JP2002139277A - Control method and control device for air liquefying and separating device - Google Patents

Control method and control device for air liquefying and separating device

Info

Publication number
JP2002139277A
JP2002139277A JP2000335382A JP2000335382A JP2002139277A JP 2002139277 A JP2002139277 A JP 2002139277A JP 2000335382 A JP2000335382 A JP 2000335382A JP 2000335382 A JP2000335382 A JP 2000335382A JP 2002139277 A JP2002139277 A JP 2002139277A
Authority
JP
Japan
Prior art keywords
liquefied
air
flow rate
amount
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000335382A
Other languages
Japanese (ja)
Other versions
JP4944297B2 (en
Inventor
Shigeru Yuzawa
茂 湯沢
Takashi Tatsumi
高司 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2000335382A priority Critical patent/JP4944297B2/en
Publication of JP2002139277A publication Critical patent/JP2002139277A/en
Application granted granted Critical
Publication of JP4944297B2 publication Critical patent/JP4944297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Abstract

PROBLEM TO BE SOLVED: To provide a control method and a control device capable of responding quickly and stably to the change of demand of product gas in an air liquefying and separating device while maintaining the purity of the product. SOLUTION: When the amount of a product collected from the air liquefying and separating device is increased or decreased, an objective value is achieved employing a fundamental increasing and decreasing value, increasing or decreasing the flow rate set value of a fluid except the product linearly in proportion to the increasing or decreasing amount of the product, an increase compensating value, decreased with a big decreasing degree at first after arriving at the predetermined maximum compensating value and, thereafter, with the decreasing degree reduced gradually and arriving at zero finally, and a decrease compensating value, increased with a big increasing degree at first after arriving at the predetermined minimum compensating value and, thereafter, increased with the degree of increase reduced gradually and arriving at zero finally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気液化分離装置
の制御方法及び制御装置に関し、詳しくは、酸素、窒素
やアルゴンのような工業ガスの大量消費ユーザーである
製鉄所等における製品生産量の大幅な増減に迅速に対応
可能な空気液化分離装置の制御方法及び制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method and a control apparatus for an air liquefaction / separation apparatus, and more particularly, to a method for controlling the amount of product produced in a steel mill or the like who is a user who consumes industrial gases such as oxygen, nitrogen and argon. The present invention relates to a control method and a control device for an air liquefaction / separation device capable of quickly responding to a large change.

【0002】[0002]

【従来の技術】酸素ガスの大量消費ユーザーである製鉄
所等において繰り返される大幅な酸素ガスの使用量変動
に対応するため、空気液化分離装置に液化酸素貯槽及び
液化窒素貯槽を付設して酸素ガス供給量の増減量運転を
行う方法が知られている。この運転方法の一例を、図1
4に基づいて説明する。
2. Description of the Related Art In order to cope with large fluctuations in the amount of oxygen gas used repeatedly at steelworks, etc., which are users of mass consumption of oxygen gas, a liquefied oxygen storage tank and a liquefied nitrogen storage tank are attached to an air liquefaction / separation apparatus. A method of performing an operation of increasing or decreasing a supply amount is known. One example of this driving method is shown in FIG.
4 will be described.

【0003】まず、複式精留による深冷式空気液化分離
法によって少なくとも酸素と窒素とを分離する空気液化
分離装置は、下部塔(高圧塔)1、上部塔(低圧塔)
2、凝縮蒸発器3を有する複式精留塔と、原料空気を冷
却する主熱交換器4と、寒冷を発生する膨張タービン5
等の機器を備えており、このような空気液化分離装置
に、製品酸素ガスの増減に対応するための設備として液
化窒素貯槽6と液化酸素貯槽7とが設けられている。
First, an air liquefaction / separation apparatus for separating at least oxygen and nitrogen by a cryogenic air liquefaction / separation method using double rectification includes a lower tower (high pressure tower) 1 and an upper tower (low pressure tower).
2, a double rectification column having a condensing evaporator 3, a main heat exchanger 4 for cooling raw air, and an expansion turbine 5 for generating cold
The air liquefaction / separation apparatus is provided with a liquefied nitrogen storage tank 6 and a liquefied oxygen storage tank 7 as equipment for responding to an increase or decrease in product oxygen gas.

【0004】圧縮、精製、冷却された原料空気(AI
R)は、主熱交換器4から経路11を通って下部塔1の
下部に導入され、該下部塔1で精留されて塔頂部の窒素
ガス(中圧窒素ガス)と塔底部の酸素分が富化した液化
空気とに分離する。液化空気は、下部塔底部から経路1
2を流れ、過冷器13、弁14を通って上部塔2の中段
に導入される。
[0004] Compressed, purified and cooled raw material air (AI
R) is introduced from the main heat exchanger 4 to the lower part of the lower column 1 through the path 11 and rectified in the lower column 1 to obtain nitrogen gas (medium pressure nitrogen gas) at the top of the column and oxygen content at the bottom of the column. Is separated from the liquefied air enriched. The liquefied air flows from the bottom
2 through the subcooler 13 and the valve 14 and introduced into the middle stage of the upper tower 2.

【0005】前記中圧窒素ガスは、下部塔頂部から経路
15に抜出された後、一部が経路16に分岐して凝縮蒸
発器3に導入され、残部が経路17を通って主熱交換器
4に入り、経路18を通ってブロワ19で昇圧し、アフ
タークーラー20で冷却されてから再び主熱交換器4を
流れ、主熱交換器4の中間部から抜出されて膨張タービ
ン5に導入される。膨張タービン5で寒冷を発生した低
圧の窒素ガスは、経路21,22を通って三度主熱交換
器4に導入され、経路23から製品窒素ガス(GN)と
して系外に導出される。
[0005] The medium-pressure nitrogen gas is extracted from the lower tower top to the path 15, a part thereof is branched to the path 16 and introduced into the condensing evaporator 3, and the remainder is passed through the path 17 for main heat exchange. After entering the heat exchanger 4, the pressure is increased by the blower 19 through the passage 18, cooled by the after cooler 20, again flows through the main heat exchanger 4, extracted from the intermediate portion of the main heat exchanger 4, and passed to the expansion turbine 5. be introduced. The low-pressure nitrogen gas that has generated cold in the expansion turbine 5 is introduced into the main heat exchanger 4 three times through the paths 21 and 22, and is led out of the system as a product nitrogen gas (GN) from the path 23.

【0006】また、凝縮蒸発器3に導入された窒素ガス
は、該凝縮蒸発器3で液化して液化窒素となり、経路2
4に抜出される。経路24の液化窒素は、一部が経路2
5に分岐して下部塔1の還流液となり、残部の液化窒素
は、経路26から過冷器27、弁28を通って上部塔2
の上部に導入される。
The nitrogen gas introduced into the condensing evaporator 3 is liquefied by the condensing evaporator 3 to become liquefied nitrogen.
It is extracted to 4. Part of the liquefied nitrogen in path 24 is
5 and becomes the reflux liquid of the lower tower 1, and the remaining liquefied nitrogen is passed from the passage 26 through the subcooler 27 and the valve 28 to the upper tower 2.
Introduced at the top.

【0007】上部塔2に流入した液化空気及び液化窒素
は、該上部塔2で精留されて塔頂部の窒素ガス(低圧窒
素ガス)と塔底部の液化酸素とに分離する。塔頂部の低
圧窒素ガスは、経路29に抜出されて過冷器27、13
を通り、経路30から前記経路22に合流し、経路23
から製品窒素ガス(GN)として系外に導出される。
The liquefied air and liquefied nitrogen flowing into the upper tower 2 are rectified in the upper tower 2 and separated into nitrogen gas (low-pressure nitrogen gas) at the top of the tower and liquefied oxygen at the bottom of the tower. The low-pressure nitrogen gas at the top of the tower is withdrawn through a path 29 and is cooled by subcoolers 27 and 13.
And merges from the path 30 to the path 22 to form the path 23
From the system as product nitrogen gas (GN).

【0008】上部塔底部の液化酸素は、経路31を経て
凝縮蒸発器3に流入し、蒸発して酸素ガスとなって経路
32に導出され、一部が経路33に分岐して上部塔2の
上昇ガスとなり、残部の酸素ガスが、経路34を通って
主熱交換器4に流入し、昇温後に経路35から製品酸素
ガスGOとして系外に導出される。
The liquefied oxygen at the bottom of the upper tower flows into the condensing evaporator 3 via the path 31, evaporates and becomes oxygen gas, and is led out to the path 32. The gas becomes a rising gas, and the remaining oxygen gas flows into the main heat exchanger 4 through the passage 34, and is discharged from the system as a product oxygen gas GO from the passage 35 after the temperature is increased.

【0009】このように形成した空気液化分離装置にお
いて、製品酸素ガスの需要が、この空気液化分離装置の
酸素ガス生産能力を超えて、酸素ガス生産能力量プラス
α量となった場合には、図14に示すように、下部塔1
の頂部から経路15、経路17を経て主熱交換器4に向
かう中圧窒素ガスの流量をβ量減らし(−β)、この減
量分を経路16から凝縮蒸発器3に向かう窒素ガスに加
え(+β)、該凝縮蒸発器3で液化させる。β量増加し
た液化窒素は、凝縮蒸発器3から経路24,経路26を
経て液化窒素貯槽6に向かう経路36に分岐し、弁37
を通って液化窒素貯槽6に貯蔵される。
In the air liquefaction / separation apparatus thus formed, if the demand for the product oxygen gas exceeds the oxygen gas production capacity of the air liquefaction / separation apparatus and becomes the oxygen gas production capacity plus the α amount, As shown in FIG.
The flow rate of the medium-pressure nitrogen gas flowing from the top to the main heat exchanger 4 via the path 15 and the path 17 is reduced by β (−β), and this reduced amount is added to the nitrogen gas flowing from the path 16 to the condensing evaporator 3 ( + Β), and is liquefied in the condensation evaporator 3. The liquefied nitrogen whose β amount has increased is branched from the condensing evaporator 3 through a path 24 and a path 26 to a path 36 toward the liquefied nitrogen storage tank 6, and a valve 37 is provided.
And stored in the liquefied nitrogen storage tank 6.

【0010】同時に、液化酸素貯槽7内の液化酸素を、
ポンプ38により経路39、弁40を通してα量を凝縮
蒸発器3に供給し(+α)、該凝縮蒸発器3で気化させ
て酸素ガスとする。これにより、凝縮蒸発器3から経路
32、経路34、主熱交換器4、経路35を経て導出す
る製品酸素量をα量増加させることができる。このと
き、上部塔2における上昇ガス量と下降液量は、製品酸
素ガス量をα量増量させても変化しないので、製品酸素
増量前と同じ状態のままを維持していることになる。
At the same time, the liquefied oxygen in the liquefied oxygen storage tank 7 is
The amount of α is supplied to the condensing evaporator 3 by the pump 38 through the path 39 and the valve 40 (+ α), and is vaporized by the condensing evaporator 3 to be oxygen gas. Thereby, the amount of product oxygen derived from the condensing evaporator 3 via the path 32, the path 34, the main heat exchanger 4, and the path 35 can be increased by α. At this time, the rising gas amount and the descending liquid amount in the upper tower 2 do not change even if the product oxygen gas amount is increased by α, so that the same state as before the product oxygen increase is maintained.

【0011】一方、製品酸素ガスの需要が、この空気液
化分離装置の酸素生産能力以下となり、製品酸素ガス生
産能力量マイナスα量となった場合には、図15に示す
ように、下部塔1の頂部から経路15、経路17を経て
主熱交換器4に向かう中圧窒素ガスの流量をβ量増量し
(+β)、この増量分を経路16から凝縮蒸発器3に向
かう窒素ガスから減量する(−β)。この結果、凝縮蒸
発器3で生成する液化窒素がβ量減少するので、液化窒
素貯槽6の液化窒素をポンプ41、経路42、弁43を
通してβ量供給することにより(+β)、上部塔2頂部
への液化窒素導入量を同じ量に維持する。
On the other hand, when the demand for the product oxygen gas falls below the oxygen production capacity of the air liquefaction / separation apparatus and becomes the product oxygen gas production capacity minus α, as shown in FIG. The flow rate of the medium-pressure nitrogen gas flowing from the top to the main heat exchanger 4 via the path 15 and the path 17 is increased by β (+ β), and the increased amount is reduced from the nitrogen gas flowing from the path 16 to the condensing evaporator 3. (-Β). As a result, the amount of liquefied nitrogen generated in the condensing evaporator 3 is reduced by β amount. Therefore, by supplying liquefied nitrogen in the liquefied nitrogen storage tank 6 through the pump 41, the path 42, and the valve 43 (+ β), Maintain the same amount of liquefied nitrogen introduced into the reactor.

【0012】このとき、凝縮蒸発器3では、窒素ガス量
がβ量減少した分、液化酸素の蒸発量がα量減少するの
で、経路32から経路35を経て導出する製品酸素ガス
量がα量減少することになる。そして、凝縮蒸発器3で
は液化酸素がα量余剰となるので、この余剰の液化酸素
α量を凝縮蒸発器3から経路44に抜出し、過冷器2
7、弁45を通して液化酸素貯槽7に貯蔵する。この場
合も、上部塔2における上昇ガス量と下降液量は変化せ
ず、製品酸素減量前と同じ状態のままを維持しているこ
とになる。
At this time, in the condensing evaporator 3, since the amount of evaporation of the liquefied oxygen decreases by the amount of α due to the decrease of the amount of nitrogen gas by β, the amount of product oxygen gas derived from the path 32 via the path 35 is reduced by the amount of α Will decrease. Since the liquefied oxygen becomes excessive in the condensing evaporator 3, the surplus liquefied oxygen α is withdrawn from the condensing evaporator 3 to the path 44,
7. Store in the liquefied oxygen storage tank 7 through the valve 45. Also in this case, the ascending gas amount and the descending liquid amount in the upper tower 2 do not change, and the same state as before the product oxygen reduction is maintained.

【0013】このように、従来の空気液化分離装置で
は、液化酸素を液化窒素に転換することにより、あるい
は、液化窒素を液化酸素に転換することにより、製品酸
素ガスの増減量運転を行うようにしている。すなわち、
液化酸素と液化窒素との寒冷振替による製品酸素ガスの
増減量運転を行っている。また、下部塔1の塔頂から主
熱交換器4へ向かう中圧窒素ガスの増減量を行うことに
より、上部塔2の上昇ガス流量と下降液流量とを一定に
保つようにしており、これによって製品の収率を低下さ
せることなく短時間で製品酸素ガスの増減量運転を行え
るようにしている。
As described above, in the conventional air liquefaction / separation apparatus, the operation of increasing or decreasing the amount of product oxygen gas is performed by converting liquefied oxygen to liquefied nitrogen or by converting liquefied nitrogen to liquefied oxygen. ing. That is,
The operation of increasing or decreasing the amount of product oxygen gas by cold transfer between liquefied oxygen and liquefied nitrogen is performed. Also, by increasing or decreasing the medium pressure nitrogen gas from the top of the lower tower 1 to the main heat exchanger 4, the rising gas flow rate and the descending liquid flow rate of the upper tower 2 are kept constant. Thus, the operation of increasing or decreasing the amount of product oxygen gas can be performed in a short time without lowering the product yield.

【0014】なお、図15及び図16において、図14
の構成要素と同一の構成要素には同一の符号を付して詳
細な説明は省略する。
In FIGS. 15 and 16, FIG.
The same reference numerals are given to the same components as those described above, and the detailed description is omitted.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上述の
ような運転方法において、中圧窒素ガス量の増減が膨張
タービン5の流量増減となる場合、主熱交換器4におけ
る温流体と冷流体との流量バランスが大きく変化してし
まう。例えば、膨張タービン5の流量が減少するとき、
即ち製品酸素ガスを増量するときには、主熱交換器4の
出口における空気温度は高くなり、膨張タービン5の流
量が増加するとき、即ち製品酸素ガスを減量するときに
は、主熱交換器4の出口における空気温度は低くなる。
However, in the above-described operation method, if the increase or decrease of the medium-pressure nitrogen gas amount causes the increase or decrease of the flow rate of the expansion turbine 5, the flow of the hot fluid and the cold fluid in the main heat exchanger 4 is reduced. The flow balance changes greatly. For example, when the flow rate of the expansion turbine 5 decreases,
That is, when increasing the product oxygen gas, the air temperature at the outlet of the main heat exchanger 4 increases, and when the flow rate of the expansion turbine 5 increases, that is, when decreasing the product oxygen gas, the air temperature at the outlet of the main heat exchanger 4 increases. The air temperature will be lower.

【0016】また、図16に示すように、主熱交換器4
を出てブロワ19から膨張タービン5に向かう中圧窒素
ガスの経路18に分岐経路46を設置し、この分岐経路
46から導出する中圧窒素ガス量を、+βと−βとに変
化させることによって膨張タービン5に向かう窒素ガス
量を一定に保つようにした場合においても、凝縮蒸発器
3内の液化窒素と液化酸素との潜熱の相違により、製品
酸素ガスの増減量αに比べて中圧窒素ガスの増減量βの
方が大きくなるので、主熱交換器4における温流体と冷
流体との流量比が大きく変わり、その結果、主熱交換器
4の出口の空気温度が変化することになる。
As shown in FIG. 16, the main heat exchanger 4
And a branch path 46 is provided in the path 18 of the medium-pressure nitrogen gas flowing from the blower 19 to the expansion turbine 5, and the amount of the medium-pressure nitrogen gas derived from the branch path 46 is changed to + β and −β. Even when the amount of nitrogen gas flowing to the expansion turbine 5 is kept constant, due to the difference in latent heat between liquefied nitrogen and liquefied oxygen in the condensing evaporator 3, the medium pressure nitrogen Since the increase / decrease amount β of the gas is larger, the flow ratio between the hot fluid and the cold fluid in the main heat exchanger 4 changes greatly, and as a result, the air temperature at the outlet of the main heat exchanger 4 changes. .

【0017】そして、主熱交換器4の熱容量が大きいた
め、温度の変化速度が非常に遅く、安定するのに時間が
かかるだけでなく、主熱交換器出口の温度変化が大き
く、さらに、一時的に寒冷の過不足が生じるなどの問題
があった。
Since the heat capacity of the main heat exchanger 4 is large, the rate of change of the temperature is very slow and it takes time to stabilize, and the temperature change at the outlet of the main heat exchanger is large. There was a problem that the excess and deficiency of the cold occurred.

【0018】具体的な現象と事例とを挙げると、製品酸
素ガス流量を増量する場合、主熱交換器出口の空気温度
が規定温度より低い状態、即ち規定温度まで上昇しない
状態が暫くの時間続くことになるので、凝縮蒸発器3で
の液化酸素の蒸発量が低下し、上部塔2の上昇ガスが不
足することになる。したがって、この間、上部塔2の上
昇ガス流量を一定に保つため、製品酸素ガスを規定流量
まで増量できないことになり、凝縮蒸発器3における液
化酸素の蒸発量の低下によって液化酸素が過剰となる。
通常、製品酸素ガスを35000Nm/h生産する規
模の空気液化分離装置において、製品酸素ガスを100
00Nm/h増量して45000Nm /hにする場
合、2〜3時間は2000〜3000Nm/hの製品
酸素ガスが不足し、2000〜3000Nm/hの液
化酸素が過剰となる。
[0018] Specific phenomena and examples are:
When increasing the raw gas flow rate, the air temperature at the outlet of the main heat exchanger
Is below the specified temperature, that is, does not rise to the specified temperature
Since the state will continue for a while, the condensing evaporator 3
The amount of liquefied oxygen evaporated decreases, and the rising gas in the upper
Will be added. Therefore, during this time,
In order to keep the rising gas flow constant, supply the product oxygen gas at the specified flow rate.
And the liquid in the condensing evaporator 3 cannot be increased.
Liquefied oxygen becomes excessive due to a reduction in the amount of vaporized oxygen.
Normally, product oxygen gas is 35000Nm3/ H production regulation
The product oxygen gas is 100
00Nm3/ H increased to 45,000 Nm 3/ H
In the case of 2-3 hours, 2000-3000Nm3/ H products
Insufficient oxygen gas, 2000-3000Nm3/ H liquid
Oxygenation becomes excessive.

【0019】一方、製品酸素ガスを減量する場合は、主
熱交換器出口の空気温度が規定温度より高い状態が続く
ので、凝縮蒸発器3での液化酸素の蒸発量が増加し、上
部塔2の上昇ガスが過剰となる。したがって、この間
は、上部塔2の上昇ガス流量を一定に保つために、製品
酸素ガス流量を規定流量まで減量できないことになり、
また、凝縮蒸発器3における液化酸素の蒸発量の増加に
よって液化酸素が不足する状態となる。前記空気液化分
離装置の規模において、製品酸素ガスを10000Nm
/h減量して25000Nm/hにする場合、2〜
3時間は2000〜3000Nm/hの製品酸素ガス
が過剰となり、2000〜3000Nm/hの液化酸
素が不足する。
On the other hand, when reducing the amount of product oxygen gas, the air temperature at the outlet of the main heat exchanger continues to be higher than the specified temperature, so that the amount of liquefied oxygen evaporated in the condensing evaporator 3 increases and the upper tower 2 Gas rises in excess. Therefore, during this time, the product oxygen gas flow rate cannot be reduced to the specified flow rate in order to keep the rising gas flow rate of the upper tower 2 constant,
In addition, liquefied oxygen becomes insufficient due to an increase in the amount of liquefied oxygen evaporated in the condensation evaporator 3. On the scale of the air liquefaction separator, the product oxygen gas is 10,000 Nm
When the weight is reduced to 35000 Nm 3 / h by 3 / h,
3 hours becomes excessive oxygen product gas 2000~3000Nm 3 / h, a shortage of liquid oxygen of 2000~3000Nm 3 / h.

【0020】そこで本発明は、空気液化分離装置におけ
る製品ガス量の増減量運転において、製品ガスの需要量
変化に対して、製品純度を維持しつつ、迅速に、かつ、
安定して応答できる制御方法及び制御装置を提供するこ
とを目的としている。
Accordingly, the present invention provides a method for increasing or decreasing the amount of product gas in an air liquefaction / separation apparatus, which can quickly and quickly maintain a product purity with respect to a change in the amount of product gas demand.
It is an object of the present invention to provide a control method and a control device capable of stably responding.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するた
め、本発明の空気液化分離装置の制御方法は、圧縮、精
製、冷却した原料空気を、下部塔、上部塔及び凝縮蒸発
器を用いた複式精留による深冷式空気液化分離法によっ
て少なくとも酸素と窒素とを分離する空気液化分離装置
の制御方法において、該空気液化分離装置から採取する
製品量を増減するときに、該製品量の増減に応じて、製
品以外の流体の流量設定値を、前記製品の増減量に比例
させて直線的に増減させる基本増減値と、急激な増加度
で所定の最大補正値に達した後、最初は大きな減少度で
減少し、その後徐々に小さくなる減少度で減少して最終
的に零となるように変化する増加補正値と、急激な減少
度で所定の最小補正値に達した後、最初は大きな増加度
で増加し、その後徐々に小さくなる増加度で増加して最
終的に零となるように変化する減少補正値とを使用して
設定することを特徴としている。
In order to achieve the above object, a control method of an air liquefaction / separation apparatus according to the present invention uses compressed, purified and cooled raw material air by using a lower tower, an upper tower and a condensing evaporator. In the control method of the air liquefaction separation device that separates at least oxygen and nitrogen by the cryogenic air liquefaction separation method by the double rectification, when the amount of the product collected from the air liquefaction separation device is increased or decreased, the amount of the product is increased or decreased. In accordance with, the flow rate set value of the fluid other than the product, a basic increase and decrease value that linearly increases and decreases in proportion to the increase and decrease of the product, and after reaching a predetermined maximum correction value with a rapid increase, first An increase correction value that decreases with a large decrease, then decreases with a gradually decreasing decrease, and finally changes to zero, and after reaching a predetermined minimum correction value with a rapid decrease, Increase at a large rate, then gradually It is characterized by configured using the reduction correction value that varies so as to be finally zero increases with smaller increases degree.

【0022】さらに、前記制御方法において、製品酸素
ガス量を増加させるときに、該製品酸素ガスと熱交換を
行って冷却される原料空気の温度変化の遅れに対し、前
記製品酸素ガス量の増加信号に基づいて、1)前記原料
空気の流量設定値を、前記増加補正値により補正して目
標値とする、2)前記下部塔頂部から導出する窒素ガス
の流量設定値を、前記減少補正値により補正して目標値
とする、3)前記上部塔に導入する液化窒素の流量設定
値を、前記減少補正値により補正して目標値とする、の
1)2)3)の少なくともいずれか一つを実施すること
を特徴としている。
Further, in the above control method, when the amount of the product oxygen gas is increased, the increase in the amount of the product oxygen gas is caused by a delay in the temperature change of the raw material air cooled by performing heat exchange with the product oxygen gas. On the basis of the signal, 1) the flow rate set value of the raw air is corrected to the target value by the increase correction value, and 2) the flow rate set value of the nitrogen gas derived from the top of the lower tower is set to the decrease correction value. 3) At least one of 1), 2) and 3), wherein the set value of the flow rate of liquefied nitrogen introduced into the upper tower is corrected to the target value by the decrease correction value. It is characterized by performing one.

【0023】また、製品酸素ガス量を減少させるとき
に、該製品酸素ガスと熱交換を行って冷却される原料空
気の温度変化の遅れに対し、前記製品酸素ガス量の減少
信号に基づいて、1)前記原料空気の流量設定値を、前
記減少補正値により補正して目標値とする、2)前記下
部塔頂部から導出する窒素ガスの流量設定値を、前記増
加補正値により補正して目標値とする、3)前記上部塔
に導入する液化窒素の流量設定値を、前記増加補正値に
より補正して目標値とする、の1)2)3)の少なくと
もいずれか一つを実施することを特徴としている。
When the amount of the product oxygen gas is reduced, a delay in the temperature change of the raw material air cooled by performing heat exchange with the product oxygen gas is determined based on the decrease signal of the product oxygen gas. 1) The set value of the flow rate of the raw air is corrected to the target value by the decrease correction value. 2) The set value of the flow rate of the nitrogen gas derived from the lower tower top is corrected to the target value by the increase correction value. 3) Correcting the set value of the flow rate of the liquefied nitrogen introduced into the upper tower to the target value by using the increase correction value, and performing at least one of 1) 2) 3) It is characterized by.

【0024】さらに、前記制御方法において、製品酸素
ガス量を増加させるときに、系外に設けた液化酸素貯槽
から導出して前記凝縮蒸発器に導入した液化酸素を、前
記下部塔の頂部から導出されて前記凝縮蒸発器に導入さ
れる窒素ガスと熱交換させて気化させることにより製品
酸素ガスの一部とするとともに、1)前記原料空気の流
量設定値を、前記増加補正値により補正して目標値と
し、該原料空気量の一時的な増加により生じた液化空気
の余剰分を前記下部塔の底部に貯留する、2)前記下部
塔から導出される窒素ガスの流量設定値を、前記減少補
正値により補正して目標値とし、該窒素ガスの一時的な
減少により生じる液化窒素の余剰分を系外に設けた液化
窒素貯槽に貯留する、3)前記上部塔に導入する液化窒
素の流量設定値を、前記減少補正値により補正して目標
値とし、該液化窒素の一時的な減少により生じた液化窒
素の余剰分を系外に設けた液化窒素貯槽に貯留する、の
1)2)3)の少なくともいずれか一つを実施すること
を特徴としている。
Further, in the above control method, when increasing the product oxygen gas amount, the liquefied oxygen introduced from the liquefied oxygen storage tank provided outside the system and introduced into the condensing evaporator is derived from the top of the lower column. The nitrogen gas introduced into the condensing evaporator is heat-exchanged and vaporized to form a part of the product oxygen gas. 1) The set value of the flow rate of the raw air is corrected by the increase correction value. A surplus of liquefied air generated by a temporary increase in the amount of raw material air is stored at the bottom of the lower tower as a target value. 2) The set flow rate of nitrogen gas derived from the lower tower is reduced by the decrease. The target value is corrected by the correction value, and the excess liquefied nitrogen generated by the temporary decrease of the nitrogen gas is stored in a liquefied nitrogen storage tank provided outside the system. 3) The flow rate of the liquefied nitrogen introduced into the upper tower Set value The surplus of the liquefied nitrogen generated by the temporary decrease of the liquefied nitrogen is stored in a liquefied nitrogen storage tank provided outside the system. It is characterized in that either one is performed.

【0025】また、製品酸素ガス量を減少させるとき
に、系外に設けた液化窒素貯槽から導出して前記凝縮蒸
発器に導入した液化窒素により製品酸素ガスの一部を液
化し、生成した液化酸素を系外に設けた液化酸素貯槽に
貯留するとともに、1)前記原料空気の流量設定値を、
前記減少補正値により補正して目標値とし、該原料空気
量の一時的な減少により生じた液化空気の不足分を前記
下部塔の底部に貯留されている液化空気で補充する、
2)前記下部塔の頂部から導出される窒素ガスの流量設
定値を、前記増加補正値により補正して目標値とし、該
窒素ガスの一時的な増加により生じる液化窒素の不足分
を前記液化窒素貯槽から補充する、3)前記上部塔に導
入する液化窒素の流量設定値を、前記増加補正値により
補正して目標値とし、該液化窒素の一時的な増加により
生じた液化窒素の不足分を系外に設けた液化窒素貯槽に
貯留する、の1)2)3)の少なくともいずれか一つを
実施することを特徴とする空気液化分離装置の制御方
法。
Further, when reducing the amount of product oxygen gas, a part of the product oxygen gas is liquefied by liquefied nitrogen introduced from the liquefied nitrogen storage tank provided outside the system and introduced into the condensing evaporator, and the generated liquefied While oxygen is stored in a liquefied oxygen storage tank provided outside the system, 1) the flow rate set value of the raw material air is
The target value is corrected by the decrease correction value, and the shortage of the liquefied air generated by the temporary decrease of the raw air amount is supplemented by the liquefied air stored at the bottom of the lower tower.
2) The set value of the flow rate of the nitrogen gas derived from the top of the lower tower is corrected to the target value by the increase correction value, and the shortage of the liquefied nitrogen caused by the temporary increase of the nitrogen gas is determined by the liquefied nitrogen. 3) The set value of the flow rate of liquefied nitrogen introduced into the upper tower is corrected by the increase correction value to a target value, and the shortage of liquefied nitrogen caused by the temporary increase of the liquefied nitrogen is calculated. A method for controlling an air liquefaction / separation device, wherein at least one of 1), 2) and 3) is carried out in a liquefied nitrogen storage tank provided outside the system.

【0026】本発明の空気液化分離装置の制御装置は、
圧縮、精製、冷却した原料空気を、下部塔、上部塔及び
凝縮蒸発器を用いた複式精留による深冷式空気液化分離
法によって少なくとも酸素と窒素とを分離する空気液化
分離装置における流量調節を行うための制御装置であっ
て、製品酸素ガスの採取量を増減するための信号を発生
する製品量増減信号発生手段と、該製品量増減信号発生
手段からの信号に基づいて製品酸素ガス以外の流体の流
量設定値を前記製品酸素ガスの増減量に比例させて直線
的に増減させる基本増減値を設定する基本増減値設定手
段と、前記流量設定値を、急激な増加度で所定の最大補
正値に達した後、最初は大きな減少度で減少し、その後
徐々に小さくなる減少度で減少して最終的に零となるよ
うに変化する増加補正値を設定する増加補正値設定手段
と、急激な減少度で所定の最小補正値に達した後、最初
は大きな増加度で増加し、その後徐々に小さくなる増加
度で増加して最終的に零となるように変化する減少補正
値を設定する減少補正値設定手段とを備えるとともに、
1)前記原料空気の流量を制御する原料空気流量制御手
段、2)前記下部塔頂部から導出する窒素ガスの流量を
制御する窒素ガス流量制御手段、3)前記上部塔に導入
する液化窒素の流量を制御する液化窒素流量制御手段、
の1)2)3)の少なくともいずれか一つを備えている
ことを特徴としている。
The control device of the air liquefaction / separation apparatus of the present invention comprises:
The compressed, purified and cooled raw material air is subjected to flow control in an air liquefaction / separation unit that separates at least oxygen and nitrogen by a cryogenic air liquefaction / separation method based on double rectification using a lower tower, an upper tower and a condensing evaporator. A control device for performing, the product amount increase / decrease signal generating means for generating a signal for increasing / decreasing the product oxygen gas sampling amount, and a product amount other than the product oxygen gas based on the signal from the product amount increase / decrease signal generating means Basic increase / decrease value setting means for setting a basic increase / decrease value for linearly increasing / decreasing a flow rate set value of the fluid in proportion to an increase / decrease amount of the product oxygen gas, and a predetermined maximum correction of the flow rate set value at a rapid increase degree After reaching the value, an increase correction value setting means for setting an increase correction value that initially decreases with a large decrease degree, then decreases with a gradually decreasing decrease degree, and finally changes to zero. Great decrease After reaching a predetermined minimum correction value, a reduction correction value is set which initially increases with a large increase, then increases with a gradually decreasing increase and finally changes to zero. Means and
1) a raw air flow control means for controlling the flow rate of the raw air, 2) a nitrogen gas flow control means for controlling the flow rate of nitrogen gas derived from the top of the lower tower, 3) the flow rate of liquefied nitrogen introduced into the upper tower Liquefied nitrogen flow control means for controlling the
It is characterized by having at least one of 1), 2) and 3).

【0027】さらに、前記空気液化分離装置は、製品酸
素ガスの採取量を増加するときに発生する製品酸素ガス
の不足分に相当する量の液化酸素を系内に導入し、製品
酸素ガスの採取量を減少するときに発生する液化酸素の
余剰分を系内から抜出して貯留するための液化酸素貯槽
と、製品酸素ガスの採取量を増加するときに系内で発生
する液化窒素の余剰分を系内から抜出して貯留し、製品
酸素ガスの採取量を減少するときに発生する液化酸素の
不足分に相当する量の液化窒素を系内に導入するための
液化窒素貯槽とを備えていることを特徴としている。
Further, the air liquefaction / separation apparatus introduces into the system an amount of liquefied oxygen corresponding to a shortage of product oxygen gas generated when the amount of sampled product oxygen gas is increased. A liquefied oxygen storage tank for extracting and storing surplus liquefied oxygen generated when the amount is reduced, and a surplus liquefied nitrogen generated in the system when the amount of product oxygen gas collected is increased. A liquefied nitrogen storage tank for introducing and storing in the system an amount of liquefied nitrogen corresponding to the deficiency of liquefied oxygen generated when reducing the amount of product oxygen gas extracted and stored in the system It is characterized by.

【0028】また、前記空気液化分離装置は、製品酸素
ガスの採取量の増減によって発生する液化空気量の変動
を補償するための液化空気貯槽を、前記下部塔の底部又
は下部塔の底部から上部塔に液化空気を供給する経路の
途中に設けたことを特徴としている。
The air liquefaction / separation apparatus may further include a liquefied air storage tank for compensating for fluctuations in the amount of liquefied air generated due to an increase or decrease in the amount of product oxygen gas collected, from the bottom of the lower tower or the bottom of the lower tower. It is characterized by being provided in the middle of the path for supplying liquefied air to the tower.

【0029】[0029]

【発明の実施の形態】図1は本発明の制御方法及び制御
装置を適用した空気液化分離装置の一形態例を示す系統
図であって、基本構成は前記図14に示した空気液化分
離装置と同様であるから、図14の構成要素と同一の構
成要素には同一の符号を付して詳細な説明は省略する。
FIG. 1 is a system diagram showing one embodiment of an air liquefaction / separation apparatus to which the control method and control apparatus of the present invention are applied. The basic configuration of the air liquefaction / separation apparatus shown in FIG. Therefore, the same components as those in FIG. 14 are denoted by the same reference numerals, and detailed description is omitted.

【0030】従来と同様に、原料空気(AIR)は、空
気圧縮機で圧縮され、水と炭酸ガスを吸着除去された
後、経路10から主熱交換器4に導入されて所定の温度
まで冷却され、経路11を通って下部塔1の下部に導入
される。下部塔1では頂部に中圧窒素ガスが、下部に液
化空気がそれぞれ分離し、経路12に抜出された液化空
気は、弁14で減圧後に上部塔2の中部に導入され、該
上部塔2において酸素と窒素とに分離される。
As before, the raw air (AIR) is compressed by an air compressor to adsorb and remove water and carbon dioxide, and then introduced into the main heat exchanger 4 through a passage 10 and cooled to a predetermined temperature. Then, it is introduced into the lower part of the lower tower 1 through the path 11. In the lower tower 1, medium-pressure nitrogen gas is separated at the top, and liquefied air is separated at the lower part. The liquefied air extracted to the path 12 is introduced into the middle part of the upper tower 2 after decompression by the valve 14, and Is separated into oxygen and nitrogen.

【0031】下部塔頂部の中圧窒素ガスは、その一部が
経路17を経て主熱交換器4に戻り、膨張タービン5の
制動ブロワー19で昇圧された後、冷却器20で常温に
冷却され、再度、主熱交換器4で所定温度まで冷却され
た後、膨張タービン5に導入されて本装置に必要な寒冷
を発生する。その後、経路23から低圧窒素ガスとして
採取される。
Part of the medium-pressure nitrogen gas at the top of the lower tower is returned to the main heat exchanger 4 via a path 17, pressurized by a brake blower 19 of the expansion turbine 5, and then cooled to a normal temperature by a cooler 20. After being cooled again to a predetermined temperature in the main heat exchanger 4, it is introduced into the expansion turbine 5 to generate cold required for the present apparatus. Thereafter, it is collected from the passage 23 as low-pressure nitrogen gas.

【0032】一方、経路15から経路16に分岐した中
圧窒素ガスは、凝縮蒸発器3に導入され、ここで、液化
酸素と熱交換することによって液化窒素となる。ここで
生成した液化窒素は、経路24に導出された後、一部は
下部塔1の還流液として経路25により下部塔1に戻さ
れる。残りの液化窒素は、経路26を経て上部塔2の還
流液として弁28で減圧後に上部塔2の上部に導入され
る。
On the other hand, the medium-pressure nitrogen gas branched from the path 15 to the path 16 is introduced into the condensing evaporator 3, where it undergoes heat exchange with liquefied oxygen to become liquefied nitrogen. After the liquefied nitrogen generated here is led out to the path 24, a part thereof is returned to the lower tower 1 via the path 25 as a reflux liquid of the lower tower 1. The remaining liquefied nitrogen is introduced into the upper part of the upper tower 2 after being depressurized by a valve 28 as a reflux liquid of the upper tower 2 via a passage 26.

【0033】上部塔2では、酸素と窒素とが分離され、
下部から酸素が、頂部から窒素がそれぞれ採取される。
上部塔2の下部から経路31により液化酸素が導出され
て凝縮蒸発器3に導入され、ここで前記中圧窒素ガスと
熱交換して気化され、経路32から導出される。経路3
2からの酸素ガスの一部は、製品酸素ガスGOとして経
路34から主熱交換器4を戻り、経路35から採取され
る。一方、経路32から経路33に分岐した残りの酸素
ガスは、上部塔2の上昇ガスとして上部塔2の下部に導
入される。
In the upper tower 2, oxygen and nitrogen are separated,
Oxygen is collected from the bottom and nitrogen from the top.
Liquefied oxygen is led out from the lower part of the upper tower 2 through a path 31 and introduced into the condensing evaporator 3, where it is heat-exchanged with the medium-pressure nitrogen gas and vaporized, and is led out from a path 32. Route 3
A portion of the oxygen gas from 2 returns from the main heat exchanger 4 from the path 34 as the product oxygen gas GO and is collected from the path 35. On the other hand, the remaining oxygen gas branched from the path 32 to the path 33 is introduced into a lower part of the upper tower 2 as a rising gas of the upper tower 2.

【0034】また、上部塔2の頂部から経路29に導出
された窒素ガスは、前記膨張タービン5を出た低圧の窒
素ガスと合流して主熱交換器4を戻り、経路23から取
出される。さらに、本形態例では、廃ガスWGは、上部
塔上部から経路47に抜出され、過冷器27,13を通
ってさらに主熱交換器4を通り、経路48から導出され
ている。
The nitrogen gas led out from the top of the upper tower 2 to the passage 29 joins with the low-pressure nitrogen gas leaving the expansion turbine 5 and returns to the main heat exchanger 4 to be taken out from the passage 23. . Further, in the present embodiment, the waste gas WG is extracted from the upper part of the upper tower to the path 47, passes through the subcoolers 27 and 13, further passes through the main heat exchanger 4, and is led out from the path 48.

【0035】次に、該空気液化分離装置に付設された液
化窒素貯槽6と液化酸素貯槽7とを用いて製品酸素ガス
の増減量運転を行う場合を説明する。まず、液化窒素貯
槽6の液化窒素は、製品酸素ガスの減量時には、液化窒
素ポンプ41から経路42を通して上部塔2の上部に供
給される。一方、製品酸素ガスの増量時には、下部塔1
の頂部から凝縮蒸発器3に送る中圧窒素ガスを増量し、
該凝縮蒸発器3で液化された液化窒素の増量分が経路2
6から経路36に分岐して液化窒素貯槽6に導入され
る。
Next, a description will be given of a case where the operation for increasing or decreasing the amount of product oxygen gas is performed using the liquefied nitrogen storage tank 6 and the liquefied oxygen storage tank 7 attached to the air liquefaction / separation apparatus. First, the liquefied nitrogen in the liquefied nitrogen storage tank 6 is supplied from the liquefied nitrogen pump 41 to the upper part of the upper tower 2 through the passage 42 when the product oxygen gas is reduced. On the other hand, when increasing the product oxygen gas, the lower tower 1
The amount of medium-pressure nitrogen gas sent to the condensing evaporator 3 from the top of
The increased amount of the liquefied nitrogen liquefied in the condensing evaporator 3 is supplied to the path 2
6 branches into a path 36 and is introduced into the liquefied nitrogen storage tank 6.

【0036】また、液化酸素貯槽7の液化酸素は、製品
酸素ガスの増量時には、該液化酸素貯槽7から液化酸素
ポンプ38を経て経路39から凝縮蒸発器3あるいは上
部塔2の下部に供給され、凝縮蒸発器3で気化した後、
製品酸素GOとして経路34、経路35を経て採取され
る。一方、製品酸素ガスの減量時には、凝縮蒸発器3で
気化できなかった液化酸素が経路44を経て液化酸素貯
槽7に導入される。
The liquefied oxygen in the liquefied oxygen storage tank 7 is supplied from the liquefied oxygen storage tank 7 through the liquefied oxygen pump 38 to the condensing evaporator 3 or the lower part of the upper tower 2 through the liquefied oxygen pump 38 when the product oxygen gas is increased. After vaporization in the condensing evaporator 3,
It is collected as the product oxygen GO via the route 34 and the route 35. On the other hand, when the product oxygen gas is reduced, the liquefied oxygen that could not be vaporized by the condensing evaporator 3 is introduced into the liquefied oxygen storage tank 7 via the path 44.

【0037】このような空気液化分離装置の運転制御に
おいて、製品酸素ガスの増減量運転を行う場合の制御器
として、図1に示すように、原料空気の経路10に原料
空気流量調節計51を、製品酸素ガスの経路35に製品
酸素ガス流量調節計52を、低圧窒素ガスの経路23に
低圧窒素ガス流量調節計53を、膨張タービン5の入口
部に膨張タービン流量調節計54を、上部塔2に供給さ
れる還流液化窒素の経路の弁28部分に還流液化窒素流
量調節計55を、上部塔2にに供給される液化空気の弁
14部分に液化空気流量調節計56を、液化酸素貯槽7
に液化酸素を送り出す経路の弁45部分に送出液化酸素
流量調節計57を、液化窒素貯槽6に液化窒素を送り出
す経路の弁37部分に送出液化窒素流量調節計58を、
液化窒素貯槽6から上部塔2に液化窒素を注入する経路
の弁43部分に注入液化窒素流量調節計59を、液化酸
素貯槽7から凝縮蒸発器3に液化酸素を注入する経路の
弁40部分に注入液化酸素流量調節計60を、さらに、
廃ガスの経路48に上部塔2の頂部の圧力を制御するた
めの上部塔塔頂圧力調節計61をそれぞれ設け、これら
の各制御器によって各流体の流量を調節することによ
り、製品酸素ガスの需要変動に対応した流量制御、圧力
制御を行うようにしている。
In the operation control of such an air liquefaction / separation apparatus, as shown in FIG. 1, a feed air flow controller 51 is provided in the feed air path 10 as a controller for performing an increase / decrease operation of the product oxygen gas. The product oxygen gas flow controller 52 in the product oxygen gas path 35, the low pressure nitrogen gas flow controller 53 in the low pressure nitrogen gas path 23, the expansion turbine flow controller 54 at the inlet of the expansion turbine 5, and the upper tower. A liquefied nitrogen flow controller 55 is provided in the valve 28 of the path of the refluxed liquefied nitrogen supplied to the upper column 2, a liquefied air flow controller 56 is provided in the valve 14 of the liquefied air supplied to the upper tower 2, and a liquefied oxygen storage tank. 7
A delivery liquefied oxygen flow controller 57 is provided at a valve 45 portion of a path for sending out liquefied oxygen, and a delivery liquefied nitrogen flow controller 58 is provided at a valve 37 portion of a route for sending liquefied nitrogen to the liquefied nitrogen storage tank 6.
The injection liquefied nitrogen flow controller 59 is provided at the valve 43 in the path for injecting liquefied nitrogen from the liquefied nitrogen storage tank 6 to the upper tower 2, and the valve 40 is provided in the path for injecting liquefied oxygen from the liquefied oxygen storage tank 7 to the condensing evaporator 3. The injection liquefied oxygen flow controller 60 is further
An upper tower top pressure controller 61 for controlling the pressure at the top of the upper tower 2 is provided in the waste gas path 48, and the flow rate of each fluid is adjusted by each of these controllers, whereby the product oxygen gas is controlled. Flow control and pressure control corresponding to demand fluctuations are performed.

【0038】基本的な制御は、製品酸素ガスを増減する
ときに、該製品酸素ガス量の増減に応じて流量を増減す
べき製品酸素ガス以外の流体、例えば原料空気や中圧窒
素ガス等の流量設定値を、前記製品酸素ガスの増減量に
比例させて直線的に増減させる基本増減値によって行
う。そして、本発明では、この基本増減値に加えて、増
減補正値を用いることにより、主熱交換器出口における
原料空気の温度変化の遅れや、一時的な寒冷の過不足を
補償するようにしている。
The basic control is that when the product oxygen gas is increased or decreased, a fluid other than the product oxygen gas whose flow rate should be increased or decreased according to the increase or decrease of the product oxygen gas amount, for example, a raw material air or a medium-pressure nitrogen gas. The flow rate set value is determined by a basic increase / decrease value that is linearly increased / decreased in proportion to the increase / decrease amount of the product oxygen gas. In the present invention, in addition to the basic increase / decrease value, by using the increase / decrease correction value, the delay in the temperature change of the raw air at the outlet of the main heat exchanger and the temporary excess / deficiency of the cold are compensated. I have.

【0039】製品酸素ガスの増量運転を行う場合、具体
的には、次の三つのケースの運転制御のいずれか少なく
とも一つを行うことにより、主熱交換器出口における原
料空気の温度変化の遅れと一時的な寒冷過剰とを補償す
る。
When performing the operation of increasing the amount of product oxygen gas, specifically, at least one of the following three cases of operation control is performed to delay the temperature change of the raw air at the outlet of the main heat exchanger. And temporary overcooling.

【0040】ケース1 主熱交換器4の出口における原料空気温度が規定温度に
比べて低い期間、空気流量調節計51の流量設定値を、
製品酸素ガスの増量信号に応じて、図2に示すように、
急激な増加度Eで所定の最大補正値Rmaxに達した
後、最初は大きな減少度Dで減少し、その後徐々に小
さくなる減少度Dで減少して最終的に零となるように
変化する増加補正値を加えた設定値とする。このように
して原料空気の流量を制御することにより、凝縮蒸発器
3における液化酸素の蒸発量の不足を補って上部塔2の
上昇ガス流量を一定にするとともに、下部塔1における
液化空気の余剰分を下部塔1の底部又は下部塔の底部か
ら上部塔に液化空気を供給する経路12の途中に貯留す
ることによって寒冷の一時的な過剰を処理し、上部塔2
の下降液流量を一定にする。
Case 1 During a period in which the raw material air temperature at the outlet of the main heat exchanger 4 is lower than the specified temperature, the flow rate set value of the air flow controller 51 is
In response to the product oxygen gas increase signal, as shown in FIG.
After reaching the predetermined maximum correction value Rmax by rapid increase of E, initially changes as decreased in large decrease of D L, the finally zero decreases thereafter gradually decrease rate of decrease D S Set value to which the increase correction value is added. By controlling the flow rate of the raw air in this way, the shortage of the amount of liquefied oxygen evaporating in the condensing evaporator 3 is compensated for, the rising gas flow rate in the upper tower 2 is kept constant, and the excess liquefied air in the lower tower 1 is increased. The temporary excess of cold is treated by storing the fraction in the middle of a path 12 for supplying liquefied air from the bottom of the lower tower 1 or the bottom of the lower tower to the upper tower, thereby processing the temporary excess of the cold.
Make the descending liquid flow rate constant.

【0041】ケース2 主熱交換器4の出口における原料空気温度が規定温度に
比べて低い期間、膨張タービン流量調節計54の流量設
定値を、製品酸素ガスの増量信号に応じて、図3に示す
ように、急激な減少度Dで所定の最小補正値Rminに
達した後、最初は大きな増加度Eで増加し、その後徐
々に小さくなる増加度Eで増加して最終的に零となる
ように変化する減少補正値を加えた設定値とする。この
ように膨張タービン5の流量を制御することにより、凝
縮蒸発器3における液化酸素の蒸発量の不足を補って上
部塔2の上昇ガス流量を一定にするとともに、送出液化
窒素流量調節計58の流量設定値を、図2に示す増加補
正値を加えた設定値とし、膨張タービン流量の一時的な
減量に伴って凝縮蒸発器3から導出される液化窒素の余
剰分を液化窒素貯槽6に貯えて寒冷過剰を処理すること
により、上部塔2及び下部塔1の下降液流量を一定にす
る。
Case 2 During a period in which the temperature of the raw material air at the outlet of the main heat exchanger 4 is lower than the specified temperature, the flow rate set value of the expansion turbine flow controller 54 is changed according to the product oxygen gas increase signal as shown in FIG. as shown, after reaching a rapid decrease of the predetermined minimum correction value Rmin in D, initially increases with significant increase of E L, and finally zero increases thereafter gradually decrease the increase of E S It is set to a value obtained by adding a decrease correction value that changes as follows. By controlling the flow rate of the expansion turbine 5 as described above, the shortage of the amount of liquefied oxygen evaporating in the condensing evaporator 3 is compensated for, and the rising gas flow rate of the upper tower 2 is kept constant. The set value of the flow rate is a set value to which the increase correction value shown in FIG. 2 is added, and the surplus amount of liquefied nitrogen derived from the condensing evaporator 3 with the temporary decrease of the flow rate of the expansion turbine is stored in the liquefied nitrogen storage tank 6. The excess liquid is treated to keep the descending liquid flow rates of the upper tower 2 and the lower tower 1 constant.

【0042】ケース3 主熱交換器4の出口における原料空気温度が規定温度に
比べて低い期間、還流液化窒素流量調節計55の流量設
定値を、図3に示した減少補正値を加えた設定値とし、
上部塔2の上昇ガス流量の減少に合わせて塔頂からの下
降液流量も減少させ、上部塔2の上昇ガスと下降液との
流量比の乱れを抑えるとともに、送出液化窒素流量調節
計58の流量設定値を、図2に示す増加補正値を加えた
設定値とし、還流液化窒素流量の一時的な減量に伴う液
化窒素の余剰分を液化窒素貯槽6に貯えて寒冷過剰を処
理することにより、下部塔1の下降液流量を一定にす
る。
Case 3 During the period when the temperature of the raw material air at the outlet of the main heat exchanger 4 is lower than the specified temperature, the flow rate set value of the reflux liquefied nitrogen flow controller 55 is set by adding the decrease correction value shown in FIG. Value,
The flow rate of the descending liquid from the top of the upper tower 2 is also reduced in accordance with the decrease in the flow rate of the rising gas in the upper tower 2 to suppress the disturbance in the flow rate ratio between the rising gas and the descending liquid in the upper tower 2, The flow rate set value is a set value to which the increase correction value shown in FIG. 2 is added, and the excess amount of liquefied nitrogen accompanying the temporary decrease in the flow rate of the liquefied liquefied nitrogen is stored in the liquefied nitrogen storage tank 6 to process excess cold. The flow rate of the descending liquid in the lower tower 1 is made constant.

【0043】また、製品酸素ガスの減量運転を行う場合
は、上記増量の場合とは逆の制御補償を加えることによ
り、主熱交換器5の出口における原料空気の温度変化の
遅れと一時的な寒冷不足とを補償することができる。
When the operation of reducing the product oxygen gas is performed, control delay reverse to that in the case of increasing the amount of oxygen is added to temporarily delay the temperature change of the raw air at the outlet of the main heat exchanger 5 and temporarily reduce the temperature. Insufficient cold can be compensated.

【0044】ケース1 主熱交換器4の出口における原料空気温度が規定温度に
比べて高い期間、空気流量調節計51の流量設定値を、
図3に示す減少補正値を加えた設定値とし、凝縮蒸発器
3における液化酸素の蒸発量の増加を抑えて上部塔2の
上昇ガス流量を一定にするとともに、液化空気の不足分
を下部塔1の塔底等に貯えてある液化空気を用いて補う
ことによって寒冷の一時的な不足を処理し、上部塔2の
下降液流量を一定にする。
Case 1 During the period when the raw air temperature at the outlet of the main heat exchanger 4 is higher than the specified temperature, the flow rate set value of the air flow controller 51 is
A set value obtained by adding the decrease correction value shown in FIG. 3 is used to suppress the increase in the amount of liquefied oxygen evaporated in the condensing evaporator 3 to keep the rising gas flow rate in the upper tower 2 constant, and to determine the shortage of liquefied air in the lower tower. The liquefied air stored in the bottom of the column 1 is used to compensate for the temporary shortage of the cold, and the flow rate of the descending liquid in the upper column 2 is made constant.

【0045】ケース2 主熱交換器4の出口における原料空気温度が規定温度に
比べて高い期間、低圧窒素ガス流量調節計53の流量設
定値を、図2に示す増加補正値を加えた設定値とし、凝
縮蒸発器3における液化酸素の蒸発量の増加を抑えて上
部塔2の上昇ガス流量を一定にするとともに、還流液化
窒素流量調節計55の設定値を、図3に示す減少補正値
を加えた設定値とし、凝縮蒸発器3における液化窒素の
生成量減少に対して下部塔1の下降液流量を一定にし、
さらに、注入液化窒素流量調節計59の設定値を、図2
に増加補正値を加えた設定値とし、上部塔2の還流液化
窒素の減少分を補って寒冷不足を処理し、上部塔2の下
降液流量を一定にする。
Case 2 During the period when the raw air temperature at the outlet of the main heat exchanger 4 is higher than the specified temperature, the flow set value of the low-pressure nitrogen gas flow controller 53 is changed to the set value obtained by adding the increase correction value shown in FIG. In addition to suppressing the increase in the amount of liquefied oxygen evaporating in the condensing evaporator 3 and keeping the rising gas flow rate of the upper tower 2 constant, the set value of the reflux liquefied nitrogen flow rate controller 55 is set to With the added set value, the descending liquid flow rate of the lower tower 1 is made constant with respect to the decrease in the amount of liquefied nitrogen generated in the condensation evaporator 3,
Further, the set value of the injection liquefied nitrogen flow controller 59 is
Is set to a value obtained by adding an increase correction value to refrigeration liquid nitrogen in the upper tower 2 to compensate for the decrease in liquefied liquefied nitrogen.

【0046】ケース3 主熱交換器4の出口における原料空気温度が規定温度に
比べて高い期間、注入液化窒素流量調節計59の設定値
を、図2に示す増加補正値を加えた設定値とし、寒冷不
足を処理し、上部塔2の上昇ガス流量の増加に合わせて
上部塔2の塔頂からの下降液流量を増加させ、上部塔2
における上昇ガスと下降液との流量比の乱れを抑える。
Case 3 During a period in which the temperature of the raw material air at the outlet of the main heat exchanger 4 is higher than the specified temperature, the set value of the injected liquefied nitrogen flow controller 59 is set to a value obtained by adding the increase correction value shown in FIG. In order to cope with the cold shortage, the descending liquid flow rate from the top of the upper tower 2 is increased in accordance with the increase of the ascending gas flow rate of the upper tower 2,
The disturbance of the flow ratio between the ascending gas and the descending liquid is suppressed.

【0047】なお、ケース3の運転制御は、上部塔2に
おける上昇ガス及び下降液の流量を常時一定にさせると
いう他のケースの思想とは異なり、上部塔2の上昇ガス
流量の変化に合わせて下降液流量も同じ方向に変化さ
せ、上部塔2の上昇ガスと下降液との流量比を大きく崩
さないという思想に基づいたものである。
The operation control of the case 3 is different from the idea of the other cases in which the flow rates of the ascending gas and the descending liquid in the upper tower 2 are always kept constant. The descending liquid flow rate is also changed in the same direction, based on the idea that the flow rate ratio between the ascending gas and the descending liquid in the upper tower 2 is not largely destroyed.

【0048】また、以上の説明は、製品として酸素及び
窒素の採取に限って説明したが、アルゴンを採取する空
気液化分離装置にも適用できることはいうまでもない。
Although the above description has been limited to the collection of oxygen and nitrogen as products, it goes without saying that the present invention can also be applied to an air liquefaction separator for collecting argon.

【0049】[0049]

【実施例】図4に系統図を示す構成の空気液化分離装置
を使用して定格運転時と酸素増量運転時とにおけるシミ
ュレーションを行った。この空気液化分離装置は、図1
に示した下部塔1、上部塔2、凝縮蒸発器3を有すると
ともに、液化窒素貯槽6及び液化酸素貯槽7を付設した
空気液化分離装置に、粗アルゴン塔71、粗アルゴン凝
縮器72を加えた3塔式の空気液化分離装置であって、
粗アルゴン塔71は、塔下部において上部塔2の中段と
アルゴン原料ガスを上部塔2から粗アルゴン塔71に供
給する経路73と、粗アルゴン塔71の塔底液を上部塔
2に戻す経路74とが設けられ、塔上部には、粗アルゴ
ンガスを導出する経路75と、粗アルゴン凝縮器72で
液化した液化アルゴンを粗アルゴン塔71に戻す経路7
6とが設けられている。
EXAMPLE A simulation was performed at the time of rated operation and at the time of oxygen increase operation using an air liquefaction / separation apparatus having the structure shown in FIG. This air liquefaction separation device is shown in FIG.
The crude argon column 71 and the crude argon condenser 72 were added to the air liquefaction / separation apparatus having the lower tower 1, the upper tower 2, the condensing evaporator 3 and the liquefied nitrogen storage tank 6 and the liquefied oxygen storage tank 7 shown in FIG. A three-tower air liquefaction and separation apparatus,
The crude argon tower 71 has a lower part in the middle part of the upper tower 2 and a path 73 for supplying the argon raw material gas from the upper tower 2 to the crude argon tower 71, and a path 74 for returning the bottom liquid of the crude argon tower 71 to the upper tower 2. In the upper part of the tower, a route 75 for leading out the crude argon gas and a route 7 for returning the liquefied argon liquefied by the crude argon condenser 72 to the crude argon tower 71 are provided.
6 are provided.

【0050】また、粗アルゴン凝縮器72には、前記経
路75に導出した粗アルゴンガスの一部を粗アルゴン凝
縮器72に導入する経路77と、液化アルゴンを粗アル
ゴン塔71に戻す前記経路76と、下部塔1の下部から
抜出した液化空気を粗アルゴン凝縮器72に導入する経
路78と、該粗アルゴン凝縮器72で気化した空気を導
出する経路79とが設けられている。
The crude argon condenser 72 has a passage 77 for introducing a part of the crude argon gas led out to the passage 75 to the crude argon condenser 72, and a passage 76 for returning liquefied argon to the crude argon column 71. And a path 78 for introducing the liquefied air extracted from the lower part of the lower tower 1 to the crude argon condenser 72 and a path 79 for leading out the air vaporized by the crude argon condenser 72.

【0051】前記経路75に導出した粗アルゴンガスA
rは、一部が前記経路77に分岐し、残部の粗アルゴン
ガスが経路80から主熱交換器4を通り、経路81、粗
アルゴン流量調節計82を経て採取される。また、経路
79の空気は、上部塔2の中段に導入される。
The crude argon gas A led to the path 75
r is partially branched to the path 77, and the remaining crude argon gas passes through the main heat exchanger 4 from the path 80, is collected through the path 81, and the crude argon flow controller 82. Further, the air in the path 79 is introduced into the middle stage of the upper tower 2.

【0052】なお、その他の構成は、凝縮蒸発器3が上
部塔2の底部に一体的に設けられているなど、一部に相
違点はあるが、前記図1に示した空気液化分離装置と略
同様に形成されているので、図1に示した装置の構成要
素と同一乃至略同一の構成要素には同一の符号を付して
詳細な説明は省略する。
The other configuration is partially different, for example, the condensing evaporator 3 is integrally provided at the bottom of the upper column 2. However, the configuration differs from that of the air liquefaction separation apparatus shown in FIG. Since they are formed in substantially the same manner, the same or substantially the same components as those of the device shown in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted.

【0053】本実施例装置において、原料空気の条件
は、圧力約5.5bar(550kPa)、温度15
℃、流量167000Nm/hである。定格運転時
(MODE1)及び製品酸素ガス増量運転時(MODE
2)における定常時の主要プロセス値を表1に示す。表
1において、MODE2における上部塔2の上昇ガス流
量は、膨張タービン5の流量を減量させることによって
MODE1と同じ量に保たれており、MODE2におけ
る上部塔2の下降液流量は、余剰の液化窒素を液化窒素
貯槽6に導出することにより、MODE1と同じ量に保
たれている。また、MODE2における膨張タービン5
の流量は、MODE1の約40%に減量されているた
め、MODE2の主熱交換器4の出口における空気温度
は、MODE1に比べて3K低くなっている。なお、粗
アルゴン関係の各部の流量は一定に維持しているため、
表1では省略する。
In the apparatus of the present embodiment, the conditions of the raw material air are as follows: pressure: about 5.5 bar (550 kPa);
° C and a flow rate of 167000 Nm 3 / h. During rated operation (MODE1) and during operation of increasing product oxygen gas (MODE1)
Table 1 shows the main process values in the steady state in 2). In Table 1, the rising gas flow rate of the upper tower 2 in MODE 2 is maintained at the same level as that of MODE 1 by reducing the flow rate of the expansion turbine 5, and the descending liquid flow rate of the upper tower 2 in MODE 2 is equal to the excess liquefied nitrogen. Is led to the liquefied nitrogen storage tank 6 to maintain the same amount as MODE1. The expansion turbine 5 in MODE 2
Is reduced to about 40% of MODE1, so that the air temperature at the outlet of the main heat exchanger 4 of MODE2 is 3K lower than MODE1. In addition, since the flow rate of each part related to crude argon is maintained constant,
It is omitted in Table 1.

【0054】[0054]

【表1】 [Table 1]

【0055】この装置において、MODE1の状態で2
時間運転した時点でMODE2の目標値に向かって変更
を要する全ての調節計設定値を直線的に10分間で変更
した。その後、MODE2の状態で6時間運転してか
ら、元のMODE1へ10分間で戻す運転を行った。こ
のときの各部の状態を、前記ケース1の方法を使用して
行った場合と従来の方法とで行った場合とについてそれ
ぞれシミュレーションを行った。
In this apparatus, in the state of MODE1, 2
At the time of running for all hours, all the controller set values that needed to be changed toward the target value of MODE2 were changed linearly in 10 minutes. Thereafter, the operation was performed for 6 hours in the state of MODE2, and then the operation was returned to the original MODE1 in 10 minutes. Simulations were performed for the state of each part at this time for the case where the method of Case 1 was used and the case where the state was performed by the conventional method.

【0056】製品酸素ガスの流量は、図5に示すよう
に、増減量開始時点から10分間で流量を増減し、膨張
タービン流量も、図6に示すように、増減量開始時点か
ら10分間で流量を増減した。
As shown in FIG. 5, the flow rate of the product oxygen gas increases and decreases in 10 minutes from the start of the increase and decrease, and the flow rate of the expansion turbine also increases in 10 minutes from the start of the increase and decrease as shown in FIG. The flow rate was increased or decreased.

【0057】まず、従来の方法において、原料空気の流
量を、図7の破線Aに示すように一定のままとすると、
図8の破線Aに示すように、主熱交換器の熱容量の問題
で生じる空気出口温度変化の遅れが発生することによ
り、図9の破線Aに示すように、凝縮蒸発器における液
化酸素の蒸発量が数時間の間、規定量に到達していな
い。したがって、上部塔の上昇ガス流量は、図10の破
線Aに示すように変動し、その結果、製品酸素ガス純度
(酸素濃度)は、図11の破線Aに示すように大きく低
下し、粗アルゴン中の酸素濃度及び窒素濃度も、図12
及び図13の破線Aに示すように大きく変化する結果と
なった。
First, in the conventional method, if the flow rate of the raw air is kept constant as shown by the broken line A in FIG.
As shown by the dashed line A in FIG. 8, the delay in the change of the air outlet temperature caused by the problem of the heat capacity of the main heat exchanger occurs, and as shown by the dashed line A in FIG. The volume has not reached the specified volume for several hours. Therefore, the rising gas flow rate of the upper tower fluctuates as shown by the dashed line A in FIG. 10, and as a result, the product oxygen gas purity (oxygen concentration) greatly decreases as shown by the dashed line A in FIG. The oxygen concentration and nitrogen concentration in FIG.
As shown by the broken line A in FIG.

【0058】一方、主熱交換器の熱容量の問題で生じる
空気出口温度変化の遅れを制御補償したケース1の方法
で運転した場合は、空気流量を図7の実線Bで示すよう
に補正しているため、図8の実線Bで示すように、主熱
交換器の空気出口温度変化は従来とほとんど変わりがな
いものの、凝縮蒸発器での液化酸素の蒸発量は、図9の
実線Bで示すように、10分間でほぼ規定量に到達して
いる。その結果、上部塔の上昇ガス流量は、図10の実
線Bに示すように略一定となり、製品の純度変化も、図
11、図12及び図13の実線Bにそれぞれ示すように
許容範囲内に抑えられている。
On the other hand, when the operation is performed by the method of Case 1 in which the delay in the change of the air outlet temperature caused by the problem of the heat capacity of the main heat exchanger is controlled and compensated, the air flow rate is corrected as shown by the solid line B in FIG. Therefore, as shown by the solid line B in FIG. 8, although the change in the air outlet temperature of the main heat exchanger is almost the same as the conventional one, the amount of liquefied oxygen evaporated in the condensing evaporator is shown by the solid line B in FIG. Thus, the amount has almost reached the specified amount in 10 minutes. As a result, the rising gas flow rate of the upper tower becomes substantially constant as shown by the solid line B in FIG. 10, and the purity change of the product is within the allowable range as shown by the solid lines B in FIGS. 11, 12 and 13, respectively. It is suppressed.

【0059】また、製品酸素ガスを減量する場合、すな
わち、MODE2からMODE1への移行(各図におい
て8時間目以降)も、原料空気の流量を図7の実線Bに
示すように制御した結果、図9及び図10の実線Bに示
すように、凝縮蒸発器における液化酸素の蒸発量及び上
部塔の上昇ガス流量が略一定となり、図11〜図13の
実線Bに示すように、製品純度の変化も小さくなってい
ることがわかる。
Also, when the product oxygen gas is reduced, that is, in the transition from MODE2 to MODE1 (after the eighth hour in each figure), the flow rate of the raw air is controlled as shown by the solid line B in FIG. As shown by the solid line B in FIGS. 9 and 10, the evaporation amount of liquefied oxygen in the condensing evaporator and the ascending gas flow rate in the upper tower become substantially constant, and as shown by the solid line B in FIGS. It can be seen that the change is also small.

【0060】なお、ここには示されていないが、ケース
2、ケース3の運転方法についても、従来の方法に比べ
有効であることをシミュレーションにより確認してい
る。
Although not shown here, it has been confirmed by simulation that the operation methods of Case 2 and Case 3 are more effective than the conventional method.

【0061】[0061]

【発明の効果】以上説明したように、本発明によれば、
液化酸素と液化窒素との寒冷振替による製品酸素ガスの
需要変動に対して、主熱交換器出口における空気温度の
追従の遅れにより生じる乱れを抑制し、製品純度を損な
わずに迅速に応答することができる。特に、実施例で示
したように、製品酸素ガスの需要変動が約10分で製品
量の30%も変化するようなスピードが要求される場合
に有効である。また、原料空気流量に対し、本発明を適
用すると、主熱交換器出口の原料空気温度変化の遅れに
より生じる一時的な上部塔上昇ガス流量の変動を抑える
ことができる。さらに、下部塔塔頂から導出される窒素
ガスに対して本発明を適用すると、前記空気温度変化の
遅れにより生じる一時的な上部塔上昇ガス流量の変動と
同じ方向に上部塔塔頂へ供給する下降液流量を変更さ
せ、上部塔の上昇ガス流量と下降液流量との流量比の崩
れを抑えることができる。また、上部塔に供給される液
化窒素流量に対して本発明を適用すると、空気温度変化
の遅れにより生じる一時的な寒冷の過不足分を適切に処
理することができる。
As described above, according to the present invention,
Respond to fluctuations in demand for product oxygen gas due to cold transfer between liquefied oxygen and liquefied nitrogen by suppressing turbulence caused by delay in following the air temperature at the outlet of the main heat exchanger, and responding quickly without impairing product purity Can be. In particular, as shown in the embodiment, the present invention is effective when a speed is required such that the demand fluctuation of the product oxygen gas changes by 30% of the product amount in about 10 minutes. Further, when the present invention is applied to the flow rate of the raw material air, it is possible to suppress a temporary fluctuation in the gas flow rate in the upper tower, which is caused by a delay in the change of the raw material air temperature at the outlet of the main heat exchanger. Further, when the present invention is applied to the nitrogen gas derived from the lower tower top, the gas is supplied to the upper tower in the same direction as the temporary fluctuation of the upper tower rising gas flow rate caused by the delay of the air temperature change. By changing the descending liquid flow rate, the collapse of the flow ratio between the ascending gas flow rate and the descending liquid flow rate in the upper tower can be suppressed. In addition, when the present invention is applied to the flow rate of liquefied nitrogen supplied to the upper tower, it is possible to appropriately process temporary excess / deficiency of cold caused by a delay in air temperature change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の制御方法及び制御装置を適用した空
気液化分離装置の一形態例を示す系統図である。
FIG. 1 is a system diagram showing one embodiment of an air liquefaction / separation device to which a control method and a control device of the present invention are applied.

【図2】 増加補正値の一例を示す図である。FIG. 2 is a diagram illustrating an example of an increase correction value.

【図3】 減少補正値の一例を示す図である。FIG. 3 is a diagram illustrating an example of a decrease correction value.

【図4】 実施例で使用した空気液化分離装置を示す系
統図である。
FIG. 4 is a system diagram showing an air liquefaction / separation device used in Examples.

【図5】 製品酸素ガス流量の変化を示す図である。FIG. 5 is a diagram showing a change in a product oxygen gas flow rate.

【図6】 膨張タービン流量の変化を示す図である。FIG. 6 is a diagram showing a change in an expansion turbine flow rate.

【図7】 原料空気流量の変化を示す図である。FIG. 7 is a diagram showing a change in a raw material air flow rate.

【図8】 主熱交換器の出口空気温度の変化を示す図で
ある。
FIG. 8 is a diagram showing a change in outlet air temperature of a main heat exchanger.

【図9】 凝縮蒸発器の液化酸素蒸発量の変化を示す図
である。
FIG. 9 is a diagram showing a change in a liquefied oxygen evaporation amount of a condensing evaporator.

【図10】 上部塔の上昇ガス流量の変化を示す図であ
る。
FIG. 10 is a diagram showing a change in a rising gas flow rate of an upper tower.

【図11】 製品酸素ガスの酸素濃度の変化を示す図で
ある。
FIG. 11 is a diagram showing a change in oxygen concentration of product oxygen gas.

【図12】 粗アルゴン中の酸素濃度の変化を示す図で
ある。
FIG. 12 is a diagram showing a change in oxygen concentration in crude argon.

【図13】 粗アルゴン中の窒素濃度の変化を示す図で
ある。
FIG. 13 is a diagram showing a change in nitrogen concentration in crude argon.

【図14】 液化酸素貯槽及び液化窒素貯槽を付設した
従来の空気液化分離装置の一例を示すもので、製品酸素
ガス増量時の状態を説明した系統図である。
FIG. 14 is a system diagram showing an example of a conventional air liquefaction / separation apparatus provided with a liquefied oxygen storage tank and a liquefied nitrogen storage tank, illustrating a state when a product oxygen gas is increased.

【図15】 同じく製品酸素ガス減量時の状態を説明し
た系統図である。
FIG. 15 is a system diagram similarly illustrating a state when the product oxygen gas is reduced.

【図16】 従来の空気液化分離装置の他の構成例を示
す系統図である。
FIG. 16 is a system diagram showing another configuration example of the conventional air liquefaction / separation apparatus.

【符号の説明】[Explanation of symbols]

1…下部塔、2…上部塔、3…凝縮蒸発器、4…主熱交
換器、5…膨張タービン、6…液化窒素貯槽、7…液化
酸素貯槽、51…原料空気流量調節計、52…製品酸素
ガス流量調節計、53…低圧窒素ガス流量調節計、54
…膨張タービン流量調節計、55…還流液化窒素流量調
節計、56…液化空気流量調節計、57…送出液化酸素
流量調節計、58…送出液化窒素流量調節計、59…注
入液化窒素流量調節計、60…注入液化酸素流量調節
計、61…上部塔塔頂圧力調節計、71…粗アルゴン
塔、72…粗アルゴン凝縮器、82…粗アルゴン流量調
節計
DESCRIPTION OF SYMBOLS 1 ... Lower tower, 2 ... Upper tower, 3 ... Condenser evaporator, 4 ... Main heat exchanger, 5 ... Expansion turbine, 6 ... Liquefied nitrogen storage tank, 7 ... Liquefied oxygen storage tank, 51 ... Raw material air flow controller, 52 ... Product oxygen gas flow controller, 53 ... Low pressure nitrogen gas flow controller, 54
... Expansion turbine flow controller, 55 ... Refluxed liquefied nitrogen flow controller, 56 ... Liquefied air flow controller, 57 ... Delivered liquefied oxygen flow controller, 58 ... Delivered liquefied nitrogen flow controller, 59 ... Injected liquefied nitrogen flow controller , 60: injection liquefied oxygen flow controller, 61: upper tower top pressure controller, 71: crude argon column, 72: crude argon condenser, 82: crude argon flow controller

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮、精製、冷却した原料空気を、下部
塔、上部塔及び凝縮蒸発器を用いた複式精留による深冷
式空気液化分離法によって少なくとも酸素と窒素とを分
離する空気液化分離装置の制御方法において、該空気液
化分離装置から採取する製品量を増減するときに、該製
品量の増減に応じて、製品以外の流体の流量設定値を、
前記製品の増減量に比例させて直線的に増減させる基本
増減値と、急激な増加度で所定の最大補正値に達した
後、最初は大きな減少度で減少し、その後徐々に小さく
なる減少度で減少して最終的に零となるように変化する
増加補正値と、急激な減少度で所定の最小補正値に達し
た後、最初は大きな増加度で増加し、その後徐々に小さ
くなる増加度で増加して最終的に零となるように変化す
る減少補正値とを使用して設定することを特徴とする空
気液化分離装置の制御方法。
1. An air liquefaction separation of compressed, purified and cooled raw material air by a cryogenic air liquefaction separation method by double rectification using a lower tower, an upper tower and a condensing evaporator. In the control method of the device, when increasing or decreasing the amount of product collected from the air liquefaction separation device, according to the increase or decrease of the amount of product, the flow rate set value of the fluid other than the product,
A basic increase / decrease value that increases / decreases linearly in proportion to the increase / decrease amount of the product, and after reaching a predetermined maximum correction value with a rapid increase, first decreases with a large decrease and then gradually decreases. And an increasing correction value that decreases to finally become zero and a sudden decreasing degree that reaches a predetermined minimum correction value, then increases at a large increasing rate at first, and then gradually decreases. And a decrease correction value that increases so as to finally become zero.
【請求項2】 請求項1記載の空気液化分離装置の制御
方法において、製品酸素ガス量を増加させるときに、該
製品酸素ガスと熱交換を行って冷却される原料空気の温
度変化の遅れに対し、前記製品酸素ガス量の増加信号に
基づいて、 1)前記原料空気の流量設定値を、前記増加補正値によ
り補正して目標値とする。 2)前記下部塔頂部から導出する窒素ガスの流量設定値
を、前記減少補正値により補正して目標値とする。 3)前記上部塔に導入する液化窒素の流量設定値を、前
記減少補正値により補正して目標値とする。の少なくと
もいずれか一つを実施することを特徴とする空気液化分
離装置の制御方法。
2. The method for controlling an air liquefaction / separation apparatus according to claim 1, wherein when the amount of product oxygen gas is increased, heat exchange with the product oxygen gas causes a delay in a change in temperature of the raw material air cooled. On the other hand, based on the increase signal of the product oxygen gas amount, 1) the set value of the flow rate of the raw air is corrected to the target value by the increase correction value. 2) The flow rate set value of the nitrogen gas derived from the lower tower top is corrected by the decrease correction value to be a target value. 3) The set value of the flow rate of the liquefied nitrogen introduced into the upper tower is corrected by the decrease correction value to obtain a target value. A method for controlling an air liquefaction / separation apparatus, wherein at least one of the methods is implemented.
【請求項3】 請求項1記載の空気液化分離装置の制御
方法において、製品酸素ガス量を減少させるときに、該
製品酸素ガスと熱交換を行って冷却される原料空気の温
度変化の遅れに対し、前記製品酸素ガス量の減少信号に
基づいて、 1)前記原料空気の流量設定値を、前記減少補正値によ
り補正して目標値とする。 2)前記下部塔頂部から導出する窒素ガスの流量設定値
を、前記増加補正値により補正して目標値とする。 3)前記上部塔に導入する液化窒素の流量設定値を、前
記増加補正値により補正して目標値とする。の少なくと
もいずれか一つを実施することを特徴とする空気液化分
離装置の制御方法。
3. The method for controlling an air liquefaction / separation apparatus according to claim 1, wherein when the amount of product oxygen gas is reduced, a delay in temperature change of the raw material air cooled by performing heat exchange with the product oxygen gas. On the other hand, based on the decrease signal of the product oxygen gas amount, 1) the set value of the flow rate of the raw air is corrected by the decrease correction value to a target value. 2) The set value of the flow rate of the nitrogen gas derived from the top of the lower tower is corrected by the increase correction value to obtain a target value. 3) The set value of the flow rate of the liquefied nitrogen introduced into the upper tower is corrected by the increase correction value to obtain a target value. A method for controlling an air liquefaction / separation apparatus, wherein at least one of the methods is implemented.
【請求項4】 請求項1記載の空気液化分離装置の制御
方法において、製品酸素ガス量を増加させるときに、系
外に設けた液化酸素貯槽から導出して前記凝縮蒸発器に
導入した液化酸素を、前記下部塔の頂部から導出されて
前記凝縮蒸発器に導入される窒素ガスと熱交換させて気
化させることにより製品酸素ガスの一部とするととも
に、 1)前記原料空気の流量設定値を、前記増加補正値によ
り補正して目標値とし、該原料空気量の一時的な増加に
より生じた液化空気の余剰分を前記下部塔の底部に貯留
する。 2)前記下部塔から導出される窒素ガスの流量設定値
を、前記減少補正値により補正して目標値とし、該窒素
ガスの一時的な減少により生じる液化窒素の余剰分を系
外に設けた液化窒素貯槽に貯留する。 3)前記上部塔に導入する液化窒素の流量設定値を、前
記減少補正値により補正して目標値とし、該液化窒素の
一時的な減少により生じた液化窒素の余剰分を系外に設
けた液化窒素貯槽に貯留する。の少なくともいずれか一
つを実施することを特徴とする空気液化分離装置の制御
方法。
4. The method for controlling an air liquefaction / separation apparatus according to claim 1, wherein when increasing the amount of product oxygen gas, the liquefied oxygen introduced from the liquefied oxygen storage tank provided outside the system and introduced into the condensing evaporator. Is vaporized by heat exchange with nitrogen gas introduced from the top of the lower tower and introduced into the condensing evaporator to form a part of product oxygen gas. 1) The set flow rate of the raw air The excess value of the liquefied air generated by the temporary increase in the amount of the raw air is stored at the bottom of the lower tower. 2) The set value of the flow rate of the nitrogen gas derived from the lower tower is corrected to the target value by the decrease correction value, and a surplus of liquefied nitrogen generated by the temporary decrease of the nitrogen gas is provided outside the system. Store in a liquefied nitrogen storage tank. 3) The set value of the flow rate of the liquefied nitrogen introduced into the upper tower is corrected to the target value by the decrease correction value, and an excess amount of the liquefied nitrogen generated by the temporary decrease of the liquefied nitrogen is provided outside the system. Store in a liquefied nitrogen storage tank. A method for controlling an air liquefaction / separation apparatus, wherein at least one of the methods is implemented.
【請求項5】 請求項1記載の空気液化分離装置の制御
方法において、製品酸素ガス量を減少させるときに、系
外に設けた液化窒素貯槽から導出して前記凝縮蒸発器に
導入した液化窒素により製品酸素ガスの一部を液化し、
生成した液化酸素を系外に設けた液化酸素貯槽に貯留す
るとともに、 1)前記原料空気の流量設定値を、前記減少補正値によ
り補正して目標値とし、該原料空気量の一時的な減少に
より生じた液化空気の不足分を前記下部塔の底部に貯留
されている液化空気で補充する。 2)前記下部塔から導出される窒素ガスの流量設定値
を、前記増加補正値により補正して目標値とし、該窒素
ガスの一時的な増加により生じる液化窒素の不足分を前
記液化窒素貯槽から補充する。 3)前記上部塔に導入する液化窒素の流量設定値を、前
記増加補正値により補正して目標値とし、該液化窒素の
一時的な増加により生じた液化窒素の不足分を系外に設
けた液化窒素貯槽に貯留する。の少なくともいずれか一
つを実施することを特徴とする空気液化分離装置の制御
方法。
5. The method for controlling an air liquefaction / separation apparatus according to claim 1, wherein when reducing the amount of product oxygen gas, the liquefied nitrogen introduced from the liquefied nitrogen storage tank provided outside the system and introduced into the condensation evaporator. Liquefies part of the product oxygen gas,
The generated liquefied oxygen is stored in a liquefied oxygen storage tank provided outside the system. 1) The set value of the flow rate of the raw air is corrected to the target value by the reduction correction value, and the amount of the raw air is temporarily reduced. The shortage of liquefied air generated by the above is supplemented by liquefied air stored at the bottom of the lower tower. 2) The set value of the flow rate of nitrogen gas derived from the lower tower is corrected to the target value by the increase correction value, and a shortage of liquefied nitrogen caused by the temporary increase of the nitrogen gas is stored in the liquefied nitrogen storage tank. refill. 3) The set value of the flow rate of liquefied nitrogen introduced into the upper tower is corrected to the target value by the increase correction value, and a shortage of liquefied nitrogen caused by the temporary increase of the liquefied nitrogen is provided outside the system. Store in a liquefied nitrogen storage tank. A method for controlling an air liquefaction / separation apparatus, wherein at least one of the methods is implemented.
【請求項6】 圧縮、精製、冷却した原料空気を、下部
塔、上部塔及び凝縮蒸発器を用いた複式精留による深冷
式空気液化分離法によって少なくとも酸素と窒素とを分
離する空気液化分離装置における流量調節を行うための
制御装置であって、製品酸素ガスの採取量を増減するた
めの信号を発生する製品量増減信号発生手段と、該製品
量増減信号発生手段からの信号に基づいて製品酸素ガス
以外の流体の流量設定値を前記製品酸素ガスの増減量に
比例させて直線的に増減させる基本増減値を設定する基
本増減値設定手段と、前記流量設定値を、急激な増加度
で所定の最大補正値に達した後、最初は大きな減少度で
減少し、その後徐々に小さくなる減少度で減少して最終
的に零となるように変化する増加補正値を設定する増加
補正値設定手段と、急激な減少度で所定の最小補正値に
達した後、最初は大きな増加度で増加し、その後徐々に
小さくなる増加度で増加して最終的に零となるように変
化する減少補正値を設定する減少補正値設定手段とを備
えるとともに、 1)前記原料空気の流量を制御する原料空気流量制御手
段 2)前記下部塔頂部から導出する窒素ガスの流量を制御
する窒素ガス流量制御手段 3)前記上部塔に導入する液化窒素の流量を制御する液
化窒素流量制御手段の少なくともいずれか一つを備えて
いることを特徴とする空気液化分離装置の制御装置。
6. Air liquefaction separation of compressed, purified and cooled raw material air by a cryogenic air liquefaction separation method by double rectification using a lower tower, an upper tower and a condensing evaporator. A control device for adjusting a flow rate in the device, wherein a product quantity increase / decrease signal generating means for generating a signal for increasing / decreasing a product oxygen gas collection quantity, and a signal from the product quantity increase / decrease signal generating means. Basic increase / decrease value setting means for setting a basic increase / decrease value for linearly increasing / decreasing the flow rate set value of the fluid other than the product oxygen gas in proportion to the increase / decrease amount of the product oxygen gas; After reaching the predetermined maximum correction value, the increase correction value sets an increase correction value that initially decreases with a large decrease degree, then decreases with a gradually decreasing decrease degree, and finally changes to zero. Setting means; After reaching the predetermined minimum correction value with a sharp decrease, the decrease correction value is set to increase at a large increase at first, then increase at a gradually decreasing increase, and finally change to zero. Means for controlling the flow rate of the feed air; 2) a flow rate control means for controlling the flow rate of the nitrogen gas derived from the top of the lower tower; and 3) a flow rate control means for controlling the flow rate of the feed gas. A control device for an air liquefaction / separation device, comprising at least one of liquefied nitrogen flow rate control means for controlling a flow rate of liquefied nitrogen introduced into an upper tower.
【請求項7】 前記空気液化分離装置は、製品酸素ガス
の採取量を増加するときに発生する製品酸素ガスの不足
分に相当する量の液化酸素を系内に導入し、製品酸素ガ
スの採取量を減少するときに発生する液化酸素の余剰分
を系内から抜出して貯留するための液化酸素貯槽と、製
品酸素ガスの採取量を増加するときに系内で発生する液
化窒素の余剰分を系内から抜出して貯留し、製品酸素ガ
スの採取量を減少するときに発生する液化酸素の不足分
に相当する量の液化窒素を系内に導入するための液化窒
素貯槽とを備えていることを特徴とする請求項6記載の
空気液化分離装置の制御装置。
7. The air liquefaction / separation apparatus introduces into the system an amount of liquefied oxygen corresponding to a shortage of product oxygen gas generated when increasing the amount of product oxygen gas collected, and collects the product oxygen gas. A liquefied oxygen storage tank for extracting and storing surplus liquefied oxygen generated when the amount is reduced, and a surplus liquefied nitrogen generated in the system when the amount of product oxygen gas collected is increased. A liquefied nitrogen storage tank for introducing and storing in the system an amount of liquefied nitrogen corresponding to the deficiency of liquefied oxygen generated when reducing the amount of product oxygen gas extracted and stored in the system The control device for an air liquefaction separation device according to claim 6, characterized in that:
【請求項8】 前記空気液化分離装置は、製品酸素ガス
の採取量の増減によって発生する液化空気量の変動を補
償するための液化空気貯槽を、前記下部塔の底部又は下
部塔の底部から上部塔に液化空気を供給する経路の途中
に設けたことを特徴とする請求項6記載の空気液化分離
装置の制御装置。
8. The air liquefaction / separation apparatus includes a liquefied air storage tank for compensating for a change in the amount of liquefied air generated due to an increase or decrease in the amount of product oxygen gas collected, from the bottom of the lower tower or the bottom of the lower tower. 7. The control device for an air liquefaction / separation device according to claim 6, wherein the control device is provided in the middle of a path for supplying liquefied air to the tower.
JP2000335382A 2000-11-02 2000-11-02 Control method and control device for air liquefaction separation device Expired - Lifetime JP4944297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335382A JP4944297B2 (en) 2000-11-02 2000-11-02 Control method and control device for air liquefaction separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335382A JP4944297B2 (en) 2000-11-02 2000-11-02 Control method and control device for air liquefaction separation device

Publications (2)

Publication Number Publication Date
JP2002139277A true JP2002139277A (en) 2002-05-17
JP4944297B2 JP4944297B2 (en) 2012-05-30

Family

ID=18811136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335382A Expired - Lifetime JP4944297B2 (en) 2000-11-02 2000-11-02 Control method and control device for air liquefaction separation device

Country Status (1)

Country Link
JP (1) JP4944297B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563371A (en) * 1978-11-08 1980-05-13 Hitachi Ltd Method of controlling flow of air intake for air separator
JPS56133570A (en) * 1980-03-24 1981-10-19 Hitachi Ltd Oxygen generation controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563371A (en) * 1978-11-08 1980-05-13 Hitachi Ltd Method of controlling flow of air intake for air separator
JPS56133570A (en) * 1980-03-24 1981-10-19 Hitachi Ltd Oxygen generation controller

Also Published As

Publication number Publication date
JP4944297B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
CA2015458C (en) Low temperature air fractionation accommodating variable oxygen demand
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
JP3515165B2 (en) Air separation method and equipment
US5953937A (en) Process and apparatus for the variable production of a gaseous pressurized product
CZ169292A3 (en) Method of separating supplied air in a cryogenic distillation system and the system for making the same
JP2002502933A (en) Oxygen generation method and apparatus for cryogenic air separation unit combined with centralized gasifier
CN1119609C (en) Multiple columin nitrogen coproduction
JPH0861844A (en) Method and equipment for restarting sub-column for separating argon and oxygen by distilation
KR20210033431A (en) High-purity oxygen production system
IE74402B1 (en) Air separation
JPH04283390A (en) Air rectification method and equipment for producing gaseous oxygen in variable amount
JP2000515236A (en) Method and equipment for producing the required gas from air at variable flow rates
JPH06201259A (en) Method and apparatus for manufacturing gaseous nitrogen at variable flow rate
CN103282732A (en) Apparatus and process for separating air by cryogenic distillation
US6637239B2 (en) Nitrogen rejection method and apparatus
JP2002139277A (en) Control method and control device for air liquefying and separating device
JP3027368B1 (en) Air liquefaction separation device and control method thereof
JP3710252B2 (en) Control method of air liquefaction separation device
JP4104726B2 (en) Operation method of air liquefaction separator
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation
JP3479277B2 (en) Variable oxygen flow delivery method and low temperature air separation device using the same
JP2004197981A (en) Air separating device, and product gas manufacturing method using the same
JPH0534061A (en) Air liquefaction and separation method suitable for variation in demand for oxygen and apparatus therefor
JP7460974B1 (en) Nitrogen generator and nitrogen generation method
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4944297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370