JP2002130852A - Multiline air refrigerating system - Google Patents

Multiline air refrigerating system

Info

Publication number
JP2002130852A
JP2002130852A JP2000356761A JP2000356761A JP2002130852A JP 2002130852 A JP2002130852 A JP 2002130852A JP 2000356761 A JP2000356761 A JP 2000356761A JP 2000356761 A JP2000356761 A JP 2000356761A JP 2002130852 A JP2002130852 A JP 2002130852A
Authority
JP
Japan
Prior art keywords
air
compressor
expansion turbine
sub
pressure ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000356761A
Other languages
Japanese (ja)
Inventor
Shigeto Matsuo
栄人 松尾
Masatomo Matsuo
雅智 松尾
Akiko Matsuo
亜希子 松尾
Takuya Matsuo
拓也 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000356761A priority Critical patent/JP2002130852A/en
Publication of JP2002130852A publication Critical patent/JP2002130852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain refrigerating air with minus 120 deg.C by a pressure ratio of 10 or less of an expansion turbine and operate in a wide region of a pressure ratio between a main system and a subsystem, wherein problems of a conventional air refrigerating system in which obtaining the refrigerating air with minus 120 deg.C requires a pressure ratio of 16 or more and high efficiency of the expansion turbine are solved. SOLUTION: Two lines, a main line and a sub-line, are provided for an air refrigerating system. Low-temperature air produced in the sub-line is used for a cooling source for a heat exchanger provided on an inlet of the expansion turbine of the main line. Operation with a combination of an optimum pressure ratio between the main line and the sub-line according to a required temperature always minimizes required power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】気体を冷媒とする冷凍技術と
冷凍システムの最適設計及び運転方法。
The present invention relates to a refrigeration technology using gas as a refrigerant and an optimum design and operation method of a refrigeration system.

【0002】[0002]

【従来の技術】[Prior art]

【0003】従来の冷凍システムは、フレオンに代表さ
れる相変化を伴う冷媒を使用して気化潜熱で冷却、温ま
って気化した冷媒を圧縮機で圧縮して高温になった冷媒
の熱を冷却器で冷却、膨張器で膨張させるシステムが用
いられている。従来の冷凍システムは、常温付近では優
れた効率(COPで約4)を発揮するが、−20℃以下
では圧縮機の負荷が大きくなり効率が急激に低下、−4
0℃以下では機能しなくなる。
A conventional refrigeration system uses a refrigerant having a phase change typified by freon to cool it with latent heat of vaporization, and compresses the heated and vaporized refrigerant with a compressor to cool the heat of the refrigerant which has become high in temperature. A system that uses cooling and expansion using an expander is used. The conventional refrigeration system exhibits excellent efficiency (approximately 4 in COP) near room temperature, but at -20 ° C or lower, the load on the compressor increases and the efficiency drops sharply.
It will not function below 0 ° C.

【0004】このため、従来の冷凍システムを多段階に
構成して低温化することが行われているが、システムが
複雑になり、設備が大型化して高価になっている。
[0004] For this reason, the conventional refrigeration system is configured in multiple stages to reduce the temperature, but the system is complicated, and the equipment is increased in size and expensive.

【0005】従来の冷凍システムに使用されている冷媒
は、フレオン系冷媒、炭化水素系冷媒、アンモニア等で
あるが、これらの冷媒はいずれも温暖化係数が高く、炭
化水素系冷媒とアンモニアは、爆発性があり、蒸気や液
体が人体に多大な影響を及ぼす。このような例として、
前川製作所の−95℃まで冷却できる「自然冷媒使用の
超低温二元冷凍破砕システム」があり、エタンとアンモ
ニアを使用している。
[0005] Refrigerants used in conventional refrigeration systems include freon-based refrigerants, hydrocarbon-based refrigerants, and ammonia. These refrigerants all have a high global warming potential. Explosive. Vapors and liquids have significant effects on the human body. In such an example,
Maekawa Manufacturing Co., Ltd. has an "ultra-low temperature dual freezing and crushing system using natural refrigerants" that can cool to -95 ° C, using ethane and ammonia.

【0006】上記の冷媒以外に窒素を液化した液体窒素
が冷却剤として使用されている。液体窒素は−193℃
と超低温であるので冷却には都合が良いが、運搬には高
度に断熱した高圧容器が必要であるために高価である。
また、液体窒素は、容易にガス化し、密閉状態では人が
窒息する危険性があり、いくつかの事故例が労働省より
報告されている。
[0006] In addition to the above-described refrigerant, liquid nitrogen obtained by liquefying nitrogen is used as a coolant. -193 ° C for liquid nitrogen
Although it is very low temperature, it is convenient for cooling, but it is expensive because transport requires a highly insulated high-pressure vessel.
In addition, liquid nitrogen easily gasifies, and there is a risk of suffocation of humans in a closed state, and several accidents have been reported by the Ministry of Labor.

【0007】最も安全な空気を冷媒として使用した空気
冷凍システムは、雪や氷の製造に使用されており、−9
5℃程度までの冷却は可能である。
An air refrigeration system using the safest air as a refrigerant is used for the production of snow and ice,
Cooling down to about 5 ° C is possible.

【0008】従来の空気冷凍システムでは、冷凍庫等の
低温空気を吸い込ませる方法が採用されている。(特願
平7−332140;エネルギーバランスを取れない構
成であるが。)この方法では、空気圧縮機の吸気湿度を
下げて空気圧縮機の動力を吸気温度の絶対温度の比率だ
け低下させることができるが、空気圧縮機の出口温度は
圧力上昇に伴って上昇するために膨張タービン入口温度
を下げる効果は小さい。このため、空気冷凍システムの
生成空気温度を低下させることはできない。
In a conventional air refrigeration system, a method of sucking low-temperature air from a freezer or the like is employed. In this method, the intake air humidity of the air compressor is reduced to lower the power of the air compressor by the ratio of the absolute temperature of the intake air temperature. However, the effect of lowering the expansion turbine inlet temperature is small because the outlet temperature of the air compressor rises with an increase in pressure. For this reason, the temperature of the generated air of the air refrigeration system cannot be reduced.

【0009】同軸圧縮機とタービンを同軸に配置した膨
張機は、従来から使用されているが、その動力バランス
がとれた状態における圧力比などを解析的に求めること
ができないために、設計や運転制御の最適化が困難を極
め、低圧力比の温度低下が小さな単純な冷凍システムが
用いられている。
An expander in which a coaxial compressor and a turbine are arranged coaxially has been used in the past. However, since the pressure ratio and the like in a state where the power is balanced cannot be determined analytically, the design and operation of the expander are not possible. It is extremely difficult to optimize the control, and a simple refrigeration system with a small temperature drop at a low pressure ratio is used.

【0010】膨張機を構成する同軸圧縮機の羽根車と膨
張タービンの動翼外径は、両者の個別の設計計算で決定
されるために、両者の最適な作動点での運転は実験結果
で求められており、実験結果次第では、いずれかの外形
を修正加工されており、関連部品の再設計や金型修正な
どを強いられ、大きなコストアップ要因となっている。
[0010] Since the outer diameter of the impeller of the coaxial compressor and the outer diameter of the moving blade of the expansion turbine constituting the expander are determined by individual design calculations, operation at the optimum operating point of both is based on experimental results. Depending on the experimental results, any one of the external shapes has been modified and processed, and the redesign of the related parts and the modification of the mold have been forced, which has been a major cost increase factor.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0011】図1は、従来の空気冷凍システムの空気圧
縮機の圧力比と膨張タービン出口温度の関係を、図2
は、空気圧縮機の圧力比と膨張タービンの関係を示した
ものである。図1から膨張タービン出口温度が−100
℃になる空気圧縮機圧力比を求めると、圧力比6であ
り、このときの膨張タービン圧力比を図2から求めると
圧力比16である。−100℃以下に冷却するために
は、膨張タービン入口圧力を16気圧以上にして高い効
率で膨張させる必要がある。膨張機を構成する小型・高
圧力比の同軸圧縮機と膨張タービンの効率は、圧力比1
0以下では要求される効率が現状の技術で実現可能であ
るが、圧力比10以上では実現困難である。効率が低い
場合は、所要動力が大きくなり、運転費用が高くなる。
FIG. 1 shows the relationship between the pressure ratio of the air compressor of the conventional air refrigeration system and the temperature of the expansion turbine outlet.
Shows the relationship between the pressure ratio of the air compressor and the expansion turbine. From FIG. 1, the expansion turbine outlet temperature is -100.
The pressure ratio of the air compressor at which the temperature reaches 0 ° C. is obtained as a pressure ratio of 6, and the expansion turbine pressure ratio at this time is obtained as a pressure ratio of 16 from FIG. In order to cool to -100 ° C. or lower, it is necessary to increase the pressure at the inlet of the expansion turbine to 16 atm or more and expand it with high efficiency. The efficiency of the compact and high pressure ratio coaxial compressor and expansion turbine that constitute the expander is as follows.
If the pressure ratio is 0 or less, the required efficiency can be realized with the current technology, but if the pressure ratio is 10 or more, it is difficult to achieve. If the efficiency is low, the required power is large and the operating cost is high.

【0012】圧力比が10以上になると膨張機を構成す
る同一軸上に形成されている同軸圧縮機と膨張タービン
の圧力比の相違が拡大して、両者同時に高効率化するこ
と、強度的な安全性を確保することが困難である。
When the pressure ratio becomes 10 or more, the difference in the pressure ratio between the coaxial compressor and the expansion turbine formed on the same shaft that constitutes the expander is enlarged, and the two are simultaneously improved in efficiency. It is difficult to ensure safety.

【0013】膨張機を構成する同軸圧縮機と膨張タービ
ンの効率及び機械効率の積(=総合効率)が低いと生成
される空気温度が高くなる。圧力比を高くして温度を下
げようとすると、所要動力が増大して動力費が高くな
る。
If the product of the efficiency and mechanical efficiency (= total efficiency) of the coaxial compressor and the expansion turbine constituting the expander is low, the temperature of the generated air increases. If an attempt is made to lower the temperature by increasing the pressure ratio, the required power increases and the power cost increases.

【0014】膨張機を構成する同軸圧縮機と膨張タービ
ンの動力バランスが取れた状態における同軸圧縮機の圧
力比を求める解析式が存在しないためシステム設計、最
適化、運転制御が困難である。
Since there is no analytical formula for obtaining the pressure ratio between the coaxial compressor and the expansion turbine in a state where the power balance between the coaxial compressor and the expansion turbine is balanced, system design, optimization, and operation control are difficult.

【0015】膨張機を構成する同軸圧縮機の羽根車と膨
張タービンの動翼外径の関係式が存在しないため両者の
最適な組合せの設定が困難である。
Since there is no relational expression between the impeller of the coaxial compressor constituting the expander and the outer diameter of the rotor blade of the expansion turbine, it is difficult to set an optimum combination of the two.

【課題を解決するための手段】[Means for Solving the Problems]

【0016】膨張タービン入口に従来の空気冷却器に加
えて熱交換器を設け、冷却することにより、膨張タービ
ン入口の空気温度を下げて、空気冷凍システムを構成す
る空気圧縮機、同軸圧縮機、膨張タービンの所要圧力比
を下げる。
A heat exchanger is provided at the inlet of the expansion turbine in addition to the conventional air cooler, and the temperature of the air at the inlet of the expansion turbine is lowered by cooling to thereby reduce the temperature of the air at the inlet of the expansion turbine. Reduce the required pressure ratio of the expansion turbine.

【0017】少なくとも二系統の空気冷凍システムを設
け、少なくとも一系統を主系統として、主系統を空気冷
凍に、副系統で生成した低温空気を主系統の膨張タービ
ン入口の空気冷却に使用する。
At least two air refrigeration systems are provided. At least one system is used as a main system, the main system is used for air refrigeration, and the low-temperature air generated in the sub system is used for air cooling at the expansion turbine inlet of the main system.

【0018】主系統と副系統の膨張機を構成する同軸圧
縮機、膨張タービン及び熱交換器の組合せに対する新し
い解析式を導出して所要の空気温度に対応して所要動力
が最小になる主系統と副系統の圧力比範囲を算出設定す
る。解析式の一つは、空気圧縮機−空気冷却器−同軸圧
縮機−中間冷却器−膨張タービンに対する式であり、他
の一つは、空気圧縮機−空気冷却器−同軸圧縮機−中間
冷却器−熱交換器−膨張タービンに対する式である。
A new analytical expression is derived for a combination of a coaxial compressor, an expansion turbine and a heat exchanger which constitute the main and sub-expansion units, and the main system which minimizes the required power corresponding to the required air temperature. And calculate and set the pressure ratio range of the sub system. One of the analytical expressions is for an air compressor-air cooler-coaxial compressor-intercooler-expansion turbine, and the other is for an air compressor-air cooler-coaxial compressor-intercooler. Equation for heat exchanger-expansion turbine.

【0019】所要動力が最小になる圧力比範囲で空気冷
凍システムを構成するターボ機械の効率が高い範囲を選
定するパラメータである比速度、理論速度比、圧力係
数、温度上昇係数を設定する。
A specific speed, a theoretical speed ratio, a pressure coefficient, and a temperature rise coefficient, which are parameters for selecting a range in which the efficiency of the turbo machine constituting the air refrigeration system is high within a pressure ratio range in which the required power is minimized, are set.

【0020】上記の設定されたパラメータと一般的な設
計計算式を使って最適範囲を求め、構成機器の最適形状
を求める。
An optimum range is obtained by using the above set parameters and a general design calculation formula, and an optimum shape of the component device is obtained.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0021】以下の説明では、流量2kg/sの条件で
従来の空気冷凍システムと本発明の多系列空気冷凍シス
テムの解析結果について説明する。また、この解析結果
は、本発明の効果を明確にするために膨張タービン以外
の構成機器の効率は一定として計算したものを示す。
In the following description, analysis results of the conventional air refrigeration system and the multi-series air refrigeration system of the present invention under the condition of a flow rate of 2 kg / s will be described. In addition, this analysis result shows that the efficiency of the components other than the expansion turbine is calculated as constant in order to clarify the effect of the present invention.

【0022】本発明の実施例との違いを明確にするため
に従来の空気冷凍システムについて、その構成を図5に
示して説明する。従来の空気冷凍システムは、空気を吸
い込んで圧縮する空気圧縮機(110)、圧縮によって
上昇した空気の温度を冷却水や冷媒を使って下げるため
の空気冷却器(120)、膨張タービン(160)と同
軸、同一回転数で作動し、膨張タービン(160)で発
生する動力で駆動され、再度空気を圧縮する同軸圧縮機
(130)、同軸圧縮機(130)から出た空気を冷却
する中間冷却器(140)で構成される。従来の空気冷
凍システムでは、膨張タービン(160)入口の空気温
度は、中間冷却器(140)の冷却能力で決まる。空気
冷却器(120)と中間冷却器(140)の冷却には、
水が使用される。水が使用される場合は、0℃で凍結し
て、管路や冷却器流路内を水が流れなくなるため、高々
2から3℃までしか下がらない。フレオンなどの冷媒を
使うことが考えられるが、前述のように冷媒の漏洩など
による環境や人体への悪影響は避けられない。また、冷
媒を−20℃以下の冷却に使用すると設備が大きくな
り、効率が低下するため所要動力が大きくなって経済性
が悪くなる。
In order to clarify the difference from the embodiment of the present invention, a configuration of a conventional air refrigeration system will be described with reference to FIG. The conventional air refrigeration system includes an air compressor (110) that draws in air and compresses the air, an air cooler (120) that lowers the temperature of the air that has risen by compression using cooling water or a refrigerant, and an expansion turbine (160). A coaxial compressor (130) that operates at the same rotation speed and at the same rotational speed, is driven by power generated by the expansion turbine (160), and compresses air again, and an intercooler that cools air exiting from the coaxial compressor (130). (140). In a conventional air refrigeration system, the air temperature at the inlet of the expansion turbine (160) is determined by the cooling capacity of the intercooler (140). For cooling the air cooler (120) and the intercooler (140),
Water is used. When water is used, it freezes at 0 ° C. and stops flowing through the pipeline and the cooler flow channel, so that the temperature drops only to 2 to 3 ° C. at most. Although it is conceivable to use a refrigerant such as freon, adverse effects on the environment and the human body due to leakage of the refrigerant are inevitable as described above. Further, if the refrigerant is used for cooling at -20 ° C. or lower, the equipment becomes large and the efficiency is reduced, so that the required power is increased and the economic efficiency is deteriorated.

【0023】実施例1の構成を図6に示す。実施例1
は、空気冷凍システムを主系統(100)と副系統(2
00)の2系統で構成される。主系統(100)は、所
期の冷凍空気を生成する系統で、副系統(200)は、
主系統(100)の膨張タービン(160)の入口温度
を下げるために設けられた熱交換器(150)の冷却空
気として使用される。主系統(100)は、空気を圧縮
する空気圧縮機(110)、空気圧縮機(110)から
吐出される高圧高温の空気を冷却する空気冷却器(12
0)、空気を再度圧縮する同軸圧縮機(130)、再度
圧縮された高温高圧の空気を冷却する中間冷却器(14
0)、冷却された空気を更に低温に冷却する熱交換器
(150)、低温高圧の空気を膨張させて温度を下げる
膨張タービン(160)で構成される。
FIG. 6 shows the structure of the first embodiment. Example 1
Is an air refrigeration system consisting of a main system (100) and a sub system (2).
00). The main system (100) is a system for generating the intended frozen air, and the sub system (200) is
It is used as cooling air for a heat exchanger (150) provided to lower the inlet temperature of the expansion turbine (160) of the main system (100). The main system (100) includes an air compressor (110) for compressing air, and an air cooler (12) for cooling high-pressure and high-temperature air discharged from the air compressor (110).
0), a coaxial compressor (130) for recompressing air, and an intercooler (14) for cooling recompressed high-temperature and high-pressure air.
0), a heat exchanger (150) for cooling the cooled air to a lower temperature, and an expansion turbine (160) for expanding the low-temperature and high-pressure air to lower the temperature.

【0024】副系統(200)は、空気を吸い込んで圧
縮する副空気圧縮機(210)、高温高圧になった空気
を冷却する副空気冷却器(220)、更に空気を圧縮す
る副同軸圧縮機(230)、再度空気を冷却する副中間
冷却器(240)、空気を膨張させて空気の温度を下げ
る副膨張タービン(250)で構成されている。副膨張
タービン(250)で生成された低温空気は、副膨張タ
ービン(250)の出口管(251)と結合された主系
統(100)の熱交換器(150)の冷却空気入口管
(153)を通って熱交換器(150)へと導かれ、膨
張タービン(160)へ入る空気の冷却に使われる。
The sub-system (200) includes a sub-air compressor (210) for sucking and compressing air, a sub-air cooler (220) for cooling high-temperature and high-pressure air, and a sub-coaxial compressor for further compressing air. (230), a sub-intercooler (240) for cooling the air again, and a sub-expansion turbine (250) for expanding the air to lower the temperature of the air. The low-temperature air generated by the sub-expansion turbine (250) is cooled by the cooling air inlet pipe (153) of the heat exchanger (150) of the main system (100) connected to the outlet pipe (251) of the sub-expansion turbine (250). Through the heat exchanger (150) and is used to cool the air entering the expansion turbine (160).

【0025】実施例2は、空気冷凍システムの最適設計
法と最適制御に関する考案である。実施例2について数
式を使って説明する。数1は、空気冷凍システムを構成
する機器の既知のデータを与えることにより、空気圧縮
機−空気冷却器−同軸圧縮機−中間冷却器−膨張タービ
ンで構成される空気冷凍システムの膨張タービンと同軸
圧縮機の動力のバランスがとれた状態における同軸圧縮
機の圧力比を算出する解析式であり、数2は空気圧縮機
−空気冷却器−同軸圧縮機−空気冷却器−熱交換器−膨
張タービンで構成される空気冷凍システムの膨張タービ
ンと同軸圧縮機の動力のバランスがとれた状態における
同軸圧縮機の圧力比を求める式である。数1と数2によ
って同軸圧縮機の圧力比が算出されると他の全ての状態
値が従来の関係式で求まり、構成機器の最適化を図るこ
とができ、所要動力の最小化条件、同軸圧縮機と膨張タ
ービンの最適組合せ形状寸法が容易に求まる。
Embodiment 2 is a device relating to an optimum design method and an optimum control of an air refrigeration system. Example 2 will be described using mathematical expressions. Equation (1) gives the known data of the equipment constituting the air refrigeration system, so that it is coaxial with the expansion turbine of the air refrigeration system including the air compressor, the air cooler, the coaxial compressor, the intercooler, and the expansion turbine. An analytical expression for calculating the pressure ratio of the coaxial compressor in a state where the power of the compressor is balanced, Equation 2 is an air compressor-air cooler-coaxial compressor-air cooler-heat exchanger-expansion turbine. Is a formula for calculating the pressure ratio of the coaxial compressor in a state where the power of the expansion turbine of the air refrigeration system and the power of the coaxial compressor are balanced. When the pressure ratio of the coaxial compressor is calculated by Equations (1) and (2), all other state values can be obtained by the conventional relational expressions, and the components can be optimized. The optimum combination of the compressor and the expansion turbine is easily determined.

【0026】[0026]

【数1】 (Equation 1)

【0027】[0027]

【数2】 (Equation 2)

【0028】上記の式を使って解析した従来の空気冷凍
システムの入力解析結果を図3に、空気冷凍システムを
構成する同軸圧縮機の羽根車と膨張タービンの動翼外径
の計算結果を図4に、本発明の多系統空気冷凍システム
の入力解析結果を図8に、空気冷凍システムを構成する
同軸圧縮機の羽根車と膨張タービンの動翼外径の計算結
果を図9に示す。
FIG. 3 shows an input analysis result of the conventional air refrigeration system analyzed using the above equation, and FIG. 3 shows a calculation result of a rotor blade outer diameter of an impeller of the coaxial compressor and an expansion turbine constituting the air refrigeration system. FIG. 4 shows the results of input analysis of the multi-system air refrigeration system of the present invention, and FIG. 9 shows the results of calculation of the outer diameter of the impeller of the coaxial compressor and the moving blade of the expansion turbine which constitute the air refrigeration system.

【0029】数3は、同軸圧縮機の羽根車外径と膨張タ
ービンの動翼外径の関係式であり、数3を使うことによ
って同軸圧縮機の羽根車と膨張タービンの動翼のバラン
ス良い設計ができる。
Equation (3) is a relational expression between the outer diameter of the impeller of the coaxial compressor and the outer diameter of the moving blade of the expansion turbine. By using the equation (3), a well-balanced design of the impeller of the coaxial compressor and the moving blade of the expansion turbine is obtained. Can be.

【0030】[0030]

【数3】 (Equation 3)

【発明の効果】【The invention's effect】

【0031】従来の空気冷凍システムで−120℃の冷
凍空気を得るためには、膨張タービンの圧力比が16以
上になり、尚且つ膨張タービンの高い効率が必要である
が、本発明の多系統空気冷凍システムでは、膨張タービ
ンの圧力比10以下で−120℃の冷凍空気を得ること
ができ、主系統の圧力比と副系統の圧力比の広い範囲で
運転が可能になる。
In order to obtain -120 ° C. refrigerated air with a conventional air refrigeration system, the pressure ratio of the expansion turbine must be 16 or more and the expansion turbine must have high efficiency. In the air refrigeration system, refrigerated air at −120 ° C. can be obtained at a pressure ratio of the expansion turbine of 10 or less, and operation can be performed in a wide range of the main system pressure ratio and the sub system pressure ratio.

【0032】従来の空気冷凍システムも本発明の多系列
空気冷凍システムも出口圧力は大気圧と等しいので圧力
比が変わると、膨張タービンの入口圧力が変わる。従来
の空気冷凍システムで膨張タービン出口温度が−120
℃に達すると考えられる条件として、膨張タービン入口
圧力を約30気圧、入口温度を40℃(冷却水温度25
℃、温度効率85%の空気冷却機で冷却した場合)、出
口圧力を1気圧とすると、比重量は2.30kg/
、理論ヘッドは20675mとなる。本発明の多系
列空気冷凍システムについても同様に、膨張タービン入
口圧力を約7気圧、入口温度を−40℃(副系統で生成
した低温空気、効率85%の熱交換器で冷却)、出口圧
力を1気圧とすると、比重量は2.30kg/m、理
論ヘッドは14225mとなる。流量が同一の2kg/
s、それぞれの膨張タービンの設計理論速度を0.7、
比速度を35rpm・(m/s)0.5/m0.75
として回転数と動翼外径を概算すると、前者の回転数が
92067rpm、動翼外径が92.4mm、後者の回
転数が38051rpm、動翼外径が175mmとな
る。このときの効率差を評価すると、動翼外径による差
は、1.2%(機械工学便覧、B5編168ページ、2
35式)、圧力比による効率差は、全効率で20%、静
効率で18%(日本ガスタービン学会日本ガスタービン
セミナー第12回資料集、第11図及び2式使用、圧力
比30での全効率は68.7%、静効率は66.7%、
圧力比7での全効率は87.7%、静効率は85.8
%)である。即ち、世界最高の効率でも所要の効率を達
成することは困難であり、圧力比30程度迄上げる必要
があるが、多系列空気冷凍システムでは、10以下の圧
力比、例えば圧力比7でも−120℃の低温空気を生成
できる。
In both the conventional air refrigeration system and the multi-series air refrigeration system of the present invention, since the outlet pressure is equal to the atmospheric pressure, when the pressure ratio changes, the inlet pressure of the expansion turbine changes. In the conventional air refrigeration system, the temperature at the outlet of the expansion turbine is -120.
° C, the expansion turbine inlet pressure is about 30 atm and the inlet temperature is 40 ° C (cooling water temperature 25 ° C).
C., when cooled by an air cooler with a temperature efficiency of 85%), and when the outlet pressure is 1 atm, the specific weight is 2.30 kg /
m 2 and the theoretical head is 20675 m. Similarly, for the multi-series air refrigeration system of the present invention, the inlet pressure of the expansion turbine is about 7 atm, the inlet temperature is −40 ° C. (low-temperature air generated in the sub-system, cooled by a heat exchanger with an efficiency of 85%), and the outlet pressure is Is 1 atm, the specific weight is 2.30 kg / m 2 , and the theoretical head is 14225 m. 2kg /
s, the design theoretical speed of each expansion turbine is 0.7,
The specific speed is 35 rpm · (m 3 / s) 0.5 / m 0.75
When the rotational speed and the outer diameter of the moving blade are roughly calculated, the rotational speed of the former is 92067 rpm, the outer diameter of the moving blade is 92.4 mm, the rotational speed of the latter is 38051 rpm, and the outer diameter of the moving blade is 175 mm. When the efficiency difference at this time was evaluated, the difference due to the rotor blade outer diameter was 1.2% (Mechanical Engineering Handbook, B5, 168 pages, 2
35), the efficiency difference due to the pressure ratio is 20% in total efficiency and 18% in static efficiency (Japanese Gas Turbine Society of Japan Gas Turbine Seminar 12th data collection, use of Fig. 11 and 2 formulas, pressure ratio of 30 The overall efficiency is 68.7%, the static efficiency is 66.7%,
At a pressure ratio of 7, the overall efficiency is 87.7%, and the static efficiency is 85.8.
%). That is, it is difficult to achieve the required efficiency even at the highest efficiency in the world, and it is necessary to increase the pressure ratio up to about 30. However, in a multi-series air refrigeration system, even if the pressure ratio is 10 or less, for example, a pressure ratio of 7 is -120. ℃ low temperature air can be generated.

【0033】膨張タービンの動力は、従来の空気冷却シ
ステムでは276.8kW、トルクが5.97kgm、
本発明の多系統空気冷凍システムでは166.5kW、
トルクが5.87kgmであり、前者に比べて動翼外径
が約1.9倍大きく、約3.6倍の翼面積でほぼ同じト
ルクを発生するため動翼が空気から受ける曲げ力と振動
応力が小さく、空気力学的に適切な翼の厚みに設定でき
るため、流路形成が容易であり、高効率化が容易にな
る。
The power of the expansion turbine is 276.8 kW and torque is 5.97 kgm in the conventional air cooling system.
In the multi-system air refrigeration system of the present invention, 166.5 kW,
Torque is 5.87 kgm, the outer diameter of the moving blade is about 1.9 times larger than the former, and almost the same torque is generated with about 3.6 times the blade area, so the bending force and vibration received by the moving blade from the air Since the stress is small and the thickness of the blade can be set to an aerodynamically appropriate value, the flow path can be easily formed, and the efficiency can be easily improved.

【0034】数1を使って解析的に求めた従来の空気冷
凍システムの空気圧縮機と冷却機の合計入力は、図3に
示すように膨張タービンの圧力比上昇と共に増大し、膨
張タービンの出口温度が−120℃に達する圧力比30
では、710kWに達している。
As shown in FIG. 3, the total input of the air compressor and the cooler of the conventional air refrigeration system analytically obtained by using the equation (1) increases with an increase in the pressure ratio of the expansion turbine, and as shown in FIG. Pressure ratio 30 when temperature reaches -120 ° C
Has reached 710 kW.

【0035】[0035]

【数1】(Equation 1)

【0036】図8と図9は数2を使って解析的に求めた
本発明の多系列空気冷凍システムで主膨張タービン出口
温度が−120℃に達する場合の計算結果である。図8
は本発明の多系統空気冷凍システムの想定される作動範
囲全域での構成ターボ機械の入力と出力を求めたもので
ある。合計入力は、図8に示すように膨張タービンの圧
力比6〜7で最小値を持ち、圧力比7で530kWであ
り、従来の空気冷凍システムに比べて所要動力が約25
%小さくなっている。
FIGS. 8 and 9 show calculation results obtained when the outlet temperature of the main expansion turbine reaches -120 ° C. in the multi-series air refrigeration system of the present invention analytically obtained by using the equation (2). FIG.
Fig. 4 shows the input and output of the turbomachine constituting the entire range of the assumed operating range of the multi-system air refrigeration system of the present invention. The total input has a minimum value at an expansion turbine pressure ratio of 6 to 7 as shown in FIG. 8 and is 530 kW at a pressure ratio of 7, which requires about 25 times less power than a conventional air refrigeration system.
% Smaller.

【0037】[0037]

【数2】(Equation 2)

【0038】図9は、数2を使って本発明の多系統空気
冷凍システムの想定される作動範囲全域での構成ターボ
機械の羽根車と動翼の外径を求めたものである。膨張タ
ービンの圧力比7では、同軸圧縮機の羽根車外径は約1
90mm、膨張タービンの動翼外径は175mmで、従
来の空気冷凍システムに比べて動翼外径が約1.9倍
で、高効率で高信頼性の設計が容易になっている。
FIG. 9 shows the outer diameters of the impellers and the moving blades of the turbomachine in the entire range of the assumed operating range of the multi-system air refrigeration system according to the present invention using Equation (2). At an expansion turbine pressure ratio of 7, the coaxial compressor impeller outer diameter is about 1
The outer diameter of the moving blade is 90 mm and the outer diameter of the moving blade of the expansion turbine is 175 mm. The outer diameter of the moving blade is about 1.9 times as large as that of the conventional air refrigeration system, which facilitates the design of high efficiency and high reliability.

【0039】[0039]

【数2】(Equation 2)

【0040】従来の空気冷凍システムと本発明の多系統
空気冷凍システムの同軸圧縮機の羽根車外径と膨張ター
ビンの動翼外径を比べると、同軸圧縮機の羽根車の外径
が大きくなっている。両者の外径は、性能に大きく影響
すると共にスラストバランスにも影響する。数3で予め
両者の外径比を決める設計パラメータを設定しておくこ
とにより、最適な設計が可能となり、前述の製作後の修
正や再製作を防止できる。
When the outer diameter of the impeller of the coaxial compressor of the conventional air refrigeration system and that of the multi-system air refrigeration system of the present invention are compared with the outer diameter of the moving blade of the expansion turbine, the outer diameter of the impeller of the coaxial compressor becomes larger. I have. Both outer diameters have a great effect on performance and also have an effect on thrust balance. By setting in advance the design parameters for determining the outer diameter ratio between the two, optimum design becomes possible, and the above-mentioned correction and remanufacture after manufacture can be prevented.

【0041】[0041]

【数3】(Equation 3)

【0042】以上説明してきたように、空気冷凍システ
ムは、多くの研究者によって検討されてきたが、圧力比
が高い領域で高い効率が必要であるために実現不可能と
されてきたシステムである。本説明では、廃タイヤ冷凍
破砕を想定して−120℃の冷却について説明してきた
が、本発明の多系列空気冷凍システムによって、廃タイ
ヤ破砕装置と同様に液体窒素が使用されている−150
℃よりも低温の冷凍についても適用でき、環境や人体へ
の影響が全く無い冷凍システムが実現できる。また,こ
こでは空気冷凍システムについて説明してきたが、他の
気体に対しても適用できる。
As described above, the air refrigeration system has been studied by many researchers, but has been considered to be impractical due to the need for high efficiency in a region where the pressure ratio is high. . In the present description, the cooling at -120 ° C has been described assuming the freezing and crushing of waste tires. However, the multi-series air refrigeration system of the present invention uses liquid nitrogen in the same manner as in the waste tire crushing apparatus.
The present invention can be applied to refrigeration at a temperature lower than ℃, and a refrigeration system having no effect on the environment and the human body can be realized. Although the air refrigeration system has been described here, it can be applied to other gases.

【0043】[0043]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の空気冷凍システムの空気圧縮機圧力比と
膨張タービン出口温度の関係を示した図である。
FIG. 1 is a diagram showing a relationship between an air compressor pressure ratio and an expansion turbine outlet temperature of a conventional air refrigeration system.

【図2】従来の空気冷凍システムの空気圧縮機圧力比と
膨張タービン圧力比の関係を示した図である。
FIG. 2 is a diagram showing a relationship between an air compressor pressure ratio and an expansion turbine pressure ratio of a conventional air refrigeration system.

【図3】従来の空気冷凍システムの空気圧縮機圧力比と
空気圧縮機入力との関係を示した図である。
FIG. 3 is a diagram illustrating a relationship between an air compressor pressure ratio and an air compressor input of a conventional air refrigeration system.

【図4】従来の空気冷凍システムの空気圧縮機圧力比と
膨張タービン動翼外径との関係を示した図である。
FIG. 4 is a diagram showing a relationship between a pressure ratio of an air compressor and an outer diameter of a moving blade of an expansion turbine in a conventional air refrigeration system.

【図5】従来の空気冷凍システムの系統図である。FIG. 5 is a system diagram of a conventional air refrigeration system.

【図6】本発明の多系統空気冷凍システムの系統図であ
る。
FIG. 6 is a system diagram of a multi-system air refrigeration system of the present invention.

【図7】空気冷凍システムに使用される空気冷却器の冷
却空気出口の高温エネルギーを使用する温水焚吸収冷凍
機を組み合わせたシステムの図である。
FIG. 7 is a diagram of a system that combines a hot water-fired absorption chiller that uses high-temperature energy at a cooling air outlet of an air cooler used in an air refrigeration system.

【図8】膨張タービン圧力比に対する空気圧縮機、同軸
圧縮機、膨張タービン、副空気圧縮機、副膨張タービ
ン、副同軸圧縮機の入力、合計入力の関係を示した図で
ある。
FIG. 8 is a diagram showing a relationship between an input of a air compressor, a coaxial compressor, an expansion turbine, an auxiliary air compressor, an auxiliary expansion turbine, and an auxiliary coaxial compressor, and a total input with respect to an expansion turbine pressure ratio.

【図9】膨張タービン圧力比に対する空気圧縮機、同軸
圧縮機、膨張タービン、副空気圧縮機、副膨張タービ
ン、副同軸圧縮機の羽根車と動翼の外径の関係を示した
図である。
FIG. 9 is a diagram showing a relationship between an outer diameter of an impeller and a moving blade of an air compressor, a coaxial compressor, an expansion turbine, a sub air compressor, a sub expansion turbine, and a sub coaxial compressor with respect to an expansion turbine pressure ratio. .

【0044】[0044]

【符号の説明】[Explanation of symbols]

(100)主系統 (110)空気圧縮機 (111)駆動機 (112)入口管 (113)出口管 (120)空気冷却器 (121)冷却塔 (122)冷却水出口管 (123)冷却水入口管 (124)空気出口管 (130)同軸圧縮機 (131)空気出口管 (140)冷却器 (141)空気出口管 (142)冷却水出口管 (143)冷却水入口管 (150)熱交換器 (151)空気出口管 (152)冷却空気出口管 (153)冷却空気入口管 (160)膨張タービン (161)空気出口管 (170)冷凍設備 (180)温水焚吸収冷凍機 (181)冷却水吸収冷凍機出口管 (182)ポンプ (183)ポンプ出口管 (184)冷却水吸収冷凍機入口管 (200)副系統 (210)副圧縮機 (211)副駆動機 (212)入口管 (213)空気出口管 (220)副空気冷却器 (221)副冷却塔 (222)冷却水出口管 (223)冷却水入口管 (224)空気出口管 (230)副同軸圧縮機 (231)空気出口管 (240)副中間冷却器 (241)空気出口管 (242)冷却水出口管 (243)冷却水入口管 (250)副膨張タービン (251)空気出口管 (100) Main system (110) Air compressor (111) Driver (112) Inlet pipe (113) Outlet pipe (120) Air cooler (121) Cooling tower (122) Cooling water outlet pipe (123) Cooling water inlet Pipe (124) Air outlet pipe (130) Coaxial compressor (131) Air outlet pipe (140) Cooler (141) Air outlet pipe (142) Cooling water outlet pipe (143) Cooling water inlet pipe (150) Heat exchanger (151) Air outlet pipe (152) Cooling air outlet pipe (153) Cooling air inlet pipe (160) Expansion turbine (161) Air outlet pipe (170) Refrigeration equipment (180) Hot water absorption absorption refrigerator (181) Cooling water absorption Refrigerator outlet pipe (182) Pump (183) Pump outlet pipe (184) Cooling water absorption refrigerator inlet pipe (200) Subsystem (210) Subcompressor (211) Subdrive (212) Inlet pipe (213) Air outlet pipe (220) Sub air cooler (221) Sub cooling tower (222) Cooling water outlet pipe (223) Cooling water inlet pipe (224) Air outlet pipe (230) Sub coaxial compressor (231) Air Outlet pipe (240) Sub intermediate cooler (241) Air outlet pipe (242) Cooling water outlet pipe (243) Cooling water inlet pipe (250) Sub expansion turbine (251) Air outlet pipe

【手続補正書】[Procedure amendment]

【提出日】平成13年1月30日(2001.1.3
0)
[Submission date] January 30, 2001 (2001.1.3)
0)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 栄人 諫早市原口名655−10 (72)発明者 松尾 雅智 長崎市界町2丁目12−7 キングマンショ ン304 (72)発明者 松尾 亜希子 諫早市原口名655−10 (72)発明者 松尾 拓也 大村市東大村1丁目2693−46 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Ehito Matsuo Haraguchi, Isahaya 655-10 (72) Inventor Masatoshi Matsuo 2-12-7 Kaimachi, Nagasaki City Kingman 304 (72) Inventor Akiko Matsuo Isahaya Ichiharaguchi name 655-10 (72) Inventor Takuya Matsuo 1-293 Higashi Omura, Omura City

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、膨張機器、冷却器を有して、気体
を圧縮、冷却、膨張を行わせ、低温気体を得る冷凍シス
テムにおいて、膨張器入口に冷却器と熱交換器を併せ持
つ冷凍システム。
1. A refrigeration system having a compressor, an expansion device, and a cooler for compressing, cooling, and expanding a gas to obtain a low-temperature gas, wherein the refrigeration system has a cooler and a heat exchanger at the inlet of the expander. system.
【請求項2】気体を少なくとも1回、圧縮、冷却、膨張
を行わせて低温気体を生成する冷凍システムにおいて、
複数系統の冷凍システムの少なくとも一系統を副系統と
して副系統で生成した低温気体を少なくとも一つの主系
統冷凍システムの膨張タービン入口に設けられた熱交換
器の冷却源として使用する多系統冷凍システム。
2. A refrigeration system for producing a low-temperature gas by compressing, cooling and expanding a gas at least once,
A multi-system refrigeration system in which at least one of a plurality of refrigeration systems is used as a sub-system and a low-temperature gas generated in the sub-system is used as a cooling source of a heat exchanger provided at an expansion turbine inlet of at least one main-system refrigeration system.
【請求項3】請求項2において、主系統の気体圧縮機の
圧力比と副系統の副気体圧縮機の圧力比を所要温度に応
じて設定する多系統冷凍システム。
3. The multi-system refrigeration system according to claim 2, wherein a pressure ratio of the main gas compressor and a pressure ratio of the sub gas compressor are set according to a required temperature.
【請求項4】請求項1及び2において、冷却器で生成さ
れた高温冷却水を使って温水焚吸収冷凍機で冷水を生成
し、冷却に使用する冷凍システム。 【請求項4】請求項2において、解析式を用いて主系統
の圧縮機と副系統の副圧縮機の動力が最小になる圧力比
の組合せと膨張機(同軸圧縮機と膨張タービン)の最適
形状を求める単系統及び多系統冷凍システムの設計方
法。
4. The refrigeration system according to claim 1, wherein the high-temperature cooling water generated by the cooler is used to generate cold water by a hot-water-absorption absorption refrigerator and used for cooling. 4. A combination of a pressure ratio that minimizes the power of a main-system compressor and a sub-system sub-compressor and an optimum expansion machine (coaxial compressor and expansion turbine) according to claim 2. Design method of single system and multi-system refrigeration system for obtaining shape.
【請求項5】主系統の圧縮機と副系統の副圧縮機の動力
が最小になる圧力比の組合せで単系統及び多系統冷凍シ
ステムを運転する運転方法。
5. An operating method for operating a single system and a multi-system refrigeration system with a combination of pressure ratios that minimizes the power of the main system compressor and the sub system sub compressor.
JP2000356761A 2000-10-18 2000-10-18 Multiline air refrigerating system Pending JP2002130852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000356761A JP2002130852A (en) 2000-10-18 2000-10-18 Multiline air refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000356761A JP2002130852A (en) 2000-10-18 2000-10-18 Multiline air refrigerating system

Publications (1)

Publication Number Publication Date
JP2002130852A true JP2002130852A (en) 2002-05-09

Family

ID=18828940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356761A Pending JP2002130852A (en) 2000-10-18 2000-10-18 Multiline air refrigerating system

Country Status (1)

Country Link
JP (1) JP2002130852A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512380A (en) * 2009-11-27 2013-04-11 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Turbine control method and apparatus based on exhaust gas temperature to turbine pressure ratio
JP2013512378A (en) * 2009-11-27 2013-04-11 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Threshold based on control method and exhaust temperature for turbine
JP2013512379A (en) * 2009-11-27 2013-04-11 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Mode control method for gas turbine based on exhaust temperature and gas turbine
CN104422191A (en) * 2013-09-05 2015-03-18 江苏绿叶锅炉有限公司 Device for using deflating to produce low-temperature air

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512380A (en) * 2009-11-27 2013-04-11 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Turbine control method and apparatus based on exhaust gas temperature to turbine pressure ratio
JP2013512378A (en) * 2009-11-27 2013-04-11 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Threshold based on control method and exhaust temperature for turbine
JP2013512379A (en) * 2009-11-27 2013-04-11 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Mode control method for gas turbine based on exhaust temperature and gas turbine
US8904803B2 (en) 2009-11-27 2014-12-09 Nuovo Pignone S.P.A. Exhaust temperature based threshold for control method and turbine
US9140195B2 (en) 2009-11-27 2015-09-22 Nuovo Pignone S.P.A. Exhaust temperature versus turbine pressure ratio based turbine control method and device
CN104422191A (en) * 2013-09-05 2015-03-18 江苏绿叶锅炉有限公司 Device for using deflating to produce low-temperature air

Similar Documents

Publication Publication Date Title
EP2035711B1 (en) Multistage compressor device
US6484533B1 (en) Method and apparatus for the production of a liquid cryogen
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
CN111183272B (en) Refrigerating apparatus and refrigerating method
EP3351882B1 (en) Compression train including one centrifugal compressor and lng plant
EP2880266B1 (en) Dual-end drive gas turbine
US20220268516A1 (en) Cooling and/or liquefying system and method
US20220275999A1 (en) Refrigeration and/or liquefaction method, device and system
US20220260310A1 (en) Cooling and/or liquefying method and system
JP2002130852A (en) Multiline air refrigerating system
US12038215B2 (en) Refrigeration device and system
JP2002188865A (en) Multiple stage compression type refrigerating machine
JP2002181399A (en) Self-cooled air refrigeration system
Catalano et al. Improved inverse Joule Brayton air cycle using turbocharger units
Catalano et al. Development and testing of sustainable refrigeration plants
US20230296294A1 (en) Simplified cryogenic refrigeration system
US20240125545A1 (en) Device and method for refrigerating or liquefying a fluid
Ke et al. Efficiency Improvement of Small Cryogenic Helium Turbo-expanders in TIPC
RU2206028C1 (en) Air turbocooling plant
RU2084780C1 (en) Method of providing cold air flows and design of turbo-refrigerating plant
JPH10205353A (en) Method and device for driving integrated coal gasification combined cycle system
SU1366815A1 (en) Low-temperature solar compressor station
KR102300875B1 (en) Separable refrigerant compressor for liquefaction of natural gas
KR20230144567A (en) Devices and methods for liquefying fluids such as hydrogen and/or helium
Ball Freon Cascade Refrigerator for Liquid Air Plant Precooler