JP2002131243A - Electromagnetic wave type apparatus for inspecting egg - Google Patents

Electromagnetic wave type apparatus for inspecting egg

Info

Publication number
JP2002131243A
JP2002131243A JP2000325509A JP2000325509A JP2002131243A JP 2002131243 A JP2002131243 A JP 2002131243A JP 2000325509 A JP2000325509 A JP 2000325509A JP 2000325509 A JP2000325509 A JP 2000325509A JP 2002131243 A JP2002131243 A JP 2002131243A
Authority
JP
Japan
Prior art keywords
egg
yolk
eggs
electromagnetic wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000325509A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshimura
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000325509A priority Critical patent/JP2002131243A/en
Publication of JP2002131243A publication Critical patent/JP2002131243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable simple estimation of an abnormality of eggs in a state, while the eggs are packed and improve reliability by utilizing the fact that dielectric constants of the white and the yolk of eggs are high. SOLUTION: Electromagnetic waves, including microwaves, are irradiated to the egg 4 from a klystron 1 via a wave guide 2, a directional coupler 5 and a horn antenna 3. Reflected waves are received in route opposite to the above. Transmission waves and reception waves are respectively measured by vector volt meters 7 and 6 set to the directional coupler 5. A total quantity of the white and the yolk of the egg is estimated for each egg, by utilizing a ratio of an irradiation level and a reception level of the waves, or the like, so that whether the egg is hollow can be readily detected, and the reliability is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、マイクロ波等の
電磁波を用いた卵の検査装置、特にパック詰めの際に卵
殻内部の卵白,卵黄の総量を非接触で測定可能な卵検査
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an egg inspection apparatus using electromagnetic waves such as microwaves, and more particularly to an egg inspection apparatus capable of measuring the total amount of albumen and yolk in an eggshell in a non-contact manner during packing.

【0002】[0002]

【従来の技術】卵のパック詰めは、通常次の3工程から
なる。 1)洗卵 卵の表面についている汚れ、雑菌を洗い流すためにまず
洗卵を行なう。洗卵装置では例えば卵を回転させなが
ら、次亜鉛素酸ナトリウムを薄めた水を用いて汚れ,雑
菌を取り除き、乾燥する。 2)検卵 暗室で下から光を当て、通常は人間が目視によりひび割
れたものや、血卵などの異常卵を除く。その後、卵の6
箇所を機械で叩いて、音による判断で自動的に選別す
る。 3)パック詰め 卵を吸着し、1個ずつパック詰めを行ない、日付などの
シールを貼り、パックを熱により封印する。
2. Description of the Related Art Packing eggs usually comprises the following three steps. 1) Egg washing Egg washing is first performed to wash off dirt and various bacteria on the egg surface. In an egg washing apparatus, for example, while rotating the egg, dirt and various germs are removed using water diluted with sodium hypochlorite and dried. 2) Egg inspection Light is applied from below in a dark room to remove those that are normally cracked by human eyes and abnormal eggs such as blood eggs. Then the egg 6
Hitting the spot with a machine and automatically sorting based on sound judgment. 3) Packing The eggs are adsorbed, packed one by one, a sticker such as date is attached, and the pack is sealed with heat.

【0003】[0003]

【発明が解決しようとする課題】このように、従来のも
のは、検卵を目視と音による検査方法に依存しており、
検卵以降の工程では異常監視は特に行なわれていない。
そのため、ひび割れ等を完全に検出できないことから、
卵白,卵黄が抜けてしまった卵殻だけのものをパック詰
めして出荷されることもあり、小売店やスーパーなどに
多大な迷惑を掛け、その結果、弁済に多額の費用が嵩む
等の問題が生じている。従って、パック詰め後に異常の
検査を行なうことが望まれている。したがって、この発
明の課題は、主としてパック詰め後の卵白,卵黄の抜け
を検出可能とし、信頼性を向上させることにある。
As described above, the conventional method relies on a method of inspecting an egg by visual inspection and sound.
Abnormality monitoring is not particularly performed in the steps after egg inspection.
Therefore, since cracks and the like cannot be completely detected,
In some cases, only egg shells from which egg whites and yolks have been removed are packed and shipped, causing great inconvenience to retail stores and supermarkets. Has occurred. Therefore, it is desired to inspect for abnormalities after packing. Therefore, an object of the present invention is to make it possible to detect omission of egg white and yolk mainly after packing and improve reliability.

【0004】[0004]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、卵に電磁波を照射し、卵
からの反射電磁波を受信し、その受信レベルから卵殻内
の卵黄,卵白の総和量を推定することを特徴とする。請
求項2の発明では、卵に電磁波を照射し、卵からの反射
電磁波を受信し、その受信レベルと照射レベルとの比か
ら卵殻内の卵黄,卵白の総和量を推定することを特徴と
する。
In order to solve such a problem, according to the first aspect of the present invention, an egg is irradiated with an electromagnetic wave, a reflected electromagnetic wave from the egg is received, and the yolk in the eggshell is detected from the received level. It is characterized by estimating the total amount of egg white. According to a second aspect of the present invention, the eggs are irradiated with electromagnetic waves, the reflected electromagnetic waves from the eggs are received, and the total amount of yolk and albumen in the eggshell is estimated from the ratio between the reception level and the irradiation level. .

【0005】請求項3の発明では、卵に電磁波を照射
し、卵からの透過電磁波を受信し、その受信レベルから
卵殻内の卵黄,卵白の総和量を推定することを特徴とす
る。請求項4の発明では、卵に電磁波を照射し、卵から
の透過電磁波を受信し、その受信レベルと照射レベルと
の比から卵殻内の卵黄,卵白の総和量を推定することを
特徴とする。
According to a third aspect of the present invention, the egg is irradiated with an electromagnetic wave, the transmitted electromagnetic wave from the egg is received, and the total amount of the yolk and the albumen in the eggshell is estimated from the reception level. The invention according to claim 4 is characterized in that an egg is irradiated with an electromagnetic wave, a transmitted electromagnetic wave from the egg is received, and the total amount of yolk and egg white in the eggshell is estimated from a ratio between the reception level and the irradiation level. .

【0006】[0006]

【発明の実施の形態】図1はこの発明の実施の形態を示
す構成図である。同図において、1は電磁波としてのマ
イクロ波を発振するクライストロン、2はマイクロ波を
導く導波管、3はホーンアンテナ、4は検査対象となる
卵、5は方向性結合器、6は反射波ベクトル電圧計、7
は送信波ベクトル電圧計をそれぞれ示す。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a klystron that oscillates microwaves as electromagnetic waves, 2 is a waveguide for guiding microwaves, 3 is a horn antenna, 4 is an egg to be inspected, 5 is a directional coupler, 6 is a reflected wave Vector voltmeter, 7
Indicates a transmission wave vector voltmeter.

【0007】クライストロン1から発射されたマイクロ
波は、導波管2および方向性結合器5を通してホーンア
ンテナ3に導かれ、ホーンアンテナ3より空中を伝搬し
て検査対象となる卵4に照射され、反射される。卵4で
反射されたマイクロ波はホーンアンテナ3で受信され、
ホーンアンテナ3,方向性結合器5および導波管2を送
信時の伝搬方向とは逆方向に伝搬する。方向性結合器5
の一端からは、送信信号の一部を取り出して送信波ベク
トル電圧計7で測定し、方向性結合器5の他端からは、
卵4よりの反射信号の一部を取り出して反射ベクトル電
圧計6で測定する。
[0007] The microwave emitted from the klystron 1 is guided to the horn antenna 3 through the waveguide 2 and the directional coupler 5, propagates in the air from the horn antenna 3, and irradiates the egg 4 to be inspected. Is reflected. The microwave reflected by the egg 4 is received by the horn antenna 3,
The light propagates through the horn antenna 3, the directional coupler 5, and the waveguide 2 in a direction opposite to the propagation direction at the time of transmission. Directional coupler 5
From one end of the directional coupler 5, a part of the transmission signal is taken out and measured by the transmission wave vector voltmeter 7, and from the other end of the directional coupler 5,
A part of the reflection signal from the egg 4 is taken out and measured by the reflection vector voltmeter 6.

【0008】クライストロン1からホーンアンテナ3へ
の伝搬に同軸線路を用いた場合、周波数が高くなると減
衰量が増大して十分な信号レベルが得られないことか
ら、4GHz帯以上の周波数帯を用いるマイクロ波の給
電線には、図1のように導波管2が用いられる。この導
波管としては図3のような方形導波管、図4のような円
形導波管がある。マイクロ波のビーム幅を卵より若干小
さめにするために、周波数帯を22〜33GHzとする
と、方形導波管の内寸(横×縦)は8.6×4.3mm
となる。なお、図3の(a)は方形導波管の斜視図、同
(b)は開口部の電界(実線),磁界(点線)分布、同
(c)は長さ方向の電界分布、同(d)は長さ方向の磁
界分布をそれぞれ示し、図4の(a)は円形導波管の開
口部の電界(実線),磁界(点線)分布、同(b)は長
さ方向の磁界分布をそれぞれ示している。
When a coaxial line is used for propagation from the klystron 1 to the horn antenna 3, when the frequency becomes high, the amount of attenuation increases and a sufficient signal level cannot be obtained. A waveguide 2 is used as a wave feed line as shown in FIG. As the waveguide, there are a rectangular waveguide as shown in FIG. 3 and a circular waveguide as shown in FIG. When the frequency band is set to 22 to 33 GHz in order to make the beam width of the microwave slightly smaller than that of the egg, the inner size (width × length) of the rectangular waveguide is 8.6 × 4.3 mm.
Becomes 3 (a) is a perspective view of a rectangular waveguide, FIG. 3 (b) is an electric field (solid line) and magnetic field (dotted line) distribution in the opening, and FIG. 3 (c) is an electric field distribution in the longitudinal direction. 4D shows the magnetic field distribution in the longitudinal direction, respectively. FIG. 4A shows the electric field (solid line) and magnetic field (dotted line) distributions at the opening of the circular waveguide, and FIG. 4B shows the magnetic field distribution in the longitudinal direction. Are respectively shown.

【0009】ホーンアンテナとしては図5に示すよう
に、(a)扇形ホーン、(b)角すいホーン、(c)円
すいホーンなどがある。例えば、卵に照射するビーム幅
を25度とするには、角すいホーンのE面開口:27.
5mm、H面開口:37.5mmとなる。また、方向性
結合器は図6(a)に示すように、主導波管8にλg/
4隔てた2つの結合孔を作り、その外側に副導波管9を
設け、主導波管に右向きの方向の波が進んでいると、そ
れぞれの孔から同じ振幅の波が副導波管に入り、これら
の波は副導波管の中を左右に二分されて進行する。この
うち、右に進むものは同位相なので合計されて2倍の振
幅となるが、左に進むものは図の点線に見られるよう
に、右の孔を通ったものは左の孔を通った波と合計する
と、互いに打ち消し合って振幅が零となる。それ故、主
導波管に右向きの波が流れておれば、副導波管にも右向
きの波が流れることになる。反対に、主導波管を左側に
進む波に対しては、副導波管には左側へ進む波が生じ、
その振幅は主導波管を流れる波の振幅に比例している。
このことを利用して、進行波と反射波を切り分けて抽出
することができる。
As shown in FIG. 5, the horn antenna includes (a) a sector horn, (b) a square horn, and (c) a cone horn. For example, in order to set the beam width for irradiating an egg to 25 degrees, the E-plane opening of the cone horn: 27.
5 mm, H-plane opening: 37.5 mm. Further, as shown in FIG. 6A, the directional coupler has λg /
Four sub-waveguides 9 are formed outside the coupling hole, and a sub-waveguide 9 is provided outside the coupling hole. When a right-direction wave is traveling in the main waveguide, a wave of the same amplitude is transmitted from each hole to the sub-waveguide. Incoming, these waves travel in the sub-waveguide in two directions, left and right. Of these, those going to the right have the same phase and therefore have twice the amplitude, but those going to the left have passed through the right hole as seen by the dotted line in the figure. When summed with the waves, they cancel each other out and the amplitude becomes zero. Therefore, if a rightward wave flows through the main waveguide, a rightward wave also flows through the sub-waveguide. Conversely, for a wave traveling to the left of the main waveguide, a wave traveling to the left will occur in the sub-waveguide,
Its amplitude is proportional to the amplitude of the wave flowing through the main waveguide.
By utilizing this, the traveling wave and the reflected wave can be separated and extracted.

【0010】図1のような構成では、卵を分布定数回路
の負荷とみなすことができ、以下に説明する。マイクロ
波は、分布定数回路上の波の伝播と同じように、特性イ
ンピーダンスの概念があり、インピーダンス整合を行な
わないと、電磁波が物体側に進行せずに送信側に反射さ
れてしまう。いま、図7のような伝送線路を想定し、そ
の電源端子に正弦波電圧を加えた場合を考えると、正弦
波の波が負荷端子の方に加わるので、線路上の任意の点
で電圧,電流を観測すると、やはり正弦波状に変化す
る。
In the configuration shown in FIG. 1, the egg can be regarded as a load of the distributed constant circuit, which will be described below. Microwaves have the concept of characteristic impedance, similar to the propagation of waves on a distributed constant circuit. If impedance matching is not performed, electromagnetic waves are reflected on the transmitting side without traveling to the object side. Now, assuming a transmission line as shown in FIG. 7 and applying a sine wave voltage to its power supply terminal, a sine wave is applied to the load terminal. When the current is observed, it also changes in a sinusoidal manner.

【0011】そこで、電源端子からZの距離にある電圧
の複素表示を√2V〔・〕exp(jωt)とし、電流
の複素表示を√2I〔・〕exp(jωt)とする。な
お、符号の上または横にドット〔・〕を付してベクトル
であることを示す。次に、z+dzの距離における電
圧,電流の複素表示をそれぞれ√2{V〔・〕+dV
〔・〕}exp(jωt),√2{I〔・〕+dI
〔・〕}exp(jωt)とすると、微小距離dzにお
ける電圧降下は、その部分における抵抗Rとインダクタ
ンスLにより、また電流の減少分はその部分に並列に入
る分布容量Cと分布コンダクタンスGによるものである
から、 −dV〔・〕/dz=(R+jωL)I〔・〕 −dI〔・〕/dz=(G+jωC)V〔・〕 …(1) なる微分方程式が成立する。これらをzにてもう一度微
分して各々の式を電圧,電流でまとめると、(1)式は
次の(2)式となる。 −d2 V〔・〕/dz2 =γ2 V〔・〕 −d2 I〔・〕/dz2 =γ2 I〔・〕 ただし、γ2 =(R+jωL)(G+jωC) …(2)
Therefore, the complex representation of the voltage at a distance of Z from the power supply terminal is √2V [•] exp (jωt), and the complex representation of the current is √2I [•] exp (jωt). A dot [.] Is attached to the top or side of the code to indicate a vector. Next, the complex representation of the voltage and current at the distance of z + dz is {2} V [•] + dV, respectively.
[•] $ exp (jωt), {2} I [•] + dI
[・]} Exp (jωt), the voltage drop at the minute distance dz is due to the resistance R and the inductance L at that part, and the decrease in current is due to the distribution capacitance C and the distribution conductance G entering the part in parallel. Therefore, the differential equation of -dV [•] / dz = (R + jωL) I [•] -dI [•] / dz = (G + jωC) V [•] (1) is established. When these are differentiated once again by z and each expression is summarized by voltage and current, Expression (1) becomes Expression (2) below. −d 2 V [•] / dz 2 = γ 2 V [•] −d 2 I [•] / dz 2 = γ 2 I [•] where γ 2 = (R + jωL) (G + jωC) (2)

【0012】(2)式の一般解は、下記式となる。 V〔・〕=Vi 〔・〕exp(−γz)+Vr 〔・〕exp(γz) I〔・〕=Ii 〔・〕exp(−γz)+Ir 〔・〕exp(γz) …(3) (3)式の第1項は進行波Vi,Ii (電源側から負荷
端子への波)で、第2項は反射波Vr,Ir (負荷端子
側から電源端子への波)を表わしている。ここで、電流
について、流れる向きを考慮して変形すると、次の
(4)式となる。 I〔・〕=Vi 〔・〕exp(−γz)/Z0 −Vr 〔・〕exp(γz)/Z0 …(4) ここに、Z0 (=√{(R+jωL)/(G+jω
C)})は線路に特有のインピーダンスであり、特性イ
ンピーダンスと呼ばれている。
The general solution of equation (2) is as follows. V [•] = V i [•] exp (−γz) + V r [•] exp (γz) I [•] = I i [•] exp (−γz) + I r [•• exp (γz) ... ( 3) (3) of the first term traveling wave Vi, I i (waves) from the power supply side to the load terminal, the second term reflected wave Vr, the wave from the I r (load terminal side to the power supply terminal) Is represented. Here, when the current is deformed in consideration of the flowing direction, the following equation (4) is obtained. I [•] = V i [•] exp (−γz) / Z 0 −V r [•] exp (γz) / Z 0 (4) where Z 0 (= √ {(R + jωL) / (G + jω)
C)}) is an impedance peculiar to the line and is called a characteristic impedance.

【0013】次に、線路上の任意の点zにおいて負荷側
を眺めたインピーダンスをZとすると、 Z〔・〕={Vi 〔・〕exp(−γz)+Vr 〔・〕exp(γz)}Z0 /{Vi 〔・〕exp(−γz)−Vr 〔・〕exp(γz)} ={1+Γ〔・〕}Z0 /{1−Γ〔・〕} …(5) ここに、Γ〔・〕={Vr 〔・〕exp(−γZ)} /{Vi 〔・〕exp(−γZ)} …(6) であり、zの位置の進行波と反射波との比を示し、電圧
反射係数と呼ばれる。このことから、電圧反射係数を測
定すれば負荷側を眺めたインピーダンスZが測定できる
ことになる。なお、送信波(進行波)のレベルが既知で
あれば、受信波(反射波)のレベルだけから測定可能な
のは言うまでもない。
Next, assuming that the impedance looking at the load side at an arbitrary point z on the line is Z, Z [•] = {V i [•] exp (−γz) + V r [•] exp (γz) {Z 0 / {V i [•] exp (−γz) −V r [•] exp (γz)} = {1 + Γ [•]} Z 0 / {1-{[•]} (5) , {[•] = {V r [•] exp (−γZ)} / {V i [•] exp (−γZ)} (6), and the ratio between the traveling wave and the reflected wave at the position z. And is called a voltage reflection coefficient. From this, if the voltage reflection coefficient is measured, it is possible to measure the impedance Z looking at the load side. If the level of the transmission wave (traveling wave) is known, it goes without saying that the measurement can be performed only from the level of the reception wave (reflected wave).

【0014】パック詰めされた卵のインピーダンスを測
定する場合、卵殻は無機質、パックは水分を含まないこ
とから誘電率は低いが、卵白,卵黄は誘電率が高いの
で、インピーダンスの主体は実質的には卵白,卵黄とい
うことになる。そこで、予め卵白,卵黄の量とインピー
ダンスとの関係を明確にしておくことにより、被測定体
のインピーダンスから、卵白,卵黄の総和を求めること
が可能となる。なお、パックに封入されている全ての卵
を検査するには、例えばパック内の卵を1つずつX,Y
スキャナ等で走査することにより可能となる。
When measuring the impedance of a packed egg, the eggshell is inorganic and the pack does not contain moisture, so the dielectric constant is low. However, the egg white and yolk have a high dielectric constant, so that the main component of impedance is substantially. Means egg white and egg yolk. Therefore, by previously clarifying the relationship between the amount of egg white and yolk and the impedance, it is possible to obtain the total of egg white and yolk from the impedance of the measured object. In addition, in order to inspect all the eggs enclosed in the pack, for example, the eggs in the pack may be examined one by one in X and Y directions.
It becomes possible by scanning with a scanner or the like.

【0015】図2はこの発明の第2の実施の形態を示す
構成図である。これは、ホーンアンテナより出射された
電磁波は、卵殻内の卵白,卵黄による反射係数で反射さ
れるが、それ以外は透過することを利用したもので、ク
ライストロン1で発振したマイクロ波を送信用導波管1
0に導き、送信用ホーンアンテナ11により空中に伝搬
させ、被測定体である卵4に照射する。マイクロ波は卵
4で一部は反射されるが残りは透過するので、受信用ホ
ーンアンテナ12で受信し、受信用導波管13を介して
透過波ベクトル電圧計14に導くことにより、透過レベ
ルを測定する。また、送信用導波管10の途中に分岐器
15を設け、送信波の一部を送信波ベクトル電圧計7で
測定するようにしている。
FIG. 2 is a configuration diagram showing a second embodiment of the present invention. This is based on the fact that the electromagnetic wave emitted from the horn antenna is reflected by the reflection coefficient of egg white and yolk in the eggshell, but is transmitted otherwise, and the microwave oscillated by the klystron 1 is used for transmission. Wave tube 1
The light is propagated in the air by the transmission horn antenna 11 and is radiated to the egg 4 which is the measured object. Since a part of the microwave is reflected by the egg 4 and the other part is transmitted, the microwave is received by the receiving horn antenna 12 and guided to the transmitted wave vector voltmeter 14 through the receiving waveguide 13, thereby obtaining a transmission level. Is measured. Further, a splitter 15 is provided in the middle of the transmission waveguide 10 so that a part of the transmission wave is measured by the transmission wave vector voltmeter 7.

【0016】いま、透過波をVt 〔・〕とすると、Vt
〔・〕=Vi 〔・〕−Vr 〔・〕となり、進行波と透過
波の振幅,位相を測定すると、反射波の振幅,位相を求
めることができる。そして、進行波と反射波の振幅,位
相が判明すると、先の(6)式で表わされる電圧反射係
数が判明し、(5)式で表わされるインピーダンスZが
求められることになる。これ以降は、図1の場合と全く
同様なので詳細は省略する。
Assuming that the transmitted wave is V t [•], V t
[•] = V i [•] −V r [•]. When the amplitude and phase of the traveling wave and the transmitted wave are measured, the amplitude and phase of the reflected wave can be obtained. When the amplitude and phase of the traveling wave and the reflected wave are determined, the voltage reflection coefficient represented by the above equation (6) is determined, and the impedance Z represented by the equation (5) is obtained. Subsequent steps are exactly the same as those in FIG.

【0017】なお、マイクロ波等の電磁波を使うので卵
の加熱による品質の劣化を来さないよう、卵への電磁波
の照射時間を必要最小限の短時間にし、上記のような問
題が生じないようにすることは勿論である。また、卵パ
ックを搬送する場合の搬送台にも、電磁波を反射,吸収
しにくい材料(例えば、ゴムなど)を利用するなどの配
慮をすることが望ましい。
Since electromagnetic waves such as microwaves are used, the irradiation time of the electromagnetic waves to the eggs is reduced to a necessary minimum time so that the quality is not deteriorated by heating the eggs, and the above-mentioned problems do not occur. It goes without saying that this is the case. In addition, it is desirable to use a material that hardly reflects and absorbs electromagnetic waves (for example, rubber or the like) on the transfer table for transferring the egg pack.

【0018】[0018]

【発明の効果】この発明によれば、電磁波を利用するこ
とにより、パック詰めされた卵を非接触で卵殻内の卵
白,卵黄の総量を確実に測定できるだけでなく、例えば
X,Yスキャナで卵パックを走査することにより、卵の
正規の挿入位置以外で卵白,卵黄が漏れていることなど
の検出も容易となり、信頼性を著しく向上し得る利点が
もたらされる。
According to the present invention, not only the total amount of egg white and yolk in the eggshell can be reliably measured without contacting the packed eggs by using electromagnetic waves, but also the eggs can be measured with an X, Y scanner, for example. By scanning the pack, it is easy to detect the leakage of egg white and yolk at a position other than the regular insertion position of the egg, and there is an advantage that the reliability can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 2 is a configuration diagram showing a first embodiment of the present invention.

【図3】方形導波管の電磁界分布説明図である。FIG. 3 is an explanatory diagram of an electromagnetic field distribution of a rectangular waveguide.

【図4】円形導波管の電磁界分布説明図である。FIG. 4 is an explanatory diagram of an electromagnetic field distribution of a circular waveguide.

【図5】各種ホーンアンテナを示す説明図である。FIG. 5 is an explanatory view showing various horn antennas.

【図6】方向性結合器を示す説明図である。FIG. 6 is an explanatory diagram showing a directional coupler.

【図7】分布定数線路の説明図である。FIG. 7 is an explanatory diagram of a distributed constant line.

【符号の説明】[Explanation of symbols]

1…クライストロン、2,10,13…導波管、3,1
1,12…ホーンアンテナ、4…卵、5…方向性結合
器、6…反射波ベクトル電圧計、7…送信波ベクトル電
圧計、8…主導波管、9…副導波管、14…透過波ベク
トル電圧計、15…分岐器。
1 ... klystron, 2, 10, 13 ... waveguide, 3, 1
1, 12 horn antenna, 4 eggs, 5 directional coupler, 6 reflected vector voltmeter, 7 transmitted vector voltmeter, 8 main waveguide, 9 auxiliary waveguide, 14 transmission Wave vector voltmeter, 15 ... branch device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 卵に電磁波を照射し、卵からの反射電磁
波を受信し、その受信レベルから卵殻内の卵黄,卵白の
総和量を推定することを特徴とする電磁波式卵検査装
置。
1. An electromagnetic wave type egg inspection apparatus which irradiates an egg with electromagnetic waves, receives reflected electromagnetic waves from the eggs, and estimates the total amount of yolk and albumen in the eggshell from the received level.
【請求項2】 卵に電磁波を照射し、卵からの反射電磁
波を受信し、その受信レベルと照射レベルとの比から卵
殻内の卵黄,卵白の総和量を推定することを特徴とする
電磁波式卵検査装置。
2. An electromagnetic wave method comprising irradiating an egg with electromagnetic waves, receiving reflected electromagnetic waves from the eggs, and estimating the total amount of yolk and egg white in the eggshell from a ratio between the received level and the irradiation level. Egg testing device.
【請求項3】 卵に電磁波を照射し、卵からの透過電磁
波を受信し、その受信レベルから卵殻内の卵黄,卵白の
総和量を推定することを特徴とする電磁波式卵検査装
置。
3. An electromagnetic wave type egg inspection apparatus, which irradiates an electromagnetic wave to an egg, receives a transmitted electromagnetic wave from the egg, and estimates the total amount of yolk and egg white in the eggshell from the received level.
【請求項4】 卵に電磁波を照射し、卵からの透過電磁
波を受信し、その受信レベルと照射レベルとの比から卵
殻内の卵黄,卵白の総和量を推定することを特徴とする
電磁波式卵検査装置。
4. An electromagnetic wave method comprising irradiating an electromagnetic wave to an egg, receiving a transmitted electromagnetic wave from the egg, and estimating the total amount of yolk and albumen in the eggshell from a ratio between the received level and the irradiation level. Egg testing device.
JP2000325509A 2000-10-25 2000-10-25 Electromagnetic wave type apparatus for inspecting egg Pending JP2002131243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325509A JP2002131243A (en) 2000-10-25 2000-10-25 Electromagnetic wave type apparatus for inspecting egg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325509A JP2002131243A (en) 2000-10-25 2000-10-25 Electromagnetic wave type apparatus for inspecting egg

Publications (1)

Publication Number Publication Date
JP2002131243A true JP2002131243A (en) 2002-05-09

Family

ID=18802867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325509A Pending JP2002131243A (en) 2000-10-25 2000-10-25 Electromagnetic wave type apparatus for inspecting egg

Country Status (1)

Country Link
JP (1) JP2002131243A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046982A (en) * 2004-08-02 2006-02-16 High Serve:Kk Method and apparatus for detecting freshness of egg by impedance sensing
JP2007113989A (en) * 2005-10-19 2007-05-10 Nagoya Electric Works Co Ltd Characteristic value measuring method, and instrument therefor
KR101174403B1 (en) * 2010-01-28 2012-08-17 한국전기연구원 Spectroscopy Analysis Method and Apparatus for Spectroscopy and Imaging using Waveguide with Antenna
JP2013210279A (en) * 2012-03-30 2013-10-10 Daio Engineering Co Ltd Device and method for inspecting content omission of egg
JP2019017336A (en) * 2017-07-20 2019-02-07 株式会社ナベル Sexual orientation selection device of hatching egg before incubation
JP2020012699A (en) * 2018-07-17 2020-01-23 株式会社ナベル Leak detector of inside of egg pack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046982A (en) * 2004-08-02 2006-02-16 High Serve:Kk Method and apparatus for detecting freshness of egg by impedance sensing
JP4674685B2 (en) * 2004-08-02 2011-04-20 有限会社ハイ・サーブ Chicken egg freshness detection method and apparatus by impedance sensing
JP2007113989A (en) * 2005-10-19 2007-05-10 Nagoya Electric Works Co Ltd Characteristic value measuring method, and instrument therefor
KR101174403B1 (en) * 2010-01-28 2012-08-17 한국전기연구원 Spectroscopy Analysis Method and Apparatus for Spectroscopy and Imaging using Waveguide with Antenna
JP2013210279A (en) * 2012-03-30 2013-10-10 Daio Engineering Co Ltd Device and method for inspecting content omission of egg
JP2019017336A (en) * 2017-07-20 2019-02-07 株式会社ナベル Sexual orientation selection device of hatching egg before incubation
JP2020012699A (en) * 2018-07-17 2020-01-23 株式会社ナベル Leak detector of inside of egg pack

Similar Documents

Publication Publication Date Title
US20230324452A1 (en) Test system
Venkatesh et al. An overview of dielectric properties measuring techniques
Datta et al. Dielectric properties of foods
AU2002304283B2 (en) Apparatus and method for microwave determination of at least one physical parameter of a substance
US6456093B1 (en) Apparatus and method for detection of foreign bodies in products
RU2655824C2 (en) Temperature detection device and heat treatment device
JPH03502000A (en) Temperature monitoring method and device
AU2002304283A1 (en) Apparatus and method for microwave determination of at least one physical parameter of a substance
JP6305444B2 (en) Sensor and method for determining dielectric properties of media
JP2002131243A (en) Electromagnetic wave type apparatus for inspecting egg
JP6620098B2 (en) Nondestructive material characterization waveguide probe
CA2732189A1 (en) Contactless loop probe
US20050057263A1 (en) Using surface microwaves for measuring and determining density and/or moisture content of a material
US20160187402A1 (en) Planar transmission-line permittivity sensor and calibration method for the characterization of liquids, powders and semisolid materials
US7190177B2 (en) Method and apparatus for nondestructive sample inspection
Bakli et al. Quantitative determination of small dielectric and loss tangent contrasts in liquids
JP2016024081A (en) Measuring apparatus
JP3754556B2 (en) Internal quality evaluation apparatus and evaluation method for dielectric material products
US7059765B2 (en) Temperature measuring apparatus and related improvements
Ball et al. Cheese curd permittivity and moisture measurement using a 6-port reflectometer
JP2013064740A (en) Method in processing
Mohamed et al. Non-destructive testing for black heart cavities in potatoes with microwave radiation
JP2000241364A (en) Measuring apparatus for concentration of liquid and control device for concentration for drink filling
Piotrowski et al. Broad-band dielectric probe with a coaxial line-circular waveguide junction
AU7568000A (en) Apparatus and method for detection of foreign bodies in products