JP2002139363A - Flow measuring apparatus - Google Patents

Flow measuring apparatus

Info

Publication number
JP2002139363A
JP2002139363A JP2000330719A JP2000330719A JP2002139363A JP 2002139363 A JP2002139363 A JP 2002139363A JP 2000330719 A JP2000330719 A JP 2000330719A JP 2000330719 A JP2000330719 A JP 2000330719A JP 2002139363 A JP2002139363 A JP 2002139363A
Authority
JP
Japan
Prior art keywords
flow rate
flow
gas
fluid
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000330719A
Other languages
Japanese (ja)
Other versions
JP4698014B2 (en
Inventor
Hideki Oe
英城 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000330719A priority Critical patent/JP4698014B2/en
Publication of JP2002139363A publication Critical patent/JP2002139363A/en
Application granted granted Critical
Publication of JP4698014B2 publication Critical patent/JP4698014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow measuring apparatus which reduces power consumption, without causing decrease in the accuracy of measuring flow. SOLUTION: A flow velocity sensor 10 outputs flow velocity information matching the flow velocity of fluid which flows in a fluid supply passage. A correcting operation means 20a-1 performs operation for correcting this flow velocity information into true flow velocity information. A flow computing means 20a-2 computes the flow of the fluid, through the passage based on the true flow velocity information corrected. When the flow velocity information assumes a value equal to or smaller than a prescribed value, an computation halting means 20a-3 causes the operations performed by both means 20a-1 and 20a-2 to be halted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ガス流量計測装
置に係わり、特に、流体供給路に流れる流体の流速に応
じた流速情報を出力する流速センサと、流速情報の誤差
を除去して、真の流速情報を出力するための補正演算を
行う補正演算手段と、補正された真の流速情報に基づ
き、流体供給路を流れる流体の通過流量を演算する流量
演算手段とを備えた流量計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas flow measuring device, and more particularly to a flow rate sensor for outputting flow rate information corresponding to the flow rate of a fluid flowing through a fluid supply path, and a flow rate sensor for removing errors in the flow rate information. And a flow rate calculating device that calculates a flow rate of a fluid flowing through the fluid supply path based on the corrected true flow rate information. .

【0002】[0002]

【従来の技術】例えば電子式ガスメータに使用される流
量計測装置として、比較的小さな流量を正確に計測する
ことのできる熱線式流速センサ(以下、フローセンサと
いう)を利用したものが知られている。このフローセン
サは、ガス供給路中における熱の移動が供給路中を流れ
るガスの流速と関係することを利用してガス流速を求め
るセンサである。
2. Description of the Related Art For example, as a flow rate measuring device used in an electronic gas meter, a device utilizing a hot wire type flow rate sensor (hereinafter, referred to as a flow sensor) capable of accurately measuring a relatively small flow rate is known. . This flow sensor is a sensor that determines the gas flow velocity by utilizing the fact that the movement of heat in the gas supply path is related to the flow velocity of the gas flowing in the supply path.

【0003】フローセンサは一般的に電池を電源として
作動し、電池電源の消費電力を低減するために、間欠的
に作動する。従って、フローセンサは、間欠的にガス流
速に対応した大きさの電気信号を出力する。
A flow sensor generally operates using a battery as a power source, and operates intermittently to reduce the power consumption of the battery power source. Therefore, the flow sensor intermittently outputs an electric signal of a magnitude corresponding to the gas flow velocity.

【0004】フローセンサは感度が良いので、ガスが使
われておらず、電子式ガスメータ下流のコックが閉じら
れている場合であっても、ガス圧変動や温度変化などの
外乱が生じると、この外乱に起因してガス供給路にわず
かに流れる正方向や逆方向の微流ガスを検出する。この
場合電子式ガスメータ下流のコックが閉じられ、ガスの
使用がないため、ガス圧変動や温度変化などの外乱によ
るわずかの流量は、これを時間的に積算すればゼロにな
るべき性質のものである。
[0004] Since the flow sensor has a high sensitivity, even if gas is not used and a cock downstream of the electronic gas meter is closed, if a disturbance such as a gas pressure fluctuation or a temperature change occurs, the flow sensor is not used. Detects a small flow gas in the forward or reverse direction that slightly flows in the gas supply path due to disturbance. In this case, the cock downstream of the electronic gas meter is closed and no gas is used, so the slight flow rate due to disturbances such as gas pressure fluctuations and temperature changes should be zero when integrated over time. is there.

【0005】そこで、従来、ガス圧変動や温度変化など
の外乱によるわずかの流量を積算によって相殺するよう
にしたものが考えられている(特開平8−75511号
公報、特開平8−136298号公報)。
In view of the above, it has been proposed that a small flow rate caused by disturbance such as a gas pressure fluctuation or a temperature change is offset by integration (Japanese Patent Application Laid-Open Nos. 8-75511 and 8-136298). ).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たフローセンサを使用した電子式ガスメータでは、電力
消費を削減するためフローセンサが間欠的に作動される
ようになっているが、ガス流量が0、すなわちガスが使
われておらず計測すべきガス流がなくても、流量演算が
行われ無駄な電力消費が行われてしまうという問題があ
った。
However, in the electronic gas meter using the above-described flow sensor, the flow sensor is operated intermittently in order to reduce power consumption. That is, even if no gas is used and there is no gas flow to be measured, there is a problem that the flow rate calculation is performed and wasteful power consumption is performed.

【0007】特に、ガス温度の変化などに起因した上記
電気信号の誤差を補正演算して真の電気信号を出力する
補正機能を備えた電子式ガスメータにおいては、上述し
たガス未使用時の電力消費の無駄が顕著な問題となる。
すなわち、上記ガスメータにおいては、ガス未使用時で
あり、計測すべきガス流が無くても流量演算に加え、補
正演算も行わなければならず、より一層無駄な電力消費
が行われる。しかも、ガス流が微少であれば、誤差も少
なく補正演算の効果があまりない。
In particular, in an electronic gas meter having a correction function of correcting the error of the electric signal due to a change in gas temperature and outputting a true electric signal, the above-described power consumption when the gas is not used is provided. Waste is a significant problem.
That is, in the gas meter, when the gas is not used, even if there is no gas flow to be measured, the correction operation must be performed in addition to the flow amount calculation, and further wasteful power consumption is performed. In addition, if the gas flow is very small, the error is small and the effect of the correction calculation is not so large.

【0008】そこで、本発明は、上記のような問題点に
着目し、流量計測精度の低下を招くことなく、消費電力
の低減を図った流量計測装置を提供することを課題とす
る。
Accordingly, an object of the present invention is to provide a flow rate measuring device that reduces power consumption without causing a decrease in flow rate measurement accuracy, focusing on the above-described problems.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
になされた請求項1記載の発明は、図1の基本構成図に
示すように、流体供給路に流れる流体の流速に応じた流
速情報を出力する流速センサ10と、前記流速情報の誤
差を除去して、真の流速情報を出力するための補正演算
を行う補正演算手段20a−1と、前記補正された真の
流速情報に基づき、前記流体供給路を流れる流体の通過
流量を演算する流量演算手段20a−2とを備えた流量
計測装置において、前記流速情報が、所定値以下のと
き、前記補正演算手段及び流量演算手段の両者による演
算を停止させる演算停止手段20a−3を更に備えたこ
とを特徴とする流量計測装置に存する。
According to a first aspect of the present invention, there is provided a method for solving the above-mentioned problems, comprising: flow rate information corresponding to a flow rate of a fluid flowing through a fluid supply passage, as shown in FIG. Flow rate sensor 10, a correction calculation unit 20 a-1 that removes an error of the flow rate information and performs a correction calculation for outputting true flow rate information, and based on the corrected true flow rate information, A flow rate measuring device including a flow rate calculating means for calculating a passing flow rate of the fluid flowing through the fluid supply path, wherein when the flow velocity information is equal to or less than a predetermined value, both the correction calculating means and the flow rate calculating means The flow rate measuring device according to the present invention is further characterized by further comprising a calculation stopping means 20a-3 for stopping the calculation.

【0010】請求項1記載の発明によれば、流速センサ
が、流体供給路に流れる流体の流速に応じた流速情報を
出力する。補正演算手段が、流速情報の誤差を除去し
て、真の流速情報を出力するための補正演算を行う。流
量演算手段が、補正された真の流速情報に基づき、流体
供給路を流れる流体の通過流量を演算する。流速情報が
所定値以下のとき、演算停止手段が補正演算手段及び、
流量演算手段の両者による演算を停止させる。
According to the first aspect of the present invention, the flow rate sensor outputs flow rate information corresponding to the flow rate of the fluid flowing through the fluid supply path. The correction operation unit performs a correction operation for removing the error of the flow velocity information and outputting the true flow velocity information. The flow rate calculation means calculates a flow rate of the fluid flowing through the fluid supply path based on the corrected true flow rate information. When the flow rate information is equal to or less than a predetermined value, the calculation stopping means includes
The calculation by both of the flow rate calculating means is stopped.

【0011】従って、流速情報が所定値以下のとき補正
演算手段及び流量演算手段の両者による演算を停止させ
ることにより、流速情報が所定値以下のときには、実質
的には流体流速がないとみなしてこの流速情報に基づく
演算を行わなくてよくなる。しかも、流体供給路に流れ
る流体の通過流量が微量であるときは、流体温度などに
起因する誤差は少ない。このため、補正を行っていない
流速情報に基づき、流体流速がないと判断しても流量計
測精度が低下することがない。
Therefore, when the flow rate information is equal to or less than the predetermined value, the calculation by both the correction calculating means and the flow rate calculating means is stopped, so that when the flow rate information is equal to or less than the predetermined value, it is considered that there is substantially no fluid flow rate. It is not necessary to perform the calculation based on the flow velocity information. In addition, when the flow rate of the fluid flowing through the fluid supply passage is small, errors due to the fluid temperature and the like are small. Therefore, even if it is determined that there is no fluid flow velocity based on the flow velocity information that has not been corrected, the flow rate measurement accuracy does not decrease.

【0012】請求項2記載の発明は、請求項1記載の流
量計測装置であって、前記流体は、ガスであり、前記演
算停止手段は、予め定めたガス使用頻度の低い時間帯で
あるときのみ、前記演算を停止させることを特徴とする
流量計測装置に存する。
According to a second aspect of the present invention, there is provided the flow rate measuring device according to the first aspect, wherein the fluid is a gas, and the operation stopping means is in a predetermined time period in which the gas use frequency is low. Only the flow rate measuring device is characterized in that the calculation is stopped.

【0013】請求項2記載の発明によれば、演算停止手
段が、予め定めたガス使用頻度の低い時間帯であるとき
のみ、演算を停止させる。従って、深夜などのガス使用
頻度の低い時間帯であるときは、ガス流量がない確率が
高い。このため、この時間帯に限って、補正を行ってい
ない流速情報に基づき流体流速の有無を判断すれば、流
体が使用されているにも拘わらず、通過流量なしと誤判
断することがあまりない。
According to the second aspect of the present invention, the calculation stopping means stops the calculation only in a predetermined time zone in which the frequency of gas use is low. Therefore, when the time of gas use is low, such as at midnight, there is a high probability that there is no gas flow. For this reason, only in this time zone, if the presence or absence of the fluid flow rate is determined based on the flow rate information that has not been corrected, it is unlikely that there is no passing flow rate despite the fluid being used. .

【0014】請求項3記載の発明は、請求項1又は、2
記載の流量計測装置であって、前記補正演算手段は、前
記流体の温度に基づき、前記流速情報を補正することを
特徴とする流量計測装置に存する。
According to a third aspect of the present invention, there is provided the first or second aspect.
The flow measurement device according to claim 1, wherein the correction calculation unit corrects the flow velocity information based on a temperature of the fluid.

【0015】請求項3記載の発明によれば、補正演算手
段は、流体の温度に基づき、流速情報を補正している。
従って、流体温度に起因する流速情報の誤差は、流体の
通過流量が微少のときは大きくない。このため、温度補
正の行っていない流速情報に基づき、流体流速の有無を
判断しても誤判断することがあまりない。
According to the third aspect of the present invention, the correction calculating means corrects the flow velocity information based on the temperature of the fluid.
Therefore, the error of the flow velocity information caused by the fluid temperature is not large when the flow rate of the fluid is very small. For this reason, even if the presence or absence of the fluid flow velocity is determined based on the flow velocity information for which the temperature correction has not been performed, there is not much erroneous determination.

【0016】請求項4記載の発明は、請求項1〜3何れ
か1項記載の流量計測装置であって、前記所定値は、通
過流量が3リットル/時間であるときの前記流速情報で
あることを特徴とする流量計測装置に存する。
According to a fourth aspect of the present invention, there is provided the flow rate measuring device according to any one of the first to third aspects, wherein the predetermined value is the flow rate information when the passing flow rate is 3 liters / hour. A flow rate measuring device characterized in that:

【0017】請求項4記載の発明によれば、流体が使用
されていないとき、圧力変動や温度変化などの外乱に起
因して流体供給路に流れる流体の通過流量の上限は、3
リットル/時間であることに着目し、所定値を、通過流
量が3リットル/時間であるときの流速情報とする。従
って、確実に流体が使用されていないときのみ、補正演
算手段及び、流量演算手段の両者による演算を停止させ
ることができる。
According to the fourth aspect of the invention, when the fluid is not used, the upper limit of the flow rate of the fluid flowing through the fluid supply path due to disturbance such as pressure fluctuation or temperature change is 3
Paying attention to liter / hour, the predetermined value is set as flow velocity information when the passing flow rate is 3 liter / hour. Therefore, only when the fluid is not being used, the calculation by both the correction calculating means and the flow rate calculating means can be stopped.

【0018】[0018]

【発明の実施の形態】以下、この発明の一実施の形態を
図面を参照して説明する。図2は、本発明の流量計測装
置を組み込んだ電子式ガスメータの一実施の形態を示す
ブロック図である。同図に示すように、熱線式流速セン
サ(フローセンサ)10はガス供給路に設けられ、ヒー
タ10aと、このヒータ10aを間に挟んでヒータ10
aから等間隔でガスの流れ方向に離間して配置され温度
を検出する例えばサーモパイルからなる一対の温度セン
サ10b1及び10b2とを有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram showing an embodiment of an electronic gas meter incorporating the flow rate measuring device of the present invention. As shown in FIG. 1, a hot-wire type flow rate sensor (flow sensor) 10 is provided in a gas supply path, and has a heater 10a and a heater 10 with the heater 10a interposed therebetween.
and a pair of temperature sensors 10b1 and 10b2 that are arranged at equal intervals in the gas flow direction and detect temperature, for example, made of a thermopile.

【0019】上記温度センサ10b1は、ヒータ10a
の上流側に配置され、第1の温度検出信号を出力する。
一方、温度センサ10b2は、ヒータ10aの下流側に
配置され、第2の温度検出信号を出力する。なお、矢印
Y1がガスの流れ方向を示している。
The temperature sensor 10b1 includes a heater 10a
And outputs a first temperature detection signal.
On the other hand, the temperature sensor 10b2 is disposed downstream of the heater 10a and outputs a second temperature detection signal. Note that the arrow Y1 indicates the gas flow direction.

【0020】また、ヒータ10aは、マイクロコンピュ
ータ(μCOM)20の制御の下で駆動するヒータ駆動
回路10cからの駆動電流により、加熱が開始される。
ヒータ10aの加熱が開始されると、上流側の温度セン
サ10b1と下流側の温度センサ10b2とは、駆動電
流の大きさとガス流速の大きさに応じた電圧の温度検出
信号をそれぞれ出力する。そして、この温度検出信号
は、センサアンプ10d1及び10d2によってそれぞ
れ増幅される。
The heating of the heater 10a is started by a drive current from a heater drive circuit 10c driven under the control of a microcomputer (μCOM) 20.
When the heating of the heater 10a is started, the upstream temperature sensor 10b1 and the downstream temperature sensor 10b2 output temperature detection signals of voltages corresponding to the magnitude of the driving current and the magnitude of the gas flow rate, respectively. This temperature detection signal is amplified by the sensor amplifiers 10d1 and 10d2, respectively.

【0021】センサアンプ10d1及び10d2により
それぞれ増幅された温度検出信号は、オペアンプからな
る差動アンプ10eの非反転入力及び反転入力にそれぞ
れ入力される。従って、差動アンプ10eは、両温度検
出信号の電圧の差に相当する温度差信号を出力する。こ
の温度差信号は、ガス流速の大きさに応じた電圧を有
し、流速が大きくなるほど大きなものとなり、アナログ
/ディジタル変換器(A/D変換器)10fによってデ
ィジタル信号に変換されてμCOM20に取り込まれ
る。以上のことから明らかなように、温度差信号は、請
求項中の流速情報に相当することがわかる。
The temperature detection signals amplified by the sensor amplifiers 10d1 and 10d2 are input to a non-inverting input and an inverting input of a differential amplifier 10e composed of an operational amplifier, respectively. Therefore, the differential amplifier 10e outputs a temperature difference signal corresponding to the difference between the voltages of the two temperature detection signals. This temperature difference signal has a voltage corresponding to the magnitude of the gas flow velocity, becomes larger as the flow velocity increases, is converted into a digital signal by the analog / digital converter (A / D converter) 10f, and is taken into the μCOM 20. It is. As is clear from the above, the temperature difference signal corresponds to the flow velocity information in the claims.

【0022】上記μCOM20は、プログラムに従って
各種の処理を行う中央演算ユニット(CPU)20a
と、CPU20aが行う処理プログラムなどを格納した
読み出し専用メモリであるROM20bと、CPU20
aでの各種の処理過程で利用するワークエリア、各種デ
ータを格納するデータ格納エリアなどを有する読み出し
書き込み自在のメモリであるRAM20cなどを内蔵
し、これらが図示しないバスラインによって相互接続さ
れている。
The μCOM 20 is a central processing unit (CPU) 20a that performs various processes according to programs.
A ROM 20b that is a read-only memory storing a processing program and the like executed by the CPU 20a;
A built-in RAM 20c, which is a readable and writable memory having a work area used in various processing steps in a, a data storage area for storing various data, and the like, is interconnected by a bus line (not shown).

【0023】上記μCOM20内のCPU20aは、ガ
ス温度などに起因した温度差信号の誤差を補正して、真
の温度差信号を演算する補正処理を行う。CPU20a
はまた、この真の温度差信号に所定の定数を乗じること
により通過流量を演算する流量演算処理、この算出した
通過流量を積算して積算流量を求める流量積算処理、こ
の算出した積算流量を表示器30に表示させる表示処理
を行う。
The CPU 20a in the μCOM 20 performs a correction process for calculating a true temperature difference signal by correcting an error of the temperature difference signal caused by a gas temperature or the like. CPU 20a
Also, a flow rate calculation process for calculating a passing flow rate by multiplying the true temperature difference signal by a predetermined constant, a flow rate integration process for integrating the calculated passing flow rate to obtain an integrated flow rate, and displaying the calculated integrated flow rate Display processing to be displayed on the display 30 is performed.

【0024】また、上記μCOM20内のROM20b
には、例えば午前1:00〜午前4:00までの間のよ
うなガスの使用頻度の低い時間帯と、予め定めた所定値
とが格納されている。上記所定値は、ガス未使用時に、
圧力変動や温度変化などの外乱に起因して流れるガスの
通過流量の上限値である3リットル/時間の通過流量が
流れたときの温度差信号の電圧値である。
The ROM 20b in the μCOM 20
For example, a time zone in which gas is not frequently used, such as between 1:00 am and 4:00 am, and a predetermined value are stored. When the gas is not used,
This is the voltage value of the temperature difference signal when the passing flow rate of 3 liters / hour, which is the upper limit of the passing flow rate of the gas flowing due to disturbance such as pressure fluctuation and temperature change, flows.

【0025】そして、CPU20aは、ガス使用頻度の
低い時間帯であり、かつ温度差信号が所定値以下のと
き、補正演算処理及び流量演算処理を停止させる演算停
止処理を行う。以上のことから明らかなように、CPU
20aは、補正演算手段、流量演算手段、演算停止手段
として働くことがわかる。
The CPU 20a performs a calculation stop process for stopping the correction calculation process and the flow rate calculation process when the gas use frequency is low and the temperature difference signal is equal to or less than a predetermined value. As is clear from the above, the CPU
It can be seen that 20a functions as a correction operation unit, a flow amount operation unit, and an operation stop unit.

【0026】上述したように、温度差信号が所定値以下
のとき補正演算処理及び流量演算処理を停止させること
により、温度差信号が所定値以下のときには、実質的に
はガス流速がないとみなしてこの温度差信号に基づく通
過流量についての演算を行わなくてよくなり、消費電力
の低減を図ることができる。しかも、ガス供給路に流れ
るガスの通過流量が微量であるときは、ガス温度などに
起因する誤差は少ない。このため、補正を行っていない
温度差信号に基づき、ガス流速がないと判断しても流量
計測精度が低下することがない。
As described above, the correction calculation processing and the flow rate calculation processing are stopped when the temperature difference signal is equal to or less than the predetermined value, so that when the temperature difference signal is equal to or less than the predetermined value, it is considered that there is substantially no gas flow velocity. It is not necessary to calculate the passing flow rate based on the leverage temperature difference signal, and power consumption can be reduced. Moreover, when the flow rate of the gas flowing through the gas supply path is very small, the error caused by the gas temperature or the like is small. Therefore, even if it is determined that there is no gas flow velocity based on the uncorrected temperature difference signal, the flow rate measurement accuracy does not decrease.

【0027】また、深夜などのガス使用頻度の低い時間
帯であるときは、ガス流量がない確率が高い。従って、
上述したように、この時間帯に限って補正を行っていな
い温度差信号に基づき、ガス流速の有無を判断すれば、
ガスの使用があるにも拘わらずガス流量なしと誤判断す
ることがあまりなく、流量計測精度の向上を図ることが
できる。
When the gas usage is low, such as at midnight, there is a high probability that there is no gas flow. Therefore,
As described above, if the presence or absence of the gas flow rate is determined based on the temperature difference signal that has not been corrected only during this time zone,
Despite the use of gas, there is little erroneous determination that there is no gas flow rate, and the flow rate measurement accuracy can be improved.

【0028】さらに、上記所定値を、ガス未使用時の圧
力変動や温度変化などの外乱に起因して流体供給路に流
れる流体の通過流量の上限値である3リットル/時間と
することにより、確実にガス未使用時のみ、補正演算処
理及び流量演算処理を停止させることができる。
Further, the predetermined value is set to 3 liters / hour, which is the upper limit of the flow rate of the fluid flowing through the fluid supply path due to disturbance such as pressure fluctuation and temperature change when the gas is not used, The correction calculation process and the flow rate calculation process can be reliably stopped only when the gas is not used.

【0029】上述した構成の流量計測装置を組み込んだ
電子式ガスメータの動作を図3のCPU20aの処理手
順を参照して以下説明する。まず、CPU20aは、ヒ
ータ駆動回路10cを駆動して(ステップS1)、ヒー
タ10aを加熱させる。そして、所定時間経過後(ステ
ップS2でY)、ヒータ駆動回路10cの駆動を停止し
(ステップS3)、ヒータ10aの加熱を停止する。そ
の直後、CPU20aは、A/D変換器10fが変換し
た温度差信号のディジタル値を取り込む(ステップS
4)。
The operation of the electronic gas meter incorporating the above-described flow rate measuring device will be described below with reference to the processing procedure of the CPU 20a in FIG. First, the CPU 20a drives the heater drive circuit 10c (step S1) to heat the heater 10a. After a lapse of a predetermined time (Y in step S2), the driving of the heater driving circuit 10c is stopped (step S3), and the heating of the heater 10a is stopped. Immediately thereafter, the CPU 20a captures the digital value of the temperature difference signal converted by the A / D converter 10f (Step S).
4).

【0030】このとき、現在の時刻が、ROM20b内
に格納されたガスの使用頻度の低い時間帯でないときは
(ステップS5でN)、ステップS6、S7へ進む。一
方、現在の時刻がガスの使用頻度の低い時間帯であって
も(ステップS5でY)、取り込んだ温度差信号が所定
値より大きいときは(ステップS10でN)、ステップ
S6、S7へ進む。
At this time, if the current time is not a time zone in which the gas stored in the ROM 20b is not frequently used (N in step S5), the process proceeds to steps S6 and S7. On the other hand, even if the current time is a time zone in which the gas is not frequently used (Y in step S5), if the acquired temperature difference signal is larger than a predetermined value (N in step S10), the process proceeds to steps S6 and S7. .

【0031】ステップS6、7においては、ガス温度に
よって変化する補正係数αを温度差信号に乗じて、ガス
温度変化に起因する温度差信号の誤差を補正する温度補
正処理及び、物の構造その他によって変化する補正係数
をαを温度差信号に乗じて、物の構造その他によって変
化に起因する温度差信号の誤差を補正する流量補正処理
を行い、真の温度差信号を演算する。その後、この真の
温度差信号に所定の定数を乗じることにより通過流量を
演算する流量演算処理(ステップS8)、この算出した
通過流量を積算して積算流量を求める流量積算処理を行
った後(ステップS9)、ステップS11の表示処理に
進む。
In steps S6 and S7, the temperature difference signal is multiplied by a correction coefficient α that changes according to the gas temperature to correct an error in the temperature difference signal caused by the gas temperature change. The temperature difference signal is multiplied by α with the changing correction coefficient, and a flow rate correction process for correcting an error of the temperature difference signal caused by the change due to the structure of the object or the like is performed, and a true temperature difference signal is calculated. Thereafter, a flow rate calculating process for calculating the passing flow rate by multiplying the true temperature difference signal by a predetermined constant (step S8), and a flow rate integrating process for integrating the calculated passing flow rates to obtain an integrated flow rate are performed ( Step S9), proceed to the display processing of step S11.

【0032】一方、現在の時刻が、ROM20b内に格
納されたガスの使用頻度の低い時間帯であり(ステップ
S5でY)、かつ取り込んだ温度差信号がROM20b
内に格納された所定値以下であるときは、実質的にガス
流量がないとみなし、温度補正処理、流量補正処理、流
量演算処理及び流量積算処理を行うことなく、直ちにス
テップS11の表示処理に進む。
On the other hand, the current time is a time zone in which the frequency of use of the gas stored in the ROM 20b is low (Y in step S5), and the acquired temperature difference signal is the ROM 20b.
If the gas flow rate is equal to or less than the predetermined value stored in, it is considered that there is substantially no gas flow rate, and the temperature correction processing, the flow rate correction processing, the flow rate calculation processing and the flow rate integration processing are immediately performed, and the display processing in step S11 is immediately performed. move on.

【0033】そして、ステップS9からステップS11
の表示処理に進んだ場合は、ステップS9で積算された
結果が、表示器30に表示される。一方、ステップS1
0からステップS11の表示処理に進んだ場合は、前回
表示された積算流量が、表示器30に表示される。
Then, from step S9 to step S11
When the process proceeds to the display processing of step S9, the result integrated in step S9 is displayed on the display 30. On the other hand, step S1
When the process proceeds from 0 to the display processing of step S11, the integrated flow rate displayed last time is displayed on the display 30.

【0034】なお、上述した実施形態では、流速センサ
として、熱式流速センサを挙げて説明していたが、例え
ば、超音波式センサであってもよい。超音波式センサと
は、ガス供給路内に一定距離だけ離れて配置された超音
波周波数で作動する例えば圧電式振動子からなる2つの
音響トランスジューサにより構成されている。
In the above-described embodiment, the thermal flow rate sensor has been described as the flow rate sensor. However, for example, an ultrasonic sensor may be used. The ultrasonic sensor is constituted by two acoustic transducers, which are, for example, piezoelectric vibrators which operate at an ultrasonic frequency and are arranged at a fixed distance in the gas supply path.

【0035】そして、一方のトランスジューサの発生す
る超音波信号を他方のトランスジューサに受信させる動
作を交互に行って超音波信号がトランスジューサ間でガ
ス流方向と、ガス流方向と逆方向に伝搬される時間を間
欠的にそれぞれ計測し、この計測した2つの伝搬時間の
差を流速情報として出力するものである。
Then, an operation of causing the other transducer to receive an ultrasonic signal generated by one of the transducers is alternately performed so that the ultrasonic signal propagates between the transducers in a gas flow direction and in a direction opposite to the gas flow direction. Are measured intermittently, and the difference between the two measured propagation times is output as flow velocity information.

【0036】上記超音波式センサの場合も、ガス温度
や、物の構造等によって上記伝搬時間差に誤差が生じる
ため、補正をして真の伝搬時間差を算出する必要があ
る。従って、この場合も伝搬時間差が所定値以下のとき
に、補正演算及び流量演算を停止させれば、上記実施形
態と同様の効果を得ることができる。
Also in the case of the ultrasonic sensor, an error occurs in the propagation time difference depending on the gas temperature, the structure of an object, and the like. Therefore, it is necessary to correct the propagation time difference and calculate the true propagation time difference. Therefore, in this case as well, if the correction calculation and the flow rate calculation are stopped when the propagation time difference is equal to or less than the predetermined value, the same effect as in the above embodiment can be obtained.

【0037】[0037]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、流速情報が所定値以下のとき補正演算手段
及び流量演算手段の両者による演算を停止させることに
より、流速情報が所定値以下のときには、実質的には流
体流速がないとみなしてこの流速情報に基づく演算を行
わなくてよくなる。しかも、流体供給路に流れる流体の
通過流量が微量であるときは、流体温度などに起因する
誤差は少ない。このため、補正を行っていない流速情報
に基づき、流体流速がないと判断しても流量計測精度が
低下することがないので、流量計測精度の低下を招くこ
となく、消費電力の低減を図った流量計測装置を得るこ
とができる。
As described above, according to the first aspect of the present invention, when the flow velocity information is equal to or less than the predetermined value, the calculation by both the correction calculation means and the flow rate calculation means is stopped, so that the flow velocity information is reduced to a predetermined value. If the value is equal to or less than the value, it is assumed that there is substantially no fluid flow velocity, and it is not necessary to perform the calculation based on the flow velocity information. In addition, when the flow rate of the fluid flowing through the fluid supply passage is small, errors due to the fluid temperature and the like are small. For this reason, even if it is determined that there is no fluid flow velocity based on the flow velocity information that has not been corrected, the flow measurement accuracy does not decrease even if it is judged that there is no fluid flow velocity. A flow measurement device can be obtained.

【0038】請求項2記載の発明によれば、深夜などの
ガス使用頻度の低い時間帯であるときは、ガス流量がな
い確率が高い。このため、この時間帯に限って、補正を
行っていない流速情報に基づき流体流速の有無を判断す
れば、流体が使用されているにも拘わらず、通過流量な
しと誤判断することがあまりないので、流速計測精度の
向上を図った流量計測装置を得ることができる。
According to the second aspect of the present invention, there is a high probability that there is no gas flow rate during a time period when gas usage is low, such as at midnight. For this reason, only in this time zone, if the presence or absence of the fluid flow rate is determined based on the flow rate information that has not been corrected, it is unlikely that there is no passing flow rate despite the fluid being used. Therefore, it is possible to obtain a flow rate measuring device with improved flow rate measurement accuracy.

【0039】請求項3記載の発明によれば、流体温度に
起因する流速情報の誤差は、流体の通過流量が微少のと
きは大きくない。このため、温度補正の行っていない流
速情報に基づき、流体流速の有無を判断しても誤判断す
ることがあまりないので、流速計測精度の向上を図った
流量計測装置を得ることができる。
According to the third aspect of the invention, the error of the flow velocity information caused by the fluid temperature is not large when the flow rate of the fluid is very small. For this reason, even if the presence / absence of the fluid flow velocity is determined based on the flow velocity information for which the temperature correction has not been performed, there is not much erroneous determination, so that it is possible to obtain a flow measurement device with improved flow velocity measurement accuracy.

【0040】請求項4記載の発明によれば、確実に流体
が使用されていないときのみ、補正演算手段及び、流量
演算手段の両者による演算を停止させることができるの
で、流量計測精度の低下を招くことなく、より一層消費
電力の低減を図った流量計測装置を得ることができる。
According to the fourth aspect of the present invention, the calculation by both the correction calculation means and the flow rate calculation means can be stopped only when the fluid is not used reliably, so that the flow rate measurement accuracy is reduced. Without inviting, it is possible to obtain a flow rate measuring device that further reduces power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流量計測装置の基本構成図を示すブロ
ック図である。
FIG. 1 is a block diagram showing a basic configuration diagram of a flow measurement device of the present invention.

【図2】本発明の流量計測装置を組み込んだ電子式ガス
メータの一実施の形態を示すブロック図である。
FIG. 2 is a block diagram showing one embodiment of an electronic gas meter incorporating the flow rate measuring device of the present invention.

【図3】図3の電子式ガスメータを構成するCPUの処
理手順を示すフローチャートである。
FIG. 3 is a flowchart showing a processing procedure of a CPU constituting the electronic gas meter of FIG. 3;

【符号の説明】[Explanation of symbols]

10 流速センサ(フローセンサ) 20a−1 補正演算手段(CPU) 20a−2 流量演算手段(CPU) 20a−3 演算停止手段(CPU) Reference Signs List 10 Flow rate sensor (flow sensor) 20a-1 Correction calculation means (CPU) 20a-2 Flow rate calculation means (CPU) 20a-3 Calculation stop means (CPU)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体供給路に流れる流体の流速に応じた
流速情報を出力する流速センサと、前記流速情報の誤差
を除去して、真の流速情報を出力するための補正演算を
行う補正演算手段と、前記補正された真の流速情報に基
づき、前記流体供給路を流れる流体の通過流量を演算す
る流量演算手段とを備えた流量計測装置において、 前記流速情報が、所定値以下のとき、前記補正演算手段
及び流量演算手段の両者による演算を停止させる演算停
止手段を更に備えたことを特徴とする流量計測装置。
1. A flow rate sensor that outputs flow rate information according to a flow rate of a fluid flowing through a fluid supply path, and a correction calculation that removes an error in the flow rate information and performs a correction calculation for outputting true flow rate information. Means, based on the corrected true flow rate information, a flow rate measuring device comprising a flow rate calculating means for calculating the flow rate of the fluid flowing through the fluid supply path, when the flow rate information is less than a predetermined value, A flow rate measuring apparatus further comprising a calculation stopping means for stopping the calculations by both the correction calculating means and the flow rate calculating means.
【請求項2】 請求項1記載の流量計測装置であって、 前記流体は、ガスであり、 前記演算停止手段は、予め定めたガス使用頻度の低い時
間帯であるときのみ、前記演算を停止させることを特徴
とする流量計測装置。
2. The flow rate measuring apparatus according to claim 1, wherein the fluid is gas, and the calculation stopping means stops the calculation only when the predetermined gas usage frequency is low. A flow rate measuring device characterized in that the flow rate is measured.
【請求項3】 請求項1又は、2記載の流量計測装置で
あって、 前記補正演算手段は、前記流体の温度に基づき、前記流
速情報を補正することを特徴とする流量計測装置。
3. The flow rate measuring device according to claim 1, wherein the correction calculating means corrects the flow velocity information based on a temperature of the fluid.
【請求項4】 請求項1〜3何れか1項記載の流量計測
装置であって、 前記所定値は、通過流量が3リットル/時間であるとき
の前記流速情報であることを特徴とする流量計測装置。
4. The flow rate measuring device according to claim 1, wherein the predetermined value is the flow rate information when the passing flow rate is 3 liters / hour. Measuring device.
JP2000330719A 2000-10-30 2000-10-30 Flow measuring device Expired - Lifetime JP4698014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330719A JP4698014B2 (en) 2000-10-30 2000-10-30 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330719A JP4698014B2 (en) 2000-10-30 2000-10-30 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2002139363A true JP2002139363A (en) 2002-05-17
JP4698014B2 JP4698014B2 (en) 2011-06-08

Family

ID=18807185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330719A Expired - Lifetime JP4698014B2 (en) 2000-10-30 2000-10-30 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4698014B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287628B2 (en) * 2009-09-16 2013-09-11 パナソニック株式会社 Fluid flow measuring device
JP6867909B2 (en) * 2017-08-02 2021-05-12 アズビル株式会社 Thermal flow meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155044A (en) * 1998-11-19 2000-06-06 Matsushita Electric Ind Co Ltd Gas safety device
JP2000180231A (en) * 1998-12-15 2000-06-30 Ricoh Co Ltd Method for measuring flow rate, flow sensor, and combined flowmeter
JP2000180240A (en) * 1998-12-14 2000-06-30 Yazaki Corp Gas meter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333241A (en) * 1994-06-03 1995-12-22 Ricoh Co Ltd Microbridge type thermal flow velocity detector and fluidic type gas meter using the same
JPH0926339A (en) * 1995-07-12 1997-01-28 Tokyo Gas Co Ltd Fluidic flowmeter
JPH11351935A (en) * 1998-06-04 1999-12-24 Yazaki Corp Sensor signal processor for measuring flow rate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155044A (en) * 1998-11-19 2000-06-06 Matsushita Electric Ind Co Ltd Gas safety device
JP2000180240A (en) * 1998-12-14 2000-06-30 Yazaki Corp Gas meter
JP2000180231A (en) * 1998-12-15 2000-06-30 Ricoh Co Ltd Method for measuring flow rate, flow sensor, and combined flowmeter

Also Published As

Publication number Publication date
JP4698014B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP3224286B2 (en) Temperature measurement device using ultrasonic waves
KR100791431B1 (en) Fluid-measuring device and fluid-measuring method
WO2004020958A1 (en) Thermal flowmeter
JP3726261B2 (en) Thermal flow meter
JP4698014B2 (en) Flow measuring device
JP3640334B2 (en) Flow meter and gas meter
JP4955159B2 (en) Flow rate measuring method and apparatus
JPH11351929A (en) Flowmeter and flow rate measuring method
JP3808871B2 (en) Measuring device with temperature compensation function
JP2002310739A (en) Flow rate computing unit
JPH06265565A (en) Current speed detector for gas
JP4907959B2 (en) Flow sensor correction unit, fluid discrimination device, and flow measurement device
JP3103700B2 (en) Flowmeter
JP2004163251A (en) Flow measuring instrument
JP4013755B2 (en) Differential pressure measuring device
JP2004093171A (en) Integrating flowmeter
JP2001349760A (en) Signal generator for gasmeter, and flow velocity detector for gasmeter
JP2001141539A (en) Method of correcting temperature of flow sensor, and flow sensor circuit
JP2000009501A (en) Flowmeter and flow rate measuring method
US9175995B2 (en) Inferential coriolis mass flowmeter for determining a mass flowrate of a fluid by using algorithm derived partially from coriolis force
JP2001174297A (en) Flow rate measuring method and device
JP3146603B2 (en) Fluidic meter controller
JP2008292287A (en) Flowmeter
JP3488026B2 (en) Flow meter utilizing differential pressure
JP3152824B2 (en) Flow measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term