JP2002122579A - Adsorbent for chromatography - Google Patents
Adsorbent for chromatographyInfo
- Publication number
- JP2002122579A JP2002122579A JP2000311619A JP2000311619A JP2002122579A JP 2002122579 A JP2002122579 A JP 2002122579A JP 2000311619 A JP2000311619 A JP 2000311619A JP 2000311619 A JP2000311619 A JP 2000311619A JP 2002122579 A JP2002122579 A JP 2002122579A
- Authority
- JP
- Japan
- Prior art keywords
- target substance
- adsorbent
- chromatography
- gas
- separated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、生体成分(細胞、
蛋白、DNA、RNA、ホルモンその他)や薬成分中か
ら所望の目的物質を分離して精製するクロマトグラフィ
ーに使用する吸着材に関する。TECHNICAL FIELD The present invention relates to a biological component (cell,
The present invention relates to an adsorbent used for chromatography for separating and purifying a desired target substance from proteins, DNA, RNA, hormones and the like and drug components.
【0002】[0002]
【発明が解決しようとする課題】混合物質中の目的物質
を分離精製する技法として、カラムクロマトグラフィー
が知られている。カラムクロマトグラフィーの種類は、
1.固定相にイオン性担体を使用し、移動相中の目的物質
との静電的な相互作用により分離精製するイオン交換ク
ロマトグラフ法、2. 多孔質体を固定相にし、様々な空
孔の大きさを利用することで目的物質の大きさ(分子
量)に依り分離するゲル濾過クロマトグラフ法、3. 固
定相担体に目的物質に特異的な分子識別能をもつ生体由
来成分(抗体・酵素・レセプタ)を修飾し、分離精製す
るアフィニティクロマトグラフ法に大別される。そして
大量の試料を精製する際には、上記3つのクロマトグラ
フ法を組合せて目的物質を効率良く分離するのが常であ
る。As a technique for separating and purifying a target substance in a mixed substance, column chromatography is known. The types of column chromatography are
1. Ion exchange chromatography using an ionic carrier as the stationary phase and separating and purifying it by electrostatic interaction with the target substance in the mobile phase. 2. Using a porous material as the stationary phase and various pores Gel filtration chromatography, in which the target substance is separated according to the size (molecular weight) of the target substance by using the size of the target substance; Receptor), and is roughly classified into affinity chromatography in which separation and purification are performed. When a large amount of sample is purified, the target substance is usually efficiently separated by combining the above three chromatographic methods.
【0003】しかし、上記各クロマトグラフィー法にお
いては、使用する固定相材料の溶液耐性が異なるため、
使用する移動相成分も異なる場合が多く、また、多くの
固定相における溶液耐性は、酸度(塩基度)が著しく低
い(高い)ものや高い塩濃度の溶媒を移動相として使用
することが困難なため、精製操作が複雑かつ煩雑になる
上、特殊環境の用途では分離精製が困難であった。However, in each of the above-mentioned chromatography methods, since the stationary phase materials used have different solution tolerances,
The mobile phase components used are often different, and the solution resistance of many stationary phases is such that it is difficult to use a solvent having a significantly low (high) acidity (basicity) or a solvent having a high salt concentration as the mobile phase. Therefore, the purification operation is complicated and complicated, and it is difficult to separate and purify in a special environment.
【0004】更に、より高純度な精製が要求される場合
においては、上記3つの方法の内、最終的にアフィニテ
ィクロマトグラフ法を用いる技法が行われる。[0004] Further, when a higher purity is required, a technique using an affinity chromatograph is finally performed among the above three methods.
【0005】しかし、目的物質に特異性をもつ分子識別
分子を作製すること自体、容易でなく、多額のコストを
要するケースが多い。また、タンパク質により構成され
る分子認識分子は、精製過程における外部環境(温度・
pH・緩衝能・イオン強度・補因子等)に大きく影響さ
れ失活し易く、長期間に亘って一定の識別能を保持し続
けることが困難であった。However, it is often not easy to prepare a molecule identifying molecule having specificity for a target substance, and a large amount of cost is required. In addition, the molecular recognition molecules composed of proteins are used in the external environment (temperature,
pH, buffering capacity, ionic strength, cofactor, etc.), and were easily deactivated, making it difficult to maintain a constant discriminating ability over a long period of time.
【0006】本発明は、上記した従来の欠点を解決する
ために発明されたものであり、その課題とする処は、目
的物質と一致する大きさの凹部を有して被分離試料液か
ら目的物質を安定して分離精製することができるクロマ
トグラフィー用吸着材を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional drawbacks. An object of the present invention is to provide a method for forming a target liquid from a sample liquid to be separated, having a concave portion having a size corresponding to the target substance. An object of the present invention is to provide an adsorbent for chromatography capable of stably separating and purifying substances.
【0007】本発明の他の課題は、精製過程における外
部環境に影響されずに目的物質を安定的に分離すること
ができるクロマトグラフィー用吸着材を提供することに
ある。Another object of the present invention is to provide an adsorbent for chromatography that can stably separate a target substance without being affected by an external environment in a purification process.
【0008】本発明の他の課題は、目的物質の失活に左
右されずに安定的に分離精製することができ、分離精製
コストを低減することができるクロマトグラフィー用吸
着材を提供することにある。Another object of the present invention is to provide a chromatographic adsorbent which can stably separate and purify without being affected by the deactivation of a target substance and can reduce the cost of separation and purification. is there.
【0009】[0009]
【課題を解決するための手段】本発明は、吸着材が充填
されたカラム内に被分離試料液を注入して目的物質を吸
着材に吸着させて分離するクロマトグラフィーにおい
て、吸着材は陽電極及び陰電極が所定の間隔をおいて相
対配置され、該陰電極上に目的物質からなる吸着素材が
電気的絶縁状態で配置された反応容器内に有機又は無機
化合物の原料ガスを導入して所定のガス圧に調整した状
態で陽電極及び陰電極間に印加された電圧により発生す
るグロー放電により原料ガス中の有機又は無機物質をプ
ラズマ化して吸着素材の表面に付着堆積させて製膜した
後、吸着素材を溶解除去して目的物質に一致する凹部を
有したことを特徴とする。SUMMARY OF THE INVENTION The present invention relates to a chromatography for injecting a sample liquid to be separated into a column filled with an adsorbent, adsorbing a target substance on the adsorbent and separating the adsorbent, wherein the adsorbent is a positive electrode. The cathode and the cathode are arranged at a predetermined distance from each other, and a raw material gas of an organic or inorganic compound is introduced into a reaction vessel in which an adsorption material made of a target substance is placed on the cathode in an electrically insulated state. After the organic or inorganic substance in the raw material gas is turned into plasma by the glow discharge generated by the voltage applied between the positive electrode and the negative electrode in a state where the gas pressure is adjusted, and then the film is formed by adhering and depositing on the surface of the adsorption material. And a concave portion corresponding to the target substance by dissolving and removing the adsorption material.
【0010】[0010]
【発明の実施形態】以下、本発明の実施形態を図に従っ
て説明する。図1〜図2において、クロマトグラフィー
1のカラム3には後述する吸着材5が充填される。そし
てカラム3の上部から分離する目的物質を含む被分析試
料を注入して吸着材5に目的物質を吸着させると共に非
目的物質を流下させて回収する。そして溶出液により吸
着材5から目的物質を取り出して分離精製する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, the column 3 of the chromatography 1 is filled with an adsorbent 5 described later. Then, an analyte sample containing the target substance to be separated is injected from the upper part of the column 3 so that the target substance is adsorbed on the adsorbent 5 and the non-target substance flows down and is collected. Then, the target substance is taken out from the adsorbent 5 using the eluate and separated and purified.
【0011】上記クロマトグラフィー1に使用する吸着
材5は以下のように製造される。図3において、吸着材
製造装置としてのプラズマ製膜装置6の反応容器7内に
は陽電極9及び陰電極11が所定の間隔をおいて相対配
置され、これら陽電極9及び陰電極11には直流電源装
置13が接続される。そして両電極9・11間には0.
5〜3KVの直流電圧が印加される。The adsorbent 5 used in the chromatography 1 is manufactured as follows. In FIG. 3, a positive electrode 9 and a negative electrode 11 are disposed relative to each other at a predetermined interval in a reaction vessel 7 of a plasma film forming apparatus 6 as an adsorbent manufacturing apparatus. A DC power supply 13 is connected. The distance between both electrodes 9 and 11 is 0.
A DC voltage of 5 to 3 KV is applied.
【0012】なお、通常は陰電極11をアース接続し、
陽電極9及び陰電極11間に(+)電位の直流電圧を印
加するが、陽電極9をアース接続すると共に陰電極11
を(−)電位に接続して両者間に(−)電位の直流電圧
を印加してもよい。Normally, the cathode 11 is grounded,
A DC voltage of (+) potential is applied between the positive electrode 9 and the negative electrode 11.
May be connected to a (−) potential, and a DC voltage of a (−) potential may be applied between the two.
【0013】反応容器7には真空排気装置15が接続さ
れ、反応容器7内を1.3×10-4Pa以下の高真空に
形成する。そして反応容器7の一部には原料ガス導入部
17が設けられ、原料ガス導入部17を介して反応容器
7内に、例えばオスミウムガス、メタン・エチレン混合
ガス等の有機化合物または無機化合物からなる原料ガス
を供給する。そして原料ガスが導入された反応容器7内
のガス圧は真空排気装置15による排気量及び原料ガス
の供給量を調整して約7.98〜13.3Paに設定さ
れる。A vacuum evacuation device 15 is connected to the reaction vessel 7, and the inside of the reaction vessel 7 is formed at a high vacuum of 1.3 × 10 −4 Pa or less. A source gas introduction part 17 is provided in a part of the reaction vessel 7, and is made of, for example, an organic compound or an inorganic compound such as osmium gas or a mixed gas of methane and ethylene in the reaction vessel 7 via the source gas introduction part 17. Supply source gas. The gas pressure in the reaction vessel 7 into which the source gas has been introduced is set to about 7.98 to 13.3 Pa by adjusting the exhaust amount by the vacuum exhaust device 15 and the supply amount of the source gas.
【0014】原料ガスとしては、上記したガスの他に金
属化合物の金属としては、例えば周期率表のI族〜VIII
族の金属が利用可能で、金属単体または有機もしくは無
機の金属化合物として使用する。As the raw material gas, in addition to the above-mentioned gases, as the metal of the metal compound, for example, Group I to VIII of the periodic table can be used.
Group metals are available and are used as simple metals or organic or inorganic metal compounds.
【0015】反応容器7内に対する原料ガスの供給方法
としては、例えばメタンガスやエチレンガス等にあって
は、これらのガスが圧縮充填されたガスボンベから直接
供給する方法、または四酸化オスミウムのような昇華物
質にあっては反応容器7内に投入して昇華させて供給す
る方法の何れであってもよい。As a method of supplying the raw material gas into the reaction vessel 7, for example, in the case of methane gas or ethylene gas, a method of directly supplying these gases from a compressed gas cylinder or a sublimation such as osmium tetroxide Regarding the substance, any of the methods of supplying into the reaction vessel 7, sublimating and supplying the substance may be used.
【0016】そして陰電極11の上面には吸着材5に形
成される吸着素材19が、ガラス板、シリコン板、セラ
ミック板等の電気絶縁体21を介して載置される。電気
絶縁体21はその高さが、吸着素材19を陽電極9及び
陰電極11間に発生するグロー放電の負グロー層(陰電
極11上面から2〜6mm)内に位置するように設定され
る。また、吸着素材19は目的物質が、例えば蛋白質、
DNA等の場合には所定の形状を保つように凍結乾燥或
いは熱乾燥される。On the upper surface of the negative electrode 11, an adsorbing material 19 formed on the adsorbing material 5 is placed via an electric insulator 21 such as a glass plate, a silicon plate, or a ceramic plate. The height of the electric insulator 21 is set so that the adsorption material 19 is positioned in a negative glow layer (2 to 6 mm from the upper surface of the negative electrode 11) of the glow discharge generated between the positive electrode 9 and the negative electrode 11. . The target substance is, for example, a protein,
In the case of DNA or the like, it is freeze-dried or heat-dried so as to maintain a predetermined shape.
【0017】上記吸着素材19は以下のようにして吸着
材5に製造される。先ず、陰電極11上に電気絶縁体2
1を介して吸着素材19をセットして負グロー層内に位
置させた状態で真空排気装置15を駆動して反応容器7
内を、例えば1.3×10-4Pa以下の高真空にし、反
応容器7内から不純物を除去する。次に、原料ガス導入
部17から原料ガスを導入して充満させる。このとき、
真空排気装置15の排気量を弱めた状態で原料ガスを導
入することにより反応容器7内における原料ガス圧が約
1.33〜13.3Paになるように調整する。The adsorbent material 19 is manufactured as the adsorbent 5 as follows. First, the electric insulator 2 is placed on the cathode 11.
The vacuum evacuation device 15 is driven in a state where the adsorption material 19 is set via the vacuum vessel 1 and positioned in the negative glow layer, and the reaction vessel 7 is set.
The inside of the reactor is made into a high vacuum of, for example, 1.3 × 10 −4 Pa or less to remove impurities from the inside of the reaction vessel 7. Next, a source gas is introduced from the source gas introduction unit 17 and filled. At this time,
By introducing the raw material gas in a state where the exhaust amount of the vacuum exhaust device 15 is reduced, the raw material gas pressure in the reaction vessel 7 is adjusted to be about 1.33 to 13.3 Pa.
【0018】この状態にて陽電極9及び陰電極11間に
直流電圧を印加して両者間にグロー放電を発生させる
と、図4に示すように陽電極9及び陰電極11間におけ
る原料ガス中のオスミウム原子またはカーボン原子を
(+)イオン化してプラズマ化させる。これにより
(+)イオン化したオスミウム原子またはカーボン原子
が(−)電位の陰電極11側へ引き寄せられて吸着素材
19の表面に付着堆積してオスミウム薄膜またはハイド
ロカーボン薄膜に形成される。In this state, when a DC voltage is applied between the positive electrode 9 and the negative electrode 11 to generate a glow discharge therebetween, as shown in FIG. Osmium atoms or carbon atoms are ionized (+) to form plasma. As a result, the (+) ionized osmium atoms or carbon atoms are attracted to the negative electrode 11 having a (-) potential and adhere to and deposit on the surface of the adsorption material 19 to form an osmium thin film or a hydrocarbon thin film.
【0019】このとき、吸着素材19が負グロー層内に
位置しているため、オスミウム原子またはカーボン原子
は吸着素材19の周囲、特にアンダーカットになった面
に対して回り込んで付着堆積し、表面全体に対して均一
な厚さ(約10〜500Å)の薄膜を形成する。At this time, since the adsorbing material 19 is located in the negative glow layer, the osmium atoms or carbon atoms wrap around the adsorbing material 19, particularly, the undercut surface, and adhere and accumulate. A thin film having a uniform thickness (about 10 to 500 °) is formed on the entire surface.
【0020】吸着素材19の表面に形成される薄膜の膜
厚は、導入される原料ガス濃度(原料ガス圧)、陽電極
9及び陰電極11間の印加電圧、印加電流及び時間等の
パラメータにより決定されるが、通常は膜厚が1〜50
nmになるようにこれらのパラメータを適宜設定する。The thickness of the thin film formed on the surface of the adsorption material 19 depends on parameters such as the concentration of the source gas to be introduced (source gas pressure), the applied voltage between the positive electrode 9 and the negative electrode 11, the applied current and the time. Usually, the film thickness is 1 to 50.
These parameters are appropriately set so as to be nm.
【0021】次に、表面にオスミウム薄膜またはハイド
ロカーボン薄膜が製造された吸着素材19を溶解液中に
浸漬して溶解除去することにより吸着素材19と一致す
る形状の凹部5aを有したオスミウム薄膜またはハイド
ロカーボン薄膜からなる吸着材5に形成される(図2に
示す)。Next, the adsorbing material 19 having the osmium thin film or the hydrocarbon thin film formed on the surface is immersed in a dissolving solution to be dissolved and removed, whereby an osmium thin film having a concave portion 5a having a shape corresponding to the adsorbing material 19 is obtained. The adsorbent 5 is formed of a hydrocarbon thin film (shown in FIG. 2).
【0022】該吸着材5を形成するオスミウム薄膜また
はハイドロカーボン薄膜は目的物質を型取ったもので、
形状的に一致していると共に耐アルカリ性及び耐酸性に
優れている。The osmium thin film or the hydrocarbon thin film forming the adsorbent 5 is obtained by molding a target substance.
It has the same shape and is excellent in alkali resistance and acid resistance.
【0023】そして図5に示すように、上記のように製
造された吸着材5をカラム3内に充填して固定相とした
後に、目的物質(説明の便宜上、目的物質を△で示す)
を含んだ被分離試料液をカラム3の注入口3aから注入
すると、該被分離試料液中の目的物質を吸着材5の凹部
5aに吸着させる一方、吸着材5の凹部5aと形状が不
一致の非目的物質(説明の便宜上、非目的物質を○及び
□で示す)を吸着せずにカラム3外へ排出して被分離試
料液中から目的物質のみを分離する。Then, as shown in FIG. 5, the adsorbent 5 produced as described above is packed in a column 3 to form a stationary phase, and then the target substance (for the sake of explanation, the target substance is indicated by △).
Is injected through the inlet 3a of the column 3, the target substance in the sample liquid to be separated is adsorbed to the concave portion 5a of the adsorbent 5 and the shape of the concave portion 5a of the adsorbent 5 is inconsistent. The non-target substance (for the sake of explanation, the non-target substance is indicated by 及 び and □) is discharged to the outside of the column 3 without adsorption, and only the target substance is separated from the sample liquid to be separated.
【0024】これにより該被分離試料液中の目的物質を
吸着材5により吸着して他の物質と分離する。そして目
的物質が吸着された吸着材5を純水やバッファ溶液内に
浸漬させた状態で超音波振動を作用させて凹部5a内か
ら目的物質を離脱させることにより取り出して精製す
る。Thus, the target substance in the sample liquid to be separated is adsorbed by the adsorbent 5 and separated from other substances. Then, the adsorbent 5 on which the target substance is adsorbed is immersed in pure water or a buffer solution, and is subjected to ultrasonic vibration to remove the target substance from the concave portion 5a to be taken out and purified.
【0025】本実施形態は、吸着材5を、分離される目
的物質と一致する形状の凹部5aを有した鋳型状に形成
し、該凹部5aと一致する形状の目的物質のみを吸着し
て分離することができる。また、吸着材5自体、目的物
質を取り出した後に再利用することができ、分離コスト
を低減することができる。In this embodiment, the adsorbent 5 is formed into a mold having a concave portion 5a having a shape corresponding to the target material to be separated, and only the target material having a shape corresponding to the concave portion 5a is adsorbed and separated. can do. Further, the adsorbent 5 itself can be reused after the target substance is taken out, and the separation cost can be reduced.
【0026】更に、固定相及び移動相の相互作用による
親和力を利用しないため、これらが失活しても目的物質
を分離することができる。そして従来のアフィニティー
クロマトグラフィーは目的物質が失活している場合には
親和力が生じないため、分離不可能であったが、本実施
形態にあっては目的物質が失活している場合があって
も、確実に分離することができる。Furthermore, since the affinity due to the interaction between the stationary phase and the mobile phase is not used, the target substance can be separated even if these are deactivated. Conventional affinity chromatography cannot be separated because the affinity is not generated when the target substance is inactivated, but in the present embodiment, the target substance may be inactivated. However, it is possible to reliably separate them.
【0027】[0027]
【発明の効果】本発明は、目的物質と一致する大きさの
凹部を有して被分離試料液から目的物質を安定して分離
精製することができる。また、精製過程における外部環
境に影響されずに目的物質を安定的に分離することがで
きる。更に、目的物質の失活に左右されずに安定的に分
離精製することができ、分離精製コストを低減すること
ができる。According to the present invention, a target substance can be stably separated and purified from a sample liquid to be separated by providing a concave portion having a size corresponding to the target substance. Further, the target substance can be stably separated without being affected by the external environment in the purification process. Furthermore, separation and purification can be performed stably without being affected by deactivation of the target substance, and separation and purification costs can be reduced.
【図1】クロマトグラフィーの概略を示す説明図であ
る。FIG. 1 is an explanatory diagram showing an outline of chromatography.
【図2】吸着材の概略構造を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic structure of an adsorbent.
【図3】吸着材製造装置を示す説明図である。FIG. 3 is an explanatory view showing an adsorbent manufacturing apparatus.
【図4】吸着材の形成状態を示す説明図である。FIG. 4 is an explanatory diagram showing a state of formation of an adsorbent.
【図5】吸着材による分離作用を示す説明図である。FIG. 5 is an explanatory diagram showing a separating action by an adsorbent.
1−クロマトグラフィー、3−カラム、5−吸着材、5
a−凹部、7−反応容器、9−陽電極、11−陰電極、
19−吸着素材1-chromatography, 3-column, 5-adsorbent, 5
a-recess, 7-reaction vessel, 9-positive electrode, 11-negative electrode,
19-Adsorption material
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 20/28 B01J 20/28 A 20/30 20/30 (72)発明者 佐藤 高遠 名古屋市熱田区三本松町20番9号 日本レ ーザ電子株式会社内 Fターム(参考) 4D017 AA11 BA04 BA07 CA02 CA05 CB10 DA03 DB05 4G066 AA04B AA28B BA03 CA20 CA54 DA07 EA01 FA17 FA31 FA40 GA11 GA18 4G075 AA24 AA62 BA05 BB03 BD14 BD16 BD26 CA16 CA47 CA51 EB42 EC21 FB01 FB03 FC20──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) B01J 20/28 B01J 20/28 A 20/30 20/30 (72) Inventor Takato Sato Sanbonmatsu, Atsuta-ku, Nagoya Town No. 20-9 Japan Laser Electronics Co., Ltd. F term (reference) 4D017 AA11 BA04 BA07 CA02 CA05 CB10 DA03 DB05 4G066 AA04B AA28B BA03 CA20 CA54 DA07 EA01 FA17 FA31 FA40 GA11 GA18 4G075 AA24 AA62 BA05 BB03 BD14 BD16 BD26 CA16 CA51 EB42 EC21 FB01 FB03 FC20
Claims (3)
液を注入して目的物質を吸着材に吸着させて分離するク
ロマトグラフィーにおいて、吸着材は陽電極及び陰電極
が所定の間隔をおいて相対配置され、該陰電極上に目的
物質からなる吸着素材が電気的絶縁状態で配置された反
応容器内に有機又は無機化合物の原料ガスを導入して所
定のガス圧に調整した状態で陽電極及び陰電極間に印加
された電圧により発生するグロー放電により原料ガス中
の有機又は無機物質をプラズマ化して吸着素材の表面に
付着堆積させて製膜した後、吸着素材を溶解除去して目
的物質に一致する凹部を有してなるクロマトグラフィー
用吸着材。In a chromatography for injecting a sample liquid to be separated into a column filled with an adsorbent and adsorbing and separating a target substance on the adsorbent, a positive electrode and a negative electrode are arranged at a predetermined interval. In a state in which a raw material gas of an organic or inorganic compound is introduced into a reaction vessel in which an adsorption material composed of a target substance is disposed in an electrically insulated state on the negative electrode and adjusted to a predetermined gas pressure. The glow discharge generated by the voltage applied between the positive electrode and the negative electrode converts the organic or inorganic substance in the raw material gas into plasma, adheres and deposits on the surface of the adsorption material, forms a film, and dissolves and removes the adsorption material. An adsorbent for chromatography having a concave portion corresponding to the target substance.
ミウムの昇華ガスとしたクロマトグラフィー用吸着材。2. The adsorbent for chromatography according to claim 1, wherein the raw material gas is a sublimation gas of osmium tetroxide.
チレン混合ガスとしたクロマトグラフィー用吸着材。3. The adsorbent for chromatography according to claim 1, wherein the raw material gas is a mixed gas of methane and ethylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311619A JP2002122579A (en) | 2000-10-12 | 2000-10-12 | Adsorbent for chromatography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311619A JP2002122579A (en) | 2000-10-12 | 2000-10-12 | Adsorbent for chromatography |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002122579A true JP2002122579A (en) | 2002-04-26 |
Family
ID=18791349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000311619A Pending JP2002122579A (en) | 2000-10-12 | 2000-10-12 | Adsorbent for chromatography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002122579A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06330295A (en) * | 1993-05-24 | 1994-11-29 | Nippon Laser Denshi Kk | Plasma film forming device |
JPH10110262A (en) * | 1996-10-02 | 1998-04-28 | Nippon Laser Denshi Kk | Plasma film forming device |
JPH1157461A (en) * | 1997-08-08 | 1999-03-02 | Kansai Shin Gijutsu Kenkyusho:Kk | Production of organic-inorganic composite body having molecule identifying function and method for using the composite body |
JP2000202285A (en) * | 1999-01-20 | 2000-07-25 | Agency Of Ind Science & Technol | Material capable of selectively adsorbing and desorbing protein and its production |
-
2000
- 2000-10-12 JP JP2000311619A patent/JP2002122579A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06330295A (en) * | 1993-05-24 | 1994-11-29 | Nippon Laser Denshi Kk | Plasma film forming device |
JPH10110262A (en) * | 1996-10-02 | 1998-04-28 | Nippon Laser Denshi Kk | Plasma film forming device |
JPH1157461A (en) * | 1997-08-08 | 1999-03-02 | Kansai Shin Gijutsu Kenkyusho:Kk | Production of organic-inorganic composite body having molecule identifying function and method for using the composite body |
JP2000202285A (en) * | 1999-01-20 | 2000-07-25 | Agency Of Ind Science & Technol | Material capable of selectively adsorbing and desorbing protein and its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1176736C (en) | Gas separating and purifying method and its apparatus | |
JP2682486B2 (en) | Method for purifying carbon nanotubes | |
JP2001342566A (en) | Manufacturing process and apparatus of cvd thin film | |
JP2008525779A5 (en) | ||
Jung et al. | Application of capacitive deionization (CDI) technology to insulin purification process | |
US9458452B2 (en) | Method and device for isolating and purifying double-stranded nucleic acids | |
US5055194A (en) | Support for high performance liquid chromatography in a magnetically stabilized fluidized bed | |
RU94046244A (en) | Method of purifying stream and arrangement for implementation thereof | |
JP2004340839A5 (en) | ||
Liu et al. | Challenges and innovations in green process intensification | |
JP2002122579A (en) | Adsorbent for chromatography | |
JP5854202B2 (en) | Target substance separation / recovery method and separation / recovery system | |
KR19990045359A (en) | High purity nickel production method and high purity nickel material for thin film type | |
Pickering et al. | Clean‐up to Chirality—Liquid Membranes as a Facilitating Technology? | |
WO2005037988A3 (en) | Nucleic acid-adsorbing porous membrane for separating and purifying nucleic acid and apparatus for separating and purifying nucleic acid | |
JPH04197402A (en) | Countercurrent separation of mixture and apparatus therefor | |
ATE267635T1 (en) | LIQUID PHASE ADSORPTION PROCESS FOR THE REMOVAL AND CONCENTRATION OF HETEROATOMATIC COMPOUNDS IN HYDROCARBONS | |
JP2006219364A (en) | Manufacturing unit for fullerene base material, and its manufacturing method | |
CN1413300A (en) | Chromatography material and method using same | |
JP2012051794A (en) | Manufacturing unit for fullerene base material, and its manufacturing method | |
JP2004026579A (en) | Method for preparing fullerenes | |
CN1303392A (en) | Method for separating and/or isolating plasma proteins by annularchromatography | |
CN112892220A (en) | High-efficiency active protein separation method and device | |
JP2005161251A (en) | Purifying apparatus of organic material | |
CN115369359B (en) | Method for removing surface reconstruction layer of gold (100) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041213 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20041213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100511 |