JP2002133984A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JP2002133984A
JP2002133984A JP2000321621A JP2000321621A JP2002133984A JP 2002133984 A JP2002133984 A JP 2002133984A JP 2000321621 A JP2000321621 A JP 2000321621A JP 2000321621 A JP2000321621 A JP 2000321621A JP 2002133984 A JP2002133984 A JP 2002133984A
Authority
JP
Japan
Prior art keywords
shaft
tip
vacuum
movable shaft
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000321621A
Other languages
Japanese (ja)
Inventor
Makoto Matsukawa
誠 松川
Tomofumi Miura
友史 三浦
Tsunehisa Terakado
恒久 寺門
Toshiharu Kubota
敏春 久保田
Kenji Watanabe
憲治 渡辺
Hiroo Ikegame
博夫 池亀
Shuichi Kawashima
秀一 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute filed Critical Toshiba Corp
Priority to JP2000321621A priority Critical patent/JP2002133984A/en
Publication of JP2002133984A publication Critical patent/JP2002133984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve with a high reliability which is improved in a property for refrigeration and allows a large current passage by forming a flowing path at least in a movable shaft or a fixed shaft, and prevents a refrigerating fluid in the flowing path from leaking to a vacuum container. SOLUTION: The fixed shaft or the movable shaft is formed from an end shaft with an end on the inside of the vacuum container and a bottom on the outside of the vacuum container, and a bottom shaft joined to the bottom of the end shaft on the outside of the vacuum container. A flowing path, which enters through an entrance at the bottom, goes to the end, is folded, and returns to an exit at the bottom, is formed in the end shaft. A path of the refrigerating fluid for flowing in and out, which is joined to the entrance and the exit opened at the bottom of the end shaft, is formed in the bottom shaft.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電気回路を
開閉・保護する開閉装置に適用される真空バルブに関
し、特に、固定軸または可動軸の少なくとも一方が、接
点冷却用の流路を備えた真空バルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve applied to, for example, an opening / closing device for opening / closing and protecting an electric circuit, and in particular, at least one of a fixed shaft and a movable shaft has a flow passage for cooling a contact. It relates to a vacuum valve.

【0002】[0002]

【従来の技術】真空バルブは、例えば、図14に示すよ
うに、円筒形状の絶縁容器1aと、その絶縁容器1aの
両開口端面をそれぞれふさぐ端板1b及び端板1cとに
より構成され、図示しない真空ポンプにより排気され内
部が真空状態の真空容器1と、端板1cに取り付けられ
真空容器1の内側の先端部に接点4が設けられた固定軸
5と、端板1bにベローズ6を介して固定され真空容器
1の内側の先端部に接点2が設けられた可動軸3とによ
り構成されている。
2. Description of the Related Art As shown in FIG. 14, for example, a vacuum valve comprises a cylindrical insulating container 1a, and end plates 1b and 1c which respectively close both open end surfaces of the insulating container 1a. A vacuum vessel 1 which is evacuated by a vacuum pump and whose inside is in a vacuum state, a fixed shaft 5 attached to an end plate 1c and provided with a contact 4 at a tip end inside the vacuum vessel 1, and a bellows 6 on an end plate 1b. And a movable shaft 3 having a contact 2 provided at a tip end inside the vacuum vessel 1.

【0003】可動軸3は、図示しない操作機構により軸
方向に往復移動可能で、電流遮断状態から通電状態への
移行は、可動軸3を操作機構により押し上げて接点2を
固定軸5の接点4に接触させることにより行われる。一
方、異常電流が発生して回路保護が必要な、通電状態か
ら電流遮断状態への移行は、可動軸3に接続した操作機
構により可動軸3を引き下げて接点2を固定軸5の接点
4から切り離すことにより行われる。また、この可動軸
3の往復移動の際の真空容器1内の真空状態は、べロー
ズ6が変形して端板1bに対する可動軸3の変位が吸収
されることにより良好に保たれ、この結果、遮断性能も
良好に保たれる。
The movable shaft 3 can be reciprocated in the axial direction by an operating mechanism (not shown), and the transition from the current interrupted state to the energized state is performed by pushing up the movable shaft 3 by the operating mechanism and changing the contact 2 to the contact 4 of the fixed shaft 5. This is done by contacting On the other hand, the transition from the energized state to the current cut-off state where an abnormal current occurs and the circuit needs to be protected is performed by lowering the movable shaft 3 by the operating mechanism connected to the movable shaft 3 and moving the contact 2 from the contact 4 of the fixed shaft 5. It is done by separating. In addition, the vacuum state in the vacuum vessel 1 during the reciprocating movement of the movable shaft 3 is favorably maintained because the bellows 6 is deformed and the displacement of the movable shaft 3 with respect to the end plate 1b is absorbed. Also, good shut-off performance is maintained.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記構成の真
空バルブにおいては、通電中に接点2及び4を介して可
動軸3及び固定軸5を流れる電流は、接点2及び4間の
接触面における接触電気抵抗の高さのために、接点2及
び4の接触面近傍にジュール熱が集中してしまう。
However, in the above-structured vacuum valve, the current flowing through the movable shaft 3 and the fixed shaft 5 via the contacts 2 and 4 during energization causes the electric current flowing through the contact surface between the contacts 2 and 4 to increase. Due to the high contact electric resistance, Joule heat is concentrated near the contact surfaces of the contacts 2 and 4.

【0005】そのため、接点2及び4近傍の温度は通電
中に上昇し、通電電流が更に大きくなると接点の温度が
規定の温度以上となって信頼性が維持できなくなってし
まうという問題があり、通電電流が大きな電気回路の開
閉・保護に真空バルブを使った開閉装置が適用できない
という欠点があった。
Therefore, the temperature near the contacts 2 and 4 rises during energization, and when the energizing current further increases, the temperature of the contacts becomes higher than a specified temperature and reliability cannot be maintained. There is a drawback that a switching device using a vacuum valve cannot be applied to switching and protection of an electric circuit having a large current.

【0006】上記欠点を解消するには、接点2及び4近
傍を強制的に冷却して、通電時の温度上昇を抑えればよ
く、そのためには可動軸3または固定軸5の一方または
両方に、水等の冷却用流体が流れる流路を、接点近傍を
通過する経路で形成して、外部の冷却用流体循環系統に
より冷却用流体を当該流路に循環させて接点近傍を効率
よく冷却することが考えられる。
In order to solve the above-mentioned drawback, it is sufficient to forcibly cool the vicinity of the contacts 2 and 4 to suppress a temperature rise during energization. For this purpose, one or both of the movable shaft 3 and the fixed shaft 5 are provided. A flow path through which a cooling fluid such as water flows is formed by a path passing near the contact, and the cooling fluid is circulated to the flow path by an external cooling fluid circulation system to efficiently cool the vicinity of the contact. It is possible.

【0007】図15は、接点冷却用の流路が形成された
可動軸3の側面図であり、図16は、図15におけるX
VI−XVI線断面図である。
FIG. 15 is a side view of the movable shaft 3 in which a flow path for contact cooling is formed, and FIG.
FIG. 6 is a sectional view taken along line VI-XVI.

【0008】それらの図において、流路8は、可動軸3
の側面下部の流入口10から軸方向と直角に進み、そこ
から接点2の近傍に向かって軸方向に延びる流入側流路
と、可動軸3の側面下部の流出口11から軸方向と直角
に進み、そこから接点2の近傍に向かって軸方向に延び
る流出側流路とが、接点2の近傍で連通することにより
構成される。
In these figures, the flow path 8 is
An inflow-side flow path that proceeds at right angles to the axial direction from an inlet 10 at the lower side of the movable shaft 3 and extends in the axial direction toward the vicinity of the contact 2 therefrom; An outflow-side flow path which advances from there and extends in the axial direction toward the vicinity of the contact 2 is configured to communicate in the vicinity of the contact 2.

【0009】このようにすれば、可動軸3内に水等の冷
却用流体を流すことにより冷却性能が飛躍的に向上して
可動軸3の接点2及びその接点2と接触する固定軸5の
接点4の温度上昇を抑えることができるため、大電流通
電も可能になる。
In this way, the cooling performance is drastically improved by flowing a cooling fluid such as water into the movable shaft 3 so that the contact 2 of the movable shaft 3 and the fixed shaft 5 contacting the contact 2 are formed. Since a rise in the temperature of the contact 4 can be suppressed, a large current can be supplied.

【0010】しかし、そのような構成の流路8は、可動
軸3を分割することなく掘削加工等により形成すること
は難しく、可動軸3を縦に2分割にして流路8となる溝
を削ってから、ロウ付けなどにより固着して接合し一体
化する必要がある。一方、可動軸3は、下部が真空容器
1外に露出し、上部が真空容器1内に露出しているた
め、ロウ付け等による接合部分9の一部も真空状態の真
空容器1内に露出することになる。
However, it is difficult to form the flow path 8 having such a structure by excavation or the like without dividing the movable shaft 3. After shaving, it is necessary to fix and join and integrate by brazing or the like. On the other hand, since the movable shaft 3 has a lower part exposed outside the vacuum vessel 1 and an upper part exposed inside the vacuum vessel 1, a part of the joint 9 by brazing or the like is also exposed inside the vacuum vessel 1 in a vacuum state. Will do.

【0011】そのため、経年劣化などで接合部分9の固
着部分に隙間が空いて流路8から水等の冷却用流体が真
空容器1内に漏れ出す恐れがあり、もし、真空容器1内
に水が漏れ出すと、真空状態が破壊されて真空バルブの
遮断性能が維持できなくなって信頼性が低下してしまう
という問題点があった。また、可動軸3に限らず、固定
軸5に同様の流路8を形成する場合においても同様の問
題点があった。
For this reason, there is a possibility that a gap may be left in the fixed portion of the joining portion 9 due to aging or the like, and a cooling fluid such as water may leak from the flow channel 8 into the vacuum vessel 1. Leaks, there is a problem that the vacuum state is destroyed and the shut-off performance of the vacuum valve cannot be maintained, thereby lowering the reliability. In addition, not only the movable shaft 3 but also the same flow path 8 formed in the fixed shaft 5 has a similar problem.

【0012】本発明は、上記の課題を解決し、可動軸及
び固定軸の少なくとも一方に形成した流路により冷却性
能を向上させることで接点の温度上昇を抑えて大電流通
電を可能にするとともに、流路内の冷却用流体が真空容
器内に漏れ出してしまうことがなく遮断性能を長期間維
持できる信頼性が高い真空バルブを提供することにあ
る。
The present invention solves the above-mentioned problems and improves the cooling performance by a flow path formed in at least one of a movable shaft and a fixed shaft, thereby suppressing a rise in the temperature of a contact and enabling a large current to flow. It is another object of the present invention to provide a highly reliable vacuum valve capable of maintaining a shut-off performance for a long period of time without leakage of a cooling fluid in a flow path into a vacuum vessel.

【0013】[0013]

【課題を解決するための手段】上記課題を解決るため、
請求項1に記載の真空バルブは、固定軸先端部に設けら
れた接点と可動軸先端部に設けられた接点とが当該可動
軸の移動に応じて真空容器内で離間または接触すること
により電気回路を開閉する真空バルブにおいて、前記固
定軸または可動軸の少なくとも一方の軸は、前記真空容
器の内側に先端部、外側に底部が配設される先端軸と、
前記真空容器の外側で前記先端軸の底部に接合する底軸
とから形成されると共に、前記先端軸には、その底部に
開口する入口から先端部に向い折り返して再び底部に開
口する出口に戻る流路が形成される一方、前記底軸に
は、前記先端軸の底部に開口する出入口に接合する冷却
用流体流入出路が形成されたものである。これにより、
接点冷却用の流路のうちの、少なくとも前記真空容器内
の部分については、軸を分割することなく掘削加工等に
より形成可能なため、流路と真空容器内との間のロウ付
け等による固着接合部分をなくすことができる。
In order to solve the above problems,
The vacuum valve according to claim 1, wherein the contact provided at the tip of the fixed shaft and the contact provided at the tip of the movable shaft are separated or contacted in the vacuum vessel in accordance with the movement of the movable shaft. In a vacuum valve that opens and closes a circuit, at least one of the fixed shaft and the movable shaft has a distal end inside the vacuum vessel and a distal end provided with a bottom outside.
A bottom shaft joined to the bottom of the tip shaft outside the vacuum vessel, and the tip shaft is folded back from an inlet opening at the bottom toward the tip and back to an outlet opening at the bottom again. While a flow path is formed, a cooling fluid inflow / outflow path is formed in the bottom shaft, which is joined to an entrance opening at the bottom of the tip shaft. This allows
At least a portion of the flow path for cooling the contact inside the vacuum vessel can be formed by excavation or the like without dividing the shaft, so that the flow path and the vacuum vessel are fixed by brazing or the like. Joints can be eliminated.

【0014】請求項2に記載の真空バルブは、請求項1
に記載の真空バルブにおいて、前記先端軸に形成された
流路の折り返し部近傍を、流路の断面積が当該折り返し
部部に近いほど小さくなる形状、例えば、段付形状また
はテーパ形状にしたものである。これにより、流路内を
流れる冷却用流体の流速が、接点に近い折り返し部にお
いて増大するため熱伝達量が増大する。
[0014] The vacuum valve according to the second aspect is the first aspect of the invention.
In the vacuum valve according to the above, the vicinity of the folded portion of the flow path formed on the distal end shaft is formed in a shape such that the cross-sectional area of the flow path becomes smaller as it is closer to the folded portion, for example, a stepped shape or a tapered shape. It is. Accordingly, the flow rate of the cooling fluid flowing in the flow channel increases at the folded portion near the contact point, so that the heat transfer amount increases.

【0015】請求項3に記載の真空バルブは、固定軸先
端部に設けられた接点と可動軸先端部に設けられた接点
とが当該可動軸の移動に応じて真空容器内で離間または
接触することにより電気回路を開閉する真空バルブにお
いて、前記固定軸または可動軸の少なくとも一方の軸
は、前記真空容器の内側に先端部、外側に底部が配設さ
れる先端軸と、前記真空容器の外側で前記先端軸の底部
に接合する底軸とから形成されると共に、前記先端軸に
は、その底部から先端部近傍まで形成した縦穴の内壁に
仕切板を接合することで、底部に開口する入口から先端
部に向い連通部を介して折り返して再び底部に開口する
出口に戻る流路が形成される一方、前記底軸には、前記
先端軸の底部に開口する出入口に接合する冷却用流体流
入出路が形成されたものである。これにより、接点冷却
用の流路のうちの、少なくとも前記真空容器内の部分に
ついては、軸を分割することなく形成可能なため、流路
と真空容器内との間のロウ付け等による固着接合部分を
なくすことができる。
According to a third aspect of the present invention, the contact provided at the distal end of the fixed shaft and the contact provided at the distal end of the movable shaft are separated or contact in the vacuum vessel in accordance with the movement of the movable shaft. In a vacuum valve that opens and closes an electric circuit, at least one of the fixed shaft and the movable shaft has a tip portion provided with a tip portion inside the vacuum vessel and a bottom portion outside the vacuum vessel, and an outside portion of the vacuum vessel. And a bottom shaft joined to the bottom of the tip shaft, and an entrance opening to the bottom by joining a partition plate to the inner wall of a vertical hole formed from the bottom to the vicinity of the tip of the tip shaft. A flow path is formed which returns to the outlet opening at the bottom while being turned back through the communication portion from the front end to the front end, while the cooling fluid flowing into the bottom shaft is joined to the entrance opening at the bottom of the tip shaft. A way out was formed Than it is. Accordingly, at least a portion of the flow path for cooling the contact inside the vacuum vessel can be formed without dividing the shaft. Parts can be eliminated.

【0016】請求項4に記載の真空バルブは、請求項3
に記載の真空バルブにおいて、前記縦穴に固着される仕
切板の前記連通部近傍を、当該連通部に近いほど厚みが
増す形状、例えば、段付形状またはテーパ形状にしたも
のである。これにより、前記連通部近傍の流路の断面積
が当該連通部に近いほど小さくなるり、流路内を流れる
冷却用流体の流速が、接点に近い前記連通部において増
大する。
[0016] The vacuum valve according to the fourth aspect is the third aspect of the invention.
In the vacuum valve described in (1), the vicinity of the communication portion of the partition plate fixed to the vertical hole has a shape in which the thickness increases as the distance from the communication portion increases, for example, a stepped shape or a tapered shape. Thereby, the cross-sectional area of the flow path near the communication part becomes smaller as it is closer to the communication part, and the flow velocity of the cooling fluid flowing in the flow path increases in the communication part near the contact point.

【0017】請求項5に記載の真空バルブは、固定軸先
端部に設けられた接点と可動軸先端部に設けられた接点
とが当該可動軸の移動に応じて真空容器内で離間または
接触することにより電気回路を開閉する真空バルブにお
いて、前記固定軸または可動軸の少なくとも一方の軸
は、前記真空容器の内側に先端部、外側に底部が配設さ
れる先端軸と、前記真空容器の外側で前記先端軸の底部
に接合する底軸とから形成されると共に、前記先端軸に
は、その底部から先端部近傍まで形成した縦穴とその縦
穴の下部と接合する冷却用流体流出路が形成される一
方、前記底軸には、前記先端軸に形成された縦穴よりも
細くやや短く当該縦穴に同軸的に内挿される内筒が形成
されると共に、その内筒と接合する冷却用流体流入路が
形成されたものである。これにより、前記縦穴内に、前
記縦穴の先端部で連通する内筒の内側の流路と外側の流
路とにより接点冷却用の流路を構成でき、少なくとも前
記真空容器内の部分については、接点冷却用の流路を軸
を分割することなく形成可能なため、流路と真空容器内
との間のロウ付け等による固着接合部分をなくすことが
できる。また、冷却用流体は、前記流入路から前記内筒
の内側を通って接点近傍に達し、前記内筒の外側を通っ
て前記流出路から排出される。
According to a fifth aspect of the present invention, the contact provided at the tip of the fixed shaft and the contact provided at the tip of the movable shaft are separated or contacted in the vacuum vessel in accordance with the movement of the movable shaft. In a vacuum valve that opens and closes an electric circuit, at least one of the fixed shaft and the movable shaft has a tip portion provided with a tip portion inside the vacuum vessel and a bottom portion outside the vacuum vessel, and an outside portion of the vacuum vessel. And a bottom shaft joined to the bottom of the tip shaft, and the tip shaft has a vertical hole formed from the bottom to the vicinity of the tip and a cooling fluid outflow passage joined to a lower portion of the vertical hole. On the other hand, the bottom shaft is formed with an inner cylinder which is coaxially inserted into the vertical hole, which is thinner and slightly shorter than a vertical hole formed in the tip shaft, and a cooling fluid inflow passage joined to the inner cylinder. Is formed Thereby, in the vertical hole, a flow path for contact cooling can be configured by a flow path inside and an external flow path of the inner cylinder that communicates with a tip end of the vertical hole, and at least a portion in the vacuum vessel, Since the flow path for cooling the contact can be formed without dividing the shaft, it is possible to eliminate a fixed joint portion between the flow path and the inside of the vacuum vessel by brazing or the like. Further, the cooling fluid passes through the inside of the inner cylinder from the inflow path to reach the vicinity of the contact, and is discharged from the outflow path through the outside of the inner cylinder.

【0018】請求項6に記載の真空バルブは、請求項5
に記載の真空バルブにおいて、前記底軸に形成される内
筒の先端部を、先端に近いほど厚みが増す形状に、例え
ば、段付形状またはテーパ形状にしたものである。これ
により、前記縦穴の先端部すなわち接点近傍に形成され
る流路の連通部近傍の断面積が当該連通部に近いほど小
さくなり、流路内を流れる冷却用流体の流速が、接点に
近い前記連通部において増大する。
[0018] The vacuum valve according to claim 6 is the same as the vacuum valve according to claim 5.
In the vacuum valve described in (1), the distal end of the inner cylinder formed on the bottom shaft has a shape in which the thickness increases as it approaches the distal end, for example, a stepped shape or a tapered shape. Thereby, the cross-sectional area near the communication part of the flow path formed near the tip end of the vertical hole, that is, the contact becomes smaller as it is closer to the communication part, and the flow rate of the cooling fluid flowing in the flow path is closer to the contact. It increases in the communication part.

【0019】請求項7に記載の真空バルブは、請求項5
に記載の真空バルブにおいて、前記内筒の外側面に軸方
向に間隔をおいて環状突起を形成したものである。これ
により、前記内筒の外側の流路を流れる冷却用流体の流
れに乱れが生じる。
The vacuum valve according to claim 7 is the same as the vacuum valve according to claim 5.
In the vacuum valve described in (1), annular projections are formed on the outer surface of the inner cylinder at intervals in the axial direction. As a result, the flow of the cooling fluid flowing through the flow path outside the inner cylinder is disturbed.

【0020】請求項8に記載の真空バルブは、請求項5
に記載の真空バルブにおいて、前記内筒の外側面に、螺
旋状突起を形成したものである。これにより、前記内筒
の外側の流路を流れる冷却用流体は、前記螺旋状突起に
導かれて螺旋状に流れる。
[0020] The vacuum valve according to claim 8 is a vacuum valve according to claim 5.
The helical projection is formed on the outer surface of the inner cylinder. Thereby, the cooling fluid flowing in the flow path outside the inner cylinder is guided by the spiral projection and spirally flows.

【0021】請求項9に記載の真空バルブは、請求項5
に記載の真空バルブにおいて、前記縦穴の内側面に螺旋
状突起を固着したものである。これにより、前記内筒の
外側の流路を流れる冷却用流体は、前記縦穴内側面に固
着された螺旋状突起に導かれて螺旋状に流れる。
According to the ninth aspect of the present invention, there is provided a vacuum valve according to the fifth aspect.
The helical projection is fixed to the inner surface of the vertical hole. Thereby, the cooling fluid flowing through the flow path outside the inner cylinder is guided by the helical projection fixed to the inner surface of the vertical hole and flows helically.

【0022】[0022]

【発明の実施の形態】以下、添付図面を参照しながら、
本発明の実施の形態について説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
An embodiment of the present invention will be described.

【0023】第1実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図1に示
す構成の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the first embodiment.
The movable shaft 3 having the configuration shown in FIG. 1 is applied as the movable shaft 3 of the vacuum valve having the configuration shown in FIG.

【0024】図1において、可動軸3は、先端軸3a
と、その先端軸3aの底部にロウ付け等による接合部分
12により固着された底軸3bとにより構成されてい
る。先端軸3aには、真空容器1内側の先端に接点2が
固着されていて、流入側水路8aa及び流出側水路8b
aが、底軸3bと接合される前に真空容器1外側の底部
から先端部に向かってそれぞれ斜めに掘削形成されてい
て、先端部の接点2近傍の交差部8cで交わる。一方、
底軸3bには、先端軸3aの流入側水路8aa及び流出
側水路8baにそれぞれ連通する流入路8ab及び流出
路8bbが、接合前に掘削形成される。そして、それら
の流入路8ab及び流出路8bbは、側面に固着された
流入口10及び流出口11を通して、図示しない冷却用
流体循環系統にそれぞれ接続される。
In FIG. 1, the movable shaft 3 has a tip shaft 3a.
And a bottom shaft 3b fixed to the bottom of the tip shaft 3a by a joining portion 12 by brazing or the like. The contact 2 is fixed to the distal end shaft 3a at the distal end inside the vacuum vessel 1, and the inflow-side water passage 8aa and the outflow-side water passage 8b
a are formed diagonally from the bottom outside the vacuum vessel 1 toward the tip before being joined to the bottom shaft 3b, and intersect at the intersection 8c near the contact 2 at the tip. on the other hand,
An inflow passage 8ab and an outflow passage 8bb communicating with the inflow-side water passage 8aa and the outflow-side water passage 8ba of the tip shaft 3a are formed in the bottom shaft 3b by excavation before joining. The inflow path 8ab and the outflow path 8bb are connected to a cooling fluid circulation system (not shown) through an inflow port 10 and an outflow port 11, which are fixed to side surfaces.

【0025】このように、可動軸3に、流入路8ab、
流入側流路8aa、交差部8c、流出側流路8ba、及
び、流出路8bbからなる流路8を形成させることによ
り、図16に示した従来の流路8と同様に接点2近傍を
効率よく冷却することができる。
Thus, the movable shaft 3 has the inflow passage 8ab,
By forming the flow path 8 including the inflow-side flow path 8aa, the intersection 8c, the outflow-side flow path 8ba, and the outflow path 8bb, the vicinity of the contact 2 can be efficiently reduced similarly to the conventional flow path 8 shown in FIG. Can be cooled well.

【0026】また、可動軸3の接合部分12は真空容器
1外側に配置できるため、真空容器1内における可動軸
3には一切接合部分を生じさせることがなく、この結
果、従来のような接合部分からの冷却用流体の漏れによ
る真空破壊のおそれが一切なくなり信頼性の高い真空バ
ルブが得られる。
Further, since the joining portion 12 of the movable shaft 3 can be disposed outside the vacuum vessel 1, no joining portion is formed on the movable shaft 3 in the vacuum vessel 1, and as a result, the joining as in the prior art is achieved. There is no risk of vacuum breakage due to leakage of the cooling fluid from the part, and a highly reliable vacuum valve can be obtained.

【0027】第2実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図2また
は図3に示す構成の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the second embodiment.
The movable shaft 3 having the structure shown in FIG. 2 or FIG. 3 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0028】この図2または図3に示す可動軸3は、図
1に示した第1実施形態に係る可動軸3の変形例で、図
2に示す可動軸3においては、流入側水路8aaと流出
側水路8baとの交差部8cの近傍の流路を、段付形状
に形成している。また、図3に示す可動軸3において
は、交差部8cの近傍の流路をテーパー形状に形成して
いる。
The movable shaft 3 shown in FIG. 2 or FIG. 3 is a modified example of the movable shaft 3 according to the first embodiment shown in FIG. 1. In the movable shaft 3 shown in FIG. The flow passage near the intersection 8c with the outflow-side water passage 8ba is formed in a stepped shape. Further, in the movable shaft 3 shown in FIG. 3, the flow path near the intersection 8c is formed in a tapered shape.

【0029】それにより、流路8のうちの、冷却すべき
接点2に最も近い交差部8c近傍の流路の断面積が交差
部8cに近いほど小さくなり、流路8内を流れる冷却用
流体の流速が接点2に近い交差部8cにおいて増大し、
接点2及びそれに接触する固定軸5側の接点4の冷却能
力が向上する。
As a result, the cross-sectional area of the flow path 8 near the intersection 8c closest to the contact point 2 to be cooled becomes smaller as it approaches the intersection 8c, and the cooling fluid flowing through the flow path 8 becomes smaller. Increases at the intersection 8c near the contact point 2,
The cooling capacity of the contact 2 and the contact 4 on the fixed shaft 5 side that comes into contact therewith is improved.

【0030】第3実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図4、及
び、図4におけるV−V線断面図である図5に示す構成
の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the third embodiment.
4 and a movable shaft 3 having a structure shown in FIG. 5 which is a cross-sectional view taken along line VV in FIG. 4 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0031】図4及び図5において、可動軸3は、先端
軸3aと、その先端軸3aの底部にロウ付け等による接
合部分12により固着された底軸3bとにより構成され
ている。先端軸3aには、真空容器1内側の先端に接点
2が固着されていて、底軸3bと接合される前に真空容
器1外側の底部から真空容器1内側の先端部近傍まで掘
削等により形成した縦穴の内壁にロウ付けなどにより仕
切板13を固着することで、先端部近傍の連通部8dで
連通する流入側水路8aa及び流出側水路8baを形成
している。一方、底軸3bには、先端軸3aの流入側水
路8aa及び流出側水路8baにそれぞれ連通する流入
路8ab及び流出路8bbが、接合前に掘削形成され
る。そして、それらの流入路8ab及び流出路8bb
は、側面に固着された流入口10及び流出口を通じて図
示しない冷却用流体循環系統にそれぞれ接続される。
In FIGS. 4 and 5, the movable shaft 3 is composed of a tip shaft 3a and a bottom shaft 3b fixed to the bottom of the tip shaft 3a by a joining portion 12 by brazing or the like. A contact 2 is fixed to the distal end shaft 3a at the distal end inside the vacuum vessel 1, and formed by excavation from the bottom outside the vacuum vessel 1 to the vicinity of the distal end inside the vacuum vessel 1 before being joined to the bottom shaft 3b. The partition plate 13 is fixed to the inner wall of the vertical hole by brazing or the like, thereby forming an inflow-side water passage 8aa and an outflow-side water passage 8ba that communicate with each other at a communication portion 8d near the distal end. On the other hand, an inflow channel 8ab and an outflow channel 8bb communicating with the inflow-side water channel 8aa and the outflow-side water channel 8ba of the tip shaft 3a are formed in the bottom shaft 3b by excavation before joining. And the inflow channel 8ab and the outflow channel 8bb
Are respectively connected to a cooling fluid circulation system (not shown) through an inflow port 10 and an outflow port fixed to the side surface.

【0032】このように、可動軸3において、流入路8
ab、流入側流路8aa、連通部8d、流出側流路8b
a、及び、流出路8bbからなる流路8を形成させるこ
とにより、図16に示した従来の流路8と同様に接点2
近傍を効率よく冷却することができる。
As described above, in the movable shaft 3, the inflow path 8
ab, inflow side flow path 8aa, communication portion 8d, outflow side flow path 8b
a and the flow path 8 composed of the outflow path 8bb, the contact 2 is formed in the same manner as the conventional flow path 8 shown in FIG.
The vicinity can be efficiently cooled.

【0033】また、真空容器1内における可動軸3には
一切接合部分を生じさせることがなく、この結果、従来
のような接合部分からの冷却用流体の漏れによる真空破
壊のおそれが一切なくなり信頼性の高い真空バルブが得
られる。
Further, no joint is formed on the movable shaft 3 in the vacuum vessel 1, and as a result, there is no risk of vacuum breakage due to leakage of the cooling fluid from the joint as in the prior art, and reliability is reduced. A highly efficient vacuum valve can be obtained.

【0034】第4実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図6また
は図7に示す構成の可動軸3を適用したものである。
The vacuum valve according to the fourth embodiment is shown in FIG.
The movable shaft 3 having the structure shown in FIG. 6 or 7 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0035】この図6または図7に示す可動軸3は、図
4及び図5に示した第3実施形態に係る可動軸3の変形
例で、図6に示す可動軸3においては、仕切板13先端
の連通部8d近傍を段付形状に形成している。また、図
7に示す可動軸3においては、仕切板13先端の連通部
8d近傍をテーパー形状に形成している。
The movable shaft 3 shown in FIG. 6 or FIG. 7 is a modification of the movable shaft 3 according to the third embodiment shown in FIGS. 4 and 5, and the movable shaft 3 shown in FIG. The vicinity of the communicating portion 8d at the tip of the thirteen is formed in a stepped shape. In the movable shaft 3 shown in FIG. 7, the vicinity of the communicating portion 8d at the tip of the partition plate 13 is formed in a tapered shape.

【0036】それにより、流路8のうちの、冷却すべき
接点2に最も近い連通部8d近傍の流路の断面積が連通
部8dに近いほど小さくなり、流路8内を流れる冷却用
流体の流速が接点2に近い連通部8cにおいて増大し、
接点2及びそれに接触する固定軸5側の接点4の冷却能
力が向上する。
As a result, the cross-sectional area of the flow passage 8 near the communication portion 8 d closest to the contact 2 to be cooled becomes smaller as it is closer to the communication portion 8 d, and the cooling fluid flowing through the flow passage 8 becomes smaller. Increases at the communication portion 8c close to the contact 2,
The cooling capacity of the contact 2 and the contact 4 on the fixed shaft 5 side that comes into contact therewith is improved.

【0037】第5実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図8に示
す構成の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the fifth embodiment.
The movable shaft 3 having the structure shown in FIG. 8 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0038】図8において、可動軸3は、先端軸3a
と、その先端軸3aの底部にロウ付け等による接合部分
12により固着された底軸3bとにより構成されてい
る。先端軸3aには、真空容器1内側の先端に接点2が
固着されていて、底軸3bと接合される前に真空容器1
外側の底部から真空容器1内側の先端部近傍まで縦穴を
掘削等により形成すると共に、その縦穴の下部と連通す
る流出路8bbを形成し、その流出路8bbは、先端軸
3aの下部側面に固着された流出口11に通じている。
In FIG. 8, the movable shaft 3 has a tip shaft 3a.
And a bottom shaft 3b fixed to the bottom of the tip shaft 3a by a joining portion 12 by brazing or the like. The contact 2 is fixed to the distal end shaft 3a at the distal end inside the vacuum vessel 1, and the vacuum vessel 1 is joined before being joined to the bottom shaft 3b.
A vertical hole is formed by excavation or the like from the outer bottom to the vicinity of the front end inside the vacuum vessel 1, and an outflow passage 8bb communicating with a lower portion of the vertical hole is formed. The outflow passage 8bb is fixed to a lower side surface of the tip shaft 3a. The outlet 11 communicates with the outlet.

【0039】一方、底軸3bには、接合前に先端軸3a
に形成された縦穴よりも細くやや短く当該縦穴に同軸的
に内挿される位置に固着することで内筒14が形成され
ると共に、その内筒14と連通する流入路8abが掘削
形成されて、その流入路8abは、側面に固着された流
入口10に通じている。そして、流入口10及び流出口
11は、図示しない冷却用流体循環系統にそれぞれ接続
される。なお、内筒14は、底軸3bと一体に形成した
柱状突起を掘削加工して形成するようにしてもよい。
On the other hand, the tip shaft 3a is attached to the bottom shaft 3b before joining.
The inner cylinder 14 is formed by being fixed to a position coaxially inserted into the vertical hole, which is slightly shorter than the vertical hole formed in the inner cylinder 14, and the inflow passage 8ab communicating with the inner cylinder 14 is formed by excavation. The inflow path 8ab communicates with the inflow port 10 fixed to the side surface. The inlet 10 and the outlet 11 are connected to a cooling fluid circulation system (not shown). Note that the inner cylinder 14 may be formed by excavating a columnar projection formed integrally with the bottom shaft 3b.

【0040】このように、可動軸3に、流入路8ab、
内筒14の内部に形成される流入側流路8aa、連通部
8d、先端部3aに形成された縦穴の内側面と内筒14
の外側面との間に形成される流出側流路8ba、及び、
流出路8bbからなる流路8を形成させることにより、
図16に示した従来の流路8と同様に接点2近傍を効率
良く冷却することができる。
As described above, the inflow passage 8ab,
The inflow side flow path 8aa, the communicating portion 8d, and the inner side surface of the vertical hole formed in the distal end portion 3a and the inner cylinder 14 are formed inside the inner cylinder 14.
Outflow side channel 8ba formed between the outer surface of
By forming the flow path 8 composed of the outflow path 8bb,
Similar to the conventional flow path 8 shown in FIG. 16, the vicinity of the contact 2 can be efficiently cooled.

【0041】また、真空容器1内における可動軸3には
一切接合部分を生じさせることがなく、この結果、従来
のような接合部分からの冷却用流体の漏れによる真空破
壊のおそれが一切なくなり信頼性の高い真空バルブが得
られる。また、冷却用流体は、内筒14の内側を通って
接点近傍に達し、内筒14の外側を通って排出されるた
め、冷却用流体があまり温度上昇することなく接点2近
傍に達し、効率良く熱を奪うことができる。
Further, no joint is formed on the movable shaft 3 in the vacuum vessel 1, and as a result, there is no danger of vacuum breakage due to leakage of the cooling fluid from the joint as in the prior art, and reliability is reduced. A highly efficient vacuum valve can be obtained. Further, the cooling fluid reaches the vicinity of the contact through the inside of the inner cylinder 14 and is discharged through the outside of the inner cylinder 14, so that the cooling fluid reaches the vicinity of the contact 2 without a significant rise in temperature, and the efficiency is improved. Can take heat well.

【0042】第6実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図9また
は図10に示す構成の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the sixth embodiment.
The movable shaft 3 having the structure shown in FIG. 9 or 10 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0043】この、図9または図10に示す可動軸3
は、図8に示した第5実施形態に係る可動軸3の変形例
で、図9に示す可動軸3においては、内筒14先端の連
通部8d近傍を段付形状に形成している。また、図10
に示す可動軸3においては、内筒14先端の連通部8d
近傍をテーパー形状に形成している。
The movable shaft 3 shown in FIG. 9 or FIG.
Is a modification of the movable shaft 3 according to the fifth embodiment shown in FIG. 8, and in the movable shaft 3 shown in FIG. 9, the vicinity of the communication portion 8d at the tip of the inner cylinder 14 is formed in a stepped shape. FIG.
In the movable shaft 3 shown in FIG.
The vicinity is formed in a tapered shape.

【0044】それにより、内筒14の先端部が先端に近
いほど厚みが増す形状となり、その結果、流路8のうち
の、冷却すべき接点2に最も近い連通部8d近傍の流路
の断面積が連通部8dに近いほど小さくなり、流路8内
を流れる冷却用流体の流速が接点2に近い連通部8cに
おいて増大し、接点2及びそれに接触する固定軸5側の
接点4の冷却能力が向上する。
As a result, the shape of the inner cylinder 14 becomes thicker as the distal end portion is closer to the distal end. As a result, of the flow channel 8, the flow channel near the communication portion 8d closest to the contact 2 to be cooled is cut off. The area becomes smaller as the area is closer to the communication section 8d, and the flow rate of the cooling fluid flowing in the flow path 8 increases in the communication section 8c closer to the contact 2, and the cooling capacity of the contact 2 and the contact 4 on the fixed shaft 5 side that comes into contact therewith. Is improved.

【0045】第7実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図11に
示す構成の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the seventh embodiment.
The movable shaft 3 having the structure shown in FIG. 11 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0046】この図11に示す可動軸3は、図8に示し
た第5実施形態に係る可動軸3の変形例で、図11に示
す可動軸3においては、内筒14の外側面に軸方向に間
隔をおいて環状部材を固着することで、環状突起15を
形成している。なお、環状突起15は、内筒14と一体
的に形成するようにしてもよい。
The movable shaft 3 shown in FIG. 11 is a modified example of the movable shaft 3 according to the fifth embodiment shown in FIG. 8, and the movable shaft 3 shown in FIG. The annular protrusion 15 is formed by fixing the annular member at intervals in the direction. The annular projection 15 may be formed integrally with the inner cylinder 14.

【0047】それにより、内筒14の外側の流出側流路
8baを流れる冷却用流体の流れに乱れが生じて縦穴内
壁の熱伝達面の境界層に剥離が生じて熱伝達量が増大し
冷却能力が向上する。
As a result, the flow of the cooling fluid flowing through the outflow side flow path 8ba outside the inner cylinder 14 is disturbed, and the boundary layer of the heat transfer surface of the inner wall of the vertical hole is separated, so that the amount of heat transfer is increased and the cooling is performed. Ability is improved.

【0048】第8実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図12に
示す構成の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the eighth embodiment.
The movable shaft 3 having the structure shown in FIG. 12 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0049】この図12に示す可動軸3は、図8に示し
た第5実施形態に係る可動軸3の変形例で、図12に示
す可動軸3においては、内筒14の外側面に螺旋状部材
を固着することで、螺旋状突起16を形成している。な
お、螺旋状突起16は、内筒14と一体的に形成するよ
うにしてもよい。
The movable shaft 3 shown in FIG. 12 is a modified example of the movable shaft 3 according to the fifth embodiment shown in FIG. 8, and the movable shaft 3 shown in FIG. The helical projection 16 is formed by fixing the shape member. Note that the spiral projection 16 may be formed integrally with the inner cylinder 14.

【0050】それにより、冷却用流体が前記内筒14の
外側の流出側流路8baを螺旋状に流れるため、前記縦
穴内壁に接する流路が実質的に長くなり、熱伝達量が増
大して冷却能力がいっそう向上する。
As a result, the cooling fluid spirally flows through the outflow-side flow path 8ba outside the inner cylinder 14, so that the flow path in contact with the inner wall of the vertical hole becomes substantially longer, and the heat transfer amount increases. The cooling capacity is further improved.

【0051】第9実施形態に係る真空バルブは、図14
に示した構成の真空バルブの可動軸3として、図13に
示す構成の可動軸3を適用したものである。
FIG. 14 shows a vacuum valve according to the ninth embodiment.
The movable shaft 3 having the structure shown in FIG. 13 is applied as the movable shaft 3 of the vacuum valve having the structure shown in FIG.

【0052】この、図13に示す可動軸3は、図8に示
した第5実施形態に係る可動軸3の変形例で、図13に
示す可動軸3においては、縦穴の内側面に螺旋状部材を
固着することで、螺旋状突起17を形成している。
The movable shaft 3 shown in FIG. 13 is a modification of the movable shaft 3 according to the fifth embodiment shown in FIG. 8, and the movable shaft 3 shown in FIG. The spiral projection 17 is formed by fixing the member.

【0053】それにより、冷却用流体が前記内筒14の
外側の流出側流路8baを螺旋状に流れるため、縦穴内
壁に接する流路が実質的に長くなるばかりでなく、螺旋
状突起17が放熱フィンとして作用して縦穴内壁と冷却
用流体との接触面積を増大し、熱伝達量が増大して冷却
能力がいっそう向上する。
As a result, the cooling fluid spirally flows through the outflow-side flow path 8ba outside the inner cylinder 14, so that not only the flow path in contact with the inner wall of the vertical hole becomes substantially long, but also the spiral projection 17 is formed. It acts as a radiating fin to increase the contact area between the inner wall of the vertical hole and the cooling fluid, thereby increasing the amount of heat transfer and further improving the cooling capacity.

【0054】以上説明したように、本実施の形態によれ
ば、接点冷却用の流路8のうちの少なくとも真空容器1
内の部分については、真空容器1内の真空と流路8との
間の接合部分をなくして、真空バルブの信頼性を高める
ことが可能となる。また、真空容器1内の真空と流路8
との間に接合部分を設けることなく流路8の形状を種々
工夫することで、真空バルブの信頼性を維持しつつ接点
部分の冷却効率をいっそう高めることができる。
As described above, according to the present embodiment, at least the vacuum vessel 1 in the flow path 8 for cooling the contact is provided.
As for the portion inside, the joining portion between the vacuum in the vacuum vessel 1 and the flow path 8 is eliminated, so that the reliability of the vacuum valve can be improved. In addition, the vacuum in the vacuum vessel 1 and the flow path 8
By devising various shapes of the flow path 8 without providing a joining portion between them, the cooling efficiency of the contact portion can be further improved while maintaining the reliability of the vacuum valve.

【0055】なお、以上説明した実施の形態において
は、流路8を、可動軸3側に形成する場合を例にとって
説明したが、固定軸5側に形成するようにしてもよく、
また、可動軸及び固定軸5の双方に形成するようにして
もよいのはいうまでもない。
In the above-described embodiment, the case where the flow path 8 is formed on the movable shaft 3 side is described as an example. However, the flow path 8 may be formed on the fixed shaft 5 side.
Needless to say, it may be formed on both the movable shaft and the fixed shaft 5.

【0056】[0056]

【発明の効果】請求項1に係る発明によれば、接点冷却
用の流路と真空容器内の真空との間のロウ付け等による
固着接合部分をなくすことができるため、接点の温度上
昇を抑えて大電流通電が可能になると共に、流路内の冷
却用流体が真空容器内に漏れ出してしまうことがなく遮
断性能を長期間維持できる信頼性が高い真空バルブを得
ることが可能となる効果が得られる。
According to the first aspect of the present invention, it is possible to eliminate the bonding portion between the flow path for cooling the contact and the vacuum in the vacuum vessel by brazing or the like. It is possible to supply a large amount of current while suppressing the leakage of the cooling fluid in the flow path, and to obtain a highly reliable vacuum valve capable of maintaining the shut-off performance for a long time without leaking into the vacuum vessel. The effect is obtained.

【0057】請求項2に係る発明によれば、流路内を流
れる冷却用流体の流速が、接点に近い折り返し部におい
て増大するため熱伝達量が増大し発熱量が大きくて温度
上昇が高い接点をいっそう効率よく冷却することが可能
となる効果が得られる。
According to the second aspect of the present invention, the flow rate of the cooling fluid flowing in the flow path increases in the folded portion close to the contact, so that the heat transfer increases, the heat generation increases, and the temperature rise increases. Can be more efficiently cooled.

【0058】請求項3に係る発明によれば、接点冷却用
の流路と真空容器内の真空との間のロウ付け等による固
着接合部分をなくすことができるため、接点の温度上昇
を抑えて大電流通電が可能になると共に、流路内の冷却
用流体が真空容器内に漏れ出してしまうことがなく遮断
性能を長期間維持できる信頼性が高い真空バルブを得る
ことが可能となる効果が得られる。
According to the third aspect of the present invention, it is possible to eliminate a bonding portion between the flow path for cooling the contact and the vacuum in the vacuum vessel by brazing or the like, thereby suppressing a rise in the temperature of the contact. A large current can be supplied, and a highly reliable vacuum valve capable of maintaining the shut-off performance for a long time without leaking the cooling fluid in the flow path into the vacuum vessel can be obtained. can get.

【0059】請求項4に係る発明によれば、流路内を流
れる冷却用流体の流速が、接点に近い前記連通部におい
て増大するため熱伝達量が増大し発熱量が大きくて温度
上昇が高い接点をいっそう効率よく冷却るすことが可能
となる効果が得られる。
According to the fourth aspect of the invention, the flow rate of the cooling fluid flowing in the flow passage increases in the communication portion near the contact point, so that the heat transfer amount increases, the heat generation amount increases, and the temperature rise increases. The effect that the contact can be cooled more efficiently can be obtained.

【0060】請求項5に係る発明によれば、接点冷却用
の流路と真空容器内の真空との間のロウ付け等による固
着接合部分をなくすことができるため、接点の温度上昇
を抑えて大電流通電が可能になると共に、流路内の冷却
用流体が真空容器内に漏れ出してしまうことがなく遮断
性能を長期間維持できる信頼性が高い真空バルブを得る
ことが可能となる効果が得られる。また、冷却用流体
は、内筒の内側を通ってあまり温度上昇することなく接
点近傍に達するため、その接点近傍の熱を効率よく奪う
ことができ冷却効率が向上する効果が得られる。
According to the fifth aspect of the present invention, it is possible to eliminate a bonding portion by brazing between the flow path for cooling the contact and the vacuum in the vacuum vessel, thereby suppressing a rise in the temperature of the contact. A large current can be supplied, and a highly reliable vacuum valve capable of maintaining the shut-off performance for a long time without leaking the cooling fluid in the flow path into the vacuum vessel can be obtained. can get. Further, since the cooling fluid reaches the vicinity of the contact point without passing through the inside of the inner cylinder without increasing the temperature, heat near the contact point can be efficiently removed and the cooling efficiency can be improved.

【0061】請求項6に係る発明によれば、流路内を流
れる冷却用流体の流速が、接点に近い前記連通部におい
て増大するため熱伝達量が増大し発熱量が大きくて温度
上昇が高い接点をいっそう効率よく冷却るすことが可能
となる効果が得られる。
According to the sixth aspect of the invention, the flow rate of the cooling fluid flowing in the flow passage increases in the communication portion near the contact point, so that the amount of heat transfer increases, the calorific value increases, and the temperature rise increases. The effect that the contact can be cooled more efficiently can be obtained.

【0062】請求項7に係る発明によれば、前記内筒の
外側の流路を流れる冷却用流体の流れに乱れが生じるた
め、前記縦穴の内壁の熱伝達面の境界層に剥離が生じ面
と冷却用流体との間の可動軸の熱伝達面の境界層の剥離
が生じ、熱伝達量が増大して冷却能力がいっそう向上す
る効果が得られる。
According to the seventh aspect of the present invention, since the flow of the cooling fluid flowing through the flow path outside the inner cylinder is disturbed, separation occurs on the boundary layer of the heat transfer surface of the inner wall of the vertical hole. Separation of the boundary layer of the heat transfer surface of the movable shaft between the fluid and the cooling fluid occurs, and the effect of increasing the heat transfer amount and further improving the cooling capacity is obtained.

【0063】請求項8に係る発明によれば、冷却用流体
が前記内筒の外側を螺旋状に流れるため、前記縦穴内壁
に接する流路が実質的に長くなり、熱伝達量が増大して
冷却能力がいっそう向上する効果が得られる。
According to the eighth aspect of the present invention, since the cooling fluid spirally flows outside the inner cylinder, the flow path in contact with the inner wall of the vertical hole becomes substantially long, and the heat transfer amount increases. The effect of further improving the cooling capacity is obtained.

【0064】請求項9に係る発明によれば、冷却用流体
が前記内筒の外側を螺旋状に流れるため、前記縦穴内壁
に接する流路が実質的に長くなるばかりでなく、前記螺
旋状突起が放熱フィンとして作用して前記縦穴内壁と冷
却用流体との接触面積を増大させるため、熱伝達量が増
大して冷却能力がさらにいっそう向上する効果が得られ
る。
According to the ninth aspect of the present invention, since the cooling fluid spirally flows outside the inner cylinder, not only the flow path in contact with the inner wall of the vertical hole becomes substantially longer, but also the spiral projection is formed. Acts as a radiating fin to increase the contact area between the inner wall of the vertical hole and the cooling fluid, so that the heat transfer amount is increased and the cooling capacity is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る真空バルブに適用
される可動軸の側断面図である。
FIG. 1 is a side sectional view of a movable shaft applied to a vacuum valve according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る真空バルブに適用
される可動軸の一例を示す側断面図である。
FIG. 2 is a side sectional view showing an example of a movable shaft applied to a vacuum valve according to a second embodiment of the present invention.

【図3】本発明の第2実施形態に係る真空バルブに適用
される可動軸の別例を示す側断面図である。
FIG. 3 is a side sectional view showing another example of a movable shaft applied to a vacuum valve according to a second embodiment of the present invention.

【図4】本発明の第3実施形態に係る真空バルブに適用
される可動軸の側断面図である。
FIG. 4 is a side sectional view of a movable shaft applied to a vacuum valve according to a third embodiment of the present invention.

【図5】図4におけるV−V線断面図である。FIG. 5 is a sectional view taken along line VV in FIG.

【図6】本発明の第4実施形態に係る真空バルブに適用
される可動軸の一例を示す側断面図である。
FIG. 6 is a side sectional view showing an example of a movable shaft applied to a vacuum valve according to a fourth embodiment of the present invention.

【図7】本発明の第4実施形態に係る真空バルブに適用
される可動軸の別例を示す側断面図である。
FIG. 7 is a side sectional view showing another example of a movable shaft applied to a vacuum valve according to a fourth embodiment of the present invention.

【図8】本発明の第5実施形態に係る真空バルブに適用
される可動軸の側断面図である。
FIG. 8 is a side sectional view of a movable shaft applied to a vacuum valve according to a fifth embodiment of the present invention.

【図9】本発明の第6実施形態に係る真空バルブに適用
される可動軸の一例を示す側断面図である。
FIG. 9 is a side sectional view showing an example of a movable shaft applied to a vacuum valve according to a sixth embodiment of the present invention.

【図10】本発明の第6実施形態に係る真空バルブに適
用される可動軸の別例を示す側断面図である。
FIG. 10 is a side sectional view showing another example of the movable shaft applied to the vacuum valve according to the sixth embodiment of the present invention.

【図11】本発明の第7実施形態に係る真空バルブに適
用される可動軸の側断面図である。
FIG. 11 is a side sectional view of a movable shaft applied to a vacuum valve according to a seventh embodiment of the present invention.

【図12】本発明の第8実施形態に係る真空バルブに適
用される可動軸の側断面図である。
FIG. 12 is a side sectional view of a movable shaft applied to a vacuum valve according to an eighth embodiment of the present invention.

【図13】本発明の第9実施形態に係る真空バルブに適
用される可動軸の側断面図である。
FIG. 13 is a side sectional view of a movable shaft applied to a vacuum valve according to a ninth embodiment of the present invention.

【図14】真空バルブの構成例を示す図である。FIG. 14 is a diagram illustrating a configuration example of a vacuum valve.

【図15】接点冷却用の流路を形成した従来の可動軸の
側面図である。
FIG. 15 is a side view of a conventional movable shaft in which a flow path for contact cooling is formed.

【図16】図15におけるXVI−XVI断面図である。16 is a sectional view taken along the line XVI-XVI in FIG.

【符号の説明】 1 真空容器 2 接点 3 可動軸 3a 先端軸 3b 底軸 4 接点 5 固定軸 8 流路 8aa 流入側流路 8ab 流入路 8ba 流出側流路 8bb 流出路 8c 交差部 8d 連通部 10 流入口 11 流出口 12 接合部分 13 仕切板 14 内筒 15 環状突起 16 螺旋状突起 17 螺旋状突起DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Contact 3 Movable shaft 3a Tip shaft 3b Bottom shaft 4 Contact 5 Fixed shaft 8 Flow path 8aa Inflow side flow path 8ab Inflow path 8ba Outflow side flow path 8bb Outflow path 8c Intersection 8d Communication part 10 Inflow port 11 Outflow port 12 Joining portion 13 Partition plate 14 Inner cylinder 15 Annular projection 16 Spiral projection 17 Spiral projection

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 友史 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所那珂研究所内 (72)発明者 寺門 恒久 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所那珂研究所内 (72)発明者 久保田 敏春 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 渡辺 憲治 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 池亀 博夫 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 川島 秀一 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshifumi Miura 801 Mukaiyama, Naka-cho, Naka-machi, Naka-gun, Ibaraki Pref. No. 1 Naka Research Institute of Japan Atomic Energy Research Institute (72) Inventor Toshiharu Kubota 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Fuchu Plant (72) Inventor Kenji Watanabe 1-1-1, Shibaura, Minato-ku, Tokyo Shares (72) Inventor Hiroo Ikegame 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu Plant, Toshiba Corporation (72) Inventor Shuichi Kawashima 1-1-1, Shibaura, Minato-ku, Tokyo Toshiba Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 固定軸先端部に設けられた接点と可動軸
先端部に設けられた接点とが当該可動軸の移動に応じて
真空容器内で離間または接触することにより電気回路を
開閉する真空バルブにおいて、 前記固定軸または可動軸の少なくとも一方の軸は、前記
真空容器の内側に先端部、外側に底部が配設される先端
軸と、前記真空容器の外側で前記先端軸の底部に接合す
る底軸とから形成されると共に、前記先端軸には、その
底部に開口する入口から先端部に向い折り返して再び底
部に開口する出口に戻る流路が形成される一方、前記底
軸には、前記先端軸の底部に開口する出入口に接合する
冷却用流体流入出路が形成されていることを特徴とする
真空バルブ。
1. A vacuum for opening and closing an electric circuit by separating or contacting a contact provided at a tip of a fixed shaft and a contact provided at a tip of a movable shaft in a vacuum container in accordance with the movement of the movable shaft. In the valve, at least one of the fixed shaft and the movable shaft is joined to a tip shaft provided with a tip portion inside the vacuum vessel and a bottom portion outside the vacuum vessel, and to a bottom portion of the tip shaft outside the vacuum vessel. And a flow path is formed in the distal end shaft from the inlet opening at the bottom portion to the end portion and turned back to the outlet opening at the bottom portion again, while the bottom shaft has A cooling fluid inflow / outflow passage formed at an inlet / outlet opening at the bottom of the tip shaft.
【請求項2】 前記先端軸に形成された流路の折り返し
部近傍を、流路の断面積が当該折り返し部に近いほど小
さくなる形状に形成したことを特徴とする請求項1に記
載の真空バルブ。
2. The vacuum according to claim 1, wherein the vicinity of the folded portion of the flow path formed on the distal end shaft is formed in a shape that becomes smaller as the cross-sectional area of the flow path is closer to the folded portion. valve.
【請求項3】 固定軸先端部に設けられた接点と可動軸
先端部に設けられた接点とが当該可動軸の移動に応じて
真空容器内で離間または接触することにより電気回路を
開閉する真空バルブにおいて、 前記固定軸または可動軸の少なくとも一方の軸は、前記
真空容器の内側に先端部、外側に底部が配設される先端
軸と、前記真空容器の外側で前記先端軸の底部に接合す
る底軸とから形成されると共に、前記先端軸には、その
底部から先端部近傍まで形成した縦穴の内壁に仕切板を
接合することで、底部に開口する入口から先端部に向い
連通部を介して折り返して再び底部に開口する出口に戻
る流路が形成される一方、前記底軸には、前記先端軸の
底部に開口する出入口に接合する冷却用流体流入出路が
形成されていることを特徴とする真空バルブ。
3. A vacuum for opening and closing an electric circuit by separating or contacting a contact provided at a tip of a fixed shaft and a contact provided at a tip of a movable shaft in a vacuum vessel in accordance with the movement of the movable shaft. In the valve, at least one of the fixed shaft and the movable shaft is joined to a tip shaft provided with a tip portion inside the vacuum vessel and a bottom portion outside the vacuum vessel, and to a bottom portion of the tip shaft outside the vacuum vessel. Along with the bottom shaft, the front end shaft is connected to a partition plate on an inner wall of a vertical hole formed from the bottom portion to the vicinity of the front end portion, thereby forming a communicating portion from the inlet opening at the bottom portion to the front end portion. A flow path that returns to an outlet that opens back to the bottom is formed by folding back, while a cooling fluid inflow / outflow path that is joined to an inlet and outlet that opens to the bottom of the tip shaft is formed in the bottom shaft. Characteristic vacuum valve .
【請求項4】 前記縦穴に固着される仕切板の前記連通
部近傍を、当該連通部に近いほど厚みが増す形状に形成
したことを特徴とする請求項3に記載の真空バルブ。
4. The vacuum valve according to claim 3, wherein a portion of the partition plate fixed to the vertical hole in the vicinity of the communication portion has a shape that increases in thickness as the portion is closer to the communication portion.
【請求項5】 固定軸先端部に設けられた接点と可動軸
先端部に設けられた接点とが当該可動軸の移動に応じて
真空容器内で離間または接触することにより電気回路を
開閉する真空バルブにおいて、 前記固定軸または可動軸の少なくとも一方の軸は、前記
真空容器の内側に先端部、外側に底部が配設される先端
軸と、前記真空容器の外側で前記先端軸の底部に接合す
る底軸とから形成されると共に、前記先端軸には、その
底部から先端部近傍まで形成した縦穴とその縦穴の下部
と接合する冷却用流体流出路が形成される一方、前記底
軸には、前記先端軸に形成された縦穴よりも細くやや短
く当該縦穴に同軸的に内挿される内筒が形成されると共
に、その内筒と接合する冷却用流体流入路が形成されて
いることを特徴とする真空バルブ。
5. A vacuum for opening and closing an electric circuit by separating or contacting a contact provided at a tip of a fixed shaft and a contact provided at a tip of a movable shaft in a vacuum container in accordance with the movement of the movable shaft. In the valve, at least one of the fixed shaft and the movable shaft is joined to a tip shaft provided with a tip portion inside the vacuum vessel and a bottom portion outside the vacuum vessel, and to a bottom portion of the tip shaft outside the vacuum vessel. A bottom hole formed from the bottom to the vicinity of the tip and a cooling fluid outflow passage joined to a lower portion of the bottom hole are formed in the tip shaft. An inner cylinder that is coaxially inserted into the vertical hole is formed to be thinner and slightly shorter than a vertical hole formed in the distal end shaft, and a cooling fluid inflow passage that is joined to the inner cylinder is formed. And vacuum valve.
【請求項6】 前記底軸に形成される内筒の先端部を、
先端に近いほど厚みが増す形状に形成したことを特徴と
する請求項5に記載の真空バルブ。
6. A tip of an inner cylinder formed on the bottom shaft,
The vacuum valve according to claim 5, wherein the shape is such that the thickness increases as the distance from the tip increases.
【請求項7】 前記内筒の外側面に、軸方向に間隔をお
いて環状突起を形成したことを特徴とする請求項5に記
載の真空バルブ。
7. The vacuum valve according to claim 5, wherein annular projections are formed on the outer surface of the inner cylinder at intervals in the axial direction.
【請求項8】 前記内筒の外側面に、螺旋状突起を形成
したことを特徴とする請求項5に記載の真空バルブ。
8. The vacuum valve according to claim 5, wherein a spiral projection is formed on an outer surface of the inner cylinder.
【請求項9】 前記縦穴の内側面に、螺旋状突起を固着
したことを特徴とする請求項5に記載の真空バルブ。
9. The vacuum valve according to claim 5, wherein a spiral projection is fixed to an inner surface of the vertical hole.
JP2000321621A 2000-10-20 2000-10-20 Vacuum valve Pending JP2002133984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000321621A JP2002133984A (en) 2000-10-20 2000-10-20 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321621A JP2002133984A (en) 2000-10-20 2000-10-20 Vacuum valve

Publications (1)

Publication Number Publication Date
JP2002133984A true JP2002133984A (en) 2002-05-10

Family

ID=18799710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321621A Pending JP2002133984A (en) 2000-10-20 2000-10-20 Vacuum valve

Country Status (1)

Country Link
JP (1) JP2002133984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140732A (en) * 2006-12-05 2008-06-19 Osaka Titanium Technologies Co Ltd High current circuit breaker
WO2015086067A1 (en) * 2013-12-11 2015-06-18 Abb Technology Ag Vacuum circuit breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140732A (en) * 2006-12-05 2008-06-19 Osaka Titanium Technologies Co Ltd High current circuit breaker
WO2015086067A1 (en) * 2013-12-11 2015-06-18 Abb Technology Ag Vacuum circuit breaker

Similar Documents

Publication Publication Date Title
JP4651394B2 (en) Four-way valve
US7562444B2 (en) Method for manufacturing a CPU cooling assembly
AU716635B2 (en) Thermoelectric apparatus
JP2006194338A5 (en)
GB2540013A (en) A package for a semiconductor device
JP2008151449A (en) Four-way selector valve and air conditioner using the same
JP5343574B2 (en) Brazing method of heat sink
Miralles et al. A versatile technology for droplet-based microfluidics: thermomechanical actuation
KR100747265B1 (en) Cooling starting valve structure in fuel battery vehicle
JP2008300596A (en) Heat sink and semiconductor laser device
KR100382341B1 (en) Heat exchanger
JP4116458B2 (en) Flow path switching valve
CN103629850B (en) Liquid cooling head for air cooling and liquid cooling dual-purpose heat radiator
KR20110077486A (en) Thermoelectric power generation using exhaustion heat recovery for vehicle
JP2002133984A (en) Vacuum valve
JP3208823U (en) Cooling water radiator and its water cooling module
US20200049430A1 (en) Header Tank for Heat Exchanger
JP2009156507A (en) Fluid heating device
JP5436628B2 (en) Four-way valve
JPH1114273A (en) Spray cooling type heat eliminator and its manufacture
US11009296B2 (en) Heat exchange conduit and heat exchanger
JP2002134316A (en) Coil device and solenoid valve
JP6640598B2 (en) Temperature control panel
JP5171870B2 (en) Four-way valve
CN211578737U (en) Near-junction cooling device based on thin liquid film evaporation

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028