JP2002121401A - Resin composition for sealing - Google Patents

Resin composition for sealing

Info

Publication number
JP2002121401A
JP2002121401A JP2000318007A JP2000318007A JP2002121401A JP 2002121401 A JP2002121401 A JP 2002121401A JP 2000318007 A JP2000318007 A JP 2000318007A JP 2000318007 A JP2000318007 A JP 2000318007A JP 2002121401 A JP2002121401 A JP 2002121401A
Authority
JP
Japan
Prior art keywords
inorganic filler
resin composition
sealing
resin
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000318007A
Other languages
Japanese (ja)
Inventor
Masahiro Narita
雅浩 成田
Wataru Kuwayama
弥 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2000318007A priority Critical patent/JP2002121401A/en
Publication of JP2002121401A publication Critical patent/JP2002121401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive resin composition for sealing capable of increasing the content ratio of heat conductive filler without damaging its compatibility and moldability, and capable of preventing crack, etc., caused by difference in heat expansion while securing a high heat conductivity. SOLUTION: This resin composition for sealing is characterized by blending >=60 wt.% first inorganic filler having edge part and >=35 μm particle diameter, <=25 wt.% second inorganic filler removed with the edge part and having <=4 μm particle diameter and further 1.0-2.0 wt.% fibrous material with a thermosetting resin or thermoplastic resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気部品、電子部
品、半導体素子、コイルなどを封止するための封止材料
として用いられる封止用樹脂組成物に関する。
The present invention relates to a sealing resin composition used as a sealing material for sealing electric parts, electronic parts, semiconductor elements, coils and the like.

【0002】[0002]

【従来の技術】近年、自動車や家庭用機器などに使用さ
れるモータの電子機器の分野を中心に機器の高密度化、
コンパクト化が進み、それに伴い半導体やコイルなどの
内臓部品から発散される熱の放散が大きな課題となって
いる。そのため、高い熱伝導性と高い電気絶縁性を有す
る樹脂組成物が要求されるようになってきた。これらの
性能を向上させるために、アルミナ、シリカをはじめと
するセラミックスを高充填した熱伝導性封止材、熱伝導
性接着剤として実用化されている。
2. Description of the Related Art In recent years, high-density equipment has been developed mainly in the field of electronic equipment for motors used in automobiles and home appliances.
With the progress of compactness, the dissipation of heat radiated from internal components such as semiconductors and coils has become a major issue. Therefore, a resin composition having high thermal conductivity and high electrical insulation has been required. In order to improve these performances, they have been put to practical use as a thermally conductive sealing material and a thermally conductive adhesive which are highly filled with ceramics such as alumina and silica.

【0003】これらに用いられる無機フィラーとして、
破砕形状で鋭いカッティングエッジを有する樹脂組成物
は、充填性、成形性に劣り、十分なものではないと言わ
れていた。これらから、エッジ部を取り除いたフィラー
をいかに多量に添加するかの検討がなされてきた。例え
ば、特開平06−224328号公報には半導体封止用
樹脂素生物の流動性を損なうことなく充填材の含有量を
増加させて、熱膨張性、熱伝導性、耐吸湿性及び曲げ強
度を改善するため、粒径を細かく分け、その配合量も細
かく規定することが提案されている。
[0003] As the inorganic filler used in these,
It has been said that a resin composition having a crushed shape and a sharp cutting edge is inferior in fillability and moldability and is not sufficient. From these, studies have been made on how to add a large amount of the filler from which the edge portion has been removed. For example, Japanese Patent Application Laid-Open No. 06-224328 discloses that the content of a filler is increased without impairing the fluidity of a resinous material for semiconductor encapsulation, and the thermal expansion, thermal conductivity, moisture absorption resistance and bending strength are improved. For improvement, it has been proposed to finely divide the particle size and finely define the amount thereof.

【0004】同様な提案として、特開平08−1699
80号公報には、α―アルミナ粉末を含有する樹脂組成
物又はゴム組成物、特に高熱伝導性で成形性に優れたα
―アルミナ粉末を含有する樹脂組成物又はゴム組成物が
提案されている。
A similar proposal is disclosed in Japanese Patent Application Laid-Open No. 08-1699.
No. 80 discloses a resin composition or a rubber composition containing an α-alumina powder, particularly an α-alumina powder having high heat conductivity and excellent moldability.
-A resin composition or a rubber composition containing alumina powder has been proposed.

【0005】また特開平07−82460号公報には、
熱放散性の良い結晶シリカを80%以上含有する結晶シ
リカ高充填型の高熱伝導用の封止エポキシ樹脂組成物に
おいて、フルモード充填性が良く、封止成形性の良好な
封止用エポキシ樹脂組成物を提供している。
Japanese Patent Application Laid-Open No. 07-82460 discloses that
A sealing epoxy resin composition for high heat conduction of a crystalline silica high filling type containing 80% or more of crystalline silica having good heat dissipation properties, a full mode filling property, and a good sealing moldability epoxy resin for sealing. A composition is provided.

【0006】また同時に熱的信頼性を確保するために、
半導体やコイルなどの内臓部品との熱膨張係数を合わせ
る封止用樹脂組成物などの検討もされている。この検討
に対しては非晶性シリカを添加する方法や繊維強化材の
添加などが提案されている。
At the same time, in order to ensure thermal reliability,
Studies have been made on a sealing resin composition that matches the coefficient of thermal expansion with built-in components such as semiconductors and coils. For this study, a method of adding amorphous silica and addition of a fiber reinforcing material have been proposed.

【0007】この提案については、特開平8−2834
48号公報などに記載の非晶性シリカの併用が挙げられ
ている。また、耐クラック性を加味した提案には特開平
10−139928号公報にエッジ部を除去した無機フ
ィラーに強化繊維を併用することが記述されている。
[0007] This proposal is disclosed in Japanese Patent Application Laid-Open No. H8-2834.
JP-A-48-48 and the like also use a combination of amorphous silica. Japanese Patent Application Laid-Open No. Hei 10-139928 discloses that a reinforcing fiber is used in combination with an inorganic filler from which an edge has been removed in a proposal considering crack resistance.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
08−169980号公報、特開平07−82460号
公報の上記従来技術は、エッジ部を除去している多面体
や球状であるために熱伝導性フィラー同志の接触面積が
少なくなる、故に細密充填を行なわなければならなく、
多くの粒径のフィラーが必要となってしまう。それゆ
え、複雑な粒径選択が必要となり高価な組成物となって
しまうという課題があった。
However, the above-mentioned prior arts of JP-A-08-169980 and JP-A-07-82460 disclose heat-conductive fillers because of the polyhedron or spherical shape with the edge removed. The contact area between comrades is reduced, so it is necessary to perform close packing,
Fillers of many particle sizes are required. Therefore, there was a problem that complicated particle size selection was required, resulting in an expensive composition.

【0009】また、特開平8−283448号公報は、
繊維強化材を使用しないので強度が低いという要因のた
め、耐クラック性に課題が残る。特開平10−1399
28号公報は、エッジ部を除去した無機フィラーである
ため、繊維強化材が2wt%以上添加しなければ効果が
出ず、またカップリング処理をしなければ樹脂混合でき
ない。
Japanese Patent Application Laid-Open No. 8-283448 discloses that
Since no fiber reinforcement is used, the problem of crack resistance remains due to the factor of low strength. JP-A-10-1399
No. 28 is an inorganic filler from which an edge portion is removed, so that no effect is obtained unless a fiber reinforcing material is added in an amount of 2 wt% or more, and a resin cannot be mixed without a coupling treatment.

【0010】本発明は上記した実状に鑑みてなされたも
のであり、上述した課題を解決するために、本発明に係
る封止用樹脂組成物は、高熱伝導率を確保しつつ熱膨張
差によるクラックなどを防止できる封止用樹脂組成物を
提供するものである。
The present invention has been made in view of the above situation, and in order to solve the above-mentioned problems, a sealing resin composition according to the present invention has a high thermal conductivity and a high thermal conductivity. An object of the present invention is to provide a sealing resin composition capable of preventing cracks and the like.

【0011】[0011]

【課題を解決するための手段】上記技術的課題を解決す
るためになされた請求項1の発明は、熱硬化性樹脂ある
いは熱可塑性樹脂に、エッジ部を有した粒径35μm以
上の第1無機フィラーが60wt%以上配合され、エッ
ジ部を取り除いた粒径4μm以下の第2無機フィラーが
25wt%以下配合され、さらに繊維状材料を1.0〜
2.0wt%配合したことを特徴とする封止用樹脂組成
物である。
Means for Solving the Problems To solve the above technical problem, the invention of claim 1 is to provide a thermosetting resin or a thermoplastic resin comprising a first inorganic material having an edge portion and having a particle diameter of 35 μm or more. The filler is blended in an amount of 60 wt% or more, the second inorganic filler having a particle size of 4 μm or less in which the edge portion is removed is blended in an amount of 25 wt% or less, and the fibrous material is added in an amount of 1.0 to 1.0%.
It is a sealing resin composition characterized by being blended at 2.0 wt%.

【0012】本発明の請求項1によれば、エッジ部を有
する大きい第1無機フィラーと微細な第2無機フィラー
を組み合わせることにより、混合性や成形性を損なうこ
となく熱伝導性充填材の含有率を高めることが出来、高
熱伝導率を確保しつつ熱膨張差によるクラックなどを防
止できる安価な封止用樹脂組成物となる。
According to the first aspect of the present invention, by combining a large first inorganic filler having an edge portion and a fine second inorganic filler, the content of the heat conductive filler can be reduced without impairing the mixing property and moldability. Thus, an inexpensive encapsulating resin composition that can increase the rate and can prevent cracks due to a difference in thermal expansion while ensuring high thermal conductivity.

【0013】エッジ部を有した粒径35μm以上の第1
無機フィラーが60wt%より少ないと熱伝導率が低く
なり、また補填するために例えばエッジ部を除去した無
機フィラーを入れると結局充填のために多くの粒度分布
をもつフィラーを用意しなければならないという問題点
がある。
A first particle having an edge portion and having a particle diameter of 35 μm or more;
If the amount of the inorganic filler is less than 60% by weight, the thermal conductivity will be low, and if an inorganic filler whose edge is removed, for example, is added to make up the filler, a filler having a large particle size distribution must eventually be prepared for filling. There is a problem.

【0014】またエッジ部を取り除いた粒径4μm以下
の第2無機フィラーが25wt%より多いと樹脂混練時
に粘度が高くなり製造できないという問題点が生じる。
さらに、繊維状材料を1.0wt%より少ないと、高温
中の熱膨張係数が高くなるという問題点が生じ、繊維状
材料を2.0wt%より多いと製造時に混練性が低下す
るため、熱伝導性フィラーの添加量を下げる必要が出て
くるという問題点が生じる。
If the amount of the second inorganic filler having a particle size of 4 μm or less from which the edge is removed is more than 25% by weight, the viscosity becomes high during kneading of the resin, so that there is a problem that it cannot be produced.
Further, if the amount of the fibrous material is less than 1.0% by weight, there is a problem that the coefficient of thermal expansion at a high temperature becomes high, and if the amount of the fibrous material is more than 2.0% by weight, kneadability at the time of production is reduced. There is a problem that it is necessary to reduce the amount of the conductive filler to be added.

【0015】上記技術的課題を解決するためになされた
請求項2の発明は、前記第1無機フィラーと前記第2無
機フィラーと前記繊維状材料の総配合量が70wt%以
上配合されていることを特徴とする請求項2記載の封止
用樹脂組成物である。
According to a second aspect of the present invention, which is made to solve the above technical problem, the total amount of the first inorganic filler, the second inorganic filler and the fibrous material is more than 70 wt%. The sealing resin composition according to claim 2, wherein:

【0016】請求項2の発明により、多量の熱伝導性フ
ィラー充填により高い熱伝導率が得られるという効果が
得られる。
According to the second aspect of the present invention, an effect that a high thermal conductivity can be obtained by filling a large amount of the thermally conductive filler can be obtained.

【0017】なお、第1無機フィラーと第2無機フィラ
ー、繊維状材料の総配合量が70wt%未満であると高
い熱伝導性と低熱膨張性を併せもつことが出来ないとい
う問題点がある。
If the total amount of the first inorganic filler, the second inorganic filler, and the fibrous material is less than 70% by weight, there is a problem that high thermal conductivity and low thermal expansion cannot be obtained at the same time.

【0018】[0018]

【発明の実施の形態】以下に本発明について説明する。
本発明に用いることの出来る充填材としての無機フィラ
ーの成分としては、比較的大きな粒子においては実質的
にエッジ部や破面を有する第1無機フィラーの粒子から
成る。この第1無機フィラーとしては、例えば、硬質の
緑色炭化珪素質研削材を母粒として微粉砕・整粒した緑
色炭化珪素微粉で、高度の精密仕上用研磨材として優れ
た機能を発揮する研磨材等が使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below.
As a component of the inorganic filler as a filler that can be used in the present invention, relatively large particles are substantially composed of particles of the first inorganic filler having an edge portion or a fractured surface. As the first inorganic filler, for example, a green silicon carbide fine powder finely pulverized and sized with a hard green silicon carbide-based abrasive as a base particle, an abrasive exhibiting excellent functions as an abrasive for advanced precision finishing Etc. are used.

【0019】微粒子側はエッジ部や破面を有しない第2
無機フィラーの粒子からなる。この第2無機フィラーの
粒子は、球状またはエッジ部を除去した粒子状に形成さ
れる。このエッジ部を除去する方法として、化学的処理
や物理的処理等によりエッジ部が除去される。
The fine particle side has no edge or broken surface.
It consists of inorganic filler particles. The particles of the second inorganic filler are formed into a spherical shape or a particle shape from which edge portions have been removed. As a method of removing the edge portion, the edge portion is removed by a chemical process, a physical process, or the like.

【0020】また、強化材としての繊維状材料として、
ガラス繊維、フタル酸カリウム繊維等の直径0.3μm
〜十数μm、繊維長10μm〜6mmの材料を第1無機
フィラーと第2無機フィラーと共に配合する。繊維状材
料が微粒子径より大きいと1〜2wt%添加しても、熱
膨張係数が安定化しないという問題点が生じる。また繊
維長が10μmより短いと繊維による効果がなくなり熱
膨張係数が大きくなるという問題点が生じ、 6mmよ
り長いと製造時の混練ができないという問題点が生じ
る。
Further, as a fibrous material as a reinforcing material,
0.3μm diameter of glass fiber, potassium phthalate fiber, etc.
A material having a length of 10 to 10 μm and a fiber length of 10 μm to 6 mm is blended together with the first inorganic filler and the second inorganic filler. If the fibrous material is larger than the fine particle diameter, there is a problem that the coefficient of thermal expansion is not stabilized even when 1 to 2 wt% is added. If the fiber length is shorter than 10 μm, the effect of the fiber is lost and the coefficient of thermal expansion increases, and if it is longer than 6 mm, kneading during production cannot be performed.

【0021】本発明は、熱硬化性樹脂あるいは熱可塑性
樹脂に、エッジ部を有した粒径35μm以上の第1無機
フィラーが60wt%以上配合され、エッジ部を取り除
いた粒径4μm以下の第2無機フィラーが25wt%以
下配合し、さらに繊維状材料を1.0〜2.0wt%配
合すると、エッジ部を有した熱伝導性フィラーの面接触
点を増すことが出来るため熱伝導率を最大限に高めるこ
とが可能となる。また、エッジ部を除去した微粒子を併
用することで、成形時に発生してしまう粒子間を緻密に
させることができるため成形性を損なうことがない。さ
らに高熱伝導率を確保しつつ熱膨張差によるクラックな
どを防止できる封止用樹脂組成物が可能となる。
According to the present invention, a thermosetting resin or a thermoplastic resin is blended with 60 wt% or more of a first inorganic filler having an edge portion and having a particle diameter of 35 μm or more, and a second inorganic filler having a particle size of 4 μm or less after removing the edge portion. When the inorganic filler is blended in an amount of 25 wt% or less and the fibrous material is blended in an amount of 1.0 to 2.0 wt%, the surface contact points of the thermally conductive filler having an edge can be increased, so that the thermal conductivity is maximized. Can be increased. In addition, by using the fine particles from which the edge portions have been removed, it is possible to increase the density of particles generated at the time of molding, so that moldability is not impaired. Further, a sealing resin composition that can prevent cracks due to a difference in thermal expansion while ensuring high thermal conductivity can be obtained.

【0022】封止用樹脂組成物としては、熱伝導性が高
い樹脂や液状樹脂、ゴムなどを挙げることが出来る。例
えば、不飽和ポリエステル樹脂、エポキシ樹脂、ポリイ
ミド樹脂、シリコーン樹脂、フェノール樹脂、キシレン
樹脂、尿素樹脂、メラミン樹脂、ユリア樹脂、アクリル
樹脂など熱硬化性樹脂が挙げられ、好ましくは配合時、
成形時の樹脂粘度が低い樹脂が使用される。
Examples of the sealing resin composition include resins having high thermal conductivity, liquid resins, and rubber. For example, unsaturated polyester resins, epoxy resins, polyimide resins, silicone resins, phenolic resins, xylene resins, urea resins, melamine resins, urea resins, thermosetting resins such as acrylic resins, preferably when blended,
A resin having a low resin viscosity at the time of molding is used.

【0023】更に、ポリプロピレン樹脂、ポリ塩化ビニ
ル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリ
エチレン樹脂など、種々の一般的な熱可塑性樹脂なども
自由に選定することができるが、好ましくは、低分子量
で溶融時粘度が低い樹脂がよい。また封止用樹脂組成物
は天然ゴムやエラストマー等のような弾性組成物でもよ
い。
Further, various general thermoplastic resins such as polypropylene resin, polyvinyl chloride resin, polyamide resin, polycarbonate resin and polyethylene resin can be freely selected. A resin having a low viscosity is preferred. The sealing resin composition may be an elastic composition such as a natural rubber or an elastomer.

【0024】本発明の封止用樹脂組成物中に使用する第
1、第2無機フィラーは、酸化物、または窒化物、金、銅
等の金属、カーボン、ダイヤモンド等が使用され、また
セラミックスや、導電性を除去する表面処理した金属粉
やカーボン粉末などを使用してもよい。
The first resin used in the encapsulating resin composition of the present invention.
1, The second inorganic filler is oxide, nitride, metal such as gold, copper, carbon, diamond, etc., and also uses ceramics, surface-treated metal powder or carbon powder that removes conductivity. May be.

【0025】更に、封止用樹脂組成物に、内部離型剤、
難燃剤、分散剤、脱泡剤、硬化触媒、着色剤など、本発
明の損なわない範囲にて添加することができる。
Further, an internal release agent,
Flame retardants, dispersants, defoamers, curing catalysts, colorants, and the like can be added within a range that does not impair the present invention.

【0026】本発明における無機フィラーを封止用樹脂
組成物に混合する方法は特に限定されず、ロール、ニー
ダー、プラネタリ型攪拌機、押出し機などの一般的に使
用される混合機を用いて混合、コンパウンド化すること
ができる。
The method of mixing the inorganic filler in the resin composition for sealing in the present invention is not particularly limited, and the mixing is carried out by using a commonly used mixer such as a roll, a kneader, a planetary stirrer, an extruder, or the like. It can be compounded.

【0027】次に実施例により、本発明をさらに詳しく
説明するが、本発明はこれらの実施例に限定されるもの
ではない。なお、本発明に使用した測定は、次のように
して行った。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The measurement used in the present invention was performed as follows.

【0028】粒子径の確認は走査型電子顕微鏡にて観察
した。また熱伝導率の測定は、京都電子工業(株)社製
迅速熱伝導率計(KemthermQTM−D3)にて
測定した。
Confirmation of the particle size was observed with a scanning electron microscope. The thermal conductivity was measured by a rapid thermal conductivity meter (Kemtherm QTM-D3) manufactured by Kyoto Electronics Industry Co., Ltd.

【0029】[0029]

【実施例】(実施例1)昭和電工(株)製の炭化珪素
(商品名:GC#400)を用意し分離処理により平均
粒径を37μmの第1無機フィラーを得た。この炭化珪
素はグリーンデンシック(商品名)GCと呼ばれ、極め
て硬質の緑色炭化珪素質研削材を母粒として微粉砕・整
粒した緑色炭化珪素微粉で、高度の精密仕上用研磨材と
して優れた機能を発揮する研磨材である。
(Example 1) Silicon carbide (trade name: GC # 400) manufactured by Showa Denko KK was prepared, and a first inorganic filler having an average particle size of 37 μm was obtained by a separation treatment. This silicon carbide is called Green Densic (trade name) GC, and is a green silicon carbide fine powder that is finely ground and sized using an extremely hard green silicon carbide-based abrasive as a base particle, and is excellent as an abrasive for high precision finishing. It is an abrasive material that demonstrates its functions.

【0030】更に、屋久島電工(株)製の炭化珪素(商
品名:GC―4000F)を用意した。この無機フィラ
ーの平均粒径2.8μmである。
Further, silicon carbide (trade name: GC-4000F) manufactured by Yakushima Electric Works, Ltd. was prepared. The average particle size of the inorganic filler is 2.8 μm.

【0031】また、樹脂として不飽和ポリエステル樹脂
である三井化学(株)製エスターRT400を用意し
た。その他、硬化材としてT―ブチルパーベンゾエー
ド、低収縮化剤としてポリスチレン、内部離型剤として
ステアリン酸亜鉛を用意した。
As the resin, an unsaturated polyester resin, Ester RT400 manufactured by Mitsui Chemicals, Inc. was prepared. In addition, T-butyl perbenzoate was used as a curing agent, polystyrene was used as a low-shrinking agent, and zinc stearate was used as an internal release agent.

【0032】最後に繊維強化材として6mm長、直径1
3μmのガラス繊維を用意した。
Finally, as a fiber reinforcing material, a length of 6 mm and a diameter of 1
3 μm glass fibers were prepared.

【0033】各々を表1に記載した配合比で混合した。Each was mixed at the compounding ratio shown in Table 1.

【0034】作製した樹脂コンパウンド゛を用い、鋼ブ
ロック(15mm×15mm×100mm)を40×40
×200mmの注型治具中央部にインサートした後、型
温150℃、200MPaにて10分間加熱硬化し、熱
サイクル用試験片を作製した。同時に100mm×15
0mm×t(厚さ)15mmの熱伝導および熱膨張係数
測定用試験板を作製した。熱膨張係数測定には試験板か
ら直径4mm×長さ8mmの試験片を切り出し、RT
(室温)25°C〜50℃、130〜160℃の2つの
条件で、TMA測定(Thermomechanical analysis:熱膨
張計測定)により、昇温速度5°C/minでテストピ
ースを加熱し、その長さ変化を測定した。
Using the prepared resin compound 作 製, a steel block (15 mm × 15 mm × 100 mm) was
After being inserted into the center of a × 200 mm casting jig, it was cured by heating at a mold temperature of 150 ° C. and 200 MPa for 10 minutes to prepare a test piece for heat cycle. 100mm × 15 at the same time
A test plate of 0 mm × t (thickness) 15 mm for measuring thermal conductivity and thermal expansion coefficient was prepared. For the measurement of the coefficient of thermal expansion, a test piece having a diameter of 4 mm and a length of 8 mm was cut out from a test plate, and RT
(Room temperature) Under two conditions of 25 ° C. to 50 ° C. and 130 ° to 160 ° C., the test piece was heated at a rate of temperature increase of 5 ° C./min by TMA measurement (Thermomechanical analysis: thermal dilatometer measurement), and its length was measured. The change was measured.

【0035】上記試験板を、―40〜185℃の温度範
囲内で各30分行い、100サイクル後のクラックの有
無を確認した。
The test plate was subjected to a temperature range of -40 to 185 ° C. for 30 minutes each, and the presence or absence of cracks after 100 cycles was confirmed.

【0036】(実施例2)実施例1と同様に各原料を用
意したが、炭化珪素においては、昭和電工(株)製の炭化
珪素(商品名:GC#240)を用意し分離処理により平
均粒径83μmのフィラーを得た。その他の成分は表1
に記載した配合比で混合した。
Example 2 Each raw material was prepared in the same manner as in Example 1, except that silicon carbide (trade name: GC # 240) manufactured by Showa Denko KK was prepared and averaged by a separation treatment. A filler having a particle size of 83 μm was obtained. Other components are shown in Table 1.
Were mixed in the mixing ratio described in (1).

【0037】(実施例3)実施例1と同様に各原料を用
意し、表1に記載した配合比で混合した。
Example 3 Each raw material was prepared in the same manner as in Example 1, and mixed at the mixing ratio shown in Table 1.

【0038】また実施例1と同じ性能確認を行った。The same performance was confirmed as in Example 1.

【0039】(実施例4)実施例1と同様に各原料を用
意し、表1に記載した配合比で混合した。
Example 4 Each raw material was prepared in the same manner as in Example 1, and mixed at the mixing ratio shown in Table 1.

【0040】また実施例1と同じ性能確認を行った。The same performance as in Example 1 was confirmed.

【0041】(実施例5)実施例1と同様に各原料を用
意し、表1に記載した配合比で混合した。
Example 5 In the same manner as in Example 1, each raw material was prepared and mixed at the mixing ratio shown in Table 1.

【0042】また実施例1と同じ性能確認を行った。The same performance as in Example 1 was confirmed.

【0043】(比較例1)実施例1と同様に各原料を用
意し、表1に記載した配合比で混合した。
Comparative Example 1 Each raw material was prepared in the same manner as in Example 1, and mixed at the mixing ratio shown in Table 1.

【0044】また実施例1と同じ性能確認を行った。The same performance as in Example 1 was confirmed.

【0045】(比較例2)実施例1と同様に各原料を用
意し、表1に記載した配合比で混合した。
Comparative Example 2 Each raw material was prepared in the same manner as in Example 1, and mixed at the mixing ratio shown in Table 1.

【0046】表1、表2に評価結果を示す。Tables 1 and 2 show the evaluation results.

【0047】[0047]

【表1】 [Table 1]

【表2】 ここで、表2での材料製造において「良好」とは、フィ
ラー分が十分に樹脂に濡れている状態をいい、「不良」
とは、樹脂が濡れてないフィラーが存在している状態を
いう。成形板の成形性において、「良好」とは充填性、
脱型など特に問題なしと評価されたものである。「不
良」とは、顕微鏡で100倍で観察して巣やボイドなど
充填不良個所の発生や脱型ができない状態をいう。
[Table 2] Here, “good” in the material production in Table 2 means a state in which the filler component is sufficiently wet with the resin, and “bad”.
The term refers to a state in which a filler whose resin is not wet exists. In the moldability of the molded plate, "good" means filling,
It was evaluated that there was no particular problem such as demolding. "Defective" refers to a state in which the occurrence of a defective filling portion such as a nest or a void and removal from the mold cannot be performed when observed with a microscope at a magnification of 100 times.

【0048】上記実施例では、実験配合の熱伝導率の実
測値は実施例1〜5に関しては、表2のように材料製造
性、成形板の成形性が良好で、−40〜185°Cで各
30分100サイクル後のクラック発生の有無を観察し
た結果、鋼インサート、銅インサート、アルミインサー
ト共にクラックは無く、熱膨張係数が小さい。
In the above Examples, the actual measured values of the thermal conductivity of the experimental blends were as shown in Table 2 for Examples 1 to 5 in that the material productivity and the formability of the molded plate were good, as shown in Table 2. As a result of observing the occurrence of cracks after 100 cycles of 30 minutes each, there were no cracks in the steel insert, copper insert, and aluminum insert, and the coefficient of thermal expansion was small.

【0049】これに対し、比較例1は、高温中での熱膨
張係数が大きくなってしまっている。また、比較例2
は、巣やボイドが発生し、その影響から熱伝導率が若干
低くなってしまっているという結果が得られた。
On the other hand, Comparative Example 1 has a large coefficient of thermal expansion at high temperatures. Comparative Example 2
As a result, nests and voids were generated, and the result was that the thermal conductivity was slightly lowered due to the influence.

【0050】以上の結果より、本発明は、高熱伝導を確
保しつつ、耐クラック性を確保できた。本発明の樹脂組
成物は、熱伝導性だけでなく製品環境における熱的な割
れなどの信頼性を高めた電気絶縁材料であり、半導体や
コイル封止用などの熱伝導性封止材、接着剤、シート材
などの用途に適している。
From the above results, the present invention was able to secure crack resistance while securing high heat conduction. The resin composition of the present invention is an electrical insulating material that has improved reliability such as thermal cracking in a product environment as well as thermal conductivity. It is suitable for applications such as agents and sheet materials.

【0051】[0051]

【発明の効果】本発明は、熱硬化性樹脂あるいは熱可塑
性樹脂に、エッジ部を有した粒径35μm以上の第1無
機フィラーが60wt%以上配合され、エッジ部を取り
除いた粒径4μm以下の第2無機フィラーが25wt%
以下配合され、さらに繊維状材料を1.0〜2.0wt
%配合したことを特徴とする封止用樹脂組成物であるの
で、混合性や成形性を損なうことなく熱伝導性充填材の
含有率を高めることが出来、高熱伝導率を確保しつつ熱
膨張差によるクラックなどを防止できる安価な封止用樹
脂組成物となる。
According to the present invention, a thermosetting resin or a thermoplastic resin is blended with 60 wt% or more of a first inorganic filler having an edge portion and having a particle size of 35 μm or more, and having a particle size of 4 μm or less after removing the edge portion. 25 wt% of the second inorganic filler
The following is blended, and the fibrous material is further added to 1.0 to 2.0 wt.
%, So that the content of the thermally conductive filler can be increased without impairing the mixability and moldability, and the thermal expansion while ensuring high thermal conductivity. An inexpensive sealing resin composition that can prevent cracks and the like due to the difference.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 AA001 AA011 AA021 BB021 BB121 BD031 CC031 CD001 CF211 CG001 CK011 CL001 CM041 CP031 DE188 DJ006 DJ007 DL008 FA048 FD016 FD017 FD018 GQ00 4M109 AA01 BA01 CA21 EA02 EA07 EA10 EA11 EA12 EB12 EB16 EB18 EC05 EC06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J002 AA001 AA011 AA021 BB021 BB121 BD031 CC031 CD001 CF211 CG001 CK011 CL001 CM041 CP031 DE188 DJ006 DJ007 DL008 FA048 FD016 FD017 FD018 GQ00 4M109 AA01 BA01 EA07 EA07 EB07 EA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂あるいは熱可塑性樹脂に、
エッジ部を有した粒径35μm以上の第1無機フィラー
が60wt%以上配合され、エッジ部を取り除いた粒径
4μm以下の第2無機フィラーが25wt%以下配合さ
れ、さらに繊維状材料を1.0〜2.0wt%配合した
ことを特徴とする封止用樹脂組成物。
1. A thermosetting resin or a thermoplastic resin,
60 wt% or more of the first inorganic filler having an edge portion and having a particle diameter of 35 μm or more is compounded, and 25 wt% or less of a second inorganic filler having a particle size of 4 μm or less from which the edge portion has been removed. A resin composition for encapsulation, wherein the composition is contained in an amount of up to 2.0 wt%.
【請求項2】 前記第1無機フィラーと前記第2無機フ
ィラーと前記繊維状材料の総配合量が70wt%以上配
合されていることを特徴とする請求項2記載の封止用樹
脂組成物。
2. The sealing resin composition according to claim 2, wherein the total amount of the first inorganic filler, the second inorganic filler, and the fibrous material is 70% by weight or more.
JP2000318007A 2000-10-18 2000-10-18 Resin composition for sealing Pending JP2002121401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318007A JP2002121401A (en) 2000-10-18 2000-10-18 Resin composition for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318007A JP2002121401A (en) 2000-10-18 2000-10-18 Resin composition for sealing

Publications (1)

Publication Number Publication Date
JP2002121401A true JP2002121401A (en) 2002-04-23

Family

ID=18796702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318007A Pending JP2002121401A (en) 2000-10-18 2000-10-18 Resin composition for sealing

Country Status (1)

Country Link
JP (1) JP2002121401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171817A (en) * 2016-03-25 2017-09-28 日立化成株式会社 Adhesive for semiconductor, semiconductor device and method for manufacturing semiconductor device
JP2020176222A (en) * 2019-04-19 2020-10-29 株式会社トクヤマ Aluminum nitride composite filler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171817A (en) * 2016-03-25 2017-09-28 日立化成株式会社 Adhesive for semiconductor, semiconductor device and method for manufacturing semiconductor device
JP2020176222A (en) * 2019-04-19 2020-10-29 株式会社トクヤマ Aluminum nitride composite filler
JP7292941B2 (en) 2019-04-19 2023-06-19 株式会社トクヤマ Aluminum nitride composite filler

Similar Documents

Publication Publication Date Title
KR100632084B1 (en) Thermally Conductive Body and Method of Manufacturing the Same
Zhang et al. Hybrid fillers of hexagonal and cubic boron nitride in epoxy composites for thermal management applications
KR101139412B1 (en) Thermally Conductive Insulating Resin Composition and Plastic Article
KR102540533B1 (en) light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same
CN113227238B (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and method for producing same
WO2006043641A1 (en) Thermoplastic resin composition, molded body thereof and method for producing same
JPS6320340A (en) Highly thermally conductive rubber/plastic composition
JP2012122057A (en) Inorganic organic composite composition
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP2002121401A (en) Resin composition for sealing
KR101898234B1 (en) Resin composition, article prepared by using the same and method of preparing the same
JP2002080726A (en) Resin composition for sealing
JP3989349B2 (en) Electronic component sealing device
TWI840482B (en) Inorganic powder for heat dissipating resin composition, heat dissipating resin composition using the same, and method for producing the same
JP3572692B2 (en) α-Alumina powder-containing resin composition and rubber composition
US11910571B2 (en) Housing parts, housings and processes for preparing the same
JP2010138267A (en) Thermoconductive resin composition
JP5286863B2 (en) Phenolic resin molding material
JP2006116894A (en) Heat conduction molded component
JP2007077325A (en) Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material
JPH10182947A (en) Epoxy resin composition for sealing and semiconductor device using the same
JPH0550542B2 (en)
JP2005146229A (en) Epoxy resin composition for sealing and semiconductor device by using the same
JPH08157693A (en) Epoxy resin composition
WO2022053921A1 (en) Decorated particle, composite material including the same, and methods of making the same