JP2002131019A - Measuring method of micro dimension - Google Patents

Measuring method of micro dimension

Info

Publication number
JP2002131019A
JP2002131019A JP2000326485A JP2000326485A JP2002131019A JP 2002131019 A JP2002131019 A JP 2002131019A JP 2000326485 A JP2000326485 A JP 2000326485A JP 2000326485 A JP2000326485 A JP 2000326485A JP 2002131019 A JP2002131019 A JP 2002131019A
Authority
JP
Japan
Prior art keywords
measured
dimension
rpy
measurement
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000326485A
Other languages
Japanese (ja)
Other versions
JP4719348B2 (en
Inventor
Shogo Kosuge
正吾 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2000326485A priority Critical patent/JP4719348B2/en
Publication of JP2002131019A publication Critical patent/JP2002131019A/en
Application granted granted Critical
Publication of JP4719348B2 publication Critical patent/JP4719348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a measuring time with calibrating a dimension measured value responding to two-dimensional distortion in a measured screen, without fluctuations of the value owing to a measuring position in the screen and without slight adjustment by a XY stage mechanism. SOLUTION: In a measuring instrument of micro dimension to image a measured object by using an optical microscope and a two-dimensional sensor, to extract signal positions of the two points matching to a predetermined brightness level from the obtained video signal and to calculate and measure dimensions of the object based on the position difference information between the two points, a measured position difference information Nab is multiplied by a factor k determined from a measuring scaling factor of the microscope and a distance to the object, when acquiring a dimension W of the responded measured object, the measured dimension W is acquired with linearity calibration by setting W=k×D(Xn, Ym)/rPy responding to a two-dimensional distortion ratio rPy at the measured screen position D (Xn, Ym).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、TVカメラ等の二
次元センサを用いて非接触で対象物の寸法を測定する装
置のリニアリティ校正方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating the linearity of an apparatus for measuring the size of an object without contact using a two-dimensional sensor such as a TV camera.

【0002】[0002]

【従来の技術】従来の基本的な寸法測定装置の構成(例
えば、特公平6−103168号公報)としては、図2
に示すように、光学顕微鏡1で投影された被写体(被測
定物)2の空間像をTVカメラ3で撮像し、寸法測定演
算処理装置4’で所望部分の寸法を測定し、TVモニタ
5に被測定物2の画像と寸法測定値を表示するものがあ
る。ここで、図3(a)に示すようにTVカメラ3の撮
像した被測定物2のモニタ画像5’における1水平走査
線Li上の輝度分布は、走査線Liに対応する映像信号
をN分解した各画素位置とそれぞれの輝度により、図3
(b)の輝度―画素特性が得られる。従来の処理方法と
しては、この特性より、以下のようにして寸法を測定め
る。図3において、輝度分布における最大輝度レベル5
1を100%とし、最小輝度レベル52を0%とし、5
0%の輝度レベル53に相当するa番目の画素とb番目
の画素間の位置差Nabを求めて、この位置差Nab
に、この時の顕微鏡1の測定倍率とTVカメラ3から被
測定物2までの被写体距離により決まる係数kを乗じ、
対応する被測定物2の寸法値Wを求める。 W=k×
Nab
2. Description of the Related Art The configuration of a conventional basic dimension measuring device (for example, Japanese Patent Publication No. 6-103168) is shown in FIG.
As shown in (1), a spatial image of a subject (object to be measured) 2 projected by an optical microscope 1 is captured by a TV camera 3, and a dimension of a desired portion is measured by a dimension measurement arithmetic processing unit 4 ′. Some display the image of the device under test 2 and the dimension measurement values. Here, as shown in FIG. 3A, the luminance distribution on one horizontal scanning line Li in the monitor image 5 'of the device under test 2 imaged by the TV camera 3 is obtained by dividing the video signal corresponding to the scanning line Li by N decomposition. FIG. 3 shows the relationship between each pixel position and each luminance.
The luminance-pixel characteristics of (b) are obtained. As a conventional processing method, the dimension can be measured from this characteristic as follows. In FIG. 3, the maximum luminance level 5 in the luminance distribution
1 is set to 100%, the minimum luminance level 52 is set to 0%, and 5
The position difference Nab between the a-th pixel and the b-th pixel corresponding to the 0% luminance level 53 is obtained, and this position difference Nab is calculated.
Is multiplied by a coefficient k determined by the measurement magnification of the microscope 1 at this time and the subject distance from the TV camera 3 to the device under test 2.
The corresponding dimension value W of the device under test 2 is determined. W = k ×
Nab

【0003】[0003]

【発明が解決しようとする課題】このように従来技術で
は、画面内のどの場所で測定しても係数kは同一であ
り、光学系の歪みとセンサの歪みを考慮しておらず、画
面内の測定箇所により測定値が0.5%程度変動する。
例えば、図3(a)の被測定物2を、図3(c)に示す
様に、画面内の9箇所で測定した場合に、下記の表1の
ように寸法値が変動する。
As described above, in the prior art, the coefficient k is the same no matter where the measurement is made on the screen, and the distortion of the optical system and the distortion of the sensor are not taken into account. The measured value fluctuates by about 0.5% depending on the measurement location.
For example, when the DUT 2 shown in FIG. 3A is measured at nine locations on the screen as shown in FIG. 3C, the dimension values fluctuate as shown in Table 1 below.

【0004】[0004]

【表1】 このために、画面内の同一箇所で測定するように、XY
ステージで被測定物2を微調整したあとで測定してお
り、高精度のXYステージ機構にて被測定物2を微調整
する必要があり、構成が複雑化し、測定時間もかかるこ
とになる。本発明はこれらの欠点を除去し、測定画面内
の二次元歪みに応じて、寸法測定値を校正して、画面内
の測定箇所による測定値の変動をなくし、XYステージ
機構による微調整を不要とし、測定時間の短縮を図るこ
とを目的とする。
[Table 1] For this reason, XY measurement is performed so that measurement is performed at the same location in the screen.
The measurement is performed after the object to be measured 2 is finely adjusted on the stage, and the object to be measured 2 needs to be finely adjusted by a high-precision XY stage mechanism, which complicates the configuration and requires a long measurement time. The present invention eliminates these drawbacks, calibrates the dimension measurement values according to the two-dimensional distortion in the measurement screen, eliminates fluctuations in the measurement values due to measurement points in the screen, and does not require fine adjustment by the XY stage mechanism. It is intended to shorten the measurement time.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成するために、光学顕微鏡と二次元センサを用いて被測
定物を撮像し、得られた映像信号から所定の輝度レベル
に一致する2点の信号位置を抽出し、この2点間の位置
差情報に基づき上記被測定物の寸法を算出測定する微小
寸法測定装置において、測定した位置差情報Nabに、
この時の上記光学顕微鏡の測定倍率と被写体距離により
決まる係数kを乗じ、対応する被測定物の寸法Wを求め
る際、測定した画面位置D(Xn,Ym)における二次元
歪み比率rPyに応じ、上記測定した寸法Wを、W=k
×D(Xn,Ym)/rPy としてリニアリティ校正し
求めるようにしたものである。この様に、測定画面内の
二次元歪みを測定しておき、この二次元歪みに応じ、測
定値を校正する方法で、画面内の測定箇所により測定値
が0.5%程度変動する欠点を解決することができる。
According to the present invention, in order to achieve the above object, an object to be measured is imaged using an optical microscope and a two-dimensional sensor, and a predetermined luminance level is obtained from an obtained video signal. In a minute dimension measuring apparatus that extracts two signal positions and calculates and measures the dimensions of the object to be measured based on the positional difference information between the two points, the measured positional difference information Nab includes:
At this time, when the measurement magnification of the optical microscope and the coefficient k determined by the subject distance are multiplied to obtain the corresponding dimension W of the DUT, the two-dimensional distortion ratio rPy at the measured screen position D (Xn, Ym) The above measured dimension W is expressed as W = k
The linearity is calibrated as × D (Xn, Ym) / rPy. In this way, the method of measuring the two-dimensional distortion in the measurement screen and calibrating the measured value in accordance with the two-dimensional distortion eliminates the disadvantage that the measured value fluctuates by about 0.5% depending on the measurement location in the screen. Can be solved.

【0006】[0006]

【発明の実施の形態】以下、図1(a)〜(c)によ
り、本発明の一実施例の構成、動作について、詳細に説
明する。ここで、例えば、測定画面の視野が、X=20
μm、Y=20μmにおいて、センサの画素数が、10
00×1000の装置では、上記の係数kは、k=20
/1000=0.02μm となる。従来装置では、前
述のように、測定した線幅を、Nab=D(X,Y)と
し、寸法Wを、 W=k×Nab=k×D(X,Y)
で求めている。本発明では、測定した線幅を、Nab=
D(Xn,Ym)とし、この係数kの他に、測定した画
面位置(Xn,Ym)における画面歪み比率rPyを用
いて、寸法Wを、W=k×D(Xn,Ym)/rPy と
して求める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction and operation of an embodiment of the present invention will be described below in detail with reference to FIGS. 1 (a) to 1 (c). Here, for example, when the visual field of the measurement screen is X = 20
μm, Y = 20 μm, the number of pixels of the sensor is 10
In an apparatus of 00 × 1000, the above coefficient k is k = 20
/1000=0.02 μm. In the conventional apparatus, as described above, the measured line width is set to Nab = D (X, Y), and the dimension W is set as follows: W = k × Nab = k × D (X, Y)
Seeking in. In the present invention, the measured line width is defined as Nab =
D (Xn, Ym), and in addition to this coefficient k, using the screen distortion ratio rPy at the measured screen position (Xn, Ym), the dimension W is expressed as W = k × D (Xn, Ym) / rPy. Ask.

【0007】以下に、本発明の画面歪み比率rPyの求
め方について、詳しく説明する。まず、図1(a)を用
いて画面歪みの登録方法について説明する。光学顕微鏡
1で投影された被写体(被測定物)2の空間像をTVカメ
ラ3で撮像し、寸法測定演算処理装置4で所望部分の寸
法を電気的に測定し、TVモニタ5に被測定物2の画像
と寸法測定値を表示する。 被測定物2の移動は、寸法
測定演算処理装置4から、XY電動ステージ(図示せず)
に指示して行う。ここで、XY電動ステージは、0.1
μmの分解能で移動するものとする。また、被測定物2
を既知寸法Wの基準試料とする。 また、図1(b)の
様に、測定画面内のX方向n箇所、Y方向m箇所を、測
定箇所(Xn,Ym)とする。ここで、まず、XY電動ス
テージを測定箇所(X1,Y1)に移動し、測定値D
(X1,Y1)を得る。次に、XY電動ステージを測定
箇所(X1,Y2)に移動、測定値D(X1,Y2)を
得る。さらに、順次、XY電動ステージを測定箇所(X
1,Yn)に移動し、測定値D(X1,Yn)を得る。
次に、XY電動ステージを測定箇所(X2,Y1)に移
動、測定値D(X2,Y1)を得る。そして、XY電動
ステージを測定箇所(X2,Y2)に移動、測定値D
(X2,Y2)を得る。さらに、順次、XY電動ステー
ジを測定箇所(X2,Yn)に移動し、測定値D(X
2,Yn)を得る。そして最終的に、XY電動ステージ
により基準試料の中心を、測定箇所(Xn,Ym)に移
動し、測定値D(Xn,Ym)を得る。
Hereinafter, a method for obtaining the screen distortion ratio rPy of the present invention will be described in detail. First, a screen distortion registration method will be described with reference to FIG. An aerial image of the object (object to be measured) 2 projected by the optical microscope 1 is captured by a TV camera 3, and a dimension of a desired portion is electrically measured by a dimension measurement arithmetic processing unit 4. The second image and the dimension measurements are displayed. The movement of the device under test 2 is performed by the XY electric stage (not shown) from the dimension measurement arithmetic processing device 4.
And instructed. Here, the XY electric stage is 0.1
It moves at a resolution of μm. Also, the DUT 2
Is a reference sample of a known size W. Also, as shown in FIG. 1B, n locations in the X direction and m locations in the Y direction in the measurement screen are defined as measurement locations (Xn, Ym). Here, first, the XY electric stage is moved to the measurement location (X1, Y1), and the measured value D is measured.
(X1, Y1) is obtained. Next, the XY electric stage is moved to the measurement location (X1, Y2), and the measurement value D (X1, Y2) is obtained. Further, the XY motorized stage is sequentially moved to the measurement location (X
1, Yn) to obtain a measured value D (X1, Yn).
Next, the XY electric stage is moved to the measurement location (X2, Y1), and the measurement value D (X2, Y1) is obtained. Then, the XY electric stage is moved to the measurement point (X2, Y2), and the measured value D
(X2, Y2) is obtained. Further, the XY electric stage is sequentially moved to the measurement location (X2, Yn), and the measured value D (X
2, Yn). Finally, the center of the reference sample is moved to the measurement location (Xn, Ym) by the XY motorized stage, and the measured value D (Xn, Ym) is obtained.

【0008】ここで、以上のようにして測定した測定箇
所(X1,Y1)の測定値D(X1,Y1)を既知寸法
Wとする係数kを、下記式から求める。k=W/D(X
1,Y1)つまり、このkは、測定箇所(X1,Y1)
の測定値D(X1,Y1)をWとする係数である。
W=k×D(X1,Y1) そして、測定値D(Xn,Ym)を測定値D(X1,Y
1)で除算して、比率r(X1,Y1)から、比率r
(Yn,Ym)を得る。例えば、n=3,m=3箇所で
測定した場合には、m=1のY座標上で、n=1,2,
3のX座標での比率r(X1,Y1)、r(X2,Y1)、
r(X3,Y1)を得る。即ち、X1,X2,X3の座標
と比率r(x1,Y1)、r(X2,Y1)、r(X
3,Y1)より、2次方程式 r(Y1)=A1・X2
B1・X+C1 の係数A1,B1,C1を計算で求
め、2次方程式 r(Y1)=A1・X2+B1・X+C
1 を登録する。次に、m=2のY座標上で、n=1,
2,3のX座標での比率r(X1,Y2)、r(X2,Y
2)、r(X3,Y2)を得る。
[0008] Here, a coefficient k for setting the measured value D (X1, Y1) of the measurement point (X1, Y1) measured as described above to a known dimension W is obtained from the following equation. k = W / D (X
1, Y1) That is, this k is the measurement location (X1, Y1)
Is a coefficient with W being the measured value D (X1, Y1) of
W = k × D (X1, Y1) Then, the measured value D (Xn, Ym) is converted to the measured value D (X1, Y1).
1) to divide the ratio r (X1, Y1) from the ratio r (X1, Y1).
(Yn, Ym) is obtained. For example, when measurement is performed at n = 3 and m = 3 locations, n = 1, 2, 2 on the Y coordinate of m = 1
3 at the X coordinate, r (X1, Y1), r (X2, Y1),
r (X3, Y1) is obtained. That is, the coordinates of X1, X2, and X3 and the ratios r (x1, Y1), r (X2, Y1), and r (X
From (3, Y1), the quadratic equation r (Y1) = A1 · X 2 +
B1 · X + C1 coefficients A1, B1, C1 calculated by the calculation, a quadratic equation r (Y1) = A1 · X 2 + B1 · X + C
Register 1. Next, on the Y coordinate of m = 2, n = 1,
The ratio r (X1, Y2) at the X coordinate of 2, 3 and r (X2, Y
2), r (X3, Y2) is obtained.

【0009】そして、同様に、2次方程式 r(Y2)
=A2・X2+B2・X+C2 を登録する。また、m
=3のY座標上で、n=1,2,3のX座標での比率r
(X1,Y3)、r(X2,Y3)、r(X3,Y3)を得
る。そして、同様に、2次方程式 r(Y3)=A3・
2+B3・X+C3 を登録する。以上の様にして、
m=1,2,3のY座標のr(Y1)、r(Y2)、r(Y
3)を登録する。つまり、n,m箇所で測定した場合に
は、最大で(n−1)次の方程式が形成できる。
Then, similarly, a quadratic equation r (Y2)
= To register the A2 · X 2 + B2 · X + C2. Also, m
= R ratio on the X coordinate of n = 1,2,3 on the Y coordinate of = 3
(X1, Y3), r (X2, Y3) and r (X3, Y3) are obtained. Then, similarly, the quadratic equation r (Y3) = A3 ·
Register X 2 + B3 · X + C3. As above,
r (Y1), r (Y2), r (Y) of the Y coordinate of m = 1, 2, 3
3) Register. That is, when the measurement is performed at n and m points, the following equation (n-1) can be formed at the maximum.

【0010】以上のようにして登録した、m=1,2,
3のY座標の2次方程式r(Y1)、(Y2)、r(Y3)
を、Y座標も入れて表現すると、登録した2次方程式r
(Ym)と測定点P(Px,Py)の関係は、図1(c)
のようになる。即ち、測定点P(Px,Py)で測定し
た場合は、 m=1の方程式 r(Y1)=A1・X2+B1・X+C
1 m=2の方程式 r(Y2)=A2・X2+B2・X+C
2 m=3の方程式 r(Y3)=A3・X2+B3・X+C
3 に、X=Pxを代入し、 r(Y1)=A1・Px2+B1・Px+C1 r(Y2)=A2・Px2+B2・Px+C2 r(Y3)=A3・Px2+B3・Px+C3 を得る。ここで、r(Y1)、r(Y2)、r(Y3)は
Y座標の関数であり、2次方程式 rPy=Ap・Y2
+Bp・Y+Cp に、Y=Y1,Y2,Y3を代入す
ることで、Ap,Bp,Cpが求まる。そして、最終的
に求める比率rPyは、Y=Pyを、rPy=Ap・Y
2+Bp・Y+Cpに代入することで、rPy=Ap・
Yp2+Bp・Yp+Cp が求まる。従って、求めた
い線幅Wは、k×D(X1,Y1)を比率rPyで除算
することにより、 W=k×D(X1,Y1)/rPy
から、画面歪みの補正された線幅Wを求めることがで
きる。
[0010] m = 1,2,2 registered as above
The quadratic equation r (Y1), (Y2), r (Y3) of the Y coordinate of 3
Is expressed by including the Y coordinate, the registered quadratic equation r
The relationship between (Ym) and the measurement point P (Px, Py) is shown in FIG.
become that way. That is, the measurement point P (Px, Py) when measured at, m = 1 in the equation r (Y1) = A1 · X 2 + B1 · X + C
1 Equation of m = 2 r (Y2) = A2 · X 2 + B2 · X + C
2 Equation of m = 3 r (Y3) = A3 · X 2 + B3 · X + C
3, by substituting X = Px, obtain r (Y1) = A1 · Px 2 + B1 · Px + C1 r (Y2) = A2 · Px 2 + B2 · Px + C2 r (Y3) = A3 · Px 2 + B3 · Px + C3. Here, r (Y1), r (Y2) and r (Y3) are functions of the Y coordinate, and a quadratic equation rPy = Ap · Y 2
By substituting Y = Y1, Y2, and Y3 into + Bp.Y + Cp, Ap, Bp, and Cp are obtained. Then, the finally determined ratio rPy is represented by Y = Py, rPy = Ap · Y
By substituting 2 + Bp · Y + Cp, rPy = Ap ·
Yp 2 + Bp · Yp + Cp is obtained. Accordingly, the line width W to be obtained is obtained by dividing k × D (X1, Y1) by the ratio rPy, and W = k × D (X1, Y1) / rPy
Thus, the line width W with the screen distortion corrected can be obtained.

【0011】以上のことを、実際の数値を使って検証す
る。画素数1000×1000の二次元センサを用い、
画面視野20μm×20μmにて、1.05μmの線幅
を測定し、それぞれの線幅の画素D(Xn,Ym)が前述
の表1のようになったと仮定する。ここで、測定箇所
(X1,Y1)の測定値D(X1,Y1)を、既知寸法
W=1.050とする係数kを求める。 k=W/D(X1,Y1)=1.050/50.52=0.020784 即ち、下記の様に、このkは、測定箇所(X1,Y1)の
測定値D(X1,Y1)を、線幅寸法Wとする係数であ
る。 W=k×D(X1,Y1)=0.020784×50.52=1.050 次に、下記の表2に示す様に、測定値D(Xn,Xm)を
測定値D(X1,Y1)で除算して、比率r(X1,Y
1)から比率r(Yn,Ym)を得る。
The above is verified using actual numerical values. Using a two-dimensional sensor with 1000 × 1000 pixels,
A line width of 1.05 μm is measured in a screen visual field of 20 μm × 20 μm, and it is assumed that the pixels D (Xn, Ym) of each line width are as shown in Table 1 described above. Here, a coefficient k for setting the measured value D (X1, Y1) of the measurement point (X1, Y1) to the known dimension W = 1.050 is obtained. k = W / D (X1, Y1) = 1.050 / 50.52 = 0.020784 That is, as described below, this k is the measured value D (X1, Y1) of the measurement point (X1, Y1). , And a coefficient for setting the line width dimension W. W = k × D (X1, Y1) = 0.020784 × 50.52 = 1.050 Next, as shown in Table 2 below, the measured value D (Xn, Xm) is converted to the measured value D (X1, Y1 ), And the ratio r (X1, Y
The ratio r (Yn, Ym) is obtained from 1).

【0012】[0012]

【表2】 ここで、m=1のY座標上で、n=1,2,3のX座標
箇所の比率r(X1,Y1)、r(X2,Y1)、r(X
3,Y1)を得る。
[Table 2] Here, on the Y coordinate of m = 1, the ratios r (X1, Y1), r (X2, Y1), r (X
3, Y1).

【0013】次に、X1,X2,X3の座標と比率r
(X1,Y1)、r(X2,Y1)、r(X3,Y1)
より、2次方程式 r(Y1)=A1・X2+B1・X+
C1の係数A1,B1,C1を、以下の計算によって求
める。 1.0000=A1・2002+B1・200+C1 1.0022=A1・5502+B1・550+C1 1.0018=A1・8002+B1・800+C1 1.0000=40000A1+200B1+C1 ・・・・・(1) 1.0022=302500A1+550B1+C1 ・・・・・(2) 1.0018=640000A1+800B1+C1 ・・・・・(3) C1=1.0000−(40000A1+200B1)より、式(2)、(3)は、 1.0022=302500A1+550B1+1.0000 −(40000A1+200B1) 0.0022=262500A1+350B1 ・・・・・・(4) 1.0018=640000A1+800B1+1.0000 −(40000A1+200B1) 0.0018=600000A1+600B1 ・・・・・・(5) B1=(0.0018−600000A1)/600を、式(4)に代入し、 0.0022=262500A1+350(0.0018− 600000A1)/600 0.0022−0.0018(350/600)=(262500 −600000(350/600))A1 0.0022−0.00105=(262500−350000)A1 A1=−0.00115/87500 ・・・・・・・・(6) B1=(0.0018−600000A1)/600に、式(6)を代入し、 B1=(0.0018+0.0078857)/600 B1=0.0096857/600 ・・・・・・・・(7) C1=1.0000−(40000A1+200B1) に、式(6)、(7)を代入し、 C1=1.0000−(40000(−0.00115/87500) +200・0.0096857/600) =1.0000−(−0.0005257+0.00322856) C1=0.99729 ・・・・・・・・・・・(8) 以上のようにして、上記式(6)、(7)、(8)の係数A
1,B1,C1を計算で求め、r(Y1)の2次方程式を
登録する。 r(100)=−0.00115/87500X2+(0.0096857/
600)X+0.99729
Next, the coordinates of X1, X2 and X3 and the ratio r
(X1, Y1), r (X2, Y1), r (X3, Y1)
From the quadratic equation r (Y1) = A1 · X 2 + B1 · X +
The coefficients A1, B1, and C1 of C1 are obtained by the following calculation. 1.0000 = A1 · 200 2 + B1 · 200 + C1 1.0022 = A1 · 550 2 + B1 · 550 + C1 1.0018 = A1 · 800 2 + B1 · 800 + C1 1.0000 = 40000A1 + 200B1 + C1 ··· 302500A1 + 550B1 + C1 (2) 1.0018 = 640000A1 + 800B1 + C1 (3) From C1 = 1.0000- (40000A1 + 200B1), Expressions (2) and (3) are as follows: 1.0022 = 302500A1 + 550B1 + 1.0000 -(40000A1 + 200B1) 0.0022 = 262500A1 + 350B1 ... (4) 1.0018 = 640000A1 + 800B1 + 1.0000-(40000A1 + 200B1) 0.0018 = 600000A1 + 600B1 ... (5) B1 = (0.0018- 600000A1) / 600 is calculated by the formula (4) ), 0.0022 = 262500A1 + 350 (0.0018-600000A1) / 600 0.0022-0.0018 (350/600) = (262500-600000 (350/600)) A1 0.0022-0.00105 = (262500−350,000) A1 A1 = −0.00115 / 87500 (6) B1 = (0.0018−600000A1) / 600 is substituted for Equation (6), and B1 = ( 0.0018 + 0.0078857) / 600 B1 = 0.0096857 / 600 (7) C1 = 1.0000− (40000A1 + 200B1), and substituting the expressions (6) and (7) into C1 = 1.0000-(40000 (-0.00115 / 87500) + 200 • 0.0096857 / 600) = 1.0000-(-0.0005257 + 0.00328568) C1 = 0.999729 .. (8) As described above, the coefficient A of the above equations (6), (7) and (8)
1, B1 and C1 are calculated, and a quadratic equation of r (Y1) is registered. r (100) = − 0.00115 / 87500X 2 + (0.0096857 /
600) X + 0.999729

【0014】上記と同様にして、m=2のY座標上で、
n=1,2,3のX座標箇所の比率r(X1,Y2)、r
(X2,Y2)、r(X3,Y2)を得る。 0.9899=40000A2+200B2+C2 0.9901=302500A2+550B2+C2 0.9912=640000A2+800B2+C2 そして、2次方程式 r(Y2)=A2・X2+B2・X
+C2 の係数A2,B2,C2を、上記r(Y1)と
同様にして求め、r(Y2) の2次方程式を登録する。 r(500)=−0.0005583/87500・X2−(0.00253
/600)X+0.9990488 また、同様にして、m=3のY座標上で、n=1,2,
3のX座標箇所の比率r(X1,Y3)、r(X2,Y
3)、r(X3,Y3)を得る。 0.9956=40000A3+200B3+C3 0.9966=302500A3+550B3+C3 0.9976=640000A3+800B3+C3 そして、2次方程式 r(Y3)=A3・X2+B3・X
+C3 の係数A3,B3,C3を、上記r(Y1)と同
様にして求め、r(Y3) の2次方程式を登録する。 r(900)=0.000167/87500・X2−0.000857/6
00・X+0.995238 以上のようにして登録した、m=1,2,3のY座標の
2次方程式r(Y1)、(Y2)、r(Y3)を、Y座標も入
れて表現すると、登録した2次方程式r(Ym)と測定点
P(Px,Py)の関係は、図1(c)のようになる。
Similarly, on the Y coordinate of m = 2,
Ratio r (X1, Y2), r of X coordinate locations where n = 1, 2, 3
(X2, Y2) and r (X3, Y2) are obtained. 0.9899 = 40000A2 + 200B2 + C2 0.9901 = 302500A2 + 550B2 + C2 0.9912 = 640000A2 + 800B2 + C2 and, quadratic equation r (Y2) = A2 · X 2 + B2 · X
The coefficients A2, B2, and C2 of + C2 are obtained in the same manner as r (Y1), and a quadratic equation of r (Y2) is registered. r (500) = − 0.0005583 / 87500 · X 2 − (0.00253
/600)X+0.999948 Similarly, on the Y coordinate of m = 3, n = 1, 2, 2,
3, the ratio r (X1, Y3), r (X2, Y
3), r (X3, Y3) is obtained. 0.9956 = 40000A3 + 200B3 + C3 0.9966 = 302500A3 + 550B3 + C3 0.9976 = 640000A3 + 800B3 + C3 and, quadratic equation r (Y3) = A3 · X 2 + B3 · X
The coefficients A3, B3, and C3 of + C3 are obtained in the same manner as r (Y1), and a quadratic equation of r (Y3) is registered. r (900) = 0.000167 / 87500 · X 2 -0.000857 / 6
00 · X + 0.995238 When the quadratic equations r (Y1), (Y2), and r (Y3) of the Y coordinate of m = 1, 2, 3 registered as described above are expressed by including the Y coordinate, The relationship between the registered quadratic equation r (Ym) and the measurement point P (Px, Py) is as shown in FIG.

【0015】一例として、測定箇所P(Px,Py)=
P(300,400)点で測定した場合は、 m=1の方程式 r(l00)=(−0.00115/87500)
2+(0.0096857/600)X+0.99729 m=2の方程式 r(500)=(−0.005583/87500)
2−(0.00253/600)X+0.9990488 m=3の方程式 r(900)=(0.000167/87500)X
2−(0.000857/600)X+0.995238 に、X=300を代入し r(100)=1.00958 r(500)=0.98980 r(900)=0.99583 を得る。 r(Yl),r(Y2),r(Y3)はY座標の関数であ
り、2次方程式 rPy=Ap・Y2+Bp・Y+Cp
に、Y=Y1,Y2,Y3を代入し、 1.00958=Ap・1002+Bp・100+Cp 0.98980=Ap・5002+Bp・500+Cp 0.99583=Ap・9002+Bp・900+Cp から、Ap、Bp、Cpが求まる。 Ap=8.04063E-8、Bp=−9.75E-5、Cp=1.01
8445 最終的に求める比率rPyは、Y=Py=400を、
rPy=Ap・Y2+Bp・Y+Cp に代入し、 で求まる。W=1.05μm、k=0.020784、X1=Px
=800、Y2=Py=400とすると、 W=k×D(300,400)/rPy 1.05=0.020784×D(300,400) /0.99231 D(300,700)=(1.05/0.020784)×0.99231=50.1
3 画素となることが予想でき、W=k×D(300,400)
/rPY 式に、rPy=0.99231を用いることで、W
=0.020784×50.13/0.99231=1.05μm とな
る。
As an example, the measurement point P (Px, Py) =
When measured at the point P (300,400), the equation of m = 1 r (100) = (− 0.00115 / 87500)
X 2 + (0.0096857 / 600) X + 0.999729 Equation of m = 2 r (500) = (− 0.00005583 / 87500)
X 2 − (0.00253 / 600) X + 0.999948 m = 3 equation r (900) = (0.00000167 / 87500) X
2 - (0.000857 / 600) X + 0.995238 , obtain X = 300 substitutes r (100) = 1.00958 r ( 500) = 0.98980 r (900) = 0.99583. r (Yl), r (Y2 ), r (Y3) is a function of the Y coordinate, the quadratic equation rPy = Ap · Y 2 + Bp · Y + Cp
Is substituted for Y = Y1, Y2, Y3, and 1.00958 = Ap · 100 2 + Bp · 100 + Cp 0.99880 = Ap · 500 2 + Bp · 500 + Cp 0.99583 = Ap · 900 2 + Bp · 900 + Cp Bp and Cp are obtained. Ap = 8.04063E- 8 , Bp = -9.75E- 5 , Cp = 1.01
8445 The finally determined ratio rPy is expressed as follows: Y = Py = 400
Substituting rPy = Ap · Y 2 + Bp · Y + Cp, Is determined by W = 1.05 μm, k = 0.020784, X1 = Px
= 800, Y2 = Py = 400, W = k × D (300,400) / rPy 1.05 = 0.020784 × D (300,400) /0.99231 D (300,700) = (1 .05 / 0.020784) x 0.999231 = 50.1
It can be expected to be 3 pixels, W = k × D (300,400)
By using rPy = 0.99231 in the formula, W
= 0.020784 × 50.13 / 0.92311 = 1.05 μm.

【0016】以上の説明では、3点測定の2次方程式の
例を示したが、 (1)4点以上測定し、その最小自乗法で2次方程式を
求める。 (2)4点測定し、その最小自乗法で3次方程式を求め
る。 (3)5点以上測定し、その最小自乗法で3次方程式を
求める。 (4)n点測定し、その最小自乗法で(n−1)次方程
式を求める。 (5)(n+1)点以上測定し、その最小自乗法で(n−
1)次方程式を求める。ことも、本発明によるところで
ある。
In the above description, an example of a quadratic equation of three-point measurement has been shown. (1) Four or more points are measured, and a quadratic equation is obtained by the least square method. (2) Four points are measured, and a cubic equation is obtained by the least square method. (3) Five or more points are measured, and a cubic equation is obtained by the least square method. (4) The n points are measured, and the (n-1) -th order equation is obtained by the least square method. (5) Measure at least (n + 1) points, and use the least squares method to calculate (n−
1) Find the following equation. This is also according to the present invention.

【0017】[0017]

【発明の効果】(1)登録時に、測定した点から多次方
程式を作成し、任意測定点でのリニアリティを校正でき
るので、画面内のどこで測定しても同じ寸法が得られ
る。 (2)既知の基準試料をXY電動ステージに設定するだ
けで、リニアリティ校正の自動登録が可能で、作業者の
操作と判断に依存せず信頼性がある。 (3)画面内の任意測定点で自動読み出し、自動計算す
るので、作業者の操作と判断に依存せず簡便かつ信頼性
がある。
(1) At the time of registration, a polynomial equation is created from the measured points and the linearity at an arbitrary measurement point can be calibrated, so that the same dimensions can be obtained regardless of the measurement anywhere on the screen. (2) The linearity calibration can be automatically registered simply by setting a known reference sample on the XY motorized stage, and the reliability is independent of the operation and judgment of the operator. (3) Since it is automatically read out and calculated automatically at an arbitrary measurement point in the screen, it is simple and reliable without depending on the operation and judgment of the operator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の微小寸法測定装置の構成、動作を説明
するための図
FIG. 1 is a diagram for explaining the configuration and operation of a minute dimension measuring apparatus according to the present invention.

【図2】従来の微小寸法測定装置の構成を示す図FIG. 2 is a diagram showing a configuration of a conventional minute dimension measuring device.

【図3】従来の測定方法を説明する図FIG. 3 is a diagram illustrating a conventional measurement method.

【符号の説明】[Explanation of symbols]

1:光学顕微鏡、2:被測定物、3:TVカメラ、4:
寸法測定演算処理装置、5:TVモニタ、41:フレー
ムメモリ、42:高分解能メモリ、43:CPU
1: optical microscope, 2: measured object, 3: TV camera, 4:
Dimension measurement arithmetic processing unit, 5: TV monitor, 41: frame memory, 42: high resolution memory, 43: CPU

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学顕微鏡と二次元センサを用いて被測
定物を撮像し、得られた映像信号から所定の輝度レベル
に一致する2点の信号位置を抽出し、この2点間の位置
差情報に基づき上記被測定物の寸法を算出測定する微小
寸法測定装置において、測定した位置差情報Nabに、
この時の上記光学顕微鏡の測定倍率と被写体距離により
決まる係数kを乗じ、対応する被測定物の寸法Wを求め
る際、測定した画面位置D(Xn,Ym)における二次元
歪み比率rPyに応じ、上記測定した寸法Wをリニアリ
ティ校正し求めることを特徴とする徴小寸法測定方法。
1. An object to be measured is imaged using an optical microscope and a two-dimensional sensor, and two signal positions corresponding to a predetermined luminance level are extracted from an obtained video signal, and a positional difference between the two points is extracted. In the minute dimension measuring device that calculates and measures the dimension of the object to be measured based on the information, the measured position difference information Nab includes:
At this time, when the measurement magnification of the optical microscope and the coefficient k determined by the subject distance are multiplied to obtain the corresponding dimension W of the DUT, the two-dimensional distortion ratio rPy at the measured screen position D (Xn, Ym) A small dimension measuring method, wherein the measured dimension W is obtained by linearity calibration.
【請求項2】 請求項1において、上記二次元歪み比率
rPyに応じ、上記測定した寸法Wを、W=k×D(X
n,Ym)/rPy としてリニアリティ校正し求める
ことを特徴とする徴小寸法測定方法。
2. The method according to claim 1, wherein the measured dimension W is calculated according to the two-dimensional distortion ratio rPy by W = k × D (X
(n, Ym) / rPy.
JP2000326485A 2000-10-26 2000-10-26 Small dimension measurement method Expired - Lifetime JP4719348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326485A JP4719348B2 (en) 2000-10-26 2000-10-26 Small dimension measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326485A JP4719348B2 (en) 2000-10-26 2000-10-26 Small dimension measurement method

Publications (2)

Publication Number Publication Date
JP2002131019A true JP2002131019A (en) 2002-05-09
JP4719348B2 JP4719348B2 (en) 2011-07-06

Family

ID=18803662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326485A Expired - Lifetime JP4719348B2 (en) 2000-10-26 2000-10-26 Small dimension measurement method

Country Status (1)

Country Link
JP (1) JP4719348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464129B (en) * 2007-12-17 2010-08-25 中芯国际集成电路制造(上海)有限公司 Calibration method for micro-image

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474909A (en) * 1990-07-17 1992-03-10 Hitachi Constr Mach Co Ltd Length measuring apparatus
JPH06103168B2 (en) * 1989-09-25 1994-12-14 日立電子株式会社 Minute dimension measurement method
JPH10253544A (en) * 1997-01-10 1998-09-25 Hitachi Ltd Method and apparatus for visual examination
JP2001133225A (en) * 1999-11-01 2001-05-18 Ohbayashi Corp Method of measuring dimension and shape using digital camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103168B2 (en) * 1989-09-25 1994-12-14 日立電子株式会社 Minute dimension measurement method
JPH0474909A (en) * 1990-07-17 1992-03-10 Hitachi Constr Mach Co Ltd Length measuring apparatus
JPH10253544A (en) * 1997-01-10 1998-09-25 Hitachi Ltd Method and apparatus for visual examination
JP2001133225A (en) * 1999-11-01 2001-05-18 Ohbayashi Corp Method of measuring dimension and shape using digital camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464129B (en) * 2007-12-17 2010-08-25 中芯国际集成电路制造(上海)有限公司 Calibration method for micro-image

Also Published As

Publication number Publication date
JP4719348B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP2009042162A (en) Calibration device and method therefor
JPH03291841A (en) Length measuring method in electronic beam length measuring instrument
JP2002131019A (en) Measuring method of micro dimension
JPH08101354A (en) Microscope
JPH06253241A (en) Projection distortion correction method for projection type display device
JP4401126B2 (en) Method for registering predetermined part of dimension measuring device
JP2564359B2 (en) Pattern inspection method, pattern length measuring method, and inspection device
JP2000287227A (en) Method for measuring sharpness of display device
JP3223486B2 (en) Waveform analyzer
JPH0473052A (en) Method and apparatus for measuring diameter of hair and sample for measurement
JPH11142118A (en) Distance measuring method and apparatus and record medium in which the method is recorded
US7274471B2 (en) Systems and methods for measuring distance of semiconductor patterns
JPS61265517A (en) Length measuring apparatus using charged particle beam
JPH10311705A (en) Image input apparatus
JP3146255B2 (en) Micro Dimension Measurement Method
JPS61194993A (en) Adjusting device for display position of picture tube
JP2522787Y2 (en) Image processing device
TWI229749B (en) Lens MTF measurement system
JPH1090284A (en) Scanning type probe microscope and its measuring method
JPH0942946A (en) Measuring device and measuring method for electronic part and calibration mask
JPH03110404A (en) Fine size measuring instrument
JPS61278708A (en) Fine width measuring instrument
JP2004198110A (en) Substrate for calibration
JP3477921B2 (en) Projector
KR100188668B1 (en) Convergence measurement for calibration method of color picture tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250