JP2002139272A - Cooling system alternative to dry ice - Google Patents

Cooling system alternative to dry ice

Info

Publication number
JP2002139272A
JP2002139272A JP2000372169A JP2000372169A JP2002139272A JP 2002139272 A JP2002139272 A JP 2002139272A JP 2000372169 A JP2000372169 A JP 2000372169A JP 2000372169 A JP2000372169 A JP 2000372169A JP 2002139272 A JP2002139272 A JP 2002139272A
Authority
JP
Japan
Prior art keywords
cooling system
regenerator
temperature
refrigerator
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000372169A
Other languages
Japanese (ja)
Inventor
Masao Umemoto
雅夫 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000372169A priority Critical patent/JP2002139272A/en
Publication of JP2002139272A publication Critical patent/JP2002139272A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To find a system alternative to dry ice or ecoice. SOLUTION: In a system where a cold accumulator is contained in a containing frame in which a cavity is formed as the cold accumulator is contained or in a cold accumulator having a cavity, air flow generated from an air flow generator is supplied to the cavity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蓄冷体を使った冷却シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system using a regenerator.

【0002】[0002]

【従来のシステム】蓄冷体には0℃〜−55℃までのも
のがあるが、0℃の氷を用いて冷気を得るシステムとし
てエコアイスがあるのみである。しかし、エコアイス
は、市販のハンディな蓄冷体を使って冷気を得るシステ
ムではない。
2. Description of the Related Art There is a regenerator having a temperature range of 0 ° C. to −55 ° C., but there is only an eco ice as a system for obtaining cool air using ice at 0 ° C. However, eco-ice is not a system for obtaining cool air using commercially available cold storage units.

【0003】[0003]

【発明が解決しようとする課題】ハンディな蓄冷体を用
いて冷気を得るシステムとドライアイスに代わる超低温
の冷気を得るシステムが求められている。
There is a need for a system for obtaining cool air using a handy regenerator and a system for obtaining ultra-low temperature cool air in place of dry ice.

【0004】[0004]

【課題を解決するための手段】本発明では、ハンディ
(容積0.5〜2L)な恒温蓄冷体を用いて、効率よく
冷気を得る手段と、−30℃〜−55℃という超低温の
冷気を得る手段を考え出した。ここで、恒温蓄冷体と
は、単一又は多くても3つの融点を有し、融点が0℃以
下の蓄冷体をいう。具体的には、塩化カリウム、塩化ア
ンモニウム、硫安、硝安、食塩、これらの混合体及び硫
酸塩、ポリエチレングリコール等の水溶液を凍結したも
のである。まず、本発明では、上記手段には気流と空洞
が必須要件であることを見い出した。一般に、例えば、
−33℃の蓄冷体からは、−33℃の冷気が得られると
考えがちであるが、実際はそうとはならない。冷気を得
るには、蓄冷体と蓄冷体との隙間又は空洞が必要で、そ
こに気流を流すことにより可能となる。最も効率よく冷
気を得るには、蓄冷体で囲まれた空洞が必須である。
According to the present invention, there is provided a means for efficiently obtaining cool air using a handy (volume of 0.5 to 2 L) constant temperature regenerator, and a method for producing an extremely low temperature of -30 ° C to -55 ° C. We figured out a way to get it. Here, the constant temperature regenerator refers to a regenerator having a single or at most three melting points and a melting point of 0 ° C. or less. Specifically, it is obtained by freezing an aqueous solution of potassium chloride, ammonium chloride, ammonium sulfate, ammonium nitrate, salt, a mixture thereof, sulfate, polyethylene glycol, or the like. First, in the present invention, it has been found that airflow and cavities are essential requirements for the above means. In general, for example,
It is easy to think that cold air of -33 ° C can be obtained from a regenerator at -33 ° C, but this is not the case. In order to obtain cold air, a gap or a cavity between the regenerators is required, and this is made possible by flowing an air flow therethrough. In order to obtain the cool air most efficiently, a cavity surrounded by a regenerator is essential.

【0005】まず、本発明でいう蓄冷体とは、融点が氷
点近くの液体を容器に封入し、凍結したものという。特
に、融点が−15℃近くの(例えば塩化アンモニウム、
硫安及び硝安の蓄冷体である)ものは、家庭用冷凍庫に
有用であるため重要である。容量は一般に100ml〜
2Lまでのものをいうが、これは各単位の目安であり、
単位が集合し、切り離せない場合は、全体としてこれを
超える場合がある。
[0005] First, the regenerator according to the present invention is one in which a liquid having a melting point near the freezing point is sealed in a container and frozen. In particular, the melting point is close to −15 ° C. (for example, ammonium chloride,
(Which are regenerators of ammonium sulfate and ammonium nitrate) are important because they are useful in household freezers. The volume is generally 100ml ~
It means up to 2L, but this is a measure of each unit,
If the units are aggregated and cannot be separated, the total may exceed this.

【0006】気流発生器はファンによる気流発生と、ポ
ンプによる気流発生とにわけられる。前者は、回転羽根
により気流を発生し、その気流を蓄冷体の隙間もしくは
後述の空洞へ導く。冷凍庫内を考えた場合、庫内全体を
ファンでかき混ぜるのは本発明には該当しない。これで
は、低温は得られないので、あくまで蓄冷体間に気流を
流さねばならない。ポンプによる方式では、エアーポン
プがあり、これは一方から空気を吸い込み他方から吐き
出すものである。エアーコンプレッサーはエアーポンプ
の一種であるので含めて考える。エアーポンプ方式はフ
ァン方式に比較して効率において優れている。
[0006] The airflow generator is divided into airflow generation by a fan and airflow generation by a pump. In the former, an airflow is generated by the rotating blades, and the airflow is guided to a gap of the regenerator or a cavity described later. When considering the inside of a freezer, stirring the whole inside of the freezer with a fan does not fall under the present invention. In this case, since a low temperature cannot be obtained, an air current must be flowed between the regenerators. In the pump system, there is an air pump which sucks air from one side and discharges air from the other side. An air compressor is a type of air pump and will be included. The air pump system is superior in efficiency to the fan system.

【0007】空洞とは、蓄冷体に囲まれた空間であっ
て、気流が通過できなければならない。したがって、入
口と出口があることになる。常時、入口と出口がある必
要はなく、時間的に制御されていてもよく、又、圧力制
御で入口と出口が開くようになっていてもよい。
[0007] A cavity is a space surrounded by a regenerator and must be able to pass airflow. Therefore, there will be an inlet and an outlet. There is no need to always have an inlet and an outlet, and the inlet and the outlet may be controlled temporally, or the inlet and the outlet may be opened by pressure control.

【0008】蓄冷体と蓄冷体を隙間あけて並べた(縦で
も横でもよい)構成は空洞の一種と考えることができ、
最も構造的に簡単である。しかし、この場合は、例え
ば、表面温度−30℃蓄冷体から得られる最も低温度
(−30℃)よりも高い温度とならざるを得ない。
A configuration in which regenerators and regenerators are arranged with a gap therebetween (which may be vertical or horizontal) can be considered as a kind of cavity.
Most structurally simple. However, in this case, for example, the temperature must be higher than the lowest temperature (−30 ° C.) obtained from the cold storage body having a surface temperature of −30 ° C.

【0009】そこで、空洞をもっと本格的とし特定方向
の距離を与えることが必須となる。この場合、単位蓄冷
体とそれを多数個収納する枠である収納枠を用いてこの
ような構造とするか、単一蓄冷体の容器を最初から設計
するかのいずれかがある。図1bには、前者を示した。
これは、枠があって、それに蓄冷体を収納することによ
り、自ずと空洞が形成され、空洞内を特定方向に気流が
流れることになる。出口が一つである場合と数ヵ所であ
る場合とがあるが、一つの場合は最も低温を得ることが
でき、数ヵ所ある場合はできるだけ広範囲に冷やすこと
ができる。
Therefore, it is essential to make the cavity more full-scale and provide a distance in a specific direction. In this case, there is either a unit cool storage unit and a storage frame as a frame for accommodating a large number of the cool storage units, or a single cool storage unit container is designed from the beginning. FIG. 1b shows the former.
This is because there is a frame in which a cool storage body is stored, whereby a cavity is naturally formed, and an airflow flows in a specific direction in the cavity. There may be one outlet or several outlets, but in the case of one outlet, the lowest temperature can be obtained, and in the case of several outlets, cooling can be performed as widely as possible.

【0010】蓄冷体自体を、当初から空洞構造としたも
のを図1dに示す。ただし、この場合は、この蓄冷体は
他の目的には使用しづらいという欠点を有する。
FIG. 1D shows the regenerator itself having a hollow structure from the beginning. However, in this case, the regenerator has a disadvantage that it is difficult to use it for other purposes.

【0011】蓄冷体容器は、金属のように、熱伝導率が
極めて大きいものにすれば、より低温気流を得ることが
できる。金属自体は、蓄冷体の液体におかされやすいの
で、内面をナイロン、ポリオレフィン等のフィルムでコ
ーティングしておくとよい。
[0011] If the regenerator body is made of a material having an extremely high thermal conductivity, such as a metal, a lower temperature air flow can be obtained. Since the metal itself is easily damaged by the liquid of the regenerator, the inner surface is preferably coated with a film of nylon, polyolefin, or the like.

【0012】空洞は、なめらかな表面であるよりは、凸
凹をなしていたり、ノコギリ状、ひれ状、タワシ状をな
している方が、より低温気流を安定して得ることができ
る。
When the cavity has a rough surface, a saw-like shape, a fin-like shape, or a swash-like shape, a low-temperature airflow can be obtained more stably than a smooth surface.

【0013】以上の、冷却システムは、温度が室温であ
るような室内に設置され、かつ、蓄冷体そのものが、別
の冷凍庫で凍結して得られる場合にも適用できるが、本
来の目的は、冷却システムを冷凍庫内又は冷蔵庫内に設
置することである。冷却システムを庫内に設置する目的
は、庫内の扉開閉による温度変動をなくし、製品の品
質劣化を防止する。夜間電力を利用して冷凍庫内で蓄
冷体を凍結し、上記冷却システムにより昼間に冷凍庫内
の冷却を行い、もって、冷凍に要する電力を節減すると
いう、新しい一般冷凍庫内エコアイスの確立である。
The above-described cooling system can be applied to a case where the cooling system is installed in a room where the temperature is room temperature and the regenerator itself is obtained by freezing in another freezer. Installing the cooling system in a freezer or refrigerator. The purpose of installing the cooling system in the refrigerator is to eliminate the temperature fluctuation due to the opening and closing of the door in the refrigerator and prevent the quality of the product from deteriorating. This is the establishment of a new type of eco-ice in a general freezer, in which a cold storage body is frozen in a freezer using nighttime electric power, and the freezer is cooled in the daytime by the above-described cooling system, thereby reducing the power required for freezing.

【0014】の扉開閉による温度変動は予想以上に大
きくそれをくり返すことによる製品劣化は著しいものが
あり、それを防止できる本発明の冷却システムの経済的
効果は大である。かような一般冷凍冷蔵庫内の冷却シス
テムは、これまで確立されていなかった。それは、単に
蓄冷体を庫内に設置しても、温度変動をやわらげる効果
は薄く、庫内を撹拌しても同様であったためである。本
発明のように、蓄冷体がなす空洞に直接気流を通すアイ
ディアにより初めて可能となる。扉を開けて閉めたとき
に連動して冷却システムが作動するようにするか、温度
センサーと連結しておき、庫内温度が上昇するとシステ
ムが作動するようにする。
The temperature fluctuation due to the opening and closing of the door is much larger than expected, and there is a remarkable deterioration of the product due to repetition of the temperature fluctuation. The economic effect of the cooling system of the present invention which can prevent the fluctuation is great. A cooling system in such a general refrigerator-freezer has not been established so far. This is because, even if the regenerator is simply installed in the refrigerator, the effect of reducing the temperature fluctuation is small, and the same effect is obtained even when the refrigerator is stirred. This is only possible with the idea of passing the airflow directly through the cavity formed by the regenerator as in the present invention. The cooling system operates in conjunction with the opening and closing of the door, or it can be connected to a temperature sensor so that the system operates when the internal temperature rises.

【0015】本冷却システムでは、出口の気流の温度は
蓄冷体の表面温度近くまで低下する。よって、の庫内
エコアイスの実用化も可能となる。そして、−30℃〜
−55℃の冷却システムが確立され、冷凍庫と一体化さ
れれば、ドライアイス代替の可能性が開けてくる。冷凍
食品は−30℃以下の温度が必要であり、このような超
低温冷却システムの実用化が望まれていた。
In the present cooling system, the temperature of the airflow at the outlet drops to near the surface temperature of the regenerator. Therefore, it becomes possible to commercialize the eco ice in the refrigerator. And -30 ° C ~
If a cooling system of -55 ° C is established and integrated with a freezer, the possibility of dry ice replacement will be opened. Frozen food requires a temperature of −30 ° C. or lower, and it has been desired to put such an ultra-low temperature cooling system to practical use.

【0016】また、冷蔵庫内に、−5℃〜−16℃前後
の蓄冷体を用いた冷却システムを考えた場合、凍結は家
庭用冷蔵庫の冷凍室で行い、次に、−15℃前後のもの
を用いて冷凍庫用に、−5℃〜−13℃のものを用いて
冷蔵庫用として冷却システムを設置すれば、直ちに扉開
閉による庫内温度上昇を補償できる。この冷蔵庫用冷却
システムを氷で行っても、補償は遅く,実用的ではな
い。また、冷凍庫内温度補償には、−15℃前後のもの
でないと効果はない。
Further, in the case of a cooling system using a regenerator at about -5 ° C. to -16 ° C. in a refrigerator, freezing is performed in a freezing room of a home refrigerator, and then, freezing is performed at about −15 ° C. If a cooling system is installed for a refrigerator using -5 ° C. to -13 ° C. for a freezer using, the temperature rise in the refrigerator due to opening and closing of a door can be compensated immediately. Performing this refrigerator cooling system on ice is slow and impractical. Further, the temperature compensation in the freezer has no effect unless the temperature is around -15 ° C.

【0017】ドライアイス代替としての超低温蓄冷体
は、塩化マグネシウム(−32℃)、塩化カルシウム
(−51℃)、及び塩化亜鉛(−55℃)の3種の液体
を凍結して得られる。前2者は人体安全性が高く、熱伝
導性も高いので、本発明の超低温冷却システムとして最
適である。
An ultra-low temperature regenerator as an alternative to dry ice is obtained by freezing three kinds of liquids, magnesium chloride (-32 ° C), calcium chloride (-51 ° C), and zinc chloride (-55 ° C). The former two have high human body safety and high thermal conductivity, and are therefore optimal as the ultra-low temperature cooling system of the present invention.

【0018】[0018]

【実施例1】厚さ1mmのアルミニウム板で図1bの2
のような枠を製作した。次に、蓄冷体を収納した(図1
b)。蓄冷体は半透明のポリエチレン製容器(縦13.
5cm×横20cm×高さ2.5cm)に30%塩化マ
グネシウム水溶液550mlを入れ、ドライアイス中で
冷凍させたものである。蓄冷体容器は、2個を図1aの
1に示すような突起どうしをあわせると、中央に空洞が
形成されるような構造をしている。
Example 1 An aluminum plate having a thickness of 1 mm
I made a frame like this. Next, the regenerator was stored (FIG. 1).
b). The regenerator is a translucent polyethylene container (length 13.
550 ml of a 30% magnesium chloride aqueous solution was put in 5 cm × 20 cm × 2.5 cm in height) and frozen in dry ice. The cold storage container has a structure in which a cavity is formed in the center when two protrusions are joined together as shown in FIG. 1A.

【0019】[0019]

【実施例2】アルミニウム板(長さ60cm、幅28c
m)を、底辺135cmとし、左右それぞれ7cm高と
なるように凹状に折り曲げ収納枠とした。そこに、実施
例1の蓄冷体を2段に重ねて、実施例1と同じように空
洞を形成したものを、横並びに3個、合計6個を収納し
た。それをメディカルフリーザ(三洋電機製・MDF−
235・容量222L・内径縦44cm×横79cm×
高さ71.5cm)の底部に設置し、フリーザーの温度
設定を−30℃とした。この収納枠と蓄冷体とで形成さ
れた空洞の一方の口より、(A)エアーコンプレッサー
により外気エアーの気流を吹き込み、フリーザーの高さ
55cmのところに温度計をさし込み温度を計測した。
(B)三洋電機製の回転ファン(ミニエース・109−
040VL)を冷凍庫内に入れ空洞の一方の口の前に置
いて気流を発生させ空洞内に気流を送り温度を計測し
た。(C)気流を全く発生させない状態での温度を計測
した。横型フリーザーであるので上部のフタをオープン
し、(A)、(B)、(C)の温度変化を表したのが図
2である。これから本発明の(A)は7分まで、(B)
では10分まで扉を開放してもほぼ設定温度を維持して
いるが(C)ではすぐに温度は上昇している。
Embodiment 2 Aluminum plate (length 60 cm, width 28 c)
m) was 135 cm at the bottom and bent concavely so as to be 7 cm higher on each of the left and right sides to form a storage frame. There, the regenerators of Example 1 were stacked in two stages to form cavities in the same manner as in Example 1, and three of them were arranged side by side, for a total of six. Medical Freezer (Myosan Sanyo / MDF-
235 ・ Capacity 222L ・ Inner diameter 44cm × W 79cm ×
(71.5 cm height), and the freezer temperature was set to -30 ° C. (A) An outside air stream was blown in from one opening of the cavity formed by the storage frame and the regenerator with an air compressor, and a thermometer was inserted at a height of 55 cm of the freezer to measure the temperature.
(B) Rotating fan made by Sanyo (Mini Ace 109-
040 VL) was placed in a freezer and placed in front of one opening of the cavity to generate an airflow, and the airflow was sent into the cavity to measure the temperature. (C) The temperature in a state where no air flow was generated was measured. FIG. 2 shows the temperature changes of (A), (B), and (C) with the upper lid opened because it is a horizontal freezer. From now on, (A) of the present invention is up to 7 minutes, (B)
Although the set temperature is almost maintained even if the door is opened up to 10 minutes in (C), the temperature rises immediately in (C).

【0020】次に冷凍庫温度を−20℃に設定しても、
扉を閉めた状態で庫内温度が−30°近くに保てるか否
かを調べた。その結果(C)の送風しない場合には庫内
温度は−21.5℃しか下がらなかったのに対し、
(A)の外気送風した場合でも−28℃にまで温度が下
がった。(C)の庫内冷気循環では、−29℃まで、温
度が下がった。このように庫内を−20℃に設定してい
ても本発明で−30℃の蓄冷体により、庫内温度を−3
0℃近くに維持できることがわかった。
Next, even if the freezer temperature is set to -20.degree.
It was examined whether the temperature inside the refrigerator could be kept close to -30 ° with the door closed. As a result, when the air was not blown in (C), the temperature in the refrigerator decreased only -21.5 ° C.
The temperature dropped to -28 ° C even when the outside air was blown in (A). In the cold air circulation in the refrigerator (C), the temperature dropped to -29 ° C. Even if the inside of the refrigerator is set at −20 ° C. as described above, the temperature of the refrigerator inside is reduced by −3 ° C. by the cold storage of −30 ° C. in the present invention.
It was found that the temperature could be maintained near 0 ° C.

【0021】[0021]

【実施例3】実施例2の収納枠型蓄冷体において、蓄冷
体を、25重量%塩化アンモニウム液で得られた蓄冷体
(−16℃)に代えた。これを、25℃の室内に置き、
まず空洞内温度が−16℃であることを温度計で確認し
た。次に、一方の空洞入口に前述の実施例2のミニエー
スを置き、風速13m/minで空洞入口面積75cm
から気流を送り、空洞出口直後の温度を計測した結果、
最適条件では−11.5℃の冷気が得られた。次に空洞
内表面に高さ3mm、幅3mmの凹凸をエチレン・酢酸
ビニル共重合体を熱融着したものを用いた場合は−13
℃の冷気が得られた。
Example 3 In the storage frame type regenerator of Example 2, the regenerator was replaced with a regenerator (-16 ° C.) obtained with a 25% by weight ammonium chloride solution. Put this in a room at 25 ° C,
First, it was confirmed by a thermometer that the temperature in the cavity was −16 ° C. Next, the miniace of Example 2 was placed at one of the cavity entrances, and the cavity entrance area was 75 cm at a wind speed of 13 m / min.
As a result of measuring the temperature just after the cavity exit,
Under the optimal conditions, cold air of -11.5 ° C was obtained. Next, in the case where irregularities having a height of 3 mm and a width of 3 mm are heat-sealed with an ethylene / vinyl acetate copolymer on the inner surface of the cavity, -13 is used.
C. cold air was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルミ製収納枠に蓄冷体が空洞を形成するよう
に収納した冷却システムと、それ自体で空洞を有する蓄
冷体a 蓄冷体斜面図b 収納枠に収納した冷却システ
ムの正面図c bの側面断面図d それ自体が空洞を有
する蓄冷体の断面図
FIG. 1 shows a cooling system in which a regenerator is formed so as to form a cavity in an aluminum storage frame, and a regenerator having a cavity by itself a regenerator slope b front view c b of the cooling system stored in a storage frame D is a cross-sectional view of a cold storage body having a cavity itself.

【図2】送風の効果確認Fig. 2 Checking the effect of air blowing

【符号の説明】[Explanation of symbols]

1 突起 2 枠 3 蓄冷体 4 台 5 ファン 6 モーター 7 気流 8 空洞 9 蓄冷体の空洞にエアコンプレッサーからの外気エア
を流した場合の庫内温度曲線 10 蓄冷体の空洞に庫内ファンにより内気エアを流し
た場合の庫内温度曲線 11 蓄冷体のみで、エアを全く流さない場合の庫内温
度曲線
DESCRIPTION OF SYMBOLS 1 Projection 2 Frame 3 Cold storage unit 4 units 5 Fan 6 Motor 7 Air flow 8 Cavity 9 Inside temperature curve when outside air from an air compressor is flowed into the cold storage unit cavity 10 Inside air supply to the cold storage unit cavity by the internal fan Temperature curve in the case of flowing air 11 Temperature curve in the refrigerator when only air is stored and no air flows at all

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 恒温蓄冷体と前記蓄冷体どうしが隙間を
なすように収納できる枠と、気流発生器とからなる冷却
システム。
1. A cooling system comprising: a constant-temperature regenerator, a frame capable of accommodating the regenerators with a gap therebetween, and an airflow generator.
【請求項2】 前記収納枠に前記蓄冷体を収納したとき
空洞構造をなし、空洞を前記気流発生器からの気流が通
ることができる請求項1記載の冷却システム。
2. The cooling system according to claim 1, wherein when the regenerator is stored in the storage frame, a hollow structure is formed, and an airflow from the airflow generator can pass through the hollow.
【請求項3】 蓄冷体自体が前記空洞構造をなし、収納
枠が不要である請求項2記載の冷却システム。
3. The cooling system according to claim 2, wherein the regenerator itself forms the hollow structure, and no storage frame is required.
【請求項4】 前記蓄冷体容器が金属製である請求項
1、2、又は3記載の冷却システム。
4. The cooling system according to claim 1, wherein the regenerator container is made of metal.
【請求項5】 前記空洞部表面が凸凹をなす請求項1、
2、3又は4記載の冷却システム。
5. The method according to claim 1, wherein the surface of the cavity is uneven.
The cooling system according to 2, 3, or 4.
【請求項6】 前記冷却システムが冷凍庫内又は冷蔵庫
内に設置された請求項1、2、3、4又は5記載の冷却
システム。
6. The cooling system according to claim 1, wherein the cooling system is installed in a freezer or a refrigerator.
【請求項7】 前記気流発生器のスイッチが前記冷凍庫
又は冷蔵庫の扉又は庫内温度と連動した請求項6記載の
冷却システム。
7. The cooling system according to claim 6, wherein a switch of the airflow generator is linked with a temperature of a door or a refrigerator inside the freezer or the refrigerator.
【請求項8】 前記冷凍庫又は冷蔵庫が横形すなわち扉
を上に有するものである請求項6又は7記載の冷却シス
テム。
8. The cooling system according to claim 6, wherein the freezer or the refrigerator has a horizontal shape, that is, a refrigerator having a door above.
【請求項9】 前記蓄冷体が−30℃〜−55℃の範囲
内の特定温度のものである請求項1、2、3、4、5、
6、7又は8記載の冷却システム。
9. The regenerator according to claim 1, wherein said regenerator has a specific temperature within a range of -30 ° C. to -55 ° C.
The cooling system according to 6, 7, or 8.
【請求項10】 前記蓄冷体の液が塩化マグネシウム又
は塩化カルシウムである請求項9記載の冷却システム。
10. The cooling system according to claim 9, wherein the liquid of the regenerator is magnesium chloride or calcium chloride.
JP2000372169A 2000-10-31 2000-10-31 Cooling system alternative to dry ice Pending JP2002139272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372169A JP2002139272A (en) 2000-10-31 2000-10-31 Cooling system alternative to dry ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372169A JP2002139272A (en) 2000-10-31 2000-10-31 Cooling system alternative to dry ice

Publications (1)

Publication Number Publication Date
JP2002139272A true JP2002139272A (en) 2002-05-17

Family

ID=18841754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372169A Pending JP2002139272A (en) 2000-10-31 2000-10-31 Cooling system alternative to dry ice

Country Status (1)

Country Link
JP (1) JP2002139272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204284A1 (en) * 2015-06-19 2016-12-22 株式会社カネカ Cold storage material composition, cold storage material, and transport container
WO2019208519A1 (en) * 2018-04-27 2019-10-31 株式会社カネカ Cold storage material composition, cold storage material, and shipping container
US11084963B2 (en) 2017-03-29 2021-08-10 Kaneka Corporation Cold storage material composition, method for using cold storage material composition, cold storage material, and transport container
US11326084B2 (en) 2018-03-06 2022-05-10 Kaneka Corporation Cold storage material composition and use thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204284A1 (en) * 2015-06-19 2016-12-22 株式会社カネカ Cold storage material composition, cold storage material, and transport container
US10717910B2 (en) 2015-06-19 2020-07-21 Kaneka Corporation Cold storage material composition, cold storage material, and transport container
US11084963B2 (en) 2017-03-29 2021-08-10 Kaneka Corporation Cold storage material composition, method for using cold storage material composition, cold storage material, and transport container
US11326084B2 (en) 2018-03-06 2022-05-10 Kaneka Corporation Cold storage material composition and use thereof
WO2019208519A1 (en) * 2018-04-27 2019-10-31 株式会社カネカ Cold storage material composition, cold storage material, and shipping container
JPWO2019208519A1 (en) * 2018-04-27 2021-07-01 株式会社カネカ Cold storage composition, cold storage material and shipping container
JP7242643B2 (en) 2018-04-27 2023-03-20 株式会社カネカ Cold storage material composition, cold storage material and transportation container

Similar Documents

Publication Publication Date Title
US8099975B2 (en) Icemaker for a refrigerator
TWI654402B (en) Refrigerator
CN107763932B (en) Refrigerator with a door
WO2020220448A1 (en) Super ice temperature fresh-keeping apparatus and control method therefor
JP6723828B2 (en) refrigerator
WO2015172609A1 (en) Refrigerator
CN110131953A (en) A kind of super ice temperature refrigerator
JP2002139272A (en) Cooling system alternative to dry ice
JP2008082580A (en) Freezer
CN109269195A (en) A kind of refrigerator with simple air channel structure
JPH11257824A (en) Refrigerator
JP2015038391A (en) Refrigerator
CN220524428U (en) Active energy storage type refrigerator
CN215649051U (en) Crisp short cakes with sesame finished product freezer structure
CN209068834U (en) A kind of refrigerator with simple air channel structure
CN114234529B (en) Refrigerator and control method thereof
JPH05322412A (en) Heat accumulation type refrigerator
CN216282210U (en) Refrigerating device for aquatic products
JP2001263925A (en) Constant temperature storage cooler
JPH02302572A (en) Cooling and storing refrigerator
JP2000230764A (en) Antifreeze refrigerator
JP2008086608A (en) Carrier of blood product
JP3385224B2 (en) Storage cooling system
JPH1137626A (en) Cooling storeroom
JP4247131B2 (en) Cooler