JP2002137901A - Hydrogen generating method and hydrogen generating apparatus - Google Patents

Hydrogen generating method and hydrogen generating apparatus

Info

Publication number
JP2002137901A
JP2002137901A JP2000333123A JP2000333123A JP2002137901A JP 2002137901 A JP2002137901 A JP 2002137901A JP 2000333123 A JP2000333123 A JP 2000333123A JP 2000333123 A JP2000333123 A JP 2000333123A JP 2002137901 A JP2002137901 A JP 2002137901A
Authority
JP
Japan
Prior art keywords
hydrogen
metal
catalyst
present
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000333123A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Kojima
由継 小島
Kenichiro Suzuki
賢一郎 鈴木
Kazuhiro Fukumoto
和広 福本
Shigeru Sasaki
慈 佐々木
Toshio Yamamoto
敏生 山本
Yasuaki Kawai
泰明 河合
Hiroaki Hayashi
宏明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000333123A priority Critical patent/JP2002137901A/en
Publication of JP2002137901A publication Critical patent/JP2002137901A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generating method and a hydrogen generating apparatus, which enable to generate enough hydrogen by thermal decomposition of a complex metal hydride at relatively low temperature even under a substatially water-free condition. SOLUTION: In manufacturing hydrogen with thermal decomposition of a complex metal hydride by heating in the presence of a catalyst, the catalyst is composed of at least one kind of material and metal selected from the group consisting of a metal oxide and carbon material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素発生方法及び
水素発生装置に関するものであり、より詳しくは、錯金
属水素化物を触媒の存在下で熱分解せしめて水素を発生
させる水素発生方法並びにそのための水素発生装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for generating hydrogen, and more particularly, to a method for generating hydrogen by thermally decomposing a complex metal hydride in the presence of a catalyst, and a method for generating hydrogen. The present invention relates to a hydrogen generating apparatus.

【0002】[0002]

【従来の技術】現代社会において、水素は合成化学工業
や石油精製などに多量に利用されている重要な化学原料
である。一方、将来におけるエネルギー問題と環境問題
を解決するために、クリーンなエネルギーとしての水素
利用技術は重要な位置を占めると考えられ、水素を貯蔵
し、それを燃料として稼働する燃料電池の開発が進めら
れている。
2. Description of the Related Art In modern society, hydrogen is an important chemical raw material that is used in large quantities in the synthetic chemical industry, petroleum refining, and the like. On the other hand, hydrogen utilization technology as clean energy is considered to play an important role in solving future energy and environmental problems, and the development of a fuel cell that stores hydrogen and uses it as fuel is underway. Have been.

【0003】かかる燃料電池はガスで作動する電池であ
り、その際、水素と酸素との反応から得られるエネルギ
ーを直接電気エネルギーに変換する。このような燃料電
池は従来の燃焼エンジンに比べてきわめて高い効率を有
するため、燃料電池を有する自動車はZEV(Zero Emissio
n Vehicle)と称されている。
[0003] Such fuel cells are gas operated cells, in which the energy obtained from the reaction of hydrogen and oxygen is directly converted to electrical energy. Because such fuel cells have extremely high efficiency compared to conventional combustion engines, vehicles with fuel cells are not compatible with ZEV (Zero Emissio
n Vehicle).

【0004】一方、水素の貯蔵法としては、圧縮してボ
ンベに貯蔵する方法、冷却して液体水素とする方法、活
性炭に吸着させる方法、水素吸蔵合金を利用する方法が
提案されている。これらの方法の中で燃料電池自動車な
どの移動媒体には水素吸蔵合金が主要な役割を果たすと
考えられている。しかし、水素吸蔵合金に関しても、合
金であるが故の重さ(単位重量当たりの吸蔵量が小さい
こと)、吸蔵放出の繰り返しによる劣化(合金の微粉化
や構造変化)、希少金属を含む場合にはその資源確保
等、克服すべき課題は多い。
[0004] On the other hand, as a method of storing hydrogen, a method of compressing and storing in a cylinder, a method of cooling into liquid hydrogen, a method of adsorbing on activated carbon, and a method of using a hydrogen storage alloy have been proposed. Among these methods, it is considered that a hydrogen storage alloy plays a major role in a moving medium such as a fuel cell vehicle. However, hydrogen-absorbing alloys also include weight due to being an alloy (small occlusion amount per unit weight), deterioration due to repeated occlusion and release (pulverization and structural change of alloy), and rare metals. There are many issues to be overcome, such as securing resources.

【0005】そこで近年注目を集めているのが、アルカ
リ土類金属、アルカリ金属、又はそれらをベースとする
合金であり、例えばマグネシウムは金属として7.6重量
%、Mg2Niとして3.6重量%の水素吸蔵量を有する。しか
しながら、このような金属又は合金に吸蔵されている水
素を放出させるためには約300℃以上の高温にする必
要があるという問題を有していた。
[0005] In recent years, attention has been focused on alkaline earth metals, alkali metals, and alloys based on them. For example, magnesium has a hydrogen storage capacity of 7.6% by weight as a metal and 3.6% by weight as Mg 2 Ni. With quantity. However, there has been a problem that it is necessary to raise the temperature to about 300 ° C. or higher in order to release the hydrogen occluded in such a metal or alloy.

【0006】このような背景の下で、新たな水素発生源
として錯金属水素化物である水素化アルミニウムリチウ
ム(LiAlH4)や水素化アルミニウムナトリウム(NaAl
H4)が注目されており、水素化アルミニウムリチウムか
らは以下の反応式: 3LiAlH4→Li3AlH8+2Al+3H2(150〜175℃) Li3AlH8+2Al→3LiH+3Al+1.5H2(180〜220℃) 3LiH+3Al→3AlLi+1.5H2(387〜425℃) 等にしたがって水素が発生する。そして、水素化アルミ
ニウムリチウムから発生できる水素量は最大10.8重量%
(水素化アルミニウムリチウム1gあたり)であり、燃料
電池自動車に要求されるエネルギー密度を満足すること
となる。また、水素化アルミニウムナトリウムを有機チ
タン化合物の存在下で加熱により熱分解せしめて水素を
発生させる方法が知られている(C.Jensen, R.Zidan,
N.Mariels,A.Hee, C.Hagen, Int. J. Hydrogen Energy,
vol.24, p.461 (1999))。
Against this background, lithium aluminum hydride (LiAlH 4 ) and sodium aluminum hydride (NaAl), which are complex metal hydrides, are new sources of hydrogen.
H 4 ) has attracted attention, and the following reaction formula from lithium aluminum hydride: 3LiAlH 4 → Li 3 AlH 8 + 2Al + 3H 2 (150-175 ° C.) Li 3 AlH 8 + 2Al → 3LiH + 3Al + 1.5 Hydrogen is generated according to H 2 (180 to 220 ° C.) 3LiH + 3Al → 3AlLi + 1.5H 2 (387 to 425 ° C.). The maximum amount of hydrogen that can be generated from lithium aluminum hydride is 10.8% by weight.
(Per 1 g of lithium aluminum hydride), which satisfies the energy density required for fuel cell vehicles. In addition, a method is known in which sodium aluminum hydride is thermally decomposed by heating in the presence of an organic titanium compound to generate hydrogen (C. Jensen, R. Zidan,
N. Mariels, A. Hee, C. Hagen, Int. J. Hydrogen Energy,
vol.24, p.461 (1999)).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな錯金属水素化物を水が実質的に存在しない状況下に
おいて熱分解せしめて十分量の水素を発生させるために
はやはり高温にする必要があり、水素化アルミニウムナ
トリウムを有機チタン化合物の存在下で熱分解せしめる
場合であっても4〜5重量%の水素を発生させるために
は約200℃以上に加熱する必要があった。
However, in order to generate a sufficient amount of hydrogen by thermally decomposing such a complex metal hydride in a state where water is substantially absent, it is necessary to raise the temperature. Even in the case where sodium aluminum hydride is thermally decomposed in the presence of an organic titanium compound, heating to about 200 ° C. or more is required to generate 4 to 5% by weight of hydrogen.

【0008】本発明は、上記従来技術の有する課題に鑑
みてなされたものであり、錯金属水素化物を熱分解させ
て水素を発生させるに際し、水が実質的に存在しない状
況下であっても比較的低温で十分な水素発生量を達成す
ることが可能である水素発生方法並びにそのための水素
発生装置を提供することを目的とする。
[0008] The present invention has been made in view of the above-mentioned problems of the prior art, and when generating hydrogen by thermally decomposing a complex metal hydride, even when water is substantially absent. An object of the present invention is to provide a hydrogen generation method capable of achieving a sufficient amount of hydrogen generation at a relatively low temperature and a hydrogen generation apparatus therefor.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究を重ねた結果、錯金属水素化物を
加熱して水素を生成させる熱分解反応において、触媒と
して金属酸化物及び炭素質材料からなる群から選択され
る少なくとも一種の物質と金属とからなるものを用いる
ことにより、水が実質的に存在しない状況下であっても
比較的低温で水素発生量を十分に向上させることが可能
となることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, in a pyrolysis reaction for heating a complex metal hydride to generate hydrogen, a metal oxide was used as a catalyst. And the use of at least one substance selected from the group consisting of carbonaceous materials and a metal to sufficiently increase the amount of hydrogen generated at a relatively low temperature even in a situation where water is substantially absent. It has been found that the present invention can be performed, and the present invention has been completed.

【0010】すなわち、本発明の水素発生方法は、錯金
属水素化物を触媒の存在下で加熱により熱分解せしめて
水素を発生させる方法であって、前記触媒が金属酸化物
及び炭素質材料からなる群から選択される少なくとも一
種の物質と金属とからなるものであることを特徴とする
方法である。
That is, the hydrogen generating method of the present invention is a method for generating hydrogen by thermally decomposing a complex metal hydride by heating in the presence of a catalyst, wherein the catalyst comprises a metal oxide and a carbonaceous material. The method is characterized by comprising at least one kind of substance selected from a group and a metal.

【0011】また、本発明の水素発生装置は、錯金属水
素化物及び触媒が内部に配置されている容器と、該容器
の内部を加熱するための加熱手段とを備えており、前記
錯金属水素化物を触媒の存在下で加熱により熱分解せし
めて水素を発生させる水素発生装置であって、前記触媒
が金属酸化物及び炭素質材料からなる群から選択される
少なくとも一種の物質と金属とからなるものであること
を特徴とする装置である。
Further, the hydrogen generating apparatus of the present invention includes a container in which a complex metal hydride and a catalyst are disposed, and a heating means for heating the inside of the container. A hydrogen generator that thermally decomposes a compound by heating in the presence of a catalyst to generate hydrogen, wherein the catalyst comprises a metal and at least one substance selected from the group consisting of metal oxides and carbonaceous materials. An apparatus characterized in that:

【0012】本発明の水素発生方法及び装置において
は、金属酸化物及び炭素質材料からなる群から選択され
る少なくとも一種の物質と金属とからなる触媒により錯
金属水素化物の熱分解反応が著しく促進され、水が実質
的に存在しない状況下であっても比較的低温で十分な水
素発生量が達成される。なお、上記本発明にかかる触媒
により錯金属水素化物の熱分解反応が著しく促進される
理由は定かではないが、大きな酸化力を有する金属と多
くの酸点を有する金属酸化物又は炭素質材料との相乗効
果によって達成されていると本発明者らは考えている。
In the method and apparatus for generating hydrogen of the present invention, the thermal decomposition reaction of a complex metal hydride is remarkably accelerated by a catalyst comprising a metal and at least one substance selected from the group consisting of a metal oxide and a carbonaceous material. Thus, a sufficient amount of generated hydrogen can be achieved at a relatively low temperature even in a situation where water is substantially absent. The reason why the catalyst according to the present invention remarkably promotes the thermal decomposition reaction of a complex metal hydride is not clear, but a metal having a large oxidizing power and a metal oxide or a carbonaceous material having many acid sites are considered. The present inventors believe that this is achieved by the synergistic effect of

【0013】また、本発明の水素発生方法及び装置にお
いては、前記金属が1000nm以下の平均粒径を有す
る貴金属微粒子であり、前記触媒が前記物質からなる担
体にこの貴金属微粒子を担持せしめたものであることが
好ましい。このような貴金属微粒子と金属酸化物又は炭
素質材料との組み合わせによれば、錯金属水素化物の熱
分解がより効率良く進行して水素発生量がより向上する
傾向にある。
[0013] In the method and apparatus for generating hydrogen of the present invention, the metal is fine noble metal particles having an average particle diameter of 1000 nm or less, and the catalyst is such that the noble metal fine particles are supported on a carrier made of the above substance. Preferably, there is. According to such a combination of the noble metal fine particles and the metal oxide or the carbonaceous material, the thermal decomposition of the complex metal hydride proceeds more efficiently, and the amount of generated hydrogen tends to be further improved.

【0014】更に、本発明によれば水が実質的に存在し
ない状況下であっても比較的低温で水素発生量を十分に
向上させることが可能となることから、本発明の水素発
生方法においては前記触媒の存在下で前記錯金属水素化
物を100〜170℃の温度に加熱して熱分解せしめる
ことが好ましく、本発明の水素発生装置においては前記
加熱手段が前記容器の内部を100〜170℃の温度に
加熱するものであることが好ましい。
Furthermore, according to the present invention, it is possible to sufficiently improve the amount of hydrogen generated at a relatively low temperature even in a situation where water is substantially absent. It is preferable to heat the complex metal hydride to a temperature of 100 to 170 ° C. in the presence of the catalyst to thermally decompose it. In the hydrogen generator of the present invention, the heating means controls the inside of the vessel to 100 to 170 ° C. It is preferred to heat to a temperature of ° C.

【0015】[0015]

【発明の実施の形態】以下、場合により図面を参照しつ
つ本発明の好適な実施形態について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】本発明の水素発生方法は、錯金属水素化物
を触媒の存在下で加熱により熱分解せしめて水素を発生
させる方法であって、前記触媒が金属酸化物及び炭素質
材料からなる群から選択される少なくとも一種の物質と
金属とからなるものであることを特徴とする方法であ
る。
The hydrogen generation method of the present invention is a method for generating hydrogen by thermally decomposing a complex metal hydride by heating in the presence of a catalyst, wherein the catalyst is selected from the group consisting of metal oxides and carbonaceous materials. The method is characterized by comprising at least one selected substance and a metal.

【0017】すなわち、本発明にかかる触媒は、金属酸
化物及び炭素質材料からなる群から選択される少なくと
も一種の物質と金属とが共存したものである。その共存
の形態は、上記物質を担体とし、その担体に金属を担持
せしめたものでも、両者が混合したもの等でもよい。そ
の中でも、上記物質からなる担体に金属を担持せしめた
ものの方が、触媒活性がより高くなる傾向にあるため好
ましい。また、上記物質が粒子の形態、上記金属が微粒
子の形態であると、触媒活性がより高くなる傾向にある
ため好ましい。
That is, the catalyst according to the present invention is a catalyst in which at least one substance selected from the group consisting of a metal oxide and a carbonaceous material coexists with a metal. The coexisting form may be a substance in which the above substance is used as a carrier and a metal is carried on the carrier, or a mixture of both. Among them, those in which a metal is supported on a carrier made of the above substance are preferable because the catalytic activity tends to be higher. Further, it is preferable that the substance is in the form of particles and the metal is in the form of fine particles because the catalytic activity tends to be higher.

【0018】このような金属酸化物としては、貴金族元
素(Pt, Pd, Rh, Ru, Ir, Os, Au,Ag等)や卑金属元素
(Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu,
Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba, Ta, W
等)、メタロイド元素(Si, Ge, As, Sb等)の単独酸化
物又は複合酸化物が挙げられ、中でも酸化チタン(チタ
ニア)、酸化ニッケル、酸化セリウム、ジルコニア、ゼ
オライト、アルミナ、酸化ケイ素、酸化鉄、酸化マンガ
ン、酸化コバルト、酸化亜鉛、酸化銅が好ましい。な
お、本発明にかかる金属酸化物は、ゼオライトやジルコ
ニアカルシウム固溶体のように複数の金属元素を含有し
ていてもよく、更に非金属元素を含んでいてもよい。
Examples of such metal oxides include noble metal elements (Pt, Pd, Rh, Ru, Ir, Os, Au, Ag, etc.) and base metal elements (Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu,
Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba, Ta, W
Etc.) and single or complex oxides of metalloid elements (Si, Ge, As, Sb, etc.), among which titanium oxide (titania), nickel oxide, cerium oxide, zirconia, zeolite, alumina, silicon oxide, oxide Iron, manganese oxide, cobalt oxide, zinc oxide and copper oxide are preferred. The metal oxide according to the present invention may contain a plurality of metal elements such as zeolite and calcium zirconia solid solution, and may further contain a non-metal element.

【0019】このような金属酸化物を使用することによ
り、その物質自体も触媒として作用し、特に後述する金
属(好ましくは貴金属)との相乗効果によって錯金属水
素化物の熱分解が顕著に促進され、水が実質的に存在し
ない状況下であっても比較的低温で十分な水素発生量が
達成される。なお、金属酸化物が触媒として作用する理
由は定かではないが、金属酸化物には酸点が多く存在す
るため錯金属水素化物の熱分解反応に対して触媒活性が
生じるものと本発明者らは考えている。
By using such a metal oxide, the substance itself also acts as a catalyst, and the thermal decomposition of the complex metal hydride is remarkably promoted particularly by a synergistic effect with a metal (preferably a noble metal) described later. In addition, a sufficient amount of hydrogen generation can be achieved at a relatively low temperature even in a situation where water is substantially absent. Although the reason why the metal oxide acts as a catalyst is not clear, the present inventors believe that the metal oxide has a large number of acid sites and that catalytic activity occurs in the thermal decomposition reaction of the complex metal hydride. Is thinking.

【0020】本発明にかかる金属酸化物は、好ましくは
1000μm以下、より好ましくは100μm〜10n
m、特に好ましくは10μm〜10nm、の平均粒径を
有する粒子である。平均粒径が1000μmを超えると
粒子の表面積が低下し、十分な触媒活性が得られない傾
向にある。また、金属酸化物の比表面積は1〜1000
2/g程度であることが好ましく、平均粒径が比較的
大きい場合は多孔質粒子であることが好ましい。
The metal oxide according to the present invention is preferably 1000 μm or less, more preferably 100 μm to 10 n.
m, particularly preferably 10 μm to 10 nm. If the average particle size exceeds 1000 μm, the surface area of the particles tends to decrease, and sufficient catalytic activity tends not to be obtained. The specific surface area of the metal oxide is 1 to 1000.
It is preferably about m 2 / g, and when the average particle diameter is relatively large, it is preferably porous.

【0021】また、炭素質材料としては、活性炭、黒
鉛、活性チャー、コークス、ハードカーボン(難黒鉛化
炭素)、ソフトカーボン(易黒鉛化炭素)が好ましい。
このような炭素質材料を使用した場合も、その物質自体
が触媒として作用し、特に後述する金属(好ましくは貴
金属)との相乗効果によって錯金属水素化物の熱分解が
顕著に促進され、水が実質的に存在しない状況下であっ
ても比較的低温で十分な水素発生量が達成される。な
お、炭素質材料が触媒として作用する理由も定かではな
いが、炭素質材料にも酸点が多く存在するため錯金属水
素化物の熱分解反応に対して触媒活性が生じるものと本
発明者らは考えている。
As the carbonaceous material, activated carbon, graphite, activated charcoal, coke, hard carbon (hardly graphitizable carbon) and soft carbon (easy graphitizable carbon) are preferable.
Even when such a carbonaceous material is used, the substance itself acts as a catalyst, and the thermal decomposition of the complex metal hydride is remarkably promoted by a synergistic effect with a metal (preferably a noble metal) described later, and water is formed. Sufficient hydrogen generation can be achieved at relatively low temperatures even in situations where they are substantially absent. The reason why the carbonaceous material acts as a catalyst is not clear, but the present inventors believe that the carbonaceous material also has a large number of acid sites and thus exhibits catalytic activity against the thermal decomposition reaction of the complex metal hydride. Is thinking.

【0022】本発明にかかる炭素質材料は、好ましくは
1000μm以下、より好ましくは100μm〜10n
m、特に好ましくは10μm〜10nm、の平均粒径を
有する粒子である。平均粒径が1000μmを超えると
粒子の表面積が低下し、十分な触媒活性が得られない傾
向にある。また、炭素質材料の比表面積は1〜4000
2/g程度であることが好ましく、多孔質粒子である
ことが好ましい。
The carbonaceous material according to the present invention is preferably 1000 μm or less, more preferably 100 μm to 10 n.
m, particularly preferably 10 μm to 10 nm. If the average particle size exceeds 1000 μm, the surface area of the particles tends to decrease, and sufficient catalytic activity tends not to be obtained. The specific surface area of the carbonaceous material is 1 to 4000.
It is preferably about m 2 / g, and more preferably porous particles.

【0023】上記本発明にかかる物質の形状は特に制限
はなく、粉末状、ペレット状、モノリス状、板状、繊維
状等の形状を使用条件に応じて選択することができる。
The shape of the substance according to the present invention is not particularly limited, and a shape such as a powder, a pellet, a monolith, a plate, and a fiber can be selected according to use conditions.

【0024】本発明にかかる触媒は、上記物質に金属を
共存せしめたものである。このような金属としては、貴
金族元素(Pt, Pd, Rh, Ru, Ir, Os, Au, Ag等)や卑金
属元素(Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, N
i, Cu, Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba, Ta,
W等)が挙げられ、中でも貴金属(Pt, Pd, Rh, Ru, I
r, Os, Au, Ag)が好ましく、白金族元素(Pt, Pd, Rh,
Ru, Ir, Os)が特に好ましい。このような金属を前記
物質と共存させて使用することにより、金属の触媒作用
と前記物質の触媒作用との相乗効果によって錯金属水素
化物の熱分解が顕著に促進され、水が実質的に存在しな
い状況下であっても比較的低温で十分な水素発生量が達
成される。なお、金属が触媒として作用する理由は定か
ではないが、金属(好ましくは貴金属)は酸化力が大き
いため、錯金属水素化物が熱分解して水素が発生する反
応系において触媒活性が生じるものと本発明者らは考え
ている。
The catalyst according to the present invention is obtained by coexisting a metal with the above substance. Such metals include noble metals (Pt, Pd, Rh, Ru, Ir, Os, Au, Ag, etc.) and base metals (Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy , Ho, Er,
Tm, Yb, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, N
i, Cu, Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba, Ta,
W, etc., among which noble metals (Pt, Pd, Rh, Ru, I
r, Os, Au, Ag) are preferred, and platinum group elements (Pt, Pd, Rh,
Ru, Ir, Os) are particularly preferred. By using such a metal in coexistence with the substance, the thermal decomposition of the complex metal hydride is remarkably promoted by the synergistic effect of the catalytic action of the metal and the catalytic action of the substance, and water substantially exists. Even under no circumstances, a sufficient amount of hydrogen can be achieved at a relatively low temperature. Although the reason why the metal acts as a catalyst is not clear, it is assumed that the metal (preferably a noble metal) has a large oxidizing power, so that catalytic activity occurs in a reaction system in which a complex metal hydride is thermally decomposed to generate hydrogen. The present inventors consider.

【0025】本発明にかかる金属は、上記物質からなる
粒子より平均粒径が小さいものが望ましく、好ましくは
1000nm以下、より好ましくは100nm以下、特
に好ましくは10nm以下、の平均粒径を有する微粒子
である。平均粒径が1000nmを超えると粒子の表面
積が低下し、十分な触媒活性が得られない傾向にある。
また、金属はその金属の酸化物等の金属化合物を一部に
含有していてもよいが、より酸化力が強まることから金
属単体であることが好ましい。
The metal according to the present invention is desirably a fine particle having an average particle size smaller than that of the particles made of the above substances, preferably 1000 nm or less, more preferably 100 nm or less, particularly preferably 10 nm or less. is there. If the average particle size exceeds 1000 nm, the surface area of the particles tends to decrease, and sufficient catalytic activity tends to be not obtained.
Further, the metal may partially contain a metal compound such as an oxide of the metal, but is preferably a simple metal because the oxidizing power is further enhanced.

【0026】本発明にかかる触媒中の金属の含有率は、
触媒の全重量を基準にして0.01〜50重量%である
ことが好ましく、0.5〜10重量%であることがより
好ましい。金属の含有率が0.01重量%未満では、金
属による触媒作用が得られず、十分な水素の収率が達成
されない傾向にある。
The metal content in the catalyst according to the present invention is:
It is preferably from 0.01 to 50% by weight, more preferably from 0.5 to 10% by weight, based on the total weight of the catalyst. When the content of the metal is less than 0.01% by weight, a catalytic action by the metal cannot be obtained, and a sufficient yield of hydrogen tends not to be achieved.

【0027】上記物質に金属を共存せしめる方法は特に
制限されず、例えば、金属及び/又は金属前駆体(金属
のハロゲン化物、硝酸塩、炭酸塩、アセチルアセトナー
ト、テトラアンミン塩、アルコキシド等)を用いていわ
ゆる含浸法、沈澱法、混練法、イオン交換法等の技法に
よって上記物質からなる担体に金属を担持せしめて本発
明にかかる触媒を得ることが可能であるが、国際公開番
号WO99/10167号公報に記載の超臨界流体を用
いた超臨界法によって本発明にかかる触媒を得ることが
好ましい。超臨界流体を用いることによって金属が10
nm以下(特に好ましくは1nm以下)という微細な粒
子サイズでかつ金属単体として担体に分散担持されるた
め、触媒活性がより向上し、それによって水素発生量が
より顕著に向上する傾向にある。
The method for causing a metal to coexist with the above substance is not particularly limited. For example, a method using a metal and / or a metal precursor (metal halide, nitrate, carbonate, acetylacetonate, tetraammine salt, alkoxide, etc.) is used. The catalyst according to the present invention can be obtained by loading a metal on a carrier made of the above substances by a technique such as a so-called impregnation method, precipitation method, kneading method, ion exchange method, etc., but International Publication No. WO 99/10167. It is preferable to obtain the catalyst according to the present invention by a supercritical method using a supercritical fluid described in (1). By using supercritical fluid, 10
Since the particles have a fine particle size of 1 nm or less (particularly preferably 1 nm or less) and are dispersed and supported as a single metal on the carrier, the catalytic activity is further improved, and the amount of hydrogen generation tends to be more remarkably improved.

【0028】更に、上記のようにして金属及び/又は金
属前駆体を担体に担持せしめた後、必要に応じて窒素も
しくは空気中での焼成処理、及び/又は、水素もしくは
一酸化炭素もしくは炭化水素(メタン、アセトアルデヒ
ド等)含有雰囲気中での還元処理を施すことが好まし
い。このような焼成処理、還元処理の条件は特に制限さ
れないが、例えば350〜800℃の温度で1〜10時
間加熱するといった条件が採用される。
Further, after the metal and / or the metal precursor are supported on the carrier as described above, if necessary, a calcination treatment in nitrogen or air, and / or hydrogen, carbon monoxide or hydrocarbon is performed. It is preferable to perform a reduction treatment in an atmosphere containing (methane, acetaldehyde, etc.). Although the conditions of such a baking treatment and a reduction treatment are not particularly limited, for example, a condition of heating at a temperature of 350 to 800 ° C. for 1 to 10 hours is employed.

【0029】なお、上記の超臨界法とは、金属及び/又
は金属前駆体と溶媒とを含む溶液をその溶媒が超臨界流
体になる状態で担体に接触させることにより担体表面に
金属及び/又は金属前駆体を担持させる方法であり、そ
の後に必要に応じて焼成処理及び/又は還元処理を施す
ことによって本発明にかかる触媒が得られる。ここで、
超臨界流体とは臨界温度以上に加熱された流体を意味す
る。したがって、溶媒が超臨界流体になる状態とは、溶
媒の臨界温度以上に溶媒が加熱された状態を意味する。
圧力に関しては特に制限はないが、臨界圧力以上とする
ことが好ましい。このような超臨界流体は、液体と同等
の溶解能力と、気体に近い拡散性及び粘性を有するた
め、担体の孔の深部や非常に微細な口径の孔にも、金属
を容易且つ迅速に浸透させることができる。なお、上記
の溶解能力は、温度、圧力、エントレーナー(添加物)
等によって調整できる。
The above-mentioned supercritical method is a method in which a solution containing a metal and / or a metal precursor and a solvent is brought into contact with a carrier in a state where the solvent becomes a supercritical fluid, so that the metal and / or This is a method for supporting a metal precursor, and thereafter, if necessary, a baking treatment and / or a reduction treatment are carried out to obtain the catalyst according to the present invention. here,
Supercritical fluid means a fluid heated above the critical temperature. Therefore, the state in which the solvent becomes a supercritical fluid means a state in which the solvent is heated to a temperature higher than the critical temperature of the solvent.
The pressure is not particularly limited, but is preferably equal to or higher than the critical pressure. Such a supercritical fluid has the same dissolving capacity as a liquid, and has diffusivity and viscosity close to that of a gas, so that metal can easily and quickly penetrate deep into the pores of a carrier or into very fine pores. Can be done. In addition, the above-mentioned dissolving ability depends on temperature, pressure, entrainer (additive)
Etc. can be adjusted.

【0030】このような超臨界流体となる溶媒としては
特に制限はないが、例えば、メタン、エタン、プロパ
ン、ブタン、エチレン、プロピレン等の炭化水素;メタ
ノール、エタノール、イソプロパノール等のモノオー
ル;エチレングリコール、プロピレングリコール等のグ
リコール;アセトン、アセチルアセトン等のケトン;ジ
メチルエーテル等のエーテル;二酸化炭素;水;アンモ
ニア;塩素;クロロホルム;フレオン類等を挙げること
ができる。また、金属及び/又は金属前駆体の超臨界流
体への溶解度を高めるために、メタノール、エタノー
ル、プロパノール等のアルコール;アセトン、エチルメ
チルケトン、アセチルアセトン等のケトン;ベンゼン、
トルエン、キシレン等の芳香族炭化水素等をエントレー
ナーとして用いることができる。
The solvent used as the supercritical fluid is not particularly limited, but includes, for example, hydrocarbons such as methane, ethane, propane, butane, ethylene and propylene; monools such as methanol, ethanol and isopropanol; ethylene glycol Glycol such as propylene glycol; ketones such as acetone and acetylacetone; ethers such as dimethyl ether; carbon dioxide; water; ammonia; chlorine; chloroform; Further, in order to increase the solubility of the metal and / or the metal precursor in the supercritical fluid, alcohols such as methanol, ethanol, and propanol; ketones such as acetone, ethyl methyl ketone and acetylacetone;
Aromatic hydrocarbons such as toluene and xylene can be used as the entrainer.

【0031】本発明の水素発生方法においては、上述の
ようにして金属酸化物及び炭素質材料からなる群から選
択される少なくとも一種の物質と金属とからなる触媒に
錯金属水素化物を接触させた状態で加熱する。それによ
って錯金属水素化物の熱分解反応が著しく促進され、水
が実質的に存在しない状況下であっても比較的低温で水
素が高収率で生成されて十分な水素発生量が達成され
る。このように、本発明によれば比較的低温であっても
上記触媒の存在下で錯金属水素化物が熱分解されて十分
な水素発生量が達成されることから、その際の反応温度
は100〜170℃が好ましい。反応温度が100℃未
満では触媒活性が低下して十分な水素発生量が達成され
なくなる傾向にあり、他方、170℃を超えて加熱して
も水素発生量は増加しにくくなり却って加熱に多くのエ
ネルギーを要して効率が悪くなる傾向にある。
In the hydrogen generating method of the present invention, the complex metal hydride is brought into contact with a catalyst comprising a metal and at least one substance selected from the group consisting of a metal oxide and a carbonaceous material as described above. Heat in the state. Thereby, the thermal decomposition reaction of the complex metal hydride is remarkably accelerated, and even in a condition where water is substantially absent, hydrogen is produced at a relatively low temperature in a high yield, and a sufficient amount of hydrogen is generated. . As described above, according to the present invention, even at a relatively low temperature, the complex metal hydride is thermally decomposed in the presence of the catalyst to achieve a sufficient amount of generated hydrogen. ~ 170 ° C is preferred. If the reaction temperature is lower than 100 ° C., the catalytic activity tends to decrease and a sufficient amount of generated hydrogen tends to be not achieved. On the other hand, even if the temperature exceeds 170 ° C., the amount of generated hydrogen is hardly increased, so that much heating is required. Efficiency tends to be poor due to the need for energy.

【0032】このような錯金属水素化物としては、水素
の含有率が高く、前記触媒により水素が効率良く生成さ
れることからLiAlH4、NaAlH4、LiBH4、NaBH4、KAlH4、K
BH4、Mg(BH4)2、Ca(BH4)2、Ba(BH4)2、Sr(BH4)2、Fe(BH
4)2が好ましく、中でも熱分解し易くかつ水素発生の理
論容量が高いことからLiAlH4やNaAlH4がより好ましく、
かかる理論容量が最大10.8重量%であるLiAlH4が特に好
ましい。錯金属水素化物は単一種類で用いてもよく、複
数種類を組合せて用いてもよい。
Such a complex metal hydride has a high content of hydrogen and is efficiently produced by the catalyst, so that LiAlH 4 , NaAlH 4 , LiBH 4 , NaBH 4 , KAlH 4 , KAl
BH 4 , Mg (BH 4 ) 2 , Ca (BH 4 ) 2 , Ba (BH 4 ) 2 , Sr (BH 4 ) 2 , Fe (BH
4 ) 2 is preferable, among which LiAlH 4 and NaAlH 4 are more preferable because they are easily thermally decomposed and have a high theoretical capacity of hydrogen generation,
LiAlH 4 having such a theoretical capacity of at most 10.8% by weight is particularly preferred. The complex metal hydride may be used alone or in combination of two or more.

【0033】本発明の水素発生方法における反応系に
は、錯金属水素化物と触媒以外の成分が含有されていて
もよい。その他の成分としては、反応に不活性なガス
(窒素、CO2、Ar等)が挙げられる。一方、酸素が存在
すると発生した水素が燃焼し易くなる傾向にあるのでな
るべく排除したほうがよい。
The reaction system in the hydrogen generation method of the present invention may contain components other than the complex metal hydride and the catalyst. Other components include gases inert to the reaction (nitrogen, CO 2 , Ar, etc.). On the other hand, if oxygen is present, the generated hydrogen tends to burn easily, so it is better to exclude it as much as possible.

【0034】また、本発明の水素発生方法においては、
水が実質的に存在しない状況下であっても比較的低温で
前述の触媒により錯金属水素化物が熱分解されて十分な
水素発生量が達成されることから、その反応系には水が
実質的に存在しないことが好ましい。なお、ここでいう
「水が実質的に存在しない状況」とは、反応系中に不可
避的に存在する水分の存在は許容されるが、反応系中に
外的に水又は水蒸気が添加されていない状況をいう。
In the method for generating hydrogen of the present invention,
Even in a situation where water is substantially absent, since the complex metal hydride is thermally decomposed by the above-mentioned catalyst at a relatively low temperature and a sufficient amount of hydrogen is achieved, water is substantially contained in the reaction system. Preferably, it is not present. Here, “the situation in which water is substantially absent” means that the presence of water that is inevitably present in the reaction system is allowed, but water or steam is externally added to the reaction system. No situation.

【0035】次に、本発明の水素発生装置の好適な実施
形態について説明する。図1は本発明の水素発生装置の
好適な実施形態の一例を示す模式図であり、水素発生装
置1は、水素排出管2を有する反応容器3と、その反応
容器3の内部を加熱するための加熱装置4とを備えてお
り、反応容器3には錯金属水素化物5と前記本発明にか
かる触媒6とが充填されている。
Next, a preferred embodiment of the hydrogen generator of the present invention will be described. FIG. 1 is a schematic view showing an example of a preferred embodiment of the hydrogen generator of the present invention. The hydrogen generator 1 is used to heat a reaction vessel 3 having a hydrogen discharge pipe 2 and the inside of the reaction vessel 3. The reaction vessel 3 is filled with the complex metal hydride 5 and the catalyst 6 according to the present invention.

【0036】このような水素発生装置1によれば、加熱
装置4により反応容器3の内部を所定の温度(好ましく
は100〜170℃)に加熱すると、錯金属水素化物5
が触媒6の存在下で熱分解されて水素が高収率で生成さ
れる。そして、この水素発生装置1で得られた水素7は
水素排出管2から排出され、例えば燃料電池用の反応セ
ル(図示せず)に供給される。従って、電力として取り
出したいエネルギー量に応じて反応容器3の内部温度等
を制御することによって、燃料電池用の反応セルに供給
する水素量の調整が可能となり、必要とする電気出力を
得ることができる。
According to such a hydrogen generator 1, when the inside of the reaction vessel 3 is heated to a predetermined temperature (preferably 100 to 170 ° C.) by the heater 4, the complex metal hydride 5
Is thermally decomposed in the presence of the catalyst 6 to produce hydrogen in a high yield. The hydrogen 7 obtained by the hydrogen generator 1 is discharged from the hydrogen discharge pipe 2 and supplied to, for example, a reaction cell (not shown) for a fuel cell. Therefore, by controlling the internal temperature and the like of the reaction vessel 3 according to the amount of energy to be taken out as electric power, the amount of hydrogen supplied to the reaction cell for the fuel cell can be adjusted, and the required electric output can be obtained. it can.

【0037】また、本発明の水素発生装置1において
は、その反応系中に水が実質的に存在しない状況下であ
っても比較的低温で触媒6により錯金属水素化物5が熱
分解されて水素7が十分に発生する。したがって、本発
明の水素発生装置1によれば、水素発生に要するエネル
ギーが低減されて効率が向上し、また、反応系中に水を
供給する装置や反応系中から水を回収する装置が不要と
なる。それ故、本発明の水素発生装置1は、その高効率
化及びコンパクト化が要求される燃料電池自動車用の水
素発生装置等として特に有効である。
Further, in the hydrogen generator 1 of the present invention, the complex metal hydride 5 is thermally decomposed by the catalyst 6 at a relatively low temperature even in a situation where water is not substantially present in the reaction system. Hydrogen 7 is sufficiently generated. Therefore, according to the hydrogen generator 1 of the present invention, the energy required for hydrogen generation is reduced and efficiency is improved, and a device for supplying water into the reaction system and a device for collecting water from the reaction system are not required. Becomes Therefore, the hydrogen generator 1 of the present invention is particularly effective as a hydrogen generator for a fuel cell vehicle which requires high efficiency and compactness.

【0038】以上、本発明の水素発生装置の好適な一実
施形態について説明したが、本発明の装置は上記実施形
態に限定されるものではない。例えば、使用される加熱
装置4は特に制限されず、電気式ヒーターや電磁式ヒー
ター、あるいは外部の熱を利用するタイプの加熱手段で
あってもよい。また、反応容器3中に錯金属水素化物5
を供給(補充)するための錯金属水素化物供給手段を更
に備えていてもよい。
The preferred embodiment of the hydrogen generator of the present invention has been described above, but the apparatus of the present invention is not limited to the above embodiment. For example, the heating device 4 to be used is not particularly limited, and may be an electric heater, an electromagnetic heater, or a heating unit of a type using external heat. Further, a complex metal hydride 5
May be further provided for supplying (replenishing) the complex metal hydride.

【0039】[0039]

【実施例】以下、実施例及び比較例に基づいて本発明を
より具体的に説明するが、本発明は以下の実施例に限定
されるものではない。実施例1 ジルコニア粉末(第1稀元素社製)100gをロジウム
含有硝酸溶液(ロジウム含有量15g/l、田中貴金属
社製)100ml中に浸漬し、ジルコニア粉末にロジウ
ム前駆体を担持せしめた。次いで、この粉末を、250
℃にて5時間保持して乾燥した後、空気中450℃にて
2時間焼成し、更に水素中300℃にて3時間保持して
還元せしめ、ジルコニア粉末上にロジウムを担持した触
媒(ロジウム量:1.5重量%)を得た。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples. Example 1 100 g of zirconia powder (manufactured by Daiichi Kagaku) was immersed in 100 ml of a rhodium-containing nitric acid solution (rhodium content: 15 g / l, manufactured by Tanaka Kikinzoku Co., Ltd.) to support a rhodium precursor on the zirconia powder. The powder is then mixed with 250
C. for 5 hours, and calcined in air at 450.degree. C. for 2 hours, and further reduced in hydrogen at 300.degree. C. for 3 hours to reduce rhodium on a zirconia powder (rhodium content). : 1.5% by weight).

【0040】そして、このようにして得られた触媒を用
いて以下のようにして水素発生量を求めた。すなわち、
上記触媒50mgと水素化アルミニウムリチウム50m
gとを乳鉢で混合して容積100mlの三角フラスコに
詰めた後、150℃に温度コントロールされたオイルバ
ス中にセットし、柴田科学製ガス分析装置(商品コー
ド:6071-4)におけるメスビューレットの水面変化より
水素発生量を求めた。なお、試験開始から10分及び6
0分の間に発生した水素の量を測定し、それぞれ10分
後及び60分後の水素発生量の測定値とした。
Using the catalyst thus obtained, the amount of hydrogen generated was determined as follows. That is,
50 mg of the above catalyst and 50 m of lithium aluminum hydride
g in a mortar, packed in a 100 ml Erlenmeyer flask, set in an oil bath temperature-controlled to 150 ° C, and a female burette in a Shibata Scientific gas analyzer (product code: 6071-4). The amount of hydrogen generated was determined from the change in the water surface. In addition, 10 minutes and 6
The amount of hydrogen generated during 0 minutes was measured, and the measured value of the amount of hydrogen generated after 10 minutes and 60 minutes, respectively, was used.

【0041】また、担体粒子及び担持されている金属の
平均粒径をTEM観察、SEM観察あるいはX線回折から求め
た。なお、X線回折により粒子径を求める場合は、理学
電機製X線回折装置RAD-Bを使用し、下記手法により実施
した。
The average particle size of the carrier particles and the metal supported was determined by TEM observation, SEM observation or X-ray diffraction. The particle size was determined by X-ray diffraction using an X-ray diffractometer RAD-B manufactured by Rigaku Denki using the following method.

【0042】すなわち、触媒を硝子製試料セルに詰め、
グラファイトモノクロメータで単色化したCuKαを線源
とし、反射式ディフラクトメータ法によって広角X線回
折強度曲線を測定した。そして、粒子径(格子面に垂直
方向の結晶の厚さ)Lcを、その格子面による回折線の半
値幅β、波長λ、Bragg角θに基づいて以下のScherrer
の式: Lc=Kλ/βcosθ (但し、K=0.90) により求めた。
That is, the catalyst was packed in a glass sample cell,
Wide-angle X-ray diffraction intensity curves were measured by a reflection type diffractometer method using CuKα monochromatized by a graphite monochromator as a radiation source. Then, the particle diameter (the thickness of the crystal in the direction perpendicular to the lattice plane) Lc is calculated based on the half-value width β, the wavelength λ, and the Bragg angle θ of the diffraction line by the lattice plane as follows:
Lc = Kλ / βcosθ (where K = 0.90).

【0043】上記の測定により得られた水素発生量を、
使用した触媒についてのデータと共に表1に示す。実施例2 白金アセチルアセトナート500mgをアセトン5ml
に溶解させ、これをオートクレーブ中に導入し、更にチ
タニア粉末(Sachtleben Chemie GMBH製、UV100)1g
及びドライアイス30gを入れ、オートクレーブを密閉
した後に温度150℃、圧力300kg/cm2に加熱
加圧して2時間保持し、二酸化炭素を超臨界流体とした
状態でチタニア粉末に白金アセチルアセトナートを担持
せしめた。次いで、このチタニア粉末を、105℃にて
1時間保持して乾燥し、チタニア上に白金を担持した触
媒(白金量:1.3重量%)を得た。
The hydrogen generation amount obtained by the above measurement is
The results are shown in Table 1 together with data on the catalyst used. Example 2 500 mg of platinum acetylacetonate in 5 ml of acetone
, And introduced into an autoclave. Further, 1 g of titania powder (manufactured by Sachtleben Chemie GMBH, UV100) was added.
Then, 30 g of dry ice was put therein, the autoclave was sealed, and then heated and pressurized to a temperature of 150 ° C. and a pressure of 300 kg / cm 2 for 2 hours, and platinum acetylacetonate was supported on titania powder in a state where carbon dioxide was used as a supercritical fluid. I was sorry. Next, the titania powder was dried at 105 ° C. for 1 hour to obtain a catalyst (platinum amount: 1.3% by weight) in which platinum was supported on titania.

【0044】そして、このようにして得られた触媒10
0mgを用いた以外は実施例1と同様にして水素発生量
を求め、得られたデータを使用した触媒についてのデー
タと共に表1に示す。実施例3 触媒としてキシダ化学社製白金炭素(白金量:50.0重量
%、比表面積:7m2/g)50mgを用いた以外は実施例
1と同様にして水素発生量を求め、得られたデータを使
用した触媒についてのデータと共に表1に示す。実施例4〜6 触媒として表1に示す量の和光純薬社製白金-活性炭素
(白金量:5.0重量%、比表面積:719m2/g)を用いた以
外は実施例1と同様にして水素発生量を求め、得られた
データを使用した触媒についてのデータと共に表1に示
す。実施例7 水素化アルミニウムリチウム50mgに代えて水素化ア
ルミニウムナトリウム50mgを用いた以外は実施例4
と同様にして水素発生量を求め、得られたデータを使用
した触媒についてのデータと共に表1に示す。
The catalyst 10 thus obtained is
The amount of generated hydrogen was determined in the same manner as in Example 1 except that 0 mg was used, and the obtained data is shown in Table 1 together with data on the catalyst using the obtained data. Example 3 The amount of hydrogen generated was determined in the same manner as in Example 1 except that 50 mg of platinum carbon (amount of platinum: 50.0% by weight, specific surface area: 7 m 2 / g) manufactured by Kishida Chemical Co., Ltd. was used, and the obtained data was obtained. Are shown in Table 1 together with data on catalysts using Examples 4 to 6 In the same manner as in Example 1 except that platinum-activated carbon (amount of platinum: 5.0% by weight, specific surface area: 719 m 2 / g) manufactured by Wako Pure Chemical Industries in the amount shown in Table 1 was used as a catalyst. The amount of hydrogen generated was determined, and the obtained data is shown in Table 1 together with data on the catalyst using the obtained data. Example 7 Example 4 except that 50 mg of sodium aluminum hydride was used instead of 50 mg of lithium aluminum hydride.
The amount of generated hydrogen was determined in the same manner as in Example 1 and the obtained data is shown in Table 1 together with data on the catalyst using the obtained data.

【0045】[0045]

【表1】 [Table 1]

【0046】比較例1 触媒を添加しなかった以外は実施例1と同様にして水素
発生量を求め、得られたデータを表2に示す。比較例2 触媒としてアルドリッチ社製テトラブトキシチタン(Ti
(OBu)4)を用い、テトラブトキシチタン50mgと水素
化アルミニウムリチウム50mgとを混合して均一なペ
ーストとしたものを容積100mlの三角フラスコに詰
めた以外は実施例1と同様にして水素発生量を求め、得
られたデータを表2に示す。比較例3 触媒を添加しなかった以外は実施例7と同様にして水素
発生量を求め、得られたデータを表2に示す。比較例4 触媒としてアルドリッチ社製テトラブトキシチタン(Ti
(OBu)4)を用い、テトラブトキシチタン50mgと水素
化アルミニウムナトリウム50mgとを混合して均一な
ペーストとしたものを容積100mlの三角フラスコに
詰めた以外は実施例1と同様にして水素発生量を求め、
得られたデータを表2に示す。
Comparative Example 1 The amount of hydrogen generated was determined in the same manner as in Example 1 except that the catalyst was not added, and the obtained data are shown in Table 2. Comparative Example 2 As a catalyst, tetrabutoxytitanium (Ti
Using (OBu) 4 ), a uniform paste was prepared by mixing 50 mg of tetrabutoxytitanium and 50 mg of lithium aluminum hydride to form a uniform paste. And the obtained data are shown in Table 2. Comparative Example 3 The amount of generated hydrogen was determined in the same manner as in Example 7 except that the catalyst was not added, and the obtained data is shown in Table 2. Comparative Example 4 As a catalyst, tetrabutoxytitanium (Ti
Using (OBu) 4 ), a uniform paste obtained by mixing 50 mg of tetrabutoxytitanium and 50 mg of sodium aluminum hydride was filled in a 100-ml Erlenmeyer flask, and the amount of hydrogen generated was the same as in Example 1. ,
Table 2 shows the obtained data.

【0047】[0047]

【表2】 [Table 2]

【0048】表1〜表2に示した結果から明らかなよう
に、金属酸化物又は炭素質材料の粒子に金属微粒子を担
持せしめた本発明にかかる触媒によれば、触媒を用いな
かった場合はもとより、従来の触媒(テトラブトキシチ
タン)を用いた場合に比べても、150℃という比較的
低い温度における錯金属水素化物の熱分解が顕著に促進
され、水素発生量が著しく向上することが確認された。
As is clear from the results shown in Tables 1 and 2, according to the catalyst of the present invention in which metal oxide or carbonaceous material particles carry metal fine particles, when no catalyst is used, Naturally, it is confirmed that the thermal decomposition of the complex metal hydride at a relatively low temperature of 150 ° C. is remarkably promoted and the amount of generated hydrogen is remarkably improved as compared with the case where the conventional catalyst (tetrabutoxytitanium) is used. Was done.

【0049】[0049]

【発明の効果】以上説明したように、本発明の水素発生
方法及び水素発生装置によれば、錯金属水素化物を熱分
解させて水素を発生させるに際し、水が実質的に存在し
ない状況下であっても比較的低温で錯金属水素化物の熱
分解反応が著しく促進され、十分な水素発生量が達成さ
れる。従って、本発明の水素発生方法及び水素発生装置
は、錯金属水素化物を燃料電池の水素供給源として利用
可能とする上で非常に有用である。
As described above, according to the hydrogen generating method and the hydrogen generating apparatus of the present invention, when hydrogen is generated by thermally decomposing a complex metal hydride, the hydrogen generation is carried out under the condition that water is substantially absent. Even at a relatively low temperature, the thermal decomposition reaction of the complex metal hydride is remarkably accelerated, and a sufficient amount of hydrogen is generated. Therefore, the hydrogen generation method and the hydrogen generation device of the present invention are very useful in making complex metal hydrides usable as a hydrogen supply source for fuel cells.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素発生装置の好適な一実施形態を示
す模式図である。
FIG. 1 is a schematic view showing a preferred embodiment of a hydrogen generator according to the present invention.

【符号の説明】[Explanation of symbols]

1…水素発生装置、2…水素排出管、3…反応容器、4
…加熱装置、5…錯金属水素化物、6…触媒、7…水
素。
DESCRIPTION OF SYMBOLS 1 ... Hydrogen generator, 2 ... Hydrogen discharge pipe, 3 ... Reaction vessel, 4
... heating device, 5 ... complex metal hydride, 6 ... catalyst, 7 ... hydrogen.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福本 和広 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 佐々木 慈 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 山本 敏生 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 河合 泰明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 林 宏明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4G069 AA03 AA08 BA04B BA05B BA08A BA08B BB02A BB02B BB04A BC71B BC75B CC40 DA05 EA01Y EB18X EB18Y FA02 FB14 FB80  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiro Fukumoto 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. (72) Inventor Osamu Sasaki Nagakute-machi, Oguro-machi, Aichi-gun 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Toshio Yamamoto, 41, Chuchu Yokomichi, Nagakute-cho, Aichi-gun, Aichi, Japan Toyota Motor Central Research Laboratory Co., Ltd. (72) Inventor Yasuaki Kawai Aichi No. 41, Toyota Chuo Research Institute, Nagakute-machi, Aichi-gun, Toyoda Central Research Institute Co., Ltd. (72) Inventor Hiroaki Hayashi 41, Toyota-Chuo Research Institute, Inc. Reference) 4G069 AA03 AA08 BA04B BA05B BA08A BA08B BB02A BB02B BB04A BC71B BC75B CC40 DA05 EA01Y EB18X EB18Y FA02 FB14 FB80

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 錯金属水素化物を触媒の存在下で加熱に
より熱分解せしめて水素を発生させる方法であって、 前記触媒が、金属酸化物及び炭素質材料からなる群から
選択される少なくとも一種の物質と金属とからなるもの
であることを特徴とする水素発生方法。
1. A method for generating hydrogen by thermally decomposing a complex metal hydride by heating in the presence of a catalyst, wherein the catalyst is at least one selected from the group consisting of metal oxides and carbonaceous materials. A method for generating hydrogen, characterized by comprising a substance and a metal.
【請求項2】 前記触媒の存在下で前記錯金属水素化物
を100〜170℃の温度に加熱して熱分解せしめるこ
とを特徴とする請求項1に記載の水素発生方法。
2. The method according to claim 1, wherein the complex metal hydride is thermally decomposed by heating to a temperature of 100 to 170 ° C. in the presence of the catalyst.
【請求項3】 前記金属が1000nm以下の平均粒径
を有する貴金属微粒子であり、前記触媒が前記物質から
なる担体に該貴金属微粒子を担持せしめたものであるこ
とを特徴とする請求項1又は2に記載の水素発生方法。
3. The method according to claim 1, wherein the metal is fine noble metal particles having an average particle diameter of 1000 nm or less, and the catalyst is such that the noble metal fine particles are supported on a carrier made of the substance. The hydrogen generation method according to 1.
【請求項4】 錯金属水素化物及び触媒が内部に配置さ
れている容器と、該容器の内部を加熱するための加熱手
段とを備えており、前記錯金属水素化物を触媒の存在下
で加熱により熱分解せしめて水素を発生させる水素発生
装置であって、 前記触媒が、金属酸化物及び炭素質材料からなる群から
選択される少なくとも一種の物質と金属とからなるもの
であることを特徴とする水素発生装置。
4. A container having a complex metal hydride and a catalyst disposed therein, and heating means for heating the inside of the container, wherein the complex metal hydride is heated in the presence of the catalyst. A hydrogen generator that generates hydrogen by being thermally decomposed by: wherein the catalyst is made of a metal and at least one substance selected from the group consisting of a metal oxide and a carbonaceous material. Hydrogen generator.
【請求項5】 前記加熱手段が前記容器の内部を100
〜170℃の温度に加熱するものであることを特徴とす
る請求項4に記載の水素発生装置。
5. The heating means is configured to maintain the inside of the container at 100
The hydrogen generator according to claim 4, wherein the hydrogen generator is heated to a temperature of from about 170C to about 170C.
【請求項6】 前記金属が1000nm以下の平均粒径
を有する貴金属微粒子であり、前記触媒が前記物質から
なる担体に該貴金属微粒子を担持せしめたものであるこ
とを特徴とする請求項4又は5に記載の水素発生装置。
6. The method according to claim 4, wherein the metal is fine noble metal particles having an average particle diameter of 1000 nm or less, and the catalyst is such that the noble metal fine particles are supported on a carrier made of the substance. The hydrogen generator according to item 1.
JP2000333123A 2000-10-31 2000-10-31 Hydrogen generating method and hydrogen generating apparatus Pending JP2002137901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333123A JP2002137901A (en) 2000-10-31 2000-10-31 Hydrogen generating method and hydrogen generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333123A JP2002137901A (en) 2000-10-31 2000-10-31 Hydrogen generating method and hydrogen generating apparatus

Publications (1)

Publication Number Publication Date
JP2002137901A true JP2002137901A (en) 2002-05-14

Family

ID=18809246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333123A Pending JP2002137901A (en) 2000-10-31 2000-10-31 Hydrogen generating method and hydrogen generating apparatus

Country Status (1)

Country Link
JP (1) JP2002137901A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234701A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
WO2008076076A1 (en) * 2006-12-20 2008-06-26 Agency For Science, Technology And Research Process for releasing hydrogen gas
JP2008525296A (en) * 2004-12-23 2008-07-17 コミツサリア タ レネルジー アトミーク Process for the production of hydrogen by thermochemical route based on hydrogen chloride treatment of cerium
JP2008222449A (en) * 2007-03-08 2008-09-25 Nissan Motor Co Ltd Apparatus for generating hydrogen and fuel cell-powered vehicle equipped with this as well as hydrogen storage material
JP2009190966A (en) * 2008-02-14 2009-08-27 General Electric Co <Ge> Hydrogen storage material and related method
JP2010159192A (en) * 2009-01-09 2010-07-22 Toyota Motor Corp Device for determining condition of hydrogen-containing metal material and hydrogen generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234701A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
JP4670156B2 (en) * 2001-02-07 2011-04-13 トヨタ自動車株式会社 Hydrogen generating method and hydrogen generating apparatus
JP2008525296A (en) * 2004-12-23 2008-07-17 コミツサリア タ レネルジー アトミーク Process for the production of hydrogen by thermochemical route based on hydrogen chloride treatment of cerium
WO2008076076A1 (en) * 2006-12-20 2008-06-26 Agency For Science, Technology And Research Process for releasing hydrogen gas
JP2008222449A (en) * 2007-03-08 2008-09-25 Nissan Motor Co Ltd Apparatus for generating hydrogen and fuel cell-powered vehicle equipped with this as well as hydrogen storage material
JP2009190966A (en) * 2008-02-14 2009-08-27 General Electric Co <Ge> Hydrogen storage material and related method
JP2010159192A (en) * 2009-01-09 2010-07-22 Toyota Motor Corp Device for determining condition of hydrogen-containing metal material and hydrogen generator

Similar Documents

Publication Publication Date Title
Sharifianjazi et al. A review on recent advances in dry reforming of methane over Ni-and Co-based nanocatalysts
Shi et al. A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system
JP7453924B2 (en) Ammonia decomposition catalyst and ammonia decomposition method using the same
US20010022960A1 (en) Hydrogen generating method and hydrogen generating apparatus
US6471935B2 (en) Hydrogen storage materials and method of making by dry homogenation
Hung et al. An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride
JP2023539511A (en) Catalyst for ammonia decomposition reaction and hydrogen production method using the same
JP2010528834A (en) Catalyst for hydrogen production by autothermal reforming, its production and use
Taherian et al. Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: Impact of support and promoters
JP6725994B2 (en) Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
EP1896178A1 (en) Metal oxide catalyst for hydrogen generation and method of producing the same
Tao et al. Sol–gel auto-combustion synthesis of Ni–Ce x Zr 1− x O 2 catalysts for carbon dioxide reforming of methane
ZOU et al. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane
JP4607715B2 (en) Catalyst and method for producing catalyst
Gu et al. CO x-free hydrogen production via ammonia decomposition over mesoporous Co/Al 2 O 3 catalysts with highly dispersed Co species synthesized by a facile method
Su et al. Research progress of ruthenium-based catalysts for hydrogen production from ammonia decomposition
Gu et al. Maximizing hydrogen production by AB hydrolysis with Pt@ cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation
Peng et al. Uniform dispersion of ultrafine ruthenium nanoparticles on nano-cube ceria as efficient catalysts for hydrogen production from ammonia-borane hydrolysis
Xie et al. Effect of oxygen vacancy influenced by CeO2 morphology on the methanol catalytic reforming for hydrogen production
Bagherzadeh et al. Structural and surface evolution of nanostructured Cu-Zn-Al catalyst designed by hybrid plasma-enhanced microwave-irradiated urea-nitrate-combustion for selective H2-production
JP2002137901A (en) Hydrogen generating method and hydrogen generating apparatus
KR20220075530A (en) A Catalyst for dehydrogenation of liquid organic hydrogen carriers and method for producing the same
JP3674027B2 (en) Hydrogen generating method and hydrogen generating apparatus
Guo et al. Direct synthesis of CuO–ZnO–CeO2 catalyst on Al2O3/cordierite monolith for methanol steam reforming