JP2002131249A - Field radiation type low-energy electron diffraction equipment - Google Patents

Field radiation type low-energy electron diffraction equipment

Info

Publication number
JP2002131249A
JP2002131249A JP2000328502A JP2000328502A JP2002131249A JP 2002131249 A JP2002131249 A JP 2002131249A JP 2000328502 A JP2000328502 A JP 2000328502A JP 2000328502 A JP2000328502 A JP 2000328502A JP 2002131249 A JP2002131249 A JP 2002131249A
Authority
JP
Japan
Prior art keywords
sample
probe
electrons
electron
field emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000328502A
Other languages
Japanese (ja)
Inventor
Kiyoyoshi Mizuno
清義 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu TLO Co Ltd
Original Assignee
Kyushu TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu TLO Co Ltd filed Critical Kyushu TLO Co Ltd
Priority to JP2000328502A priority Critical patent/JP2002131249A/en
Publication of JP2002131249A publication Critical patent/JP2002131249A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact and highly safe field radiation type low-energy electron diffraction equipment, which can irradiate electron beams to a minimum local region of a sample surface and can highly accurately detect atomic sequence information of several atomic layers of the region. SOLUTION: The field radiation type low-energy electron diffraction equipment has a sharpened probe for radiating field radiation electrons, a power source part for impressing to the prove, a voltage for field radiation to the sample, a probe controller for controlling the distance between the probe and the sample to flow a prescribed field radiation current, a retracting electrode for retracting scattering electrons generated from the sample, when the field radiation electrons enter, an inelastic scattering electron-removing part, where a prescribed stop potential for stopping inelastic scattering electrons passing the retracting electrode to pass is impressed, and a diffraction pattern-detecting part for generating a diffraction pattern due to elastic scattering electrons passing the inelastic scattering electron-removing part. By impressing the voltage between the probe and the sample, an electron beam irradiation area at the sample surface by the field radiation electrons is reduced, and at the same time, scattering electrons are scattered from the inside several atomic layers of the sample surface and are moreover emitted, to throw off an electric field formed between the probe and the sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料表面の局所領
域に電子線を照射し、その領域の弾性散乱電子による回
折パターンを検出することで、表面局所領域の原子配
列、構造情報を得ることができる電界放射型低速電子回
折装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention obtains atomic arrangement and structural information of a local surface area by irradiating a local area on a sample surface with an electron beam and detecting a diffraction pattern of the area by elastic scattered electrons. The present invention relates to a field emission type low-energy electron diffractometer capable of performing the following.

【0002】[0002]

【従来の技術】従来の低速電子回折装置は熱電子を利用
するものである。図6は従来の低速電子回折装置の概念
図である。50はフィラメント、51は試料、52は加
速電極、53はレンズ電極、54はスクリーンである。
図6に示すように、フィラメント50から放出された熱
電子を加速電極57の形成する電場により加速し、レン
ズ電極53により収束させて試料51表面に照射し、試
料51表面で散乱された電子のうち、非弾性散乱電子を
グリッドを用いて除去し、弾性散乱電子をスクリーン5
4によって検出していた。しかし、この電子線のエネル
ギーは500eV以下で、このような低速電子線をレン
ズ電極53によって細く収束させることは困難であり、
表面での電子線照射面積は1μm2程度が限界であっ
た。このため、1μm2以下の狭い領域にのみ形成され
た表面構造を調べることは出来なかった。
2. Description of the Related Art A conventional low-speed electron diffractometer utilizes thermoelectrons. FIG. 6 is a conceptual diagram of a conventional low-speed electron diffraction apparatus. 50 is a filament, 51 is a sample, 52 is an acceleration electrode, 53 is a lens electrode, and 54 is a screen.
As shown in FIG. 6, the thermoelectrons emitted from the filament 50 are accelerated by an electric field formed by the accelerating electrode 57, converged by the lens electrode 53, and radiated to the surface of the sample 51. Among them, the inelastic scattered electrons are removed using a grid, and the elastic scattered electrons are removed from the screen 5.
4 had been detected. However, the energy of this electron beam is 500 eV or less, and it is difficult to converge such a low-speed electron beam finely by the lens electrode 53.
The limit of the electron beam irradiation area on the surface was about 1 μm 2 . For this reason, it was not possible to examine the surface structure formed only in a narrow region of 1 μm 2 or less.

【0003】一方、先鋭化した探針からの電界放射電子
を試料の狭い領域へ照射し、表面の形態を調べる手法と
しては、(a)低速電子ホログラフィー法(英文雑誌Ph
ysical Review Letters 65巻1204ページ)と、(b)走
査2次電子検出法(英文雑誌PhysicaScripta 38巻260ペ
ージ)の2つが報告されている。図7は従来の低速電子
ホログラフィー法の概念図、図8は従来の走査2次電子
検出法の概念図である。
On the other hand, a method for irradiating a narrow area of a sample with field-emitted electrons from a sharpened probe to examine the surface morphology includes (a) low-speed electron holography (Ph.
ysical Review Letters, Vol. 65, p. 1204) and (b) Scanning secondary electron detection method (English magazine, PhysicaScripta, vol. 38, p. 260). FIG. 7 is a conceptual diagram of a conventional low-speed electron holography method, and FIG. 8 is a conceptual diagram of a conventional scanning secondary electron detection method.

【0004】図7において、55は探針、56は試料、
57は試料支持電極、58はスクリーンである。また図
8において、59は探針制御機構、60は探針、61は
試料、62はチャンネルトロン等の2次電子検出器であ
る。
In FIG. 7, 55 is a probe, 56 is a sample,
57 is a sample supporting electrode, and 58 is a screen. In FIG. 8, 59 is a probe control mechanism, 60 is a probe, 61 is a sample, and 62 is a secondary electron detector such as a channeltron.

【0005】まず、(a)低速電子ホログラフィー法は
図7に示すように、探針55から電界放射により試料支
持電極57によって支持された薄膜の試料56へ電子を
照射し、薄膜を透過した電子をスクリーン58に投影す
るものである。従って、この低速電子ホログラフィー法
は、試料56が薄膜でなければ適用できない。また、透
過電子の強度が強いため、回折パターンを得ることは困
難である。このため、表面の構造を原子レベルの精度で
調べることは、やはり、不可能である。
First, in (a) low-speed electron holography, as shown in FIG. 7, electrons are emitted from a probe 55 to a thin film sample 56 supported by a sample support electrode 57 by electric field emission, and the electrons transmitted through the thin film. Is projected on the screen 58. Therefore, this low-speed electron holography method cannot be applied unless the sample 56 is a thin film. Further, it is difficult to obtain a diffraction pattern because the intensity of transmitted electrons is high. For this reason, it is still impossible to investigate the surface structure with atomic precision.

【0006】また、(b)走査2次電子検出法は図8に
示すように、探針制御機構59で制御する探針60から
電界放射によって試料61へ電子を照射し、散乱電子の
総量を2次電子検出器62によって測定するものであ
る。探針60の走査と2次電子検出を同期させて画像化
することにより表面の形態情報を得る。しかし、2次電
子全体の量を検出しているので、電子線照射領域内の原
子配列に関する情報を得ることはできない。本検出法に
基づいた走査型顕微鏡を開示するものとして、特開平6
−295696号公報がある。
In the (b) scanning secondary electron detection method, as shown in FIG. 8, electrons are emitted from a probe 60 controlled by a probe control mechanism 59 to a sample 61 by electric field emission, and the total amount of scattered electrons is reduced. It is measured by the secondary electron detector 62. Surface morphological information is obtained by synchronizing and imaging the scanning of the probe 60 and the secondary electron detection. However, since the total amount of secondary electrons is detected, it is not possible to obtain information on the atomic arrangement in the electron beam irradiation region. The disclosure of a scanning microscope based on this detection method is disclosed in
No. 295696.

【0007】次に、探針による電界放射ではないが、反
射高速電子回折パターンを得るものとして、反射高速電
子回折法(RHEED)が特開平9−89815号公報
で開示されている。図9は従来の反射高速電子回折法の
概念図である。図9において、63は電子銃、64は試
料、65はスクリーンである。この反射高速電子回折は
結晶表面上に空間が取れるため、薄膜成長中のその場観
察に適しており、薄膜成長のモニターとしても一般に利
用されている。反射高速電子回折法は電子銃63によっ
て試料64表面にすれすれの角度(視射角0°〜6°程
度)で高速電子線(加速電圧約10kV以上)を照射
し、そこから反射回折して出てくる電子線群を蛍光スク
リーン65に映し出し、その反射高速電子回折パターン
の幾何学模様や強度を解析することにより、表面原子構
造に関する知見を得るものである。
Japanese Unexamined Patent Publication No. 9-89815 discloses a reflection high-speed electron diffraction method (RHEED) for obtaining a reflection high-speed electron diffraction pattern, not by electric field emission by a probe. FIG. 9 is a conceptual diagram of a conventional reflection high-speed electron diffraction method. In FIG. 9, 63 is an electron gun, 64 is a sample, and 65 is a screen. This reflection high-energy electron diffraction is suitable for in-situ observation during the growth of a thin film because a space is formed on the crystal surface, and is generally used as a monitor for the growth of the thin film. In the reflection high-energy electron diffraction method, a high-speed electron beam (acceleration voltage of about 10 kV or more) is irradiated on the surface of the sample 64 by the electron gun 63 at a glancing angle (approximately 0 ° to 6 °), and then reflected and diffracted. The electron beam group is projected on the fluorescent screen 65, and the geometrical pattern and intensity of the reflected high-speed electron diffraction pattern are analyzed to obtain knowledge on the surface atomic structure.

【0008】[0008]

【発明が解決しようとする課題】以上説明したように、
従来の低速電子回折装置は、電子線のエネルギーが50
0eV以下であって、フィラメント50を用いていたの
ではレンズ電極53によって細く収束させることは困難
で、表面での電子線照射面積は1μm2程度にしか収束
できないものであった。これでは試料表面の局所領域内
における数原子層の配列情報などまったく測定できない
ものであった。
As described above,
Conventional low-energy electron diffractometers have an electron beam energy of 50
It was 0 eV or less, and it was difficult to converge finely by the lens electrode 53 if the filament 50 was used, and the electron beam irradiation area on the surface could converge only to about 1 μm 2 . In this case, the arrangement information of several atomic layers in the local region of the sample surface could not be measured at all.

【0009】また、探針55を用いて表面構造を検出す
る(a)低速電子ホログラフィー法は、試料56が薄膜
でなければ測定できないという本質的弱点がある。その
上、透過電子の強度が強いため、回折パターンを得るこ
とは困難であった。また、(b)走査2次電子検出法
は、散乱電子の総量を2次電子検出器62によって検出
し、走査各所の散乱能の平均値を測定するに過ぎないか
ら、局所領域内の数原子層の構造情報を得ることはでき
ない。このように、従来の探針による電界放射で試料の
表面構造を検出する方法は、電子線の照射領域を絞り込
むのには成功して分解能を高めたが、回折パターンを得
ることはできず、表面の数原子層の構造情報を得ること
など基本的にできない構造のものでものであった。
In addition, the low-speed electron holography method (a) of detecting the surface structure using the probe 55 has an essential weakness that it cannot be measured unless the sample 56 is a thin film. In addition, it was difficult to obtain a diffraction pattern due to the high intensity of transmitted electrons. Further, in the (b) scanning secondary electron detection method, since only the total amount of scattered electrons is detected by the secondary electron detector 62 and the average value of the scattering power at various points in the scanning is measured, several atoms in the local region are measured. No layer structure information is available. As described above, the conventional method of detecting the surface structure of the sample by electric field emission by the probe succeeded in narrowing the irradiation area of the electron beam and improved the resolution, but it was not possible to obtain a diffraction pattern, It was of a structure that basically could not be obtained, such as obtaining structural information of several atomic layers on the surface.

【0010】次に、特開平9−89815号公報で開示
された反射高速電子回折法(RHEED)は、結晶構造
に関する情報を入手することはでき、反射高速電子回折
法の弱点である非弾性散乱電子によるバックグランドの
除去を図ったものではあるが、非常に高速の電子(10
keV以上)の入射であるため、試料64表面に対する
感度が低く、また、試料64表面を破壊してしまう可能
性が高いという問題を抱えたものであった。また、試料
64表面すれすれの角度で入射させるため、試料表面で
の電子線照射領域は入射方位に10倍以上も広がってし
まい、高い空間分解能を達成することは不可能である。
さらに、高速電子を得るために高加速電圧が必要であ
り、電子回折装置全体が高価で、大掛りなものになるも
のであった。
Next, the reflection high-energy electron diffraction (RHEED) disclosed in Japanese Patent Application Laid-Open No. 9-89815 can obtain information on the crystal structure, and inelastic scattering, which is a weak point of the reflection high-speed electron diffraction, is known. Although the background was removed by electrons, very high-speed electrons (10
(KeV or more), there is a problem that the sensitivity to the surface of the sample 64 is low and the possibility of breaking the surface of the sample 64 is high. In addition, since the incident light is incident at a slight angle on the surface of the sample 64, the electron beam irradiation area on the surface of the sample spreads ten times or more in the incident direction, and it is impossible to achieve high spatial resolution.
Furthermore, a high accelerating voltage is required to obtain high-speed electrons, and the entire electron diffraction apparatus is expensive and bulky.

【0011】従って、試料表面の局所領域における数原
子層の正確な配列情報を得ようと思えば、低速電子回折
装置を基本に据え、低速電子線の照射領域をできるだけ
絞り込んで分解能を上げる新たな工夫を創出するという
アプローチが最も有力である。そして、低速電子回折装
置は低速電子線(約500eV以下)であるため、非弾
性散乱電子を阻止するためグリッドを用いても低電圧で
十分機能し、グリッド間の放電や、エネルギー分解能に
対するグリッドのメッシュ幅等も問題にならない。この
ため電子線を絞り込めば、回析パターンから局所領域の
表面原子の構造情報を得ることができ、回折パターンを
発生させる過程でノイズが入る可能性は非常に少なく、
加速電圧も低電圧且つ安価で、安全性も高い検出装置を
得ることができるはずである。
Therefore, in order to obtain accurate arrangement information of several atomic layers in a local region on the sample surface, a low-speed electron diffractometer is basically provided, and a low-speed electron beam irradiation area is narrowed as much as possible to increase the resolution. Innovative approaches are the most influential. And, since the low-speed electron diffraction device is a low-speed electron beam (about 500 eV or less), even if a grid is used to block inelastic scattered electrons, it can function satisfactorily at a low voltage and discharge between the grids and the grid with respect to energy resolution. The mesh width does not matter. For this reason, if the electron beam is narrowed down, the structural information of the surface atoms in the local region can be obtained from the diffraction pattern, and the possibility of noise entering the process of generating the diffraction pattern is extremely low.
It should be possible to obtain a detection device that has a low acceleration voltage, a low voltage, and high safety.

【0012】そこで、以上説明した問題点を解決するた
め本発明は、試料表面の極小の局所領域に電子線を照射
することができ、その領域の数原子層の原子配列情報を
高精度に検出でき、小型で安全性の高い電界放射型低速
電子回折装置を提供することを目的とする。
In order to solve the above-mentioned problems, the present invention can irradiate an electron beam to a very small local region of a sample surface, and detect the atomic arrangement information of several atomic layers in that region with high accuracy. It is an object of the present invention to provide a small, highly safe field emission type low-energy electron diffraction apparatus.

【0013】[0013]

【課題を解決するための手段】そこで上記問題点を解決
するため本発明の電界放射型低速電子回折装置は、先鋭
化され電界放射電子を放射する探針と、探針に対して試
料に電界放射のための電圧を印加する電源部と、所定の
電界放射電流が流れるように探針−試料間距離を制御す
るための探針制御装置と、電界放射電子が入射したとき
試料から発生する散乱電子を引き込む引き込み電極と、
該引き込み電極を通過した非弾性散乱電子の通過を阻止
する所定の阻止電位が印加される非弾性散乱電子除去部
と、非弾性散乱電子除去部を通過した弾性散乱電子によ
って回折パターンを発生させる回折パターン検出部を備
え、探針−試料間に前記電圧を印加したことにより、電
界放射電子の試料表面における電子線照射面積が絞られ
るとともに、散乱電子が試料表面の数原子層内から散乱
され、且つ探針と試料間に形成される電場を振り切って
放出されることを特徴とする。
In order to solve the above-mentioned problems, a field emission type slow electron diffractometer of the present invention comprises a sharpened tip for emitting field emission electrons, and an electric field applied to the sample relative to the tip. A power supply unit for applying a voltage for emission, a probe control device for controlling a distance between the probe and the sample so that a predetermined field emission current flows, and scattering generated from the sample when field emission electrons are incident. A drawing electrode for drawing electrons;
An inelastic scattered electron removing section to which a predetermined blocking potential for preventing the inelastic scattered electrons from passing through the pull-in electrode is applied; and a diffraction in which a diffraction pattern is generated by the elastic scattered electrons passing through the inelastic scattered electron removing section. A pattern detection unit is provided, and by applying the voltage between the probe and the sample, the electron beam irradiation area on the sample surface of the field emission electrons is reduced, and scattered electrons are scattered from within several atomic layers on the sample surface, In addition, the electric field generated between the probe and the sample is shaken off and emitted.

【0014】これにより、試料表面の極小の局所領域に
電子線を照射することができ、その領域の数原子層の原
子配列情報を高精度に検出でき、小型で安全性の高い電
界放射型低速電子回折装置とすることができる。
This makes it possible to irradiate an electron beam to a very small local region of the sample surface, to detect the atomic arrangement information of several atomic layers in that region with high accuracy, and to obtain a small, highly safe field emission type low-speed device. It can be an electron diffraction device.

【0015】[0015]

【発明の実施の形態】請求項1記載の発明は、先鋭化さ
れ電界放射電子を放射する探針と、探針に対向して設け
られ試料を載置する試料ホルダーと、探針に対して試料
に電界放射のための電圧を印加する電源部と、探針が取
り付けられ、所定の電界放射電流が流れるように探針−
試料間距離を制御する探針制御装置と、電界放射電子が
入射したとき試料から発生する散乱電子を取り込む引き
込み電極と、引き込み電極に隣接して設けられ、該引き
込み電極を通過した非弾性散乱電子の通過を阻止できる
所定の阻止電位が印加される非弾性散乱電子除去部と、
非弾性散乱電子除去部を通過した弾性散乱電子によって
回折パターンを発生させる回折パターン検出部を備え、
探針−試料間に前記電圧を印加したことにより、電界放
射電子の試料表面における電子線照射面積が絞られると
ともに、散乱電子が試料表面の数原子層内から散乱さ
れ、且つ探針と試料間に形成される電場を振り切って放
出されることを特徴とする電界放射型低速電子回折装置
であるから、先鋭化した探針を用いた低速の電界照射で
あるため電子線照射面積を極小領域(nmレベル)に絞
ることが可能になり、電界放射電子は数原子層(9〜1
0原子層以下)の深さ以上に入り込むことはなく、散乱
可能であり、このとき散乱される弾性散乱電子は数原子
層(10原子層以下)までの配列、構造情報をもつこと
ができる。しかも、低速の電子であってもこのとき形成
される電場から探針と試料に無衝突状態で電場を振り切
って飛び出すことが可能で、回折パターン検出部で検出
することが可能になる。弾性散乱電子自体も低速である
上に、バックグランドとなる更に低速の非弾性散乱電子
を非弾性散乱電子除去部で除くため、非弾性散乱電子除
去部や回折パターン検出部でノイズが入る可能性は非常
に少なく、加速電圧も低電圧で安全性も高い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is characterized in that a probe which is sharpened and emits field emission electrons, a sample holder provided opposite to the probe and on which a sample is placed, and a probe are provided. A power supply unit for applying a voltage for field emission to the sample and a probe are attached, and the probe is mounted so that a predetermined field emission current flows.
A probe control device for controlling the distance between samples, a drawing electrode for taking in scattered electrons generated from the sample when field emission electrons are incident, and an inelastic scattered electron provided adjacent to the drawing electrode and passing through the drawing electrode An inelastic scattered electron removing unit to which a predetermined blocking potential capable of blocking the passage of
A diffraction pattern detection unit that generates a diffraction pattern by elastic scattered electrons that have passed through the inelastic scattered electron removal unit,
By applying the voltage between the probe and the sample, the electron beam irradiation area on the sample surface of the field emission electrons is reduced, scattered electrons are scattered from within several atomic layers on the sample surface, and the space between the probe and the sample is reduced. Since the field emission type slow electron diffraction device is characterized by being emitted after shaking off the electric field formed in the region, the electron beam irradiation area is minimized due to the slow electric field irradiation using a sharpened probe. nm level), and the field emission electrons can be reduced to several atomic layers (9-1 to 1 nm).
Scattering is possible without penetrating more than the depth of 0 atomic layer or less, and the elastic scattered electrons scattered at this time can have arrangement and structural information of several atomic layers (10 atomic layers or less). In addition, even a low-speed electron can be shaken out of the electric field formed at this time without collision between the probe and the sample, and can be detected by the diffraction pattern detection unit. The elastic scattered electrons themselves are also slow, and the slower inelastic scattered electrons that become the background are removed by the inelastic scattered electron removal unit, so noise may enter the inelastic scattered electron removal unit and the diffraction pattern detection unit. Is very low, the acceleration voltage is low and the safety is high.

【0016】請求項2に記載の発明は、探針の先端が1
0°以下の開き角で先鋭化されていることを特徴とする
請求項1記載の電界放射型低速電子回折装置であるか
ら、電界放射電子の試料表面における電子線照射領域の
直径を数オングストローム〜数百nm(nmレベル)に
でき、確実に電子線照射面積を極小領域に絞ることがで
きる。
According to a second aspect of the present invention, the tip of the probe is
2. The field emission type low-energy electron diffraction apparatus according to claim 1, wherein the diameter of the electron beam irradiation area on the sample surface of the field emission electrons is several angstrom to less than 0 °. It can be set to several hundred nm (nm level), and the electron beam irradiation area can be reliably narrowed to a minimum region.

【0017】請求項3に記載の発明は、引き込み電極
が、試料と探針の一側方で、且つ試料の延長面と最小散
乱角軌道に囲まれた領域を内包できる筒状の電極である
ことを特徴とする請求項1または2に記載の電界放射型
低速電子回折装置であるから、引き込み電極が散乱電子
を無衝突で効果的にとりこみ、低速電子の鮮明な回折パ
ターンを得ることができる。
According to a third aspect of the present invention, the pull-in electrode is a cylindrical electrode that can include a region on one side of the sample and the probe, and an area surrounded by the extended surface of the sample and the minimum scattering angle orbit. The field emission type slow electron diffractometer according to claim 1 or 2, wherein the pull-in electrode effectively takes in the scattered electrons without collision, and a clear diffraction pattern of the slow electrons can be obtained. .

【0018】請求項4に記載の発明は、最小散乱角軌道
の散乱角が20°であることを特徴とする請求項1〜3
のいずれかに記載の電界放射型低速電子回折装置である
から、散乱位置における散乱角として20°の電子軌道
を計算し、試料の延長面とに囲まれた領域を内包するよ
うに引き込み電極を配置すれば、簡単に最適位置に引き
込み電極を配置できる。
According to a fourth aspect of the present invention, the scattering angle of the minimum scattering angle orbit is 20 °.
In the field emission type slow electron diffractometer according to any one of the above, the electron orbit of 20 ° is calculated as the scattering angle at the scattering position, and the pull-in electrode is included so as to include the area surrounded by the extended surface of the sample. With this arrangement, the lead-in electrode can be easily arranged at the optimum position.

【0019】請求項5に記載の発明は、引き込み電極
が、試料から発生する散乱電子の平均散乱角の軌道と一
致した中心軸をもつことを特徴とする請求項1〜4のい
ずれかに記載の電界放射型低速電子回折装置であるか
ら、引き込み電極の中心軸が散乱電子の平均散乱角の軌
道と一致しているため、引き込み電極が散乱電子を効果
的に引き込むことができる。
The invention according to claim 5 is characterized in that the drawing electrode has a central axis coincident with the trajectory of the average scattering angle of scattered electrons generated from the sample. Since the field emission type low-speed electron diffractometer of (1), the center axis of the attracting electrode coincides with the trajectory of the average scattering angle of the scattered electrons, the attracting electrode can effectively attract the scattered electrons.

【0020】請求項5に記載の発明は、引き込み電極
が、0V〜+3kVの電位を印加されていることを特徴
とする請求項1〜5のいずれかに記載の電界放射型低速
電子回折装置であるから、調整することで散乱電子を漏
らさず引き込むことができる。 (実施の形態)以下、本発明における一実施の形態にお
ける電界放射型低速電子回折装置の説明をする。図1は
本発明における一実施の形態における電界放射型低速電
子回折装置の構造図である。
According to a fifth aspect of the present invention, there is provided the field emission type slow electron diffraction apparatus according to any one of the first to fifth aspects, wherein a potential of 0 V to +3 kV is applied to the pull-in electrode. Therefore, by adjusting, it is possible to draw in the scattered electrons without leaking. (Embodiment) Hereinafter, a field emission type slow electron diffraction apparatus according to an embodiment of the present invention will be described. FIG. 1 is a structural view of a field emission type slow electron diffraction apparatus according to an embodiment of the present invention.

【0021】図1において、1は先鋭化されトンネル効
果により電界放射電子を放射する探針である。2は制御
電流で伸縮するピエゾ素子の先端に探針1が設けられ、
1pA〜10nAの範囲の中で選ばれた所定の電界放射
電流が流れるように探針−試料間距離を制御するための
探針制御装置である。3は表面の原子構造を検出する測
定対象となる試料、4は試料3を交換可能に載置できる
試料ホルダー、5は試料ホルダー4を支持し平面位置を
微調整できるインチワーム、6は試料ホルダー4や探針
制御装置2を支える支持台、7は支持台6を保持し、振
動によるノイズを防ぐための除振バネである。本実施の
形態では、支持台6に設けられた探針制御装置2,試料
3,試料ホルダー4,インチワーム5全体で、散乱電子
を得るための電子放射部を構成しているが、除振ばね7
はこの電子放射部の振動を吸収するものである。8は探
針1と試料3間に後述する所定の電圧(但し、本実施の
形態では探針1をグランド電位とする)を印加するとと
もに、さらに探針制御装置2とインチワーム5等にそれ
ぞれ所定の電位を印加する電源部、9は電源部8を制御
して所定の電位に変換して印加させ、探針制御装置2や
インチワーム5等の制御を行うコンピュータ等から構成
される制御部である。
In FIG. 1, reference numeral 1 denotes a probe which is sharpened and emits field emission electrons by a tunnel effect. 2 is provided with a probe 1 at the tip of a piezo element which expands and contracts by a control current,
This is a probe control device for controlling the distance between the probe and the sample so that a predetermined field emission current selected from the range of 1 pA to 10 nA flows. 3 is a sample to be measured for detecting the atomic structure of the surface, 4 is a sample holder on which the sample 3 can be exchangeably mounted, 5 is an inchworm which supports the sample holder 4 and can fine-tune the plane position, 6 is a sample holder Reference numeral 4 denotes a support table for supporting the probe control device 2, and reference numeral 7 denotes an anti-vibration spring for holding the support table 6 and preventing noise due to vibration. In the present embodiment, the probe control device 2, the sample 3, the sample holder 4, and the inch worm 5 provided on the support base 6 constitute an electron emitting portion for obtaining scattered electrons. Spring 7
Absorbs the vibration of the electron emitting portion. Numeral 8 applies a predetermined voltage described later between the probe 1 and the sample 3 (however, in this embodiment, the probe 1 is set to a ground potential), and further applies the voltage to the probe controller 2 and the inchworm 5 and the like. A power supply unit 9 for applying a predetermined potential, a control unit 9 including a computer or the like for controlling the probe control device 2 and the inchworm 5 and the like by controlling the power supply unit 8 to convert it to a predetermined potential and apply the same. It is.

【0022】探針1は針本体の先端に形成された円錐状
の微小な針で、電解研磨により形成される。本実施の形
態のように低速で低電位の場合には探針1の先端の開き
角が10°を越えると、散乱電子を試料側へ引き寄せる
ポテンシャルが大きく張り出して、散乱電子が試料側に
衝突してしまうから、できるだけ10°より小さい値を
採るのが望ましい。このとき、探針1と試料3間に所定
の電圧を印加することと相俟って、試料3の面上での電
子線照射領域の直径は数オングストローム〜数百nm
(nmレベル)を実現でき、電子線照射面積をまず確実
に1μmより小さな極小領域に絞ることが可能になる。
高い電圧を印加する場合は、一般的傾向として大きい角
度を選択することができるが、電子線照射領域の直径が
大きくなって分解能が低下するから、できるだけ10°
より小さい値を採るのが望ましい。しかもこのとき、探
針1の先端はその曲率半径が小さいほど照射領域は狭く
なる。
The probe 1 is a small conical needle formed at the tip of the needle body, and is formed by electrolytic polishing. In the case of low speed and low potential as in this embodiment, when the opening angle of the tip of the probe 1 exceeds 10 °, the potential for attracting scattered electrons to the sample side protrudes greatly, and the scattered electrons collide with the sample side. Therefore, it is desirable to take a value smaller than 10 ° as much as possible. At this time, together with applying a predetermined voltage between the probe 1 and the sample 3, the diameter of the electron beam irradiation region on the surface of the sample 3 is several angstrom to several hundred nm.
(Nm level), and the electron beam irradiation area can be reliably reduced to a minimum area smaller than 1 μm 2 .
When a high voltage is applied, a large angle can be selected as a general tendency. However, since the diameter of the electron beam irradiation area is increased and the resolution is reduced, the angle is preferably as small as 10 °.
It is desirable to take a smaller value. Moreover, at this time, the smaller the radius of curvature of the tip of the probe 1, the smaller the irradiation area.

【0023】制御部9は電源部8を制御して、探針1と
試料3間に実用上0V〜150V、少なくも10V〜1
00Vの電圧を印加し、このとき探針1と試料3との間
に流れる電界放射電流が1pA〜10nAの中の所定の
値になるように探針制御装置2を制御する。制御部9と
探針制御装置2が電圧と電界放射電流をこの範囲内の所
定値になるように制御することで、探針−試料間距離は
電子線照射面積を絞り込める好適な位置に制御される。
The control unit 9 controls the power supply unit 8 so that practically 0 V to 150 V, at least 10 V to 1 V, is applied between the probe 1 and the sample 3.
A voltage of 00 V is applied, and at this time, the probe control device 2 is controlled so that the electric field emission current flowing between the probe 1 and the sample 3 becomes a predetermined value within 1 pA to 10 nA. The control unit 9 and the probe control device 2 control the voltage and the electric field emission current to be within predetermined ranges within this range, so that the distance between the probe and the sample is controlled to a suitable position for narrowing the electron beam irradiation area. Is done.

【0024】次に、10は、試料3から発生する散乱電
子を引き込み、ビームを形成する引き込み電極、11は
引き込み電極10の後方に設けられ、散乱電子eの電子
線を適度な大きさに分散させる電子レンズ、12は電子
レンズ11で分散させられた散乱電子eの中から低速度
の非弾性散乱電子の通過を阻止するために、探針1に対
して0V〜+100Vの阻止電位が印加される3枚また
は4枚のグリッド電極、13はグリッド電極12を通過
した弾性散乱電子を増幅するマルチチャンネルプレー
ト、14はマルチチャンネルプレート13で増幅された
弾性散乱電子の回折パターンを発生させる蛍光スクリー
ン、15は引き込み電極10,電子レンズ11,グリッ
ド電極12,マルチチャンネルプレート13,蛍光スク
リーン14からなる電子検出部を全体として移動させる
ことができる移動機構である。
Next, 10 is a drawing electrode for drawing scattered electrons generated from the sample 3 and forming a beam, and 11 is provided behind the drawing electrode 10 to disperse the electron beam of scattered electrons e to an appropriate size. The electron lens 12 is applied with a blocking potential of 0 V to +100 V to the probe 1 in order to prevent low-speed inelastic scattered electrons from passing through the scattered electrons e dispersed by the electron lens 11. Three or four grid electrodes, 13 is a multi-channel plate for amplifying elastic scattered electrons passing through the grid electrode 12, 14 is a fluorescent screen for generating a diffraction pattern of the elastic scattered electrons amplified by the multi-channel plate 13, Reference numeral 15 includes a pull-in electrode 10, an electron lens 11, a grid electrode 12, a multi-channel plate 13, and a fluorescent screen 14. A moving mechanism that can move as a whole child detector.

【0025】引き込み電極10は、本実施の形態では、
入り口側に直径6mmの開口が形成された円錐筒部をも
つ円筒状の電極であり、後述する電子検出部用電源部1
9により0V〜+3kVの電位が印加される。この開口
は、散乱電子の後述する最小散乱角軌道と試料3の延長
面に囲まれた領域を内包し、ほとんどの散乱電子eを取
り込めるようになっている。
In the present embodiment, the lead-in electrode 10 is
It is a cylindrical electrode having a conical cylindrical portion having an opening with a diameter of 6 mm formed on the entrance side.
9 applies a potential of 0 V to +3 kV. This opening includes a region surrounded by a minimum scattering angle trajectory of scattered electrons described later and an extended surface of the sample 3 so that almost all scattered electrons e can be taken in.

【0026】また、電子レンズ11には0V〜+3kV
の電位が印加され、散乱電子eの電子線のビーム径を調
節し、適切な大きさの回折パターンが得られるように分
散させ、軌道方向を整える。グリッド電極12は100
#(1インチ当り100本)のメッシュからなり、探針
1に対して0V〜+100Vの電位が電子検出部用電源
部19から印加される。この電位以下の非弾性散乱電子
を阻止する。グリッド電極12が本発明における非弾性
散乱電子除去部である。グリッド電極12から出た電子
線が入射されるマルチチャンネルプレート13は、多数
のチャンネルの集合体であり、各チャンネルの周囲には
2次電子放出面が形成されており、入射された電子はこ
の2次電子放出面と衝突を繰り返しながら増幅され、蛍
光スクリーン14に放射される。このマルチチャンネル
プレート13と蛍光スクリーン14が、本発明の回折パ
ターン検出部を構成する。マルチチャンネルプレート1
3のグリッド電極12側には+100V〜+200Vが
印加され、蛍光スクリーン14側には+1kV〜+2k
Vが印可される。また、蛍光スクリーン14には+3k
V〜+7kVが印加される。
The electron lens 11 has a voltage of 0 V to +3 kV.
Is applied, the beam diameter of the electron beam of the scattered electrons e is adjusted, dispersed to obtain a diffraction pattern of an appropriate size, and the orbital direction is adjusted. The grid electrode 12 is 100
A # 0 (+100 mesh per inch) mesh is applied, and a potential of 0 V to +100 V is applied to the probe 1 from the power supply unit 19 for the electron detection unit. Inelastic scattered electrons below this potential are blocked. The grid electrode 12 is the inelastic scattered electron removing unit in the present invention. The multi-channel plate 13 on which the electron beam emitted from the grid electrode 12 is incident is an aggregate of a large number of channels, and a secondary electron emission surface is formed around each channel. The light is amplified while repeatedly colliding with the secondary electron emission surface, and is emitted to the fluorescent screen 14. The multi-channel plate 13 and the fluorescent screen 14 constitute a diffraction pattern detector of the present invention. Multi-channel plate 1
3, +100 V to +200 V is applied to the grid electrode 12 side, and +1 kV to +2 k to the fluorescent screen 14 side.
V is applied. Also, the fluorescent screen 14 has + 3k
V to +7 kV is applied.

【0027】16は上述した電界放射部及び電子検出部
を収容する10−6Torr以下の真空度の真空槽、1
7は大気側から蛍光スクリーン14を観察できるのぞき
窓、18はのぞき窓17から回折パターンを観察するた
めのカメラ(ビデオカメラを含む)である。蛍光スクリ
ーン14に生じた回折パターンは、カメラ18により測
定する以外に、肉眼で観察することもできる。19は、
引き込み電極10,電子レンズ11,グリッド電極1
2,マルチチャンネルプレート13、蛍光スクリーン1
4にそれぞれ所定の電位を印加するための電子検出部用
電源部である。なお、本実施の形態では電源部8と別に
電子検出部用電源部19を設けたが、電源部8にその作
用をさせてもかまわない。
Reference numeral 16 denotes a vacuum chamber having a degree of vacuum of 10 −6 Torr or less for accommodating the above-described field emission section and electron detection section, and 1.
Reference numeral 7 denotes a viewing window through which the fluorescent screen 14 can be observed from the atmosphere side, and reference numeral 18 denotes a camera (including a video camera) for observing a diffraction pattern from the viewing window 17. The diffraction pattern generated on the fluorescent screen 14 can be observed with the naked eye in addition to being measured by the camera 18. 19 is
Attraction electrode 10, electron lens 11, grid electrode 1
2, multi-channel plate 13, fluorescent screen 1
4 is a power supply unit for an electron detection unit for applying a predetermined potential to each of them. In the present embodiment, the power supply unit 19 for the electron detection unit is provided separately from the power supply unit 8, but the power supply unit 8 may have its function.

【0028】続いて、本実施の形態の電界放射型低速電
子回折装置の動作と作用について説明する。図2は電界
放射電子が飛び込む深さ(原子層)と電子エネルギーの
関係図、図3は本発明の一実施の形態における電界放射
型低速電子回折装置の探針−試料間の電場と電界放射電
子の軌道を示す概念図、図4は本発明の一実施の形態に
おける電界放射型低速電子回折装置の探針−試料間から
出ていく散乱電子の軌道を示す概念図、図5は本発明の
一実施の形態における電界放射型低速電子回折装置の探
針−試料間のエネルギーダイアグラムを示す概念図であ
る。
Next, the operation and operation of the field emission type low-speed electron diffraction apparatus of the present embodiment will be described. FIG. 2 is a diagram showing the relationship between the depth (atomic layer) into which field emission electrons enter and the electron energy. FIG. 3 is a diagram showing the electric field between the probe and the sample and the field emission of the field emission type slow electron diffraction apparatus according to one embodiment of the present invention. FIG. 4 is a conceptual diagram showing the trajectory of electrons, FIG. 4 is a conceptual diagram showing the trajectory of scattered electrons exiting from between the probe and the sample of the field emission type slow electron diffractometer according to one embodiment of the present invention, and FIG. FIG. 2 is a conceptual diagram showing an energy diagram between a probe and a sample of the field emission type slow electron diffraction apparatus according to one embodiment.

【0029】探針1に対して試料3に(試料の仕事関数
+10V)以上の電圧Eをかけ、図3に示す探針−試料
間距離Sを近づけていくと、探針1から試料3へ電界放
射により電子が放出される。図5に示すように、仕事関
数を越えるエネルギーがなければ探針1から真空中に電
界放射されないから、最低でも仕事関数以上の電圧であ
る必要がある。ほとんどの試料3の仕事関数は3V〜6
Vの範囲に収まる。そして、電界放射されたとしても、
試料表面の10原子層以下の領域から散乱電子が出てく
るためには(試料の仕事関数+10V)以上でなければ
ならない。図2に示すように、電子エネルギーが10V
以下では、10原子層以上の深さにまで電界放射電子が
飛び込んで、表面に対する感度が小さくなってなってし
まう。これに対して、10V付近では8〜9原子層まで
しか飛び込まず、50V付近では3原子層程度までの深
さとなり、85Vで再び3〜4原子層まで飛び込む。従
って、試料3の表面の数原子層(9〜10原子層以下)
の原子配列、構造情報を得るためには、(試料の仕事関
数+10V)以上でなければならないことが分かる。従
って、本発明では探針1に対して試料3に(試料の仕事
関数+10V)以上の電圧Eをかけ、電界放射により電
子を放出させる。
When a voltage E of (work function of sample + 10 V) or more is applied to the sample 3 to the probe 1 and the distance S between the probe and the sample shown in FIG. Electrons are emitted by field emission. As shown in FIG. 5, if there is no energy exceeding the work function, no electric field is radiated from the probe 1 into the vacuum, so that the voltage must be at least higher than the work function. Most sample 3 has a work function of 3V to 6
V. And even if the electric field is emitted,
In order for scattered electrons to emerge from a region of 10 atomic layers or less on the surface of the sample, it must be equal to or more than (work function of sample + 10 V). As shown in FIG. 2, the electron energy is 10 V
In the following, the field emission electrons jump into a depth of 10 atomic layers or more, and the sensitivity to the surface decreases. On the other hand, at around 10 V, the depth jumps only to 8 to 9 atomic layers, at around 50 V, the depth becomes about 3 atomic layers, and at 85 V, it jumps again to 3 to 4 atomic layers. Therefore, several atomic layers on the surface of sample 3 (9 to 10 atomic layers or less)
It can be seen that in order to obtain the atomic arrangement and structural information of, it must be equal to or more than (work function of sample + 10 V). Therefore, in the present invention, a voltage E of (work function of sample + 10 V) or more is applied to the sample 3 to the probe 1, and electrons are emitted by field emission.

【0030】電界放射された電子は、図3に示すように
探針−試料間距離S離れた直径dの領域に照射される。
この探針−試料間距離Sは、印加電圧Eを増せば電界放
射電流を所定値に保持するために印加電圧Eと共に増大
する。また、これに伴って試料3の表面上の電子線照射
領域の直径dも増大する。なお、印加電圧Eのほかにも
探針−試料間距離Sや直径dに影響を与えるものとし
て、電界放射電流や探針1の形状(例えば、曲率半径)
等がある。しかし、直径dや探針−試料間距離Sは電圧
Eの増大に伴って指数関数的に増大し、電圧Eに最も大
きく依存するから、電子線照射面積の絞り込みを行うに
は基本的に電圧Eの大きさが重要である。以下、(表
1)に直径dに対する電圧Eの影響を実測したデータを
示す。なお、電界放射電流は0.5nAである。
The field-emitted electrons are applied to a region having a diameter d, which is separated from the probe-sample distance S, as shown in FIG.
The probe-sample distance S increases with the applied voltage E in order to maintain the field emission current at a predetermined value when the applied voltage E is increased. Accordingly, the diameter d of the electron beam irradiation area on the surface of the sample 3 also increases. In addition to the applied voltage E, the field-emission current and the shape (for example, radius of curvature) of the probe 1 are considered to affect the probe-sample distance S and the diameter d.
Etc. However, the diameter d and the probe-sample distance S increase exponentially with the increase in the voltage E, and depend most on the voltage E. The size of E is important. Hereinafter, Table 1 shows data obtained by actually measuring the effect of the voltage E on the diameter d. The electric field emission current is 0.5 nA.

【0031】[0031]

【表1】 (表1)より、印加電圧Eが85V程度を超えると電子
線照射面積が1μm以上になってしまうことが分かる。
そして、上述したように探針1の先端形状等の影響を併
せて有効に利用することもできるから、少なくとも85
V以下にすれば電子線照射面積をほぼ確実に1μm以下
にすることができる。逆に印加電圧Eを85Vより高電
圧にすると電子線照射面積が1μm以上になってしまっ
て、高い空間分解能は期待できない。
[Table 1] Table 1 shows that when the applied voltage E exceeds about 85 V, the electron beam irradiation area becomes 1 μm 2 or more.
Since the influence of the tip shape of the probe 1 and the like can be effectively used as described above, at least 85
If it is less than V, the electron beam irradiation area can be almost certainly reduced to 1 μm 2 or less. Conversely, if the applied voltage E is higher than 85 V, the electron beam irradiation area becomes 1 μm 2 or more, and high spatial resolution cannot be expected.

【0032】このように、探針−試料間に印加する電圧
Eは(試料の仕事関数+10V)以上にするとともに、
85V以下にするのが適当である。この範囲内で印加電
圧Eを印加し、このとき検出される電界放射電流が1p
Aから10nAの範囲内の適切な値になるように、探針
−試料間距離Sを探針制御装置2とインチワーム5が制
御部9により制御することで、電子線照射面積が1μm
以下の極小局所領域の原子配列、構造情報を得ることが
できる電界放射型低速電子回折装置を実現することがで
きる。
As described above, the voltage E applied between the probe and the sample is not less than (work function of sample + 10 V) and
It is appropriate to set the voltage to 85 V or less. An applied voltage E is applied within this range, and the electric field emission current detected at this time is 1 p.
The probe control unit 2 and the inchworm 5 control the probe-sample distance S by the control unit 9 so that the probe-sample distance S becomes an appropriate value within the range of A to 10 nA, so that the electron beam irradiation area is 1 μm 2.
A field emission type low-energy electron diffraction apparatus capable of obtaining the following atomic arrangement and structural information of the minimum local region can be realized.

【0033】次に、本実施の形態の電界放射型低速電子
回折装置で実施した具体的態様について以下説明を行
う。先ず電子放射部について、探針1−試料3間にかけ
る電圧を30Vにしたとき、0.5nAの電界放射電流
を得るために必要な探針−試料間距離Sは100nmで
あった。このときの探針1と試料3の間の電界の様子は
図3に示す通りである。図3の等電位面から分かるよう
に、探針1から放出された電子は試料3へ矢印のように
飛んでいき、試料3表面での照射領域の直径dは10n
m程度になる。上述したように探針1の先端形状を考え
ると、照射領域は探針1先端の曲率半径が小さいほど狭
くすることができるから、分解能を上げるためには曲率
半径を小さくすればよい。
Next, a specific mode implemented by the field emission type low-energy electron diffraction apparatus of the present embodiment will be described below. First, when the voltage applied between the probe 1 and the sample 3 was set to 30 V, the probe-sample distance S required to obtain a field emission current of 0.5 nA was 100 nm. The state of the electric field between the probe 1 and the sample 3 at this time is as shown in FIG. As can be seen from the equipotential surface of FIG. 3, the electrons emitted from the probe 1 fly to the sample 3 as shown by the arrow, and the diameter d of the irradiation area on the surface of the sample 3 is 10 n.
m. Considering the shape of the tip of the probe 1 as described above, the irradiation area can be narrowed as the radius of curvature of the tip of the probe 1 is small. Therefore, the radius of curvature may be reduced to increase the resolution.

【0034】そして、図5に示す本実施の形態のエネル
ギーダイアグラムによれば、探針1と試料3間にかける
電圧は30Vであり、試料3の仕事関数を5Vとする
と、試料3表面への入射電子線の運動エネルギーは25
eVとなる。試料3表面で後方へ弾性散乱した電子は2
5eVの運動エネルギーをもっていることになる。上述
したとおり、仕事関数のほかに10eV程度の運動エネ
ルギーがないと数原子層まで放射電子が飛び込んで電場
から飛び出すのは極めて困難となるが、25eVの運動
エネルギーがあればこれが十分可能になる。そして、こ
のときの散乱電子の軌道を計算したものが図4の散乱電
子の軌道である。図4によれば散乱電子が探針−試料間
の電場により試料3側へと引き戻されているのが分か
る。探針1の形状や引き込み電極10の位置にもよる
が、探針1の開き角が10°以内で、且つ探針と試料間
の電圧が(試料の仕事関数+10V)〜85Vの範囲な
ら、散乱電子は探針1や試料3にほとんど衝突すること
なく飛び出すことができ、その軌道は、散乱位置におけ
る散乱角をθとしたとき、θが概ね20°〜80°の範
囲となる。ここで、散乱角θは図4に示すように試料の
表面垂直方向を0°として散乱方向までの交角である。
最も探針1側を無衝突状態で飛び出す軌道が最小散乱角
軌道であるが、散乱角を20°とすれば、簡単に最小散
乱角軌道を近似できる。
According to the energy diagram of the present embodiment shown in FIG. 5, the voltage applied between the probe 1 and the sample 3 is 30 V, and if the work function of the sample 3 is 5 V, the voltage applied to the surface of the sample 3 The kinetic energy of the incident electron beam is 25
eV. The number of electrons elastically scattered backward on the surface of sample 3 is 2
It has a kinetic energy of 5 eV. As described above, if there is no kinetic energy of about 10 eV in addition to the work function, it is extremely difficult for emitted electrons to jump into several atomic layers and jump out of the electric field, but if the kinetic energy is 25 eV, this can be sufficiently achieved. The calculated trajectory of the scattered electrons at this time is the trajectory of the scattered electrons in FIG. FIG. 4 shows that the scattered electrons are pulled back toward the sample 3 by the electric field between the probe and the sample. Although it depends on the shape of the probe 1 and the position of the lead-in electrode 10, if the opening angle of the probe 1 is within 10 ° and the voltage between the probe and the sample is in the range of (work function of sample + 10V) to 85V, The scattered electrons can fly out without substantially colliding with the probe 1 or the sample 3, and the trajectory of the trajectory is approximately in the range of 20 ° to 80 ° when the scattering angle at the scattering position is θ. Here, as shown in FIG. 4, the scattering angle θ is an intersection angle from the direction perpendicular to the surface of the sample to the scattering direction with 0 °.
The trajectory that protrudes from the tip 1 side in a collisionless state is the minimum scattering angle trajectory. If the scattering angle is set to 20 °, the minimum scattering angle trajectory can be easily approximated.

【0035】続いて、本実施の形態における電子検出部
の具体的態様の説明を行う。引き込み電極10の位置
は、探針1と試料3の位置の側方で、所定の距離となる
よう移動機構15によって調整される。この距離は、最
小散乱角軌道と、試料3の表面の延長面で囲まれた領域
に、引き込み電極10の開口(本実施の形態の場合、6
mm径の開口)を接近させたとき、開口の中心軸が軸試
料から発生する散乱電子の平均散乱角(中央位置の散乱
角で、40°付近の散乱角)の軌道と一致した状態で、
且つこの領域を完全に内包できる距離であり、通常5m
m〜10mmの距離である。このように開口の中心軸が
平均散乱角の軌道と一致したとき最適の引き込み電極1
0の位置が実現できる。
Next, a specific mode of the electron detection unit according to this embodiment will be described. The position of the lead-in electrode 10 is adjusted by the moving mechanism 15 so as to have a predetermined distance beside the position of the probe 1 and the sample 3. This distance is determined by the minimum scattering angle trajectory and the area surrounded by the extension of the surface of the sample 3 and the opening of the lead-in electrode 10 (6 in the present embodiment).
When the central axis of the opening is close to the trajectory of the average scattering angle of the scattered electrons generated from the axial sample (scattering angle at the center position, scattering angle around 40 °),
In addition, it is a distance that can completely include this area, and is usually 5 m
m to 10 mm. Thus, when the central axis of the aperture coincides with the trajectory of the average scattering angle, the optimal pull-in electrode 1
A position of 0 can be realized.

【0036】探針1から引き込み電極10までの距離を
5mmとして、引き込み電極10に+500V以上の電
位をかけると、散乱電子を電子検出部へ引き込むことが
促進され一層確実となる。電子検出部へと導入された散
乱電子eは電子レンズ11によって適切な大きさの回折
パターンが得られるように分散させられる。また、非弾
性散乱電子除去を行うグリッド電極12に阻止型の電位
を与えて、非弾性散乱電子が通過できないようにする。
通過した弾性散乱電子はマルチチャンネルプレート13
によって増幅され、蛍光スクリーン14によって回折パ
ターンを生じる。この回折パターンをのぞき窓17を通
して観察すればよい。回折パターンの記録にはカメラ1
8(ビデオカメラも含む)を用いる。
When the distance from the probe 1 to the pull-in electrode 10 is set to 5 mm and a potential of +500 V or more is applied to the pull-in electrode 10, drawing of the scattered electrons into the electron detecting portion is promoted, which is more reliable. The scattered electrons e introduced into the electron detector are dispersed by the electron lens 11 so that a diffraction pattern of an appropriate size is obtained. Further, a blocking potential is applied to the grid electrode 12 for removing inelastic scattered electrons so that inelastic scattered electrons cannot pass through.
The passed elastic scattered electrons are transmitted to the multi-channel plate 13.
And a diffraction pattern is generated by the fluorescent screen 14. What is necessary is just to observe this diffraction pattern through the viewing window 17. Camera 1 for recording diffraction patterns
8 (including a video camera).

【0037】得られた回折パターンは直径10nm程度
の極小局所領域の表面数原子層の構造情報を有するの
で、これを解析することにより局所領域の原子配列を決
定することができる。また、回折パターンは試料3表面
の周期性を表しているので、回折パターンを測定しなが
ら探針1を表面平行方向に走査させることにより、表面
周期構造を反映した走査電子顕微鏡像を得ることができ
る。
Since the obtained diffraction pattern has structural information of a few atomic layers on the surface of a very small local region having a diameter of about 10 nm, the atomic arrangement of the local region can be determined by analyzing the information. Further, since the diffraction pattern indicates the periodicity of the surface of the sample 3, the scanning electron microscope image reflecting the surface periodic structure can be obtained by scanning the probe 1 in the surface parallel direction while measuring the diffraction pattern. it can.

【0038】以上、本実施の形態のように(試料の仕事
関数+10V)〜85Vの電圧を印加すると数原子層の
深さまで放射電子が侵入でき、しかもこのとき電子線照
射面積を1μmより小さな極小領域に絞り込むことが可
能である。さらに同時に散乱電子が探針1や試料3に衝
突しない軌道をとって電界を振り切るだけの運動エネル
ギーを与えることができ、これにより数原子層の構造情
報を持った回折パターンを観察することが可能になり、
従来不可能と考えられていた高分解能の電界放射型低速
電子回折装置を実現することができる。
As described above, when a voltage of (work function of sample + 10 V) to 85 V is applied as in this embodiment, emitted electrons can penetrate to a depth of several atomic layers, and at this time, the electron beam irradiation area is smaller than 1 μm 2. It is possible to narrow down to a minimum area. Furthermore, at the same time, it is possible to give a kinetic energy sufficient to shake off the electric field by taking a trajectory in which the scattered electrons do not collide with the probe 1 or the sample 3, thereby observing a diffraction pattern having structural information of several atomic layers. become,
It is possible to realize a high-resolution field emission type low-energy electron diffraction apparatus which has been considered impossible in the past.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
試料表面の極小局所領域に電界放射電子を照射し、その
領域の数原子層の原子配列情報を持つ後方弾性散乱電子
による回折パターンを検出することが可能になる。これ
により、これまでの低速電子回折法では不可能であった
表面局所領域の原子配列の情報を得ることができる。低
速電子を利用する上に、バックグランドとなる更に低速
の非弾性散乱電子を除くため、ノイズが入る可能性は非
常に少なく、回折パターンは鮮明であり、加速電圧も低
電圧で安全性も高い。
As described above, according to the present invention,
By irradiating field emission electrons to a minimal local region of the sample surface, it becomes possible to detect a diffraction pattern due to back elastic scattered electrons having atomic arrangement information of several atomic layers in the region. As a result, it is possible to obtain information on the atomic arrangement in the local region of the surface, which was impossible with the conventional low-energy electron diffraction method. In addition to using slow electrons, the possibility of introducing noise is very low because the inelastic scattered electrons, which are the background, are eliminated.The diffraction pattern is clear, the acceleration voltage is low and the safety is high. .

【0040】本発明は、高集積化が進んでいる超LSI
などのナノメートルサイズの構造を扱う技術全般に利用
でき、これらの表面の構造情報を得るために、現在の電
子顕微鏡や走査型顕微鏡に代わって、あるいはそれらと
相補的な役割を果たす電界放射型低速電子回折装置を実
現することができる。
The present invention relates to an ultra-high integration LSI.
It can be used for all technologies dealing with nanometer-sized structures, such as field-emission type, and can be used instead of current electron microscopes and scanning microscopes, or complementary to them, to obtain structural information on these surfaces A low-speed electron diffraction device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における一実施の形態における電界放射
型低速電子回折装置の構造図
FIG. 1 is a structural view of a field emission type slow electron diffraction apparatus according to an embodiment of the present invention.

【図2】電界放射電子が飛び込む深さ(原子層)と電子
エネルギーの関係図
FIG. 2 is a diagram illustrating a relationship between a depth (atomic layer) into which field emission electrons enter and electron energy.

【図3】本発明の一実施の形態における電界放射型低速
電子回折装置の探針−試料間の電場と電界放射電子の軌
道を示す概念図
FIG. 3 is a conceptual diagram showing an electric field between a probe and a sample and a trajectory of field emission electrons in the field emission type slow electron diffraction apparatus according to one embodiment of the present invention.

【図4】本発明の一実施の形態における電界放射型低速
電子回折装置の探針−試料間から出ていく散乱電子の軌
道を示す概念図
FIG. 4 is a conceptual diagram showing the trajectory of scattered electrons exiting from between the probe and the sample of the field emission type slow electron diffraction apparatus according to one embodiment of the present invention.

【図5】本発明の一実施の形態における電界放射型低速
電子回折装置の探針−試料間のエネルギーダイアグラム
を示す概念図
FIG. 5 is a conceptual diagram showing an energy diagram between a probe and a sample of the field emission type slow electron diffraction apparatus according to one embodiment of the present invention.

【図6】従来の低速電子回折装置の概念図FIG. 6 is a conceptual diagram of a conventional low-speed electron diffraction apparatus.

【図7】従来の低速電子ホログラフィー法の概念図FIG. 7 is a conceptual diagram of a conventional low-speed electron holography method.

【図8】従来の走査2次電子検出法の概念図FIG. 8 is a conceptual diagram of a conventional scanning secondary electron detection method.

【図9】従来の反射高速電子回折法の概念図FIG. 9 is a conceptual diagram of a conventional reflection high-energy electron diffraction method.

【符号の説明】[Explanation of symbols]

1 探針 2 探針制御装置 3 試料 4 試料ホルダー 5 インチワーム 6 支持台 7 除振バネ 8 電源部 9 制御部 10 引き込み電極 11 電子レンズ 12 グリッド電極 13 マルチチャンネルプレート 14 蛍光スクリーン 15 移動機構 16 真空槽 17 のぞき窓 18 カメラ 19 電子検出部用電源部 REFERENCE SIGNS LIST 1 probe 2 probe control device 3 sample 4 sample holder 5 inch worm 6 support base 7 anti-vibration spring 8 power supply unit 9 control unit 10 lead-in electrode 11 electron lens 12 grid electrode 13 multi-channel plate 14 fluorescent screen 15 moving mechanism 16 vacuum Vessel 17 Viewing window 18 Camera 19 Power supply for electronic detector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】先鋭化され電界放射電子を放射する探針
と、 前記探針に対向して設けられ試料を載置する試料ホルダ
ーと、 前記探針に対して前記試料に電界放射のための電圧を印
加する電源部と、 前記探針が取り付けられ、所定の電界放射電流が流れる
ように探針−試料間距離を制御する探針制御装置と、 前記電界放射電子が入射したとき前記試料から発生する
散乱電子を取り込む引き込み電極と、 前記引き込み電極に隣接して設けられ、該引き込み電極
を通過した非弾性散乱電子の通過を阻止できる所定の阻
止電位が印加される非弾性散乱電子除去部と、 前記非弾性散乱電子除去部を通過した弾性散乱電子によ
って回折パターンを発生させる回折パターン検出部を備
え、 前記探針−前記試料間に前記電圧を印加したことによ
り、前記電界放射電子の試料表面における電子線照射面
積が絞られるとともに、前記散乱電子が試料表面の数原
子層内から散乱され、且つ前記探針と前記試料間に形成
される電場を振り切って放出されることを特徴とする電
界放射型低速電子回折装置。
A sharpened probe for emitting field emission electrons; a sample holder provided opposite to the probe for mounting a sample; and a probe for field emission of the sample with respect to the probe. A power supply unit for applying a voltage, a probe control device that is mounted with the probe, and controls a distance between the probe and the sample so that a predetermined field emission current flows, and from the sample when the field emission electrons are incident. A pull-in electrode for capturing generated scattered electrons, and an inelastic scattered electron removing unit provided adjacent to the pull-in electrode, to which a predetermined blocking potential capable of blocking the passage of the inelastic scattered electrons passing through the pull-in electrode is applied. A diffraction pattern detection unit that generates a diffraction pattern by elastic scattered electrons that have passed through the inelastic scattered electron removal unit, and the electric field is applied by applying the voltage between the probe and the sample. The electron beam irradiation area on the sample surface of the emitted electrons is narrowed, and the scattered electrons are scattered from within a few atomic layers on the sample surface, and are emitted while shaking off the electric field formed between the probe and the sample. A field emission type slow electron diffraction apparatus characterized by the following.
【請求項2】前記探針の先端が10°以下の開き角で先
鋭化されていることを特徴とする請求項1記載の電界放
射型低速電子回折装置。
2. The field emission type slow electron diffraction apparatus according to claim 1, wherein the tip of said probe is sharpened at an opening angle of 10 ° or less.
【請求項3】前記引き込み電極が、前記試料と前記探針
の一側方で、且つ試料の延長面と最小散乱角軌道に囲ま
れた領域を内包できる筒状の電極であることを特徴とす
る請求項1または2に記載の電界放射型低速電子回折装
置。
3. The method according to claim 1, wherein the pull-in electrode is a cylindrical electrode that can enclose a region surrounded by an extended surface of the sample and a minimum scattering angle trajectory on one side of the sample and the probe. The field emission type slow electron diffraction device according to claim 1.
【請求項4】前記最小散乱角軌道の散乱角が20°であ
ることを特徴とする請求項1〜3のいずれかに記載の電
界放射型低速電子回折装置。
4. The field emission type slow electron diffraction apparatus according to claim 1, wherein a scattering angle of the minimum scattering angle orbit is 20 °.
【請求項5】前記引き込み電極が、前記試料から発生す
る散乱電子の平均散乱角の軌道と一致した中心軸をもつ
ことを特徴とする請求項1〜4のいずれかに記載の電界
放射型低速電子回折装置。
5. A field emission type low-speed device according to claim 1, wherein said pull-in electrode has a central axis coincident with a trajectory of an average scattering angle of scattered electrons generated from said sample. Electron diffraction device.
【請求項6】前記引き込み電極が、0V〜+3kVの電
位を印加されていることを特徴とする請求項1〜5のい
ずれかに記載の電界放射型低速電子回折装置。
6. The field emission type slow electron diffraction apparatus according to claim 1, wherein a potential of 0 V to +3 kV is applied to said pull-in electrode.
JP2000328502A 2000-10-27 2000-10-27 Field radiation type low-energy electron diffraction equipment Withdrawn JP2002131249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000328502A JP2002131249A (en) 2000-10-27 2000-10-27 Field radiation type low-energy electron diffraction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328502A JP2002131249A (en) 2000-10-27 2000-10-27 Field radiation type low-energy electron diffraction equipment

Publications (1)

Publication Number Publication Date
JP2002131249A true JP2002131249A (en) 2002-05-09

Family

ID=18805345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328502A Withdrawn JP2002131249A (en) 2000-10-27 2000-10-27 Field radiation type low-energy electron diffraction equipment

Country Status (1)

Country Link
JP (1) JP2002131249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144543A1 (en) * 2011-04-20 2012-10-26 株式会社エイブイシー Reflection high-energy electron diffraction method
WO2012144544A1 (en) * 2011-04-20 2012-10-26 株式会社エイブイシー Reflection high-energy electron diffraction method
WO2014185074A1 (en) * 2013-05-15 2014-11-20 Okinawa Institute Of Science And Technology School Corporation Leed for sem

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144543A1 (en) * 2011-04-20 2012-10-26 株式会社エイブイシー Reflection high-energy electron diffraction method
WO2012144544A1 (en) * 2011-04-20 2012-10-26 株式会社エイブイシー Reflection high-energy electron diffraction method
JP2012227010A (en) * 2011-04-20 2012-11-15 Avc Co Ltd Reflection high-energy electron diffraction apparatus
JP2012227009A (en) * 2011-04-20 2012-11-15 Avc Co Ltd Reflection high-energy electron diffraction method
WO2014185074A1 (en) * 2013-05-15 2014-11-20 Okinawa Institute Of Science And Technology School Corporation Leed for sem
KR20160005042A (en) * 2013-05-15 2016-01-13 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 Leed for sem
JP2016524123A (en) * 2013-05-15 2016-08-12 学校法人沖縄科学技術大学院大学学園 Low-energy electron diffraction detection module and scanning electron microscope
US9576770B2 (en) 2013-05-15 2017-02-21 Okinawa Institute Of Science And Technology School Corporation LEED for SEM
KR101702803B1 (en) 2013-05-15 2017-02-22 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 Leed for sem

Similar Documents

Publication Publication Date Title
US7601953B2 (en) Systems and methods for a gas field ion microscope
EP0195349B1 (en) Low-energy scanning transmission electron microscope
EP1480034B1 (en) High resolution defect inspection with positron annihilation by simultaneous irradiation of a positron beam and an electron beam
US7609815B2 (en) High brightness—multiple beamlets source for patterned X-ray production
JP6437020B2 (en) Method using charged particle microscope and charged particle microscope
EP0350874A2 (en) Surface analysis method and apparatus
US6714289B2 (en) Semiconductor device inspecting apparatus
JP2003524182A (en) Imaging device for cross section of substrate
US7838830B2 (en) Charged particle beam apparatus and method for operating a charged particle beam apparatus
JP4717481B2 (en) Scanning probe microscope system
US4698502A (en) Field-emission scanning auger electron microscope
US5767516A (en) Electron microscope and sample observing method using the same
WO2013084651A1 (en) Scanning ion microscope and secondary particle control method
WO2021192070A1 (en) Electron gun and electron microscope
JP2002131249A (en) Field radiation type low-energy electron diffraction equipment
CN108666192B (en) Charged particle beam device
JP3684106B2 (en) Deposition equipment
JP2001141673A (en) Time resolving type surface analyzing apparatus
JP2002098655A (en) Ultra-short-pulse electron diffraction device
JP2861153B2 (en) Charged particle beam irradiation type analyzer
JP2000304712A (en) Electron beam analyzing and observing apparatus and electron beam microanalyzer
JP2730229B2 (en) Charged particle beam irradiation type analyzer
JP3820427B2 (en) Focused ion beam device
KR101939465B1 (en) Positron microscope using device of focsing positron beam
JPH0510895A (en) Method for inspecting surface physical properties of solid and scanning cluster microscope

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060330