JP2002139487A - Method for controlling quality of continuously cast piece - Google Patents

Method for controlling quality of continuously cast piece

Info

Publication number
JP2002139487A
JP2002139487A JP2000336519A JP2000336519A JP2002139487A JP 2002139487 A JP2002139487 A JP 2002139487A JP 2000336519 A JP2000336519 A JP 2000336519A JP 2000336519 A JP2000336519 A JP 2000336519A JP 2002139487 A JP2002139487 A JP 2002139487A
Authority
JP
Japan
Prior art keywords
powder
slab
scale
cast
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000336519A
Other languages
Japanese (ja)
Inventor
Junji Nakajima
潤二 中島
Kazuaki Tanaka
和明 田中
Tadashi Aso
正 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000336519A priority Critical patent/JP2002139487A/en
Publication of JP2002139487A publication Critical patent/JP2002139487A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspecting method for efficiently clarifying powder composition used for casting by inspecting cast pieces. SOLUTION: Cross-sectional samples of scales which remain in the surface layer of the cast pieces after casting are collected. The cross section in the scales within 500 μm from the ferrite interface are inspected to detect powder impregnated in the scale cross sections. By clarifying the composition of the powder through the use of SEM-EDX or EPMA, the type of the powder used for the casing is identified in the inspecting method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連鋳パウダーを用い
て連続鋳造設備にて鋳造した鋳造後の鋳片から当該鋳片
が鋳造時に使用された連鋳パウダー組成を明らかにする
ための検査方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection method for clarifying the composition of a continuously cast powder used in casting of a slab from a cast slab that has been cast by a continuous casting facility using a continuous casting powder. It is.

【0002】[0002]

【従来の技術】連続鋳造設備を用いて鋳片を製造するに
あたって、精錬段階で所定の組成に制御された溶鋼はタ
ンディッシュによって分配され、加振を加えられた水冷
銅鋳型によって凝固し、所定の形状の鋳片となる。この
水冷銅鋳型内で凝固を開始した鋳片と水冷銅鋳型との間
の潤滑材として一般的には溶融温度が1000〜1200℃のCa
O、SiO2、Al2O3、MgOを主成分とした複合酸化物から構
成される連鋳パウダーが用いられている。この連鋳パウ
ダーは単なる潤滑剤にとどまらず、鋳型の抜熱に大きく
作用することから、鋳造する鋼種によって、粘性、CaO
とSiO2の比の他、溶融温度、結晶化の成り易さ等を変化
させ、良好な鋳片品質が得られるようにされている。当
然、鋼種が変われば適用される連鋳パウダー組成は変化
するので、例えば低炭材のスラブと中炭材のスラブとを
同一の連続鋳造設備で連続して鋳造しようとした場合に
は、鋼種のつなぎ目で使用するパウダーを変更する必要
がある。
2. Description of the Related Art In the production of cast slabs using a continuous casting facility, molten steel controlled to a predetermined composition in a refining stage is distributed by a tundish and solidified by a vibrated water-cooled copper mold. Slab. As a lubricant between the slab and the water-cooled copper mold that has started to solidify in this water-cooled copper mold, generally a melting temperature of 1000-1200 ° C Ca
Continuous cast powders composed of a composite oxide containing O, SiO 2 , Al 2 O 3 , and MgO as main components are used. This continuous cast powder is not limited to a mere lubricant, and has a great effect on the heat removal of the mold.
And other ratios of SiO 2, the melting temperature, by changing the become easy like crystallization, are as good slab quality. Naturally, if the type of steel changes, the applied continuous powder composition changes.For example, if it is attempted to continuously cast a low carbon material slab and a medium carbon material slab using the same continuous casting equipment, the steel type It is necessary to change the powder used at the joint.

【0003】一般的には初めに鋳造していた鋼種に使用
していた連鋳パウダーは、後に鋳造される違う鋼種の溶
鋼を鋳型内に注入開始する前に鋳型内への投入を中止
し、後に鋳造される鋼種の溶鋼が鋳型内に注入された時
点で、後に鋳造される鋼種用の連鋳パウダーの投入が開
始される。当然、前後の鋼種の継ぎ目近傍では両者の連
鋳パウダーが混合されたものを潤滑剤として鋳造される
ので、どちらの鋼種にとっても、最適ではない連鋳パウ
ダーを用いて鋳造することとなる。従って、適正なパウ
ダーにて鋳造された範囲を把握することは、鋳片品質を
管理する上で重要な事である。しかしながら、鋳型内の
連鋳パウダーが時系列に変化して行くかを知るために
は、連続的に連鋳パウダーの溶融層から溶融した連鋳パ
ウダーを採取する必要があるが、異なった鋼種の鍋交換
時に連続的に連鋳パウダーの溶融層から試料を採取する
ことは、安全上問題があるだけでなく、異種の連鋳パウ
ダーが混合されている状態なので、試料の代表性にも疑
問が残る。
[0003] In general, continuous casting powder used for a steel type that has been initially cast stops charging into a mold before injecting molten steel of a different steel type to be cast later into the mold, When the molten steel of the steel type to be cast later is injected into the mold, the injection of the continuously cast powder for the steel type to be cast later is started. Naturally, in the vicinity of the joint between the front and rear steel types, since a mixture of both continuous casting powders is cast as a lubricant, casting is performed using a continuous casting powder that is not optimal for either steel type. Therefore, it is important to grasp the range of the casting with the proper powder in controlling the quality of the slab. However, in order to know whether the continuous casting powder in the mold changes in a time series, it is necessary to continuously collect the continuous casting powder from the molten layer of the continuous casting powder. Continuously collecting a sample from the molten layer of continuous casting powder at the time of changing the pot is not only a safety problem, but also a question of the representativeness of the sample because different types of continuous casting powder are mixed. Remains.

【0004】一方、上述の鋼種が異なる場合の鍋交換部
位鋳片は一般的には切り捨てられるが、低コスト化を図
るためには、切り捨てる長さを最小限に限定する必要が
ある。一般的に、鋳造時に潤滑剤の役割を果たした連鋳
パウダーは、凝固して固着層というパウダーの塊となっ
て、鋳型下端部から、鋳型系外に排出されるので、排出
された固着層を回収し組成を分析することによりパウダ
ー組成の時系列的な変化を知ることが原理的に可能であ
るが、鋳造中に鋳型の真下で排出された固着層を回収す
ることは危険であるばかりでなく、落下の速度は、必ず
しも一定ではなく、排出された、時間と、そのパウダー
組成によって鋳造された鋳片位置とを対応させること
は、現実的に不可能である。
[0004] On the other hand, the slabs for replacing the pot when the above-mentioned steel types are different are generally cut off. However, in order to reduce the cost, it is necessary to limit the cut-off length to a minimum. In general, continuous casting powder that has played a role of a lubricant during casting is solidified to form a lump of powder called a fixed layer and is discharged from the lower end of the mold to the outside of the mold system. It is possible in principle to know the chronological change of the powder composition by recovering and analyzing the composition, but it is dangerous to recover the fixed layer discharged just below the mold during casting. In addition, the speed of the drop is not always constant, and it is not practically possible to associate the discharged time with the position of the slab cast by the powder composition.

【0005】[0005]

【発明が解決しようとする課題】本発明は以上のような
要請に応えるものであって、鋳造後の鋳片スケール内に
含浸される連鋳パウダー組成を調査することにより、当
該鋳片が鋳造された時に鋳片表層と鋳型との間に存在し
たパウダー組成を明らかにし、鋳片品質の影響範囲を明
らかにし、要求品質に応じた鋳片切り捨てを可能とする
鋳片品質管理方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention meets the above-mentioned demands. By investigating the composition of a continuous cast powder impregnated in a cast slab scale, the cast slab is cast. Clarify the powder composition that existed between the slab surface layer and the mold at the time of the slab, clarify the affected range of slab quality, and provide a slab quality control method that enables slab cut-off according to required quality Things.

【0006】[0006]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは以下の通りである。鋳造後の鋳片表層に残留
するスケールの断面試料を採取し、地鉄界面から500
μm以内のスケール中の断面を調査し、スケール断面中
に含浸するパウダーを検出し、その組成を明確にするこ
とにより、鋳造に用いたパウダーの種類を同定すること
を特徴とする検査方法、さらに上記の検査方法を、同一
キャスト内でのパウダー変更時のパウダー混合範囲を明
確にすることに適用する検査方法である。スケール断面
中に含浸するパウダーの組成は、例えばSEM-EDXあるい
はEPMAを用いて明確にすることができる。
That is, the gist of the present invention is as follows. A cross-sectional sample of the scale remaining on the surface layer of the slab after casting was collected, and 500
Inspection method characterized by examining the cross section in the scale within μm, detecting the powder impregnating in the scale cross section, clarifying the composition, and identifying the type of powder used for casting, furthermore This is an inspection method applied to clarify the powder mixing range when changing the powder in the same cast. The composition of the powder impregnated in the scale cross section can be clarified using, for example, SEM-EDX or EPMA.

【0007】[0007]

【発明の実施の形態】本発明は、上記課題を効率的に解
決するための検査方法を提供するものであり、本発明者
らが、鋳造後の鋳片スケール内部に鋳造時に使用してい
た連鋳パウダーが含浸していることを見いだしたことを
基本とする検査方法である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides an inspection method for efficiently solving the above-mentioned problems, and the present inventors have used the method for casting inside a slab scale after casting. This inspection method is based on the finding that continuous cast powder is impregnated.

【0008】一般に、鋳造後の連鋳鋳片の表面に鋳造時
に用いられた連鋳パウダーが固体で残存することがある
ことが知られており、図1に示す形で、鋳片表層に形成
されているスケール2層の外表面に連鋳パウダー5が付
着して残留している場合があることは知られていた。ま
た、連鋳パウダーが凝固し、固着層といわれる固体とな
って、鋳片の動きから遅れながら、鋳型下端より系外に
排出されることも分かっていた。しかしながら、本発明
者等が、鋳造後の鋳片表面に残留するスケールの形態
と、組成を調査した結果、鋳造後の鋳片表層スケールが
残留している場合には、その内部に鋳造時に用いられて
いた、連鋳パウダー4が含浸されていることが分かっ
た。
It is generally known that continuous casting powder used during casting may remain as a solid on the surface of a continuously cast slab after casting, and is formed on the surface layer of a slab in the form shown in FIG. It has been known that the continuous casting powder 5 may adhere to and remain on the outer surface of the two scale layers. It has also been found that the continuous casting powder solidifies to form a solid called a fixed layer and is discharged from the lower end of the mold to the outside of the system with a delay from the movement of the slab. However, the present inventors have investigated the form and composition of the scale remaining on the surface of the cast slab after casting, and found that if the surface layer scale of the cast slab remains, it is used for casting inside. It was found that the continuous cast powder 4 had been impregnated.

【0009】本発明検査方法では、鋳片表層に残留す
る、地鉄界面近傍のスケール層に含浸するパウダー組成
をSEM-EDX,EPMAにより同定することにより、連鋳パウダ
ー組成の時系列変化を明らかにするための検査方法を提
供するものである。
In the inspection method of the present invention, the time series change of the continuous casting powder composition is clarified by identifying the powder composition remaining in the surface layer of the slab and impregnating the scale layer near the ground iron interface by SEM-EDX and EPMA. It is intended to provide an inspection method for achieving the above.

【0010】以下に本発明の詳細に関しさらに説明す
る。図1,2は鋳造後の鋳片表層のスケール2の状態を
模式図的に示したものである。図より明らかなように、
鋳片スケール2中には連鋳パウダー(3、4)が含浸
し、一部スケール2と反応しており、断面を顕微鏡もし
くはSEM,、EPMA等で観察すると、スケール層とコントラ
スト(色の濃淡の差)が異った異相として層状、塊状の
状態で観察することが可能である。また、本発明者ら
が、その組成をSEM,EPMAで調査すると、Ca,Si,Al,Na,等
の酸化物およびFが検出される。すなわち、鋳造中のパ
ウダーが連続鋳造設備の鋳型内にて鋳片表面が酸化され
て形成されたスケール層中に含浸し、スケールが懸濁も
しくは一部反応した組成となっていることが分かった。
The details of the present invention will be further described below. 1 and 2 schematically show the state of the scale 2 on the surface layer of the slab after casting. As is clear from the figure,
The cast slab scale 2 is impregnated with the continuous casting powder (3, 4) and partially reacts with the scale 2. When the cross section is observed with a microscope, SEM, EPMA, etc., the contrast between the scale layer and the contrast (shading of color) (Difference) can be observed in a layered or massive state as a different phase. Further, when the present inventors investigate the composition by SEM and EPMA, oxides such as Ca, Si, Al, Na, and F and F are detected. That is, it was found that the powder during casting was impregnated into the scale layer formed by oxidizing the slab surface in the mold of the continuous casting facility, and the scale was in a composition in which the scale was suspended or partially reacted. .

【0011】次に本発明のスケール調査位置の限定理由
について述べる。一般に、鋳造後の鋳片表層スケール厚
みは鋳片の位置に応じて厚い場所と薄い場所が存在し必
ずしも一定ではない。スラブの短片側、スラブの短片近
傍の長片位置では、厚い部位では1mm程度のスケール厚
みがあるが、スラブ中央部のように、連鋳機のロールと
強く接触している部分では数百μmの厚みしか残存して
いない。また、鋳造後の鋳片表層のスケールは剥離し易
く、表層に図1に示すように連鋳パウダーの固着層が付
着している場合さえある。
Next, the reasons for limiting the scale inspection position of the present invention will be described. In general, the thickness of the cast slab surface layer scale after casting is not always constant because there are thick places and thin places depending on the position of the slab. At the short side of the slab and at the long side near the short side of the slab, there is a scale thickness of about 1 mm in the thick part, but several hundred μm in the part that is in strong contact with the roll of the continuous casting machine, such as the slab center. Only the thickness remains. Also, the scale of the surface layer of the cast slab after casting is easily peeled off, and a fixed layer of continuous casting powder may even adhere to the surface layer as shown in FIG.

【0012】従って、確実に、鋳片表層位置とパウダー
組成との対応がとれなければ、鋳造中のパウダー組成を
同定することは困難である。鋼種の違いによるパウダー
組成の違いを明確にするために、一方のパウダーにトレ
ーサー成分、例えばSrを添加すれば、Srの有無および
その濃度を調査することにより識別することが可能であ
る。また一般的に鋼種が変わると連鋳パウダー組成にお
いて、特定の成分、例えばMgOを含有するか否か、Li2O
を含有するか否か等々により、どのパウダーを適用した
か識別可能である。また、スケール層が厚いと外面表層
にパウダー固着層が残留したり、別の部位のスケールが
押し込まれたりする可能性が生じ、外乱となるのでスケ
ールと地鉄界面から500μmの範囲内のスケールを調査
することが望ましい。地鉄とスケールとの界面は鋳片ス
ケール中のパウダーと同様に、スケール層と地鉄層との
コントラストの差として検鏡、EPMA,SEM観察により識別
可能である。
Therefore, it is difficult to identify the powder composition during casting unless the correspondence between the surface layer of the slab and the powder composition is ensured. If a tracer component, for example, Sr is added to one of the powders in order to clarify the difference in the powder composition due to the difference in steel type, it is possible to identify by examining the presence or absence of Sr and its concentration. In general, when the type of steel is changed, a specific component, for example, whether or not it contains MgO, in the continuous cast powder composition, Li 2 O
It is possible to identify which powder has been applied depending on whether or not it contains. Also, if the scale layer is too thick, the powder fixed layer may remain on the outer surface layer or the scale of another part may be pushed in, causing a disturbance.Therefore, the scale within 500 μm from the interface between the scale and the ground iron should be used. It is desirable to investigate. Similar to the powder in the slab scale, the interface between the ground iron and the scale can be identified by microscopy, EPMA, and SEM observation as the difference in contrast between the scale layer and the ground iron layer.

【0013】[0013]

【実施例】以下に本発明の実施例並びに比較例を述べ、
本発明の効果について記載する。
EXAMPLES Examples and comparative examples of the present invention will be described below.
The effect of the present invention will be described.

【0014】(実施例1)転炉〜二次精錬工程を経て表
1に示す所定の濃度に成分調整を行った低炭材を鋳造し
たのに引き続いて中炭材を異鋼種連々鋳にて鋳造した。
低炭材には表2に示すMgOを含有する低炭用連鋳パウダ
ーを、中炭材には表2に示すMgOを含有しない中炭用連
鋳パウダーを用いて鋳造した。鋳造した鋳片表層の鋳片
試料を鋳造長さ方向に一定間隔(10cm)毎に採取
し、地鉄界面から500μm以内に含浸したパウダー成分
をSEM-EDXにて調査した。図3にスケール中に含浸した
パウダー成分中のMgOの濃度の推移を示した。但し、図
中のMgOの濃度はSEM-EDX,EPMAにより分析した酸化物の
組成の中からFeOを除いて100%としている。図3よ
り明らかなように、MgO濃度は鋳造長さ方向で変化して
おり、低炭用と中炭用の連鋳パウダーが混合している範
囲が明らかとなった。なお、この時鋳片表層スケールの
最外層近傍のスケールを調査したところ、図2に示すよ
うに、地鉄界面近傍ではMgOを含有しない中炭用パウダ
ー成分が検出されたが、表層近傍(地鉄界面から700
μm)にMgOを含有する低炭用のパウダーが付着してい
る場合があった。
(Embodiment 1) A low carbon material whose component was adjusted to a predetermined concentration shown in Table 1 was cast through a converter to a secondary refining process, and subsequently, a medium carbon material was successively cast by different steel types. Cast.
The low carbon material was cast using a low-carbon continuous cast powder containing MgO shown in Table 2, and the medium carbon material was used using a continuous cast powder for Mg coal containing no MgO shown in Table 2. A slab sample of the cast slab surface layer was sampled at regular intervals (10 cm) in the casting length direction, and the powder component impregnated within 500 μm from the base iron interface was examined by SEM-EDX. FIG. 3 shows the transition of the concentration of MgO in the powder component impregnated in the scale. However, the concentration of MgO in the figure is 100%, excluding FeO, from the oxide composition analyzed by SEM-EDX and EPMA. As is clear from FIG. 3, the MgO concentration changed in the casting length direction, and the range where the low-carbon and medium-carbon continuous casting powders were mixed was clarified. At this time, when the scale near the outermost layer of the slab surface layer scale was examined, as shown in FIG. 2, a powder component for medium coal containing no MgO was detected near the interface of the base iron, but was found near the surface layer. 700 from iron interface
In some cases, powder for low-carbon containing MgO was attached to (μm).

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】(実施例2)転炉〜二次精錬工程を経て表
1に示す所定の濃度に成分調整を行った低炭材と中炭材
とを異鋼種連々鋳にて鋳造した。低炭材には表3に示す
トレーサーとしてSrを含有しない低炭用連鋳パウダー
を、中炭材には表3に示すSrを含有する中炭用連鋳パ
ウダーを用いて鋳造した。鋳造した鋳片表層の鋳片試料
を鋳造長さ方向に一定間隔(10cm)毎に採取し、地
鉄界面から500μm以内に含浸したパウダー成分をEPMA
にて調査した。図4にスケール中に含浸したパウダー成
分中のSrの濃度の推移を示した。図4より明らかなよう
に、Sr濃度は鋳造長さ方向で変化しており、低炭用と中
炭用の連鋳パウダーが混合している範囲が明らかとなっ
た。今回はパウダーのトレーサーとしてSrを用いたが、
連鋳パウダーの物性を大きく変化させるものでなく、か
つ溶融パウダー中に均一に分散するものであれば何でも
良い。
(Example 2) A low carbon material and a medium carbon material whose components were adjusted to predetermined concentrations shown in Table 1 through a converter to a secondary refining process were cast by successive castings of different steel types. The low carbon material was cast using a low-carbon continuous cast powder containing no Sr as a tracer as shown in Table 3 and the medium carbon material was used a medium coal continuous cast powder containing Sr shown in Table 3. A slab sample of the surface layer of the cast slab is sampled at regular intervals (10 cm) in the casting length direction, and the powder component impregnated within 500 μm from the ground iron interface is subjected to EPMA.
Investigated. FIG. 4 shows the transition of the concentration of Sr in the powder component impregnated in the scale. As is clear from FIG. 4, the Sr concentration varies in the casting length direction, and the range where the low-carbon and medium-carbon continuous casting powders are mixed is evident. This time I used Sr as a powder tracer,
Any material may be used as long as it does not significantly change the physical properties of the continuous casting powder and is uniformly dispersed in the molten powder.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【発明の効果】以上、詳細に述べたように、本発明によ
り異なるパウダーを用いて連々鋳した場合に、所定のパ
ウダーで鋳造された鋳造範囲を明確にすることが可能と
なり、鋳片の品質影響範囲を明確にすることが可能とな
った。すなわち、従来知ることが出来なかった、連鋳パ
ウダー混合に伴う、鋳片長さ方向の品質影響の可能性が
ある範囲を明確にすることが可能となった。これによ
り、鋳片品質に影響がある範囲と無い範囲を明確にする
ことが可能となり、鋳片の品質管理が容易になるととも
に、品質影響範囲の切り捨て代を最低限に減少させるこ
とが可能となった。
As described in detail above, according to the present invention, when successive castings are performed using different powders, it is possible to clarify the casting range cast with a predetermined powder, and to improve the quality of cast slabs. It became possible to clarify the area of influence. That is, it has become possible to clarify a range in which there is a possibility of quality influence in the slab length direction due to mixing of continuous casting powder, which could not be known in the past. This makes it possible to clarify the range that does not affect the slab quality and the range that does not affect the slab quality, facilitates the quality control of the slab, and minimizes the cut-off allowance of the quality influence range. became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳片スケールの存在状況を示す図である。FIG. 1 is a view showing the existence state of a slab scale.

【図2】鋳片スケール中のパウダー含浸状況を示す図で
ある。
FIG. 2 is a diagram showing a powder impregnation state in a slab scale.

【図3】MgO濃度の鋳造長さ方向推移を示す図であ
る。
FIG. 3 is a diagram showing a transition of a MgO concentration in a casting length direction.

【図4】Sr濃度の鋳造長さ方向推移を示す図である。FIG. 4 is a diagram showing transition of the Sr concentration in the casting length direction.

【符号の説明】[Explanation of symbols]

1 地金 2 スケール 3 連鋳パウダー 4 連鋳パウダー(MgO含む) 5 連鋳パウダー(MgOなし) DESCRIPTION OF SYMBOLS 1 Ingot 2 Scale 3 Continuous casting powder 4 Continuous casting powder (including MgO) 5 Continuous casting powder (without MgO)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 23/225 G01N 23/225 (72)発明者 麻生 正 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 2G001 AA03 BA07 CA03 GA08 KA01 KA03 LA02 NA06 NA10 NA17 RA01 2G055 AA03 BA01 CA01 CA25 FA02 FA03 4E004 MC30 NC01 PA10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) G01N 23/225 G01N 23/225 (72) Inventor Tadashi Aso 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation F Term in Tsu Works (Reference) 2G001 AA03 BA07 CA03 GA08 KA01 KA03 LA02 NA06 NA10 NA17 RA01 2G055 AA03 BA01 CA01 CA25 FA02 FA03 4E004 MC30 NC01 PA10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳造後の鋳片表層に残留するスケールの
断面試料を採取し、地鉄界面から500μm以内のスケ
ール中の断面を調査し、スケール断面中に含浸するパウ
ダーを検出し、その組成を明確にすることにより、鋳造
に用いたパウダーの種類を同定することを特徴とする検
査方法。
1. A cross-sectional sample of a scale remaining on the surface layer of a cast slab after casting is sampled, a cross-section in a scale within 500 μm from a ground iron interface is investigated, and powder impregnating in the scale cross-section is detected. An inspection method characterized by identifying the type of powder used for casting by clarifying the above.
【請求項2】 請求項1の検査方法を用いて、同一キャ
スト内でのパウダー変更時のパウダー混合範囲を明確に
する検査方法。
2. An inspection method for clarifying a powder mixing range when changing powder in the same cast, using the inspection method according to claim 1.
JP2000336519A 2000-11-02 2000-11-02 Method for controlling quality of continuously cast piece Withdrawn JP2002139487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000336519A JP2002139487A (en) 2000-11-02 2000-11-02 Method for controlling quality of continuously cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000336519A JP2002139487A (en) 2000-11-02 2000-11-02 Method for controlling quality of continuously cast piece

Publications (1)

Publication Number Publication Date
JP2002139487A true JP2002139487A (en) 2002-05-17

Family

ID=18812068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000336519A Withdrawn JP2002139487A (en) 2000-11-02 2000-11-02 Method for controlling quality of continuously cast piece

Country Status (1)

Country Link
JP (1) JP2002139487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284685A (en) * 2009-06-11 2010-12-24 Nippon Steel Corp Continuous casting method of steel
JP2012008135A (en) * 2004-04-23 2012-01-12 Areva Np Inc Method of field analysis of clad flake of bwr and pwr
CN113358679A (en) * 2021-05-21 2021-09-07 包头钢铁(集团)有限责任公司 Method for judging influence of rare earth steel on crystallizer protection slag phase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008135A (en) * 2004-04-23 2012-01-12 Areva Np Inc Method of field analysis of clad flake of bwr and pwr
JP2010284685A (en) * 2009-06-11 2010-12-24 Nippon Steel Corp Continuous casting method of steel
CN113358679A (en) * 2021-05-21 2021-09-07 包头钢铁(集团)有限责任公司 Method for judging influence of rare earth steel on crystallizer protection slag phase

Similar Documents

Publication Publication Date Title
Lee et al. Influence of Al/Ti ratio in Ti-ULC steel and refractory components of submerged entry nozzle on formation of clogging deposits
Beskow et al. Impact of slag–refractory lining reactions on the formation of inclusions in steel
CN105143471A (en) Sampler for molten iron
Wang et al. Dissolution mechanism of Al2O3 in refining slags containing Ce2O3
Nogueira et al. Blast furnace burden softening and melting phenomena: Part II. Evolution of the structure of the pellets
JP2002139487A (en) Method for controlling quality of continuously cast piece
Harcsik et al. Examination of nozzle clogging in continuous casting
JP3647969B2 (en) Method for refinement of harmful inclusions in steel
Yang et al. Controlling the electric field characteristics to suppress the clogging and corrosion of the continuous casting nozzle
Batista et al. The effects of deoxidation practice on the quality of thin foil low-carbon steel
Park et al. Reoxidation phenomena of liquid steel in secondary refining and continuous casting processes: a review
Ono et al. Dephosphorization kinetics and reaction region in hot metal during lime injection with oxygen
JP7201124B2 (en) Cleanliness evaluation method for cast slab used as raw material for high fatigue strength steel and method for manufacturing high fatigue strength steel
Veres et al. The influence of Ca-, Na-, and P-content of MgO-based resin-free vibrateable dry tundish linings on the population of non-metallic inclusions in a steel melt
JP2000000645A (en) Steel kind judging method in sequentially continuous casting steel of different kind
Kazakov et al. Non-metallic inclusions and hook cracks of high-frequency induction welded pipes
Regordosa et al. Slag compounds formed from the nodularization treatment until pouring the molds to produce spheroidal graphite cast iron parts
Heikkinen et al. Influence of Sequential Contact with Two Melts on the Wetting Angle of the Ladle Slag and Different Steel Grades on Magnesia‐Carbon Refractories
JPH07239327A (en) Evaluation of cleanliness of metal
Ferreira et al. Analysis and verification of process variables as causes for macroinclusions and scrapping in a special steel melt shop
JP3679511B2 (en) Manufacturing method of high clean steel
Yi et al. Study on Inclusions in 65Mn Thin Slabs Produced by a CSP Process
CN113252643A (en) Method for measuring content of non-metallic inclusion elements in molten steel
EP2920327B1 (en) Method for the metallurgical treatment of killed steels to be cast continuously, to reduce surface defects in the end product
Scheller Oxication and Reduction Processes in Slags During Continuous Casting of Stainless Steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108