JP2002131172A - Method for detecting leakage of gas in pipeline - Google Patents

Method for detecting leakage of gas in pipeline

Info

Publication number
JP2002131172A
JP2002131172A JP2001196996A JP2001196996A JP2002131172A JP 2002131172 A JP2002131172 A JP 2002131172A JP 2001196996 A JP2001196996 A JP 2001196996A JP 2001196996 A JP2001196996 A JP 2001196996A JP 2002131172 A JP2002131172 A JP 2002131172A
Authority
JP
Japan
Prior art keywords
pressure
gas
pipeline
fluctuation
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001196996A
Other languages
Japanese (ja)
Other versions
JP4423459B2 (en
Inventor
Haruhisa Tanaka
晴久 田中
Hideki Kanai
秀樹 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001196996A priority Critical patent/JP4423459B2/en
Publication of JP2002131172A publication Critical patent/JP2002131172A/en
Application granted granted Critical
Publication of JP4423459B2 publication Critical patent/JP4423459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To distinguish the fluctuation of pressure due to the leakage of gas from the fluctuation of pressure occurring during a normal operation period and accurately detect the leakage of gas. SOLUTION: The method for detecting the leakage of gas is composed of a step in which the pressure of fluid in a pipeline is measured within determined time intervals at specified positions of the pipeline, and the start of propagation of the pressure fluctuation is detected, a step in which a plurality of values of pressure are measured during a constant period after detecting the stat of propagation of the pressure fluctuation, and a gradient A of variation of the values of pressure within the constant period is calculated, a step in which a plurality of values of pressure are measured during a period longer than the constant period after detecting the start of propagation of the pressure fluctuation, and a gradient B variation of the values of pressure within the constant period is calculated, a step in which a judgement is carried out whether the ratio A/B between the gradient A and the gradient B is more than a threshold value or not.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、天然ガス等の流
体を輸送するガスパイプラインにおいて、ガスの漏洩を
検知するガス漏洩検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas leak detecting method for detecting a gas leak in a gas pipeline for transporting a fluid such as natural gas.

【0002】[0002]

【従来の技術】パイプラインによって輸送される流体に
は、液体の他に種々のガス等の気体がある。パイプライ
ンで液体を輸送する液体輸送システムにおいては、パイ
プラインの内部圧力を測定することによって、液体の漏
洩を検知する各種の液体漏洩検知装置が開発され、パイ
プラインに設置されている。
2. Description of the Related Art Fluids transported by pipelines include various gases and other gases in addition to liquids. 2. Description of the Related Art In a liquid transport system that transports a liquid through a pipeline, various types of liquid leakage detection devices that detect the leakage of the liquid by measuring the internal pressure of the pipeline have been developed and installed in the pipeline.

【0003】図2は、このような液体輸送システムにお
いて、パイプラインから液体が漏洩した場合に、パイプ
ラインの内部圧力が経時的にどのように変化するかを示
すグラフである。図中aの曲線は漏洩点に最も近い地点
における圧力変動を、bの曲線は漏洩地点からやや離れ
た地点の圧力変動を、cの曲線は漏洩地点から最も離れ
た地点の圧力変動を示している。また、stは液体の漏
洩開始時点を表し、enは液体の漏洩終了時点を表して
いる。
FIG. 2 is a graph showing how the internal pressure of a pipeline changes with time when a liquid leaks from the pipeline in such a liquid transport system. In the figure, the curve a shows the pressure fluctuation at the point closest to the leak point, the curve b shows the pressure fluctuation at a point slightly away from the leak point, and the curve c shows the pressure fluctuation at the point farthest from the leak point. I have. In addition, st represents a liquid leakage start time point, and en represents a liquid leakage end time point.

【0004】図2から分かるように、a地点では漏洩開
始時点stおよび漏洩終了時点enに比較的大きな圧力
変動が生じ、この圧力変動がわずかな時間の遅れと変動
量の減衰をともなって、b地点およびc地点に伝搬され
ている。
As can be seen from FIG. 2, at point a, relatively large pressure fluctuations occur at the leak start time st and the leak end time en, and these pressure fluctuations are accompanied by a slight time delay and the attenuation of the fluctuation amount, and Propagated to point and point c.

【0005】このように、圧力変動の伝搬が広い範囲に
及んでいるので、漏洩地点から離れた地点でも、管内圧
力の経時的な変化を検出することにより、比較的簡単か
つ確実に液体の漏洩は検知できる。
[0005] As described above, since the propagation of pressure fluctuations extends over a wide range, it is possible to relatively easily and reliably leak liquid by detecting a change in pipe pressure over time even at a point distant from the leak point. Can be detected.

【0006】しかしながら、ガスは液体に比べて圧縮性
が大きいため、パイプラインの1点で漏洩が発生しても
管内圧力の変動は小さく、漏洩地点でもガスの漏洩は検
知しにくい上に、圧力変動がパイプラインの上下流に伝
搬する際の圧力変動の減衰率も大きいので、漏洩個所か
ら離れた地点でガスの漏洩を検知しようとしても、圧力
変動が小さすぎて検知はなおさら困難である。
However, since gas is more compressible than liquid, even if a leak occurs at one point in the pipeline, the fluctuation in the pressure inside the pipe is small, and it is difficult to detect gas leakage at the leak point, and the pressure is low. Since the fluctuation rate of the pressure fluctuation when the fluctuation propagates upstream and downstream of the pipeline is large, even if an attempt is made to detect a gas leak at a point distant from the leakage point, the pressure fluctuation is too small and the detection is even more difficult.

【0007】また、パイプラインの操業下で生じている
圧力変動と識別することも困難である。
[0007] It is also difficult to distinguish pressure fluctuations that occur during operation of the pipeline.

【0008】したがって、前述の液体漏洩検知装置をそ
のままガス漏洩検知装置として適用すると、パイプライ
ンの操業時に、ガスの漏洩を見逃すような事態が発生す
る可能性がある。
Therefore, if the above-described liquid leak detecting device is applied as it is to a gas leak detecting device, there is a possibility that a gas leak may be overlooked during the operation of a pipeline.

【0009】このように、液体漏洩検知装置では、検知
できないガスの漏洩を検知する従来の技術としては、特
開昭63−30737号公報に開示されたガスラインの
漏洩検知装置を使用した方法がある(従来技術1)。こ
のガスラインの漏洩検知装置は、ガスラインに付設され
た導圧配管に容量要素と抵抗要素との少なくとも一方を
備え、上記導圧配管の特定箇所間の差圧を検知する差圧
検知手段と、あらかじめ1つ以上のガス漏洩検知アルゴ
リズムが記憶され、前記差圧検知手段からの検知信号を
所定の周期で順次サンプリングし、このサンプリングデ
−タから1つまたは適宜な複数の前記ガス漏洩検知アル
ゴリズムに基づいてガス漏洩に関する相対値デ−タを取
得するガス漏洩デ−タ取得手段と、このガス漏洩デ−タ
取得手段で取得された相対値デ−タを用いて前記ガスラ
インからガスが漏洩しているか否かを判断する判断手段
とを具備しているものである。
As described above, as a conventional technique for detecting a gas leak that cannot be detected by the liquid leak detecting device, a method using a gas line leak detecting device disclosed in Japanese Patent Application Laid-Open No. 63-30737 is disclosed. (Prior Art 1). The gas line leak detection device includes a pressure guiding pipe attached to the gas line, which includes at least one of a capacitance element and a resistance element, and a differential pressure detecting unit that detects a differential pressure between specific locations of the pressure guiding pipe. One or more gas leak detection algorithms are stored in advance, and the detection signals from the differential pressure detecting means are sequentially sampled at a predetermined cycle, and one or a plurality of appropriate gas leak detection algorithms are sampled from the sampling data. Gas leakage data acquiring means for acquiring relative value data relating to gas leakage based on the data, and gas leaking from the gas line using the relative value data acquired by the gas leakage data acquiring means. Judgment means for judging whether or not the operation is performed.

【0010】このガスラインの漏洩検知装置を、図3に
基づいて説明すると、気体が流通するガスパイプライン
21の一定距離離れた2地点AおよびBに、導圧配管2
2および23を付設し、導圧配管22に抵抗要素24お
よび容量要素25を直列に配設し、容量要素25と導圧
配管22とを接続するとともに、導圧配管22の途中
に、ガスパイプラインの圧力と抵抗要素24と容量要素
25を介した圧力との差圧を測定する差圧検出器26が
設けられているものであり、差圧検出器26の出力信号
に基づいて、漏洩検知アルゴリズムによってガスの漏洩
を検知するものである。
The gas line leak detecting device will be described with reference to FIG. 3. At two points A and B at a certain distance from a gas pipeline 21 through which gas flows, a pressure guiding pipe 2 is provided.
2 and 23, a resistance element 24 and a capacity element 25 are arranged in series on the pressure guiding pipe 22, and the capacity element 25 and the pressure guiding pipe 22 are connected. And a differential pressure detector 26 for measuring a differential pressure between the pressure of the pressure sensor and the pressure through the resistance element 24 and the capacitance element 25. A leak detection algorithm is provided based on the output signal of the differential pressure detector 26. This detects gas leakage.

【0011】ガスの漏洩に起因して発生する圧力変動
が、パイプラインの上下流に伝搬する速度は、ほぼ管内
ガスの音速に等しく、約300〜400m/secであ
る。また、図3のA地点とB地点間の距離は、設置され
る位置の敷地面積等との関係から例えば5m程度にな
る。図3のガスラインの漏洩検知装置において、抵抗要
素24および容量要素25がない場合を考えると、漏洩
により発生する圧力先頭波がA地点とB地点の間を通過
するのに要する時間は、前記圧力先頭波の速度および前
記2地点間距離から、約0.012〜0.017sec
となる。
The speed at which the pressure fluctuation generated due to the gas leakage propagates up and down the pipeline is approximately equal to the sound speed of the gas in the pipe, and is about 300 to 400 m / sec. In addition, the distance between the point A and the point B in FIG. 3 is, for example, about 5 m from the relationship with the site area of the installed position. In the gas line leak detection device of FIG. 3, considering the case where the resistance element 24 and the capacitance element 25 are not provided, the time required for the leading pressure wave generated by the leak to pass between the point A and the point B is as described above. From the velocity of the pressure head wave and the distance between the two points, about 0.012 to 0.017 sec.
Becomes

【0012】このような短時間における圧力変動の波形
を捕らえようとする場合、サンプリングのピッチを速く
して仮に圧力変動の波形が捕らえられたとしても、その
波形は図4のグラフに示すように、高周波の応答が瞬時
に終わるパルス状の波形となる。そして、このような波
形を漏洩検知アルゴリズムに通し、移動平均等の統計処
理を施せば、高周波のノイズとともに平均化され、ノイ
ズと識別できなくなってしまう。
When trying to capture the waveform of the pressure fluctuation in such a short time, even if the sampling pitch is increased and the waveform of the pressure fluctuation is captured, the waveform is as shown in the graph of FIG. , A pulse-like waveform that terminates the high-frequency response instantaneously. Then, if such a waveform is passed through a leak detection algorithm and subjected to statistical processing such as moving average, the waveform is averaged together with high-frequency noise and cannot be identified as noise.

【0013】特開昭63−30737に開示されたガス
ラインの漏洩検知装置は、このような問題を解消するた
めになされたものであり、抵抗要素24と容量要素25
を備えることにより、疑似的な一次遅れ要素が構成さ
れ、差圧検出器26により検出される圧力変動の波形
は、図5のグラフに示すように、ステップ状の波形とな
る。
A gas line leak detection device disclosed in Japanese Patent Application Laid-Open No. 63-30737 is provided to solve such a problem, and includes a resistance element 24 and a capacitance element 25.
, A pseudo first-order lag element is formed, and the waveform of the pressure fluctuation detected by the differential pressure detector 26 becomes a step-like waveform as shown in the graph of FIG.

【0014】そして、このような波形であれば、ガス漏
洩検知アルゴリズムにおいて移動平均等の統計処理を施
しても、圧力変動が到達する以前における統計処理後の
信号値と、圧力変動が到達した後における統計処理後の
信号値との間の有意差が見つけやすくなり、小さな圧力
変動でも検知が可能となるというものである。
With such a waveform, even if statistical processing such as moving average is performed in the gas leak detection algorithm, the signal value after the statistical processing before the pressure fluctuation reaches and the signal value after the pressure fluctuation reaches , It is easy to find a significant difference from the signal value after the statistical processing, and it is possible to detect even a small pressure fluctuation.

【0015】また、他のガスの漏洩を検知する従来の技
術としては、特開平6−129941号公報に開示され
た技術(従来技術2)がある。この技術に基づく圧力先
頭波の到達時刻を検出する方法は、パイプライン中の流
体圧力変動を発生させる事象に起因して前記流体を媒体
として伝搬する圧力先頭波の到達時刻を検出する方法に
おいて、前記パイプライン中の流体圧力に関係する特性
値を測定する工程と、この測定された特性値を電気信号
に変換する工程と、所定時間にわたる前記電気信号を記
憶保持する工程と、この記憶保持された所定時間の電気
信号から統計的手法を用いて前記圧力先頭波の到達時刻
を決定する工程とを備えた圧力先頭波の到達時刻検出方
法である。
As another conventional technique for detecting the leakage of gas, there is a technique (prior art 2) disclosed in Japanese Patent Application Laid-Open No. H6-129941. A method for detecting the arrival time of a pressure front wave based on this technology is a method for detecting the arrival time of a pressure front wave that propagates as a medium with the fluid due to an event that causes a fluid pressure fluctuation in a pipeline, Measuring a characteristic value related to the fluid pressure in the pipeline; converting the measured characteristic value to an electrical signal; storing and retaining the electrical signal over a predetermined time; Determining the arrival time of the leading pressure wave from the electrical signal for a predetermined time by using a statistical method, the arrival time of the leading pressure wave.

【0016】そして、このような圧力先頭波(圧力変
動)の到達時刻を、パイプラインの離間した2ヶ所に設
けた圧力検出器により検出し、その時間差によりガス漏
洩等の事象の発生位置を推定するものである。
The arrival time of such a pressure head wave (pressure fluctuation) is detected by pressure detectors provided at two places separated from each other in the pipeline, and the occurrence position of an event such as gas leakage is estimated based on the time difference. Is what you do.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、上述し
た従来のパイプラインのガス漏洩を検知する方法には、
次のような問題点がある。従来技術1および従来技術2
とも、パイプライン中の流体の流動変動に起因する圧力
変動を捕捉することは可能であるが、ガスの漏洩に起因
する圧力変動と、通常操業時に行われる減圧弁操作等に
より発生する圧力変動とを区別することは困難である。
However, the above-mentioned conventional methods for detecting gas leaks in pipelines include the following:
There are the following problems. Prior art 1 and prior art 2
In both cases, it is possible to capture the pressure fluctuation caused by the flow fluctuation of the fluid in the pipeline, but the pressure fluctuation caused by the gas leakage and the pressure fluctuation generated by the pressure reducing valve operation etc. performed during normal operation Is difficult to distinguish.

【0018】ガスの漏洩に起因した圧力変動が、差圧検
出器の設置個所に到達したときの圧力変動の波形は、図
6のグラフに示すように、圧力が短時間で急激に低下し
た後、徐々に一定圧力まで回復するような波形となる
が、減圧弁操作等により発生した圧力変動の波形は、図
7に示すように、圧力が時間とともになだらかに降下す
る波形となる。
The waveform of the pressure fluctuation when the pressure fluctuation due to the gas leakage reaches the place where the differential pressure detector is installed, as shown in the graph of FIG. Although the waveform gradually recovers to a constant pressure, the waveform of the pressure fluctuation generated by the operation of the pressure reducing valve or the like is a waveform in which the pressure gradually decreases with time as shown in FIG.

【0019】そして、上述した従来技術では、一定時間
間隔で差圧信号をサンプリングし、得られた差圧値群か
ら算出される近似直線の傾きの変動を監視し、その変動
量がある閾値を超えたときに漏洩したと判断する方法で
あるので、図6の波形の場合も、図7の波形の場合も、
近似直線の傾きは同じようなものになってしまい、ガス
の漏洩に起因する圧力変動と、通常操業時発生する圧力
変動とを区別することは困難である。
In the above-mentioned prior art, the differential pressure signal is sampled at regular time intervals, and the variation of the slope of the approximate straight line calculated from the obtained differential pressure value group is monitored. Since it is a method of judging that the leakage has occurred when exceeding, the waveform of FIG. 6 and the waveform of FIG.
The slope of the approximate straight line becomes similar, and it is difficult to distinguish between pressure fluctuation caused by gas leakage and pressure fluctuation generated during normal operation.

【0020】この発明は、従来技術の上述のような問題
点を解消するためになされたものであり、ガスの漏洩に
起因する圧力変動と、通常操業時発生する圧力変動とを
区別することができるので、ガスの漏洩が正確に検知で
きるパイプラインにおけるガス漏洩検知方法を提供する
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and is capable of distinguishing between pressure fluctuations caused by gas leakage and pressure fluctuations generated during normal operation. Therefore, an object of the present invention is to provide a method for detecting gas leakage in a pipeline that can accurately detect gas leakage.

【0021】[0021]

【課題を解決するための手段】この発明に係るパイプラ
インにおけるガス漏洩検知方法は、パイプラインの特定
箇所において、パイプライン中の流体の圧力を所定時間
毎に測定して、圧力変動の伝搬の開始を検知する工程
と、前記圧力変動の伝搬の開始が検知された時点以降の
一定時間内に測定される複数の圧力値から、その時間内
における圧力値変化の勾配Aを求める工程と、圧力変動
の伝搬の開始が検知された時点以降の一定時間内よりも
長い時間内において測定される複数の圧力値から、その
時間内における圧力値変化の勾配Bを求める工程と、勾
配Aと勾配Bとの比A/Bが閾値を超えているか否かを
判定する工程とにより、ガス漏洩を検知するものであ
る。
SUMMARY OF THE INVENTION A gas leak detecting method for a pipeline according to the present invention measures the pressure of a fluid in the pipeline at a specific location of the pipeline at predetermined time intervals, and measures the propagation of pressure fluctuation. Detecting a start, and determining a gradient A of a pressure value change within the time from a plurality of pressure values measured within a certain time after the start of the propagation of the pressure fluctuation is detected; Obtaining a gradient B of a pressure value change within the time from a plurality of pressure values measured within a certain period of time after the start of the fluctuation propagation is detected, and a gradient A and a gradient B; And determining whether or not the ratio A / B exceeds a threshold value, thereby detecting gas leakage.

【0022】また、前記圧力変動の伝搬の開始を検知す
る工程が、一定時間内における圧力の平均値を求める工
程と、この平均値と最新の測定された圧力値との差の絶
対値が閾値を超えているか否かを判定する工程とからな
るものである。
Further, the step of detecting the start of the propagation of the pressure fluctuation includes the step of obtaining an average value of the pressure within a predetermined time, and the step of determining the absolute value of the difference between the average value and the latest measured pressure value as a threshold value. And a step of determining whether or not the number exceeds the threshold.

【0023】この発明に係るパイプラインにおけるガス
漏洩検知方法においては、圧力変動の伝搬の開始を検知
し、圧力変動の開始時点近傍の一定時間内の圧力値の変
化の勾配と、この一定の時間よりも長い時間帯における
圧力値の変化の勾配の比に基づいて、ガス漏洩の有無の
判定をしているので、ガス漏洩に基づく圧力変動と減圧
弁の操作等操業上の要因に基づく圧力変動との識別が可
能であり、パイプラインにおけるガス漏洩を正確に把握
することができる。
In the method for detecting gas leakage in a pipeline according to the present invention, the start of propagation of pressure fluctuation is detected, and the gradient of a change in pressure value within a certain period of time near the start point of the pressure fluctuation is determined. Since the presence or absence of gas leakage is determined based on the ratio of the gradient of the pressure value change over a longer period of time, pressure fluctuation based on gas leakage and pressure fluctuation based on operational factors such as operation of the pressure reducing valve And gas leakage in the pipeline can be accurately grasped.

【0024】[0024]

【発明の実施の形態】この発明の実施の形態を、図面を
参照して説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0025】図1は本発明のパイプラインのガス漏洩検
知方法の実施の形態を説明するためのガス漏洩検知系統
図である。ガスパイプライン1には、ガス漏洩点2の下
流側に導圧配管3が付設されている。この導圧配管3は
途中で分岐管4と分岐管5に分岐され、分岐管4には抵
抗要素6と容量要素7(抵抗要素6と容量要素7とを合
わせて機械的圧力整形要素という)とがこの順に設けら
れている。そして、分岐管5には、分岐管5を通して導
かれるパイプライン1の導圧配管3が付設されている地
点Aの圧力と、分岐管4により抵抗要素6と容量要素7
を通して導かれる圧力との差圧を検知する差圧検知器8
が設けられている。
FIG. 1 is a gas leak detection system diagram for explaining an embodiment of a gas leak detection method for a pipeline according to the present invention. The gas pipeline 1 is provided with a pressure guiding pipe 3 downstream of the gas leak point 2. The pressure guiding pipe 3 is branched into a branch pipe 4 and a branch pipe 5 on the way, and the branch pipe 4 has a resistance element 6 and a capacitance element 7 (the resistance element 6 and the capacitance element 7 are referred to as a mechanical pressure shaping element). Are provided in this order. The branch pipe 5 has a resistance element 6 and a capacitance element 7 that are connected to the pressure at a point A where the pressure guiding pipe 3 of the pipeline 1 that is guided through the branch pipe 5 is attached.
Pressure detector 8 for detecting the differential pressure with the pressure guided through
Is provided.

【0026】差圧検知器8には、フィルタ機能を備えた
増幅回路9が接続されており、この増幅回路9におい
て、差圧検知器8により検知された差圧信号の中の高周
波のノイズ成分が除去される。
An amplifier circuit 9 having a filter function is connected to the differential pressure detector 8. In the amplifier circuit 9, a high-frequency noise component in the differential pressure signal detected by the differential pressure detector 8 is detected. Is removed.

【0027】増幅回路9には、電気的波形整形要素10
が接続されており、この電気的波形整形要素10には、
ある程度低周波の波形の信号をステップ状の波形に変換
する電気回路が組み込まれている。
The amplifying circuit 9 includes an electric waveform shaping element 10
Is connected to the electric waveform shaping element 10.
An electric circuit for converting a signal of a low frequency waveform into a step-like waveform is incorporated.

【0028】また、電気的波形整形要素10には、電気
的波形整形要素10からのアナログ信号をデジタル信号
に変換するA/D変換回路11が接続され、A/D変換
回路11にはA/D変換回路11からのデジタル信号を
サンプリングするとともに、本発明のパイプラインのガ
ス漏洩検知方法に基づくガス漏洩検知用の数値演算アル
ゴリズムにより、ガス漏洩を判断するコンピュ−タ12
が接続されている。
The electrical waveform shaping element 10 is connected to an A / D conversion circuit 11 for converting an analog signal from the electrical waveform shaping element 10 into a digital signal. A computer 12 which samples a digital signal from the D conversion circuit 11 and judges a gas leak by a numerical operation algorithm for gas leak detection based on the gas leak detecting method for a pipeline according to the present invention.
Is connected.

【0029】このガス漏洩検知用の数値演算アルゴリズ
ムは、圧力変動の伝搬の開始を検知することを目的とす
る部分と、検知した圧力変動がガスの漏洩により発生し
たものか、減圧弁操作等により発生したものかを波形の
形状から判断する部分の2段階からなり、この2段階の
判定基準により、ガスの漏洩による圧力変動を検知する
ものである。
The numerical calculation algorithm for detecting gas leakage includes a part for detecting the start of propagation of pressure fluctuation and a part for detecting whether the detected pressure fluctuation is caused by gas leakage, or by operating a pressure reducing valve. It consists of two steps of judging from the shape of the waveform whether it has occurred, and the pressure fluctuation due to gas leakage is detected based on the two-step criterion.

【0030】まず、圧力変動の伝搬の開始は、下記
(1)式に基づいて判定する。
First, the start of pressure fluctuation propagation is determined based on the following equation (1).

【0031】[0031]

【数1】 (Equation 1)

【0032】上記(1)式の意味は次のとおりである。The meaning of the above equation (1) is as follows.

【0033】すなわち、n回前からの差圧検知信号のサ
ンプリングデ−タの平均値、言い換えれば差圧検知信号
のサンプリングデ−タの移動平均値と、最新の差圧検知
信号のサンプリングデ−タとの比較を行い、その結果両
者の差が閾値Cを超えれば圧力変動が発生したと判断す
ることになる。なお、サンプリング間隔は一定とする。
That is, the average value of the sampling data of the differential pressure detection signal from the nth previous time, in other words, the moving average value of the sampling data of the differential pressure detection signal, and the sampling data of the latest differential pressure detection signal If the difference between the two exceeds the threshold value C, it is determined that pressure fluctuation has occurred. The sampling interval is constant.

【0034】次に、(1)式の左辺の値が閾値Cを超え
た場合には、それがガスの漏洩によるものか否かを次の
(2)〜(4)式に基づき判定する。
Next, when the value on the left side of the equation (1) exceeds the threshold value C, it is determined based on the following equations (2) to (4) whether or not the value is caused by gas leakage.

【0035】[0035]

【数2】 (Equation 2)

【0036】[0036]

【数3】 (Equation 3)

【0037】[0037]

【数4】 (Equation 4)

【0038】なお、(2)式のAは検出したステップ状
の圧力変動の波形において、圧力変動の検知開始(サン
プリングデ−タの移動平均値と、最新のデ−タとの差が
閾値Cを超えた時点)から、検知終了(サンプリングデ
−タの移動平均値と、最新のデ−タとの差が閾値C以下
の一定値に戻った時点)までの時間帯における連続した
m個のサンプリング点の中の、任意の連続したk個のサ
ンプリング点に基づいた傾きの最大値を示し、波形の局
所傾斜の最大値を示すものである。(3)式のBはm個
のサンプリング点による傾きの最大値を示し、波形の全
体傾斜の最大値を示している。
In equation (2), A indicates the start of pressure fluctuation detection (the difference between the moving average value of sampling data and the latest data is the threshold C in the detected step-like pressure fluctuation waveform). M) until the end of detection (when the difference between the moving average value of the sampling data and the latest data returns to a constant value equal to or less than the threshold value C). It shows the maximum value of the slope based on arbitrary continuous k sampling points among the sampling points, and shows the maximum value of the local slope of the waveform. B in equation (3) indicates the maximum value of the slope at m sampling points, and indicates the maximum value of the entire slope of the waveform.

【0039】今、局所傾斜を算出するためのサンプリン
グ数を5点、全体傾斜を算出するためのサンプリング数
を125点とした場合、減圧弁操作等により発生する圧
力変動の波形は、前記図7で示したようになだらかに傾
斜した波形となるので、AおよびBは同じような傾きと
なる。一方、ガス漏洩による圧力変動の波形は、前記図
6で示したように局部的に大きく傾斜した波形となるの
で、AはBに比較して大きな傾きとなる。
If the number of samplings for calculating the local inclination is 5 points and the number of samplings for calculating the overall inclination is 125 points, the waveform of the pressure fluctuation generated by the operation of the pressure reducing valve or the like is as shown in FIG. Since the waveform has a gentle slope as shown by, A and B have similar slopes. On the other hand, since the waveform of the pressure fluctuation due to the gas leakage has a locally greatly inclined waveform as shown in FIG. 6, A has a larger inclination than B.

【0040】したがって、(4)式に示すA/Bの値
は、減圧弁操作等による場合は小さく、ガス漏洩による
場合は大きくなるので、閾値C′を適正に設定すること
で、パイプラインにおけるガスの漏洩を検知することが
可能となる。
Accordingly, the value of A / B shown in the equation (4) is small when the pressure reducing valve is operated or the like and is large when the gas is leaked. Gas leakage can be detected.

【0041】この発明の実施の形態の説明では、圧力変
動の伝搬の開始を検知する工程として、一定時間内にお
ける複数の圧力値の平均値と、最新の測定された圧力値
との差の絶対値が閾値を超えているか否かを判定する工
程を例にとって述べたが、圧力変動の伝搬の開始を検知
する工程として、移動平均等の統計処理を施す工程や、
一定時間間隔で差圧信号をサンプリングし、得られた差
圧値群から算出される近似直線の傾きの変動を監視し、
その変動量がある閾値を超えているか否かを判定する工
程でもよいし、他の方法を適用してもよい。
In the description of the embodiment of the present invention, as a step of detecting the start of the propagation of the pressure fluctuation, the absolute value of the difference between the average value of a plurality of pressure values within a fixed time and the latest measured pressure value is used. Although the step of determining whether the value exceeds the threshold has been described as an example, as a step of detecting the start of propagation of pressure fluctuation, a step of performing statistical processing such as a moving average,
The differential pressure signal is sampled at regular time intervals, and the variation of the slope of the approximate straight line calculated from the obtained differential pressure value group is monitored,
It may be a step of determining whether or not the variation exceeds a certain threshold, or another method may be applied.

【0042】[0042]

【発明の効果】この発明により、圧力変動の発生が操業
に起因するものか、ガス漏洩に起因するものかが識別で
きるので、パイプラインにおけるガスの漏洩を正確に検
知することができる。
According to the present invention, it is possible to discriminate whether the pressure fluctuation is caused by the operation or the gas leak, so that the gas leak in the pipeline can be accurately detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のパイプラインのガス漏洩検知方法の実
施の形態を説明するためのガス漏洩検知系統図である。
FIG. 1 is a gas leak detection system diagram for explaining an embodiment of a pipeline gas leak detection method of the present invention.

【図2】液体輸送システムにおいて、パイプラインから
液体が漏洩した場合に、パイプラインの内部圧力が経時
的にどのように変化するかを示すグラフである。
FIG. 2 is a graph showing how the internal pressure of the pipeline changes over time when a liquid leaks from the pipeline in the liquid transport system.

【図3】従来のガスラインの漏洩検知装置の説明図であ
る。
FIG. 3 is an explanatory view of a conventional gas line leak detection device.

【図4】従来のガスラインの漏洩検知装置に抵抗要素や
容量要素が設置されていない場合に検知される圧力変動
の波形のグラフである。
FIG. 4 is a graph of a pressure fluctuation waveform detected when a resistance element or a capacitance element is not installed in a conventional gas line leak detection device.

【図5】図3に示す従来のガスラインの漏洩検知装置に
より検知される圧力変動の波形のグラフである。
FIG. 5 is a graph of a waveform of a pressure fluctuation detected by the conventional gas line leak detection device shown in FIG.

【図6】ガスの漏洩に起因した圧力変動の波形のグラフ
である。
FIG. 6 is a graph of a waveform of pressure fluctuation caused by gas leakage.

【図7】減圧弁操作等により発生した圧力変動の波形の
グラフである。
FIG. 7 is a graph of a pressure fluctuation waveform generated by operating a pressure reducing valve or the like.

【符号の説明】[Explanation of symbols]

1 ガスパイプライン 2 ガス漏洩点 3 導圧配管 4、5 分岐管 6 抵抗要素 7 容量要素 8 差圧検知器 9 増幅回路 10 電気的波形整形要素 11 A/D変換回路 12 コンピュ−タ REFERENCE SIGNS LIST 1 gas pipeline 2 gas leak point 3 pressure guiding pipe 4, 5 branch pipe 6 resistance element 7 capacitance element 8 differential pressure detector 9 amplifier circuit 10 electrical waveform shaping element 11 A / D conversion circuit 12 computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金井 秀樹 東京都港区海岸1−5−20 東京ガス株式 会社内 Fターム(参考) 2F030 CA04 CB02 CC13 CE02 2G067 AA11 BB11 CC04 DD02 EE05 3J071 AA02 BB11 EE19 EE24 EE37 FF01  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hideki Kanai Tokyo Gas Co., Ltd. F-20 terms 1-5-20, Minato-ku, Tokyo 2F030 CA04 CB02 CC13 CE02 2G067 AA11 BB11 CC04 DD02 EE05 3J071 AA02 BB11 EE19 EE24 EE37 FF01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パイプラインの特定箇所において、パイ
プライン中の流体の圧力を所定時間毎に測定して、圧力
変動の伝搬の開始を検知する工程と、前記圧力変動の伝
搬の開始が検知された時点以降の一定時間内に測定され
る複数の圧力値から、その時間内における圧力値変化の
勾配Aを求める工程と、圧力変動の伝搬の開始が検知さ
れた時点以降の一定時間内よりも長い時間内において測
定される複数の圧力値から、その時間内における圧力値
変化の勾配Bを求める工程と、勾配Aと勾配Bとの比A
/Bが閾値を超えているか否かを判定する工程とによ
り、ガス漏洩を検知することを特徴とするパイプライン
におけるガス漏洩検知方法。
At a specific point in a pipeline, a pressure of a fluid in the pipeline is measured at predetermined time intervals to detect a start of propagation of the pressure fluctuation, and a start of the propagation of the pressure fluctuation is detected. From a plurality of pressure values measured within a certain time after the time, a step of obtaining a gradient A of the pressure value change within the time, and a step of obtaining a gradient A of the pressure change within the certain time after the start of the propagation of the pressure fluctuation is detected. Obtaining a gradient B of a pressure value change in the time from a plurality of pressure values measured in a long time, and a ratio A between the gradient A and the gradient B;
Determining whether or not / B is greater than a threshold value by detecting gas leakage in the pipeline.
【請求項2】 前記圧力変動の伝搬の開始を検知する工
程が、一定時間内における圧力の平均値を求める工程
と、この平均値と最新の測定された圧力値との差の絶対
値が閾値を超えているか否かを判定する工程とからなる
ものであることを特徴とする請求項1に記載のパイプラ
インにおけるガス漏洩検知方法。
2. The method according to claim 1, wherein the step of detecting the start of the propagation of the pressure fluctuation includes the step of obtaining an average value of the pressure within a predetermined time, and the step of detecting an absolute value of a difference between the average value and the latest measured pressure value. 2. A method for detecting gas leakage in a pipeline according to claim 1, further comprising a step of determining whether or not the gas leakage exceeds the threshold value.
JP2001196996A 2000-08-15 2001-06-28 Gas leak detection method in pipeline Expired - Lifetime JP4423459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196996A JP4423459B2 (en) 2000-08-15 2001-06-28 Gas leak detection method in pipeline

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-246285 2000-08-15
JP2000246285 2000-08-15
JP2001196996A JP4423459B2 (en) 2000-08-15 2001-06-28 Gas leak detection method in pipeline

Publications (2)

Publication Number Publication Date
JP2002131172A true JP2002131172A (en) 2002-05-09
JP4423459B2 JP4423459B2 (en) 2010-03-03

Family

ID=26597974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196996A Expired - Lifetime JP4423459B2 (en) 2000-08-15 2001-06-28 Gas leak detection method in pipeline

Country Status (1)

Country Link
JP (1) JP4423459B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250613A (en) * 2005-03-09 2006-09-21 Toho Gas Co Ltd Method of processing damage evaluation data of coated steel pipe and device for monitoring damage thereof
KR101620262B1 (en) * 2015-01-29 2016-05-12 한국가스공사 Leak Testing Apparatus of Ball valve for Natural Gas
KR20180000181U (en) * 2016-07-07 2018-01-17 주식회사 한국가스기술공사 Leak Testing Apparatus using pressure-difference of Ball valve
CN109341976A (en) * 2018-10-12 2019-02-15 安徽育安实验室装备有限公司 A kind of experimental enviroment gas leak detection method
CN109469834A (en) * 2018-12-07 2019-03-15 中国石油大学(北京) A kind of fluid pipeline leakage detection method, apparatus and system
CN110594595A (en) * 2019-10-18 2019-12-20 安徽世纪科技咨询服务有限公司 Pipeline gas leakage prevention monitoring device for natural gas conveying pipeline
CN111207306A (en) * 2020-03-09 2020-05-29 合肥泽众城市智能科技有限公司 Heating power pipe network leakage monitoring method based on digital pressure signal processing
CN111853553A (en) * 2020-07-30 2020-10-30 中冶赛迪重庆信息技术有限公司 Method and system for detecting fault of fluid pipeline

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250613A (en) * 2005-03-09 2006-09-21 Toho Gas Co Ltd Method of processing damage evaluation data of coated steel pipe and device for monitoring damage thereof
JP4606207B2 (en) * 2005-03-09 2011-01-05 東邦瓦斯株式会社 Damage evaluation data processing method and damage monitoring device for coated steel pipe
KR101620262B1 (en) * 2015-01-29 2016-05-12 한국가스공사 Leak Testing Apparatus of Ball valve for Natural Gas
KR20180000181U (en) * 2016-07-07 2018-01-17 주식회사 한국가스기술공사 Leak Testing Apparatus using pressure-difference of Ball valve
CN109341976A (en) * 2018-10-12 2019-02-15 安徽育安实验室装备有限公司 A kind of experimental enviroment gas leak detection method
CN109341976B (en) * 2018-10-12 2023-06-23 安徽育安实验室装备有限公司 Method for detecting leakage of gas in test environment
CN109469834A (en) * 2018-12-07 2019-03-15 中国石油大学(北京) A kind of fluid pipeline leakage detection method, apparatus and system
CN110594595A (en) * 2019-10-18 2019-12-20 安徽世纪科技咨询服务有限公司 Pipeline gas leakage prevention monitoring device for natural gas conveying pipeline
CN111207306A (en) * 2020-03-09 2020-05-29 合肥泽众城市智能科技有限公司 Heating power pipe network leakage monitoring method based on digital pressure signal processing
CN111207306B (en) * 2020-03-09 2021-11-26 合肥泽众城市智能科技有限公司 Heating power pipe network leakage monitoring method based on digital pressure signal processing
CN111853553A (en) * 2020-07-30 2020-10-30 中冶赛迪重庆信息技术有限公司 Method and system for detecting fault of fluid pipeline

Also Published As

Publication number Publication date
JP4423459B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US6668619B2 (en) Pattern matching for real time leak detection and location in pipelines
Silva et al. Pressure wave behaviour and leak detection in pipelines
Liou Pipeline leak detection by impulse response extraction
JP2560978B2 (en) Pipeline monitoring method and its monitoring device
US7908095B2 (en) Detecting damage in metal structures with structural health monitoring systems
CN101246467B (en) Leakage locating method combining self-adapting threshold value leak detection and multi-dimension fast delay time search
CN101016975A (en) On-line testing method for gas oil pipe leakage based on orienting suction wave identification technology
Rajtar et al. Pipeline leak detection system for oil and gas flowlines
JP3344742B2 (en) Method and apparatus for detecting fluid leaks from tubes
CN107869654B (en) Oil-gas pipeline pipe burst detection positioning method
CN101208589A (en) Diagnostic equipment for process control system
EP2510320B1 (en) Monitoring fluid flow in a conduit
JP7052869B2 (en) Leakage investigation equipment, leak investigation methods, and programs
JP2002131172A (en) Method for detecting leakage of gas in pipeline
Zhang et al. Development of pipeline leak detection technologies
Ahmad et al. Industrial fluid pipeline leak detection and localization based on a multiscale Mann-Whitney test and acoustic emission event tracking
WO2014169965A1 (en) Method for evaluating acoustic sensor data in a fluid carrying network and evaluation unit
Gong et al. Distributed deterioration detection and location in single pipes using the impulse response function
KR20220105039A (en) Apparatus And Method For Remotely Detecting Pipe Leakage In A Non-contact and Non-destructive Manner Through Ultrasonic Sound
JP3141708B2 (en) Gas pipeline leak detector
JP2765456B2 (en) Pipeline leak detection method
Liou Physical basis of software-based leak detection methods
Lin et al. A novel approach for dynamic pressure transducer based pipeline leak detection
CN116592290A (en) Pipeline leakage detection method, system, storage medium and electronic equipment
Liou Pipeline integrity monitoring using system impulse response

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091119

R150 Certificate of patent or registration of utility model

Ref document number: 4423459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

EXPY Cancellation because of completion of term