ED01 FB08 HC25 4D076 AA07 AA12 AA24 BA01 BA02 BA07 BC03 CA01 CA02 CD22 CD50 DA04 EA10Y EA14Y EA16Y FA31 HA14 JA03 JA04 JA05 Continued on the front page (72) Inventor Ken Tatsuguchi Fukushima Fukushima Plant F-3 Fukushima Plant F-term (reference) 2G052 AD26 EB11 ED01 FB08 HC25 4D076 AA07 AA12 AA24 BA01 BA02 BA07 BC03 CA01 CA02 CD22 CD50 DA04 EA10Y EA14Y EA16Y FA31 HA14 JA03 JA04 JA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】容器を所望温度に保つと共に、該容器に不
活性ガスを供給しつつ溶媒蒸気排出により容器内を減圧
させながら、容器の最下部に形成した細管に試料を乾固
させない状態で濃縮させることを特徴とする溶媒濃縮方
法。
1. A method for maintaining a container at a desired temperature, while supplying an inert gas to the container and depressurizing the inside of the container by discharging a solvent vapor, while keeping the sample in a thin tube formed at the lowermost portion of the container without drying the sample. A method for concentrating a solvent, comprising concentrating.
【請求項2】容器の最下部に、直径8mm以下の細管を
設けた容器を使用することを特徴とする請求項1に記載
の溶媒濃縮方法。
2. The method for concentrating a solvent according to claim 1, wherein a container having a thin tube having a diameter of 8 mm or less is provided at the lowermost portion of the container.
【請求項3】容器を所望温度に保つと共に、該容器に不
活性ガスを供給しつつ溶媒蒸気排出により容器内を減圧
させながら、容器を振動させることにより、試料の容器
への付着を防ぐことを特徴とする溶媒濃縮方法。
3. A method for preventing a sample from adhering to a container by maintaining the container at a desired temperature and vibrating the container while supplying an inert gas to the container and depressurizing the inside of the container by discharging a solvent vapor. A method for concentrating a solvent, comprising:
【請求項4】加温装置に容器を着脱自在に装着すると共
に、容器には減圧吸引装置と不活性ガス供給装置との接
続コネクターを着脱自在に装着する一方、前記吸引流路
と前記供給流路とを各容器ごと独立して設けたことを特
徴とする溶媒濃縮装置。
4. A container is detachably mounted on the heating device, and a connector for connecting a decompression suction device and an inert gas supply device is detachably mounted on the container. A solvent concentrating device, wherein a path is provided independently for each container.
【請求項5】加温装置に容器を着脱自在に装着すると共
に、加温装置を振とう台上に設置する一方、容器には減
圧吸引装置と不活性ガス供給装置との接続コネクターを
着脱自在に装着すると共に、接続コネクターには減圧吸
引装置と不活性ガス供給装置を各容器ごとに独立して連
結自在としたことを特徴とする溶媒濃縮装置。
5. A container is detachably mounted on the heating device, and the heating device is installed on a shaking table, and a connector for connecting a reduced-pressure suction device and an inert gas supply device is detachably mounted on the container. And a connector for connecting a decompression suction device and an inert gas supply device to each container independently for each container.
JP2000345418A 2000-11-13 2000-11-13 Method and apparatus for concentrating solvent Pending JP2002143601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345418A JP2002143601A (en) 2000-11-13 2000-11-13 Method and apparatus for concentrating solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345418A JP2002143601A (en) 2000-11-13 2000-11-13 Method and apparatus for concentrating solvent

Publications (1)

Publication Number Publication Date
JP2002143601A true JP2002143601A (en) 2002-05-21

Family

ID=18819454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345418A Pending JP2002143601A (en) 2000-11-13 2000-11-13 Method and apparatus for concentrating solvent

Country Status (1)

Country Link
JP (1) JP2002143601A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131504A (en) * 2003-10-29 2005-05-26 Sozo Kagaku Kenkyusho:Kk Liquid medium recovering apparatus
JP2005288283A (en) * 2004-03-31 2005-10-20 New Energy & Industrial Technology Development Organization Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus
JP2008246327A (en) * 2007-03-29 2008-10-16 Fukuoka Prefecture Pressure control type liquid concentration method and apparatus
JP2009535650A (en) * 2006-05-01 2009-10-01 ホライズン・テクノロジー・インク Sample collection system and method
CN108051470A (en) * 2018-01-12 2018-05-18 苏州市苏测检测技术有限公司 For the Rotary Evaporators of food science literature
WO2023286493A1 (en) * 2021-07-15 2023-01-19 株式会社日立ハイテク Evaporative concentration device and automatic analysis device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920801U (en) * 1982-07-28 1984-02-08 三菱重工業株式会社 Sample concentration device
JPS6174602A (en) * 1984-09-19 1986-04-16 Shimadzu Corp Evaporator
JPH03165801A (en) * 1989-10-23 1991-07-17 Zymark Corp Evaporating apparatus for test
JPH07274935A (en) * 1994-04-13 1995-10-24 Seiko Instr Inc Chemical reactor for dna
WO2000045956A1 (en) * 1999-02-03 2000-08-10 Büchi Labortechnik AG Evaporator arrangement with a holder for a sample container and method for evaporating a sample

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920801U (en) * 1982-07-28 1984-02-08 三菱重工業株式会社 Sample concentration device
JPS6174602A (en) * 1984-09-19 1986-04-16 Shimadzu Corp Evaporator
JPH03165801A (en) * 1989-10-23 1991-07-17 Zymark Corp Evaporating apparatus for test
JPH07274935A (en) * 1994-04-13 1995-10-24 Seiko Instr Inc Chemical reactor for dna
WO2000045956A1 (en) * 1999-02-03 2000-08-10 Büchi Labortechnik AG Evaporator arrangement with a holder for a sample container and method for evaporating a sample

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131504A (en) * 2003-10-29 2005-05-26 Sozo Kagaku Kenkyusho:Kk Liquid medium recovering apparatus
JP4547141B2 (en) * 2003-10-29 2010-09-22 株式会社創造化学研究所 Liquid medium recovery device
US7931782B2 (en) 2003-10-29 2011-04-26 The Institute Of Creative Chemistry Co., Ltd. Method for recovering a liquid medium and system for recover a liquid medium
JP2005288283A (en) * 2004-03-31 2005-10-20 New Energy & Industrial Technology Development Organization Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus
JP2009535650A (en) * 2006-05-01 2009-10-01 ホライズン・テクノロジー・インク Sample collection system and method
JP2008246327A (en) * 2007-03-29 2008-10-16 Fukuoka Prefecture Pressure control type liquid concentration method and apparatus
CN108051470A (en) * 2018-01-12 2018-05-18 苏州市苏测检测技术有限公司 For the Rotary Evaporators of food science literature
WO2023286493A1 (en) * 2021-07-15 2023-01-19 株式会社日立ハイテク Evaporative concentration device and automatic analysis device

Similar Documents

Publication Publication Date Title
JP4840513B2 (en) Preparative purification equipment
JP5955766B2 (en) Substrate processing apparatus and substrate processing method
JP5170304B2 (en) Preparative purification equipment
US6716320B1 (en) Evaporation of liquids
JP2002143601A (en) Method and apparatus for concentrating solvent
CN201903477U (en) Gas purging device
WO2008059685A1 (en) Analyzer
JP5862668B2 (en) Gas blowing type evaporation / drying equipment
EP1677108B1 (en) Apparatus for measuring mercury contained in gaseous medium
KR101686467B1 (en) Experiment Table
JP5996424B2 (en) Substrate processing apparatus and substrate processing method
JPS62106630A (en) Processing device
JP2004105905A (en) Polluted water clarification equipment
JP2008161573A (en) Air purifying method and its apparatus
CN109589625B (en) Spray drying system
JP2001276501A (en) Solvent evaporation apparatus
JP3717451B2 (en) Dust collector deodorizer
JP2002079001A (en) Solvent evaporation method and system
JPH0639834Y2 (en) Wastewater purification device
JPH0725271Y2 (en) Wastewater treatment equipment
JP2008292041A (en) Suction-drying device and its control method
JP3004344U (en) Contamination acceleration tester
JPH07148414A (en) Method and apparatus for making harmful gas harmless
JPH11285614A (en) Treatment of exhaust gas containing oil component such as solvent
JPH0729989Y2 (en) Wastewater treatment equipment for dry cleaning machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518