JP2002121027A - Magnetic powder and method for manufacturing magnetic powder - Google Patents

Magnetic powder and method for manufacturing magnetic powder

Info

Publication number
JP2002121027A
JP2002121027A JP2000311450A JP2000311450A JP2002121027A JP 2002121027 A JP2002121027 A JP 2002121027A JP 2000311450 A JP2000311450 A JP 2000311450A JP 2000311450 A JP2000311450 A JP 2000311450A JP 2002121027 A JP2002121027 A JP 2002121027A
Authority
JP
Japan
Prior art keywords
magnetic powder
rare earth
atomic
iron
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000311450A
Other languages
Japanese (ja)
Inventor
Yuji Sasaki
勇治 佐々木
Satoko Tsuboi
聡子 坪井
Shinichi Kitahata
慎一 北畑
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000311450A priority Critical patent/JP2002121027A/en
Publication of JP2002121027A publication Critical patent/JP2002121027A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new magnetic powder having high coercive force in a fine particle state so as to obtain further excellent recording and reproducing characteristics compared to a magnetic recording medium which uses conventional magnetic powder. SOLUTION: The magnetic powder consists of granules of 3 to 50 nm particle size containing iron as at least a structural element. The core part of the magnetic powder consists of alloy iron. The outer layer of the magnetic powder contains a compound containing rare earth elements and semimetal elements as at least structural elements, and at least either the rare earth elements or the semimetal elements are present by >=1 atm.% in the layer with 5 nm thickness from the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、希土類、鉄、半
金属を少なくとも構成元素とする希土類−鉄−半金属系
磁性粉末及びその製造方法に関するもので、さらに詳し
くは本発明は、デジタルビデオテ−プ、コンピュ−タ用
のバックアップテ−プなど、特に高密度記録が要求され
る磁気記録媒体に最適な磁性粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-metalloid magnetic powder containing at least rare earth, iron, and metalloid as constituent elements and a method for producing the same. More particularly, the present invention relates to a digital video tape. The present invention relates to a magnetic powder most suitable for a magnetic recording medium requiring high density recording, such as a tape and a backup tape for a computer.

【0002】[0002]

【従来の技術】磁性粉末を結合剤に分散してなる塗布型
磁気記録媒体は、その記録再生方式がアナログ方式から
デジタル方式への移行に伴い、一層の記録密度の向上が
要求されている。特に、高密度ビデオテ−プやコンピュ
−タ用のバックアップテ−プにおいては、この要求が年
々高まってきている。
2. Description of the Related Art A coating-type magnetic recording medium in which a magnetic powder is dispersed in a binder is required to further improve the recording density as the recording / reproducing method shifts from an analog method to a digital method. In particular, this demand is increasing year by year for high-density video tapes and backup tapes for computers.

【0003】この記録密度の向上に際し、これまで大き
く分けて磁性粉末の改良と、テ−プ製造技術の改良によ
り実現されてきた。
[0003] The improvement of the recording density has heretofore been largely realized by improving the magnetic powder and improving the tape manufacturing technique.

【0004】磁性粉末の改良に関しては、主として短波
長記録に対応するために年々微粒子化が図られ、現在粒
子長さが0.1μ程度で針状のメタル磁性粉末が実用化
に供されている。また短波長記録時の減磁による出力低
下を防止するために、年々高保磁力化が図られ、鉄コバ
ルト合金化により、2500Oe程度の保磁力が実現さ
れている(たとえば、特開平3−49026号公報な
ど)。
With respect to the improvement of magnetic powder, finer particles have been made year by year mainly to cope with short-wavelength recording, and at present, acicular metal magnetic powder having a particle length of about 0.1 μm is being put to practical use. . Further, in order to prevent a decrease in output due to demagnetization at the time of short wavelength recording, a high coercive force has been achieved year by year, and a coercive force of about 2500 Oe has been realized by iron-cobalt alloying (for example, JP-A-3-49026). Gazettes).

【0005】[0005]

【発明が解決しようとする課題】しかしながら高保磁力
の起源を針状形状にすることによる形状異方性とする現
状の磁性粉においては、現状以上に微粒子化を進めるこ
とが困難となってきている。本発明は、このような状況
を鑑みてなされたもので、従来とは異なる発想で、微粒
子で高保磁力を有する磁性粉末を見いだしたものであ
る。
However, in the current magnetic powder which has a high coercive force and is formed into an anisotropic shape by making it a needle-like shape, it has become more difficult to reduce the particle size more than the current state. . The present invention has been made in view of such a situation, and has found magnetic powder having fine particles and high coercive force, based on a different idea from conventional ones.

【0006】[0006]

【課題を解決するための手段】本発明者は、高性能の微
粒子で高保磁力を有する磁性粉末として、鉄を少なくと
も構成元素とする磁性粉末であって、鉄を少なくとも構
成元素とする粒子サイズが3〜50nmの範囲の粒状の
磁性粉末であって、磁性粉末にコア部分が存在し、磁性
粉末の外層部分が希土類元素と半金属元素を少なくとも
構成元素とする化合物を含み、表面から厚さ5nmの層
内に希土類元素と半金属元素の少なくとも一方が1原子
%以上存在する磁性粉末を見いだしたものである。
Means for Solving the Problems The present inventor has proposed a magnetic powder containing high-performance fine particles and a high coercive force, which is a magnetic powder containing iron at least as a constituent element. A granular magnetic powder in a range of 3 to 50 nm, wherein the magnetic powder has a core portion, an outer layer portion of the magnetic powder contains a compound containing at least a rare earth element and a metalloid element as constituent elements, and a thickness of 5 nm from the surface. The magnetic powder in which at least one of the rare earth element and the metalloid element is present in the layer of 1 at% or more is found.

【0007】本発明の磁性粉末の製造工程において、希
土類元素を添加するに際し、希土類塩から選ばれる少な
くとも1種類の塩にアルカリを添加し、50℃〜250
℃の温度範囲で1時間以上保持した後、加熱還元するこ
とが好ましい。
In the process for producing the magnetic powder of the present invention, when adding a rare earth element, an alkali is added to at least one kind of salt selected from rare earth salts, and the temperature is from 50 ° C. to 250 ° C.
It is preferable to carry out heat reduction after maintaining the temperature in a temperature range of 1 ° C. for 1 hour or more.

【0008】更に、半金属元素を添加するに際し、0℃
〜15℃の温度範囲の半金属を溶解した溶液を用いるこ
とが好ましい。
[0008] Further, when adding the metalloid element, 0 ° C.
It is preferable to use a solution in which a metalloid in a temperature range of 1515 ° C. is dissolved.

【0009】本発明の磁性粉末は、従来の形状磁気異方
性に基づく磁性粉末とは異なる観点で磁気特性の向上を
目指すべく、各種の磁性粉末を合成し、まずその磁気異
方性を調べてきた結果、磁性粉末においてコア部分が存
在し、外層部分が希土類元素を含む化合物からなる粒状
の粉末が、要求を満たすことを見いだした。
The magnetic powder of the present invention is prepared by synthesizing various magnetic powders with the aim of improving the magnetic properties from a viewpoint different from the conventional magnetic powder based on shape magnetic anisotropy, and first examining the magnetic anisotropy. As a result, it has been found that a granular powder having a core portion in a magnetic powder and an outer layer portion made of a compound containing a rare earth element satisfies the requirements.

【0010】一般に、粒径100nm以下の微粒子は表
面に現れる原子の割合が大きくなることから、表面の特
異な性質が現れ、大変興味深い実用材料となることが知
られている。例えば表面活性な性質は触媒材料に用いら
れている。また、一つの微粒子内に異種の材料が混在す
る複合微粒子においては、コア部分と外層部分が接する
部分が大きくなり、微粒子全体の性質に大きな影響を及
ぼす。すなわち微粒子においては、その表面構造が材料
特性を決める要因となる。
In general, fine particles having a particle diameter of 100 nm or less have a large ratio of atoms appearing on the surface, so that it is known that unique properties of the surface appear, and this is a very interesting practical material. For example, surface active properties are used in catalyst materials. In the case of composite fine particles in which different kinds of materials are mixed in one fine particle, a portion where the core portion and the outer layer portion are in contact with each other becomes large, which greatly affects the properties of the whole fine particles. That is, in the case of fine particles, the surface structure is a factor that determines the material properties.

【0011】そこで本発明者は、粒子サイズが3〜50
nmの範囲の各種の磁性粉末を合成し、検討した結果、
コア部分が存在し、外層部分が希土類元素を含む化合物
からなる粒状の粉末であって、表面から厚さ5nmの層
内に希土類元素が1原子%以上存在する磁性粉末が高密
度磁気記録材料に適した材料であることを見いだしたも
のである。
Therefore, the present inventors have proposed that the particle size is 3 to 50.
As a result of synthesizing and examining various magnetic powders in the range of nm,
A magnetic powder in which a core portion is present and the outer layer portion is a granular powder made of a compound containing a rare earth element, and the rare earth element is present in a layer having a thickness of 5 nm from the surface in a layer of 1 atomic% or more is a high density magnetic recording material. It has been found that it is a suitable material.

【0012】存在せしめる希土類としてはイットリウ
ム、イッテルビウム、セシウム、プラセオジウム、サマ
リウム、ランタン、ユ−ロピウム、ネオジウム等の希土
類元素が挙げられるが、これらの中でもサマリウム、プ
ラセオジムおよびネオジウムにおいて高い保磁力が得ら
れる。
The rare earths to be present include rare earth elements such as yttrium, ytterbium, cesium, praseodymium, samarium, lanthanum, europium and neodymium. Among them, samarium, praseodymium and neodymium have high coercive force.

【0013】さらに本発明者は保磁力を向上することに
ついて更に検討した結果、外層部分に希土類及び半金属
を1原子%以上存在せしめ、外層部分が希土類元素と半
金属元素を少なくとも構成元素とした場合に磁性粉全体
として高保磁力を達成できることを見いだした。半金属
元素としては、ホウ素、リン、シリコン、アルミニウ
ム、炭素が挙げられるが、カルシウム、マグネシウム
も、有効な元素である。なお、前記鉄に対する希土類及
び半金属の含有量は、磁性粉全体については原子吸光分
析、外層部分においては蛍光X線により測定した値であ
る。
As a result of further study of the improvement of the coercive force, the present inventor found that the outer layer portion contained at least 1 atomic% of a rare earth element and a metalloid, and the outer layer portion contained at least a rare earth element and a metalloid element as constituent elements. It has been found that in such a case, a high coercive force can be achieved as a whole of the magnetic powder. Examples of the metalloid element include boron, phosphorus, silicon, aluminum, and carbon, but calcium and magnesium are also effective elements. In addition, the content of the rare earth element and the metalloid with respect to the iron is a value measured by atomic absorption analysis with respect to the entire magnetic powder, and a value measured by fluorescent X-ray with respect to the outer layer.

【0014】本発明の構造、組成の磁性粉末とすること
により磁気記録媒体用磁性粉末として好適な高保磁力、
高飽和磁化を同時に達成できる理由は次のように考えら
れる。すなわち、磁性粉末のコア−部分を例えば金属鉄
あるいは合金鉄とし、コア−部分を取り巻く外層部分を
希土類−鉄−半金属化合物である微粒子の磁性粉末とし
ているため、外層部分の希土類−鉄−半金属化合物に表
面磁気異方性、或いはコア−部分の金属鉄あるいは合金
鉄と外層部分の希土類−鉄−半金属化合物の間に構造上
の欠陥から生じる界面磁気異方性が生じるため、大きな
保磁力が得られると考えられる。このような磁気異方性
が磁性粉全体の性質として生じる理由として、粒径が5
0nm以下と小さく、表面や界面に存在する原子の数が
磁性粉全体の原子の数に比べ多くなることが挙げられ
る。このような磁気構造を持つ磁性粉は本発明で初めて
見出されたものである。
By using the magnetic powder having the structure and composition of the present invention, a high coercive force suitable as a magnetic powder for a magnetic recording medium can be obtained.
The reason why high saturation magnetization can be achieved at the same time is considered as follows. That is, since the core portion of the magnetic powder is made of, for example, metallic iron or ferromagnetic iron, and the outer layer surrounding the core is made of fine magnetic powder of a rare earth-iron-metalloid compound, the rare earth-iron-half of the outer layer portion is formed. Since the metal compound has surface magnetic anisotropy, or interfacial magnetic anisotropy caused by structural defects between the metallic iron or ferromagnetic iron in the core portion and the rare earth-iron-metalloid compound in the outer layer portion, large conservation is caused. It is considered that magnetic force is obtained. The reason that such magnetic anisotropy occurs as a property of the whole magnetic powder is that the particle size is 5 μm.
It is as small as 0 nm or less, and the number of atoms existing on the surface or interface is larger than the number of atoms in the entire magnetic powder. The magnetic powder having such a magnetic structure has been found for the first time in the present invention.

【0015】次に本発明者は磁気記録用に適した安定し
た磁性粉末について検討したところ、磁性粉末の外層部
分が希土類元素を含む酸化物であること、さらには磁性
粉末の外層部分が希土類元素および半金属元素を含む酸
化物であることを見いだした。この中でも製造方法が容
易であり、かつ安定した材料として磁性粉末の外層部分
が希土類元素およびホウ素を含む酸化物であることをも
見いだした。希土類元素および半金属元素の状態は、蛍
光X線により測定した。
Next, the present inventors examined stable magnetic powder suitable for magnetic recording. The outer layer of the magnetic powder was an oxide containing a rare earth element, and the outer layer of the magnetic powder was a rare earth element. And an oxide containing a metalloid element. Among these, it was also found that the outer layer portion of the magnetic powder was an oxide containing a rare earth element and boron as a stable material in which the production method was easy. The state of the rare earth element and the metalloid element was measured by X-ray fluorescence.

【0016】本発明において、外層厚さ5nmの層内に
存在する化合物中に含まれる希土類元素とコア部分に含
まれる希土類元素の存在比が1.5以上であることが好
ましい。この値が1.5以下であるとコア部分における
希土類元素の存在比が大きくなり、コア部分の飽和磁化
が減少することから、磁性粉全体としても飽和磁化が減
少する。また保磁力も大きく減少する。これはコア部分
と外層部分の境界が不明瞭となり、磁気的な相互作用が
減少するためと考えられる。また、外層厚さ5nmの層
内において、半金属元素が鉄に対して、5原子%以上含
まれることが好ましい。この値が5原子%以下であると
半金属元素を含む外層部分の形成が困難となり、保磁力
が減少する。
In the present invention, the ratio of the rare earth element contained in the compound present in the outer layer having a thickness of 5 nm to the rare earth element contained in the core is preferably 1.5 or more. When this value is 1.5 or less, the abundance ratio of the rare earth element in the core portion increases, and the saturation magnetization of the core portion decreases. Therefore, the saturation magnetization of the magnetic powder as a whole also decreases. Also, the coercive force is greatly reduced. It is considered that this is because the boundary between the core portion and the outer layer portion is not clear, and the magnetic interaction is reduced. In addition, it is preferable that the metalloid element is contained at 5 atomic% or more with respect to iron in the layer having the outer layer thickness of 5 nm. If this value is 5 atomic% or less, it becomes difficult to form an outer layer portion containing a metalloid element, and the coercive force decreases.

【0017】また磁性粉末全体としての希土類元素の含
有量が鉄に対して0.05〜20原子%、さらには半金
属元素の含有量が鉄に対して0.1〜15原子%である
ことが好ましい。
The content of the rare earth element in the magnetic powder as a whole is 0.05 to 20 atomic% with respect to iron, and the content of the metalloid element is 0.1 to 15 atomic% with respect to iron. Is preferred.

【0018】希土類元素および半金属元素の含有量がそ
れぞれ0.05原子%および0.1原子%以下である
と、外層部分の形成が困難であり、保磁力は減少する。
また希土類元素および半金属元素の含有量がそれぞれ2
0原子%および15原子%以上であると、磁性粉全体に
対する希土類元素および半金属元素の存在比が大きくな
ることから、飽和磁化が減少する。
When the contents of the rare earth element and the metalloid element are 0.05 atomic% and 0.1 atomic%, respectively, it is difficult to form the outer layer portion, and the coercive force decreases.
In addition, the content of each of the rare earth element and the metalloid element is 2
If the content is 0 atomic% or 15 atomic% or more, the ratio of the rare earth element and the metalloid element to the entire magnetic powder becomes large, so that the saturation magnetization decreases.

【0019】なお、本発明の磁性粉末は、耐食性などを
向上するために他の元素を含有させることもできるが、
この場合においても、コア部分が合金および金属間化合
物であり、磁性粉末の外層部分が希土類元素を含む化合
物からなり、表面から厚さ5nmの層内に希土類元素が
1重量%以上存在することが好ましい。この場合、磁性
粉体の粒径は30nm以上であっても良い。
The magnetic powder of the present invention may contain other elements in order to improve corrosion resistance and the like.
Also in this case, the core part is an alloy and an intermetallic compound, the outer layer part of the magnetic powder is made of a compound containing a rare earth element, and the rare earth element is present in a layer having a thickness of 5 nm from the surface in an amount of 1% by weight or more. preferable. In this case, the particle size of the magnetic powder may be 30 nm or more.

【0020】本発明の製造方法において、希土類元素を
添加するに際し、希土類塩から選ばれる少なくとも1種
類の塩にアルカリを添加し、50℃〜250℃の温度範
囲で1時間以上保持した後、加熱還元することが好まし
い。これは希土類元素を均質に分散させ、外層部分の形
成を安定化させるためである。また、半金属元素を添加
するに際しては、半金属元素を効率よく吸着させる為、
0℃〜15℃の温度範囲の半金属を溶解した溶液を用い
ることが好ましい。
In the production method of the present invention, at the time of adding the rare earth element, an alkali is added to at least one kind of salt selected from rare earth salts, and after maintaining at a temperature range of 50 ° C. to 250 ° C. for 1 hour or more, It is preferred to reduce. This is for dispersing the rare earth element uniformly and stabilizing the formation of the outer layer portion. In addition, when adding a metalloid element, in order to adsorb the metalloid element efficiently,
It is preferable to use a solution in which a metalloid in a temperature range of 0 ° C. to 15 ° C. is dissolved.

【0021】[0021]

【発明の実施の形態】以下本発明を実施例により以下に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0022】(実施例1)0.074モルの硝酸鉄(II
I)と0.0005モルの硝酸サマリウムを600cc
の水に溶解した。この硝酸塩水溶液とは別に、0.22
2モルの水酸化ナトリウムを300ccの水に溶解し
た。この水酸化ナトリウムの水溶液に硝酸鉄水溶液を加
えた後5分間攪拌し、鉄の共沈物を生成させた。その
後、溶液を80℃になるまで加熱し、30分間保持し
た。これを水洗した後、濾過して水酸化物を取り出し
た。
Example 1 0.074 mol of iron nitrate (II
600cc of I) and 0.0005 mol of samarium nitrate
Dissolved in water. Apart from this nitrate solution, 0.22
Two moles of sodium hydroxide were dissolved in 300 cc of water. An aqueous solution of iron nitrate was added to the aqueous solution of sodium hydroxide, and the mixture was stirred for 5 minutes to form a coprecipitate of iron. Thereafter, the solution was heated to 80 ° C. and held for 30 minutes. After washing with water, the hydroxide was taken out by filtration.

【0023】次に、30ccの水に0.007モルのホ
ウ酸を溶解した水溶液に、鉄とサマリウムの共沈物を再
分散させた。この分散液を濾過した後、60℃で4時間
乾燥させて水を除去することにより、ホウ素を含んだ鉄
とサマリウムの共沈物を作製した。
Next, a coprecipitate of iron and samarium was redispersed in an aqueous solution in which 0.007 mol of boric acid was dissolved in 30 cc of water. After filtering this dispersion, it was dried at 60 ° C. for 4 hours to remove water, thereby producing a coprecipitate of iron and samarium containing boron.

【0024】これを水素気流中500℃で4時間加熱還
元して、サマリウム−鉄−半金属系磁性粉末を作製し
た。次に空気中で、温度を60℃に保ち、8時間安定化
処理を行ったのち、取り出した。このサマリウム−鉄−
ホウ素系磁性粉末の鉄に対するサマリウム及びホウ素の
含有量を原子吸光分析装置により測定したところ、それ
ぞれ2.6原子%、3.1原子%であった。また高分解
能分析透過電子顕微鏡で観察および分析したところ、粒
径20nmの粒状乃至楕円状の粒子であり、コア部分と
表面から厚さ5nmの層内におけるサマリウムの含有量
がそれぞれ0.5原子%、4原子%であることが分かっ
た。さらに、蛍光X線により外層部分のサマリウム及び
ホウ素を分析したところ、外層部分の鉄含有量に対し
て、それぞれ30原子%、45原子%存在しており、さ
らにこれらは酸化物であることが分かった。16kOe
の磁界を印加して測定した飽和磁化は174emu/
g、保磁力は1700Oeであった。
This was heated and reduced in a hydrogen stream at 500 ° C. for 4 hours to produce a samarium-iron-metalloid magnetic powder. Next, in air, the temperature was maintained at 60 ° C., and a stabilization treatment was performed for 8 hours. This samarium-iron-
When the contents of samarium and boron with respect to iron of the boron-based magnetic powder were measured by an atomic absorption spectrometer, they were 2.6 atomic% and 3.1 atomic%, respectively. Observation and analysis with a high-resolution analytical transmission electron microscope revealed that the particles were granular or elliptical with a particle diameter of 20 nm, and that the content of samarium in the layer having a thickness of 5 nm from the core portion and the surface was 0.5 atomic%. Was found to be 4 at%. Further, when samarium and boron in the outer layer portion were analyzed by X-ray fluorescence, 30 atomic% and 45 atomic% were present with respect to the iron content in the outer layer portion, respectively. Was. 16kOe
The saturation magnetization measured by applying a magnetic field of 174 emu /
g and coercive force were 1700 Oe.

【0025】(実施例2)実施例1において、硝酸サマ
リウムを硝酸プラセオジムに変更した以外は、実施例1
と同様にしてプラセオジム−鉄−ホウ素系磁性粉末を作
製した。
Example 2 Example 1 was the same as Example 1 except that samarium nitrate was changed to praseodymium nitrate.
A praseodymium-iron-boron magnetic powder was prepared in the same manner as described above.

【0026】このプラセオジム−鉄−半金属系磁性粉末
の鉄に対するプラセオジム及びホウ素の含有量を原子吸
光分析により測定したところ、それぞれ2.5原子%、
3.0原子%であった。また前記磁性粉末を実施例1と
同様に高分解能分析透過電子顕微鏡で観察および分析し
たところ、粒径20nmの粒状乃至楕円状の粒子であ
り、コア部分と表面から厚さ5nmの層内におけるプラ
セオジムの含有量がそれぞれ0.5原子%、4原子%で
あることが分かった。さらに、蛍光X線により外層部分
のプラセオジム及びホウ素を分析したところ、外層部分
の鉄含有量に対して、それぞれ30原子%、45原子%
存在しており、さらにこれらは酸化物であることが分か
った。16kOeの磁界を印加して測定した飽和磁化は
173emu/g、保磁力は1710Oeであった。
The content of praseodymium and boron with respect to iron in the praseodymium-iron-metalloid magnetic powder was measured by atomic absorption spectroscopy.
3.0 atomic%. When the magnetic powder was observed and analyzed with a high-resolution analytical transmission electron microscope in the same manner as in Example 1, it was found to be granular or elliptical particles having a particle diameter of 20 nm, and praseodymium in a layer having a thickness of 5 nm from the core portion and the surface. Was 0.5 atomic% and 4 atomic%, respectively. Furthermore, when praseodymium and boron in the outer layer portion were analyzed by X-ray fluorescence, the content of iron in the outer layer portion was 30 atomic% and 45 atomic%, respectively.
Present, and they were found to be oxides. The saturation magnetization measured by applying a magnetic field of 16 kOe was 173 emu / g, and the coercive force was 1710 Oe.

【0027】(比較例1)実施例1において、硝酸サマ
リウムの添加量を0.0005モルから0.0001モ
ルに変更した以外は、実施例1と同様にしてサマリウム
−鉄−ホウ素系磁性粉末を作製した。
Comparative Example 1 A samarium-iron-boron magnetic powder was prepared in the same manner as in Example 1, except that the amount of samarium nitrate was changed from 0.0005 mol to 0.0001 mol. Produced.

【0028】このサマリウム−鉄−ホウ素系磁性粉末の
鉄に対するサマリウム及びホウ素の含有量を原子吸光分
析装置により測定したところ、それぞれ0.5原子%、
2.5原子%であった。また高分解能分析透過電子顕微
鏡で観察および分析したところ、粒径35nmの粒状乃
至楕円状の粒子であり、コア部分と表面から厚さ5nm
の層内におけるサマリウムの含有量がそれぞれ0.8原
子%、0.5原子%であることが分かった。
When the contents of samarium and boron with respect to iron of the samarium-iron-boron magnetic powder were measured by an atomic absorption spectrometer, they were 0.5 atomic%, respectively.
It was 2.5 atomic%. When observed and analyzed with a high-resolution analytical transmission electron microscope, it was found to be granular or elliptical with a particle size of 35 nm and a thickness of 5 nm from the core and the surface.
It was found that the content of samarium in the layer was 0.8 atomic% and 0.5 atomic%, respectively.

【0029】さらに、蛍光X線により外層部分のサマリ
ウム及びホウ素を分析したところ、外層部分の鉄含有量
に対して、それぞれ30原子%、45原子%存在してお
り、さらにこれらは酸化物であることが分かった。16
kOeの磁界を印加して測定した飽和磁化は186em
u/g、保磁力は890Oeであった。
Further, when samarium and boron in the outer layer portion were analyzed by X-ray fluorescence, 30 atomic% and 45 atomic% were present with respect to the iron content in the outer layer portion, respectively, and these were oxides. I understood that. 16
The saturation magnetization measured by applying a magnetic field of kOe is 186 em
u / g and the coercive force were 890 Oe.

【0030】(実施例3)実施例1において、ホウ素の
添加量を、0.007モルから0.0025モルに変更
した以外は実施例1と同様にしてサマリウム−鉄−ホウ
素系磁性粉末を作製した。
Example 3 A samarium-iron-boron magnetic powder was prepared in the same manner as in Example 1, except that the amount of boron was changed from 0.007 mol to 0.0025 mol. did.

【0031】このサマリウム−鉄−ホウ素系磁性粉末の
鉄に対するサマリウム及びホウ素の含有量を原子吸光分
析装置により測定したところ、それぞれ2.6原子%、
0.7原子%であった。また高分解能分析透過電子顕微
鏡で観察および分析したところ、粒径30nmの粒状乃
至楕円状の粒子であり、コア部分と表面から厚さ5nm
の層内におけるサマリウムの含有量がそれぞれ0.5原
子%、4原子%であることが分かった。さらに、蛍光X
線により外層部分のサマリウム及びホウ素を分析したと
ころ、外層部分の鉄含有量に対して、それぞれ30原子
%、12原子%存在しており、さらにこれらは酸化物で
あることが分かった。16kOeの磁界を印加して測定
した飽和磁化は163emu/g、保磁力は1450O
eであった。
When the contents of samarium and boron with respect to iron of the samarium-iron-boron magnetic powder were measured by an atomic absorption spectrometer, they were 2.6 atomic%, respectively.
It was 0.7 atomic%. When observed and analyzed with a high-resolution analytical transmission electron microscope, it was found to be granular or elliptical with a particle size of 30 nm and a thickness of 5 nm from the core and the surface.
It was found that the content of samarium in each layer was 0.5 atomic% and 4 atomic%, respectively. Furthermore, fluorescent X
When samarium and boron in the outer layer portion were analyzed by a line, they were found to be 30 atomic% and 12 atomic%, respectively, with respect to the iron content in the outer layer portion, and they were found to be oxides. The saturation magnetization measured by applying a magnetic field of 16 kOe is 163 emu / g, and the coercive force is 1450 Omu.
e.

【0032】(実施例4)実施例1において、水酸化ナ
トリウムの水溶液に硝酸鉄水溶液を加えた後5分間攪拌
した後、溶液を80℃になるまで加熱し、6時間保持し
た以外は実施例1と同様にしてサマリウム−鉄−ホウ素
系磁性粉末を作製した。
Example 4 Example 1 was repeated except that an aqueous solution of sodium hydroxide was added with an aqueous solution of iron nitrate and then stirred for 5 minutes, and then the solution was heated to 80 ° C. and held for 6 hours. In the same manner as in Example 1, a samarium-iron-boron magnetic powder was produced.

【0033】このサマリウム−鉄−半金属系磁性粉末の
鉄に対するサマリウム及びホウ素の含有量を原子吸光分
析により測定したところ、それぞれ2.5原子%、3.
0原子%であった。また前記磁性粉末を実施例1と同様
に高分解能分析透過電子顕微鏡で観察および分析したと
ころ、粒径15nmの粒状乃至楕円状の粒子であり、コ
ア部分と表面から厚さ5nmの層内におけるサマリウム
の含有量を測定したところ、それぞれ0.3原子%、8
原子%であることが分かった。16kOeの磁界を印加
して測定した飽和磁化は180emu/g、保磁力は1
900Oeであった。
The contents of samarium and boron with respect to iron in the samarium-iron-semimetallic magnetic powder were measured by atomic absorption spectroscopy.
It was 0 atomic%. When the magnetic powder was observed and analyzed with a high-resolution analytical transmission electron microscope in the same manner as in Example 1, it was found to be granular or elliptical particles having a particle size of 15 nm, and samarium in a layer having a thickness of 5 nm from the core portion and the surface. Was determined to be 0.3 atomic% and 8 atomic%, respectively.
Atomic% was found. The saturation magnetization measured by applying a magnetic field of 16 kOe is 180 emu / g, and the coercive force is 1
It was 900 Oe.

【0034】(実施例5)実施例1において、水酸化ナ
トリウムの水溶液に硝酸鉄水溶液を加えた後、溶液を1
60℃、1時間水熱処理した以外は実施例1と同様にし
てサマリウム−鉄−ホウ素系磁性粉末を作製した。
(Example 5) In Example 1, after adding an aqueous solution of sodium hydroxide to an aqueous solution of sodium hydroxide,
A samarium-iron-boron magnetic powder was prepared in the same manner as in Example 1 except that the hydrothermal treatment was performed at 60 ° C. for 1 hour.

【0035】このサマリウム−鉄−半金属系磁性粉末の
鉄に対するサマリウム及びホウ素の含有量を原子吸光分
析により測定したところ、それぞれ2.4原子%、3.
0原子%であった。また前記磁性粉末を実施例1と同様
に高分解能分析透過電子顕微鏡で観察および分析したと
ころ、粒径12nmの粒状乃至楕円状の粒子であり、コ
ア部分と表面から厚さ5nmの層内におけるサマリウム
の含有量を測定したところ、それぞれ0.1原子%、1
5原子%であることが分かった。16kOeの磁界を印
加して測定した飽和磁化は155emu/g、保磁力は
2000Oeであった。
The contents of samarium and boron with respect to iron of the samarium-iron-semimetallic magnetic powder were measured by atomic absorption spectroscopy.
It was 0 atomic%. When the magnetic powder was observed and analyzed with a high-resolution analytical transmission electron microscope in the same manner as in Example 1, it was found to be granular or elliptical particles having a particle size of 12 nm, and samarium in a layer having a thickness of 5 nm from the core portion and the surface. Was measured to be 0.1 atomic% and 1 atomic%, respectively.
It was found to be 5 atomic%. The saturation magnetization measured by applying a magnetic field of 16 kOe was 155 emu / g, and the coercive force was 2000 Oe.

【0036】(実施例6)実施例1において、30cc
の水に0.007モルのホウ酸を溶解した後冷却し5℃
に保持したホウ酸溶液を用いた以外は、実施例1と同様
にしてサマリウム−鉄−ホウ素系磁性粉末を作製した。
(Example 6) In Example 1, 30 cc
Dissolve 0.007 mol of boric acid in water and cool to 5 ° C
A samarium-iron-boron-based magnetic powder was produced in the same manner as in Example 1 except that the boric acid solution held in was used.

【0037】このサマリウム−鉄−半金属系磁性粉末の
鉄に対するサマリウム及びホウ素の含有量を原子吸光分
析により測定したところ、それぞれ2.5原子%、4.
0原子%であった。また前記磁性粉末を実施例1と同様
に高分解能分析透過電子顕微鏡で観察および分析したと
ころ、粒径20nmの粒状乃至楕円状の粒子であり、コ
ア部分と表面から厚さ5nmの層内におけるサマリウム
の含有量を測定したところ、それぞれ0.5原子%、4
原子%であることが分かった。さらに、蛍光X線により
外層部分のサマリウム及びホウ素を分析したところ、外
層部分の鉄含有量に対して、それぞれ35原子%、48
原子%存在しており、さらにこれらは酸化物であること
が分かった。16kOeの磁界を印加して測定した飽和
磁化は165emu/g、保磁力は1850Oeであっ
た。
The samarium-iron-semimetallic magnetic powder was measured by atomic absorption spectroscopy to determine the contents of samarium and boron with respect to iron.
It was 0 atomic%. When the magnetic powder was observed and analyzed with a high-resolution analytical transmission electron microscope in the same manner as in Example 1, it was found to be granular or elliptical particles having a particle diameter of 20 nm, and samarium in a layer having a thickness of 5 nm from the core portion and the surface. Was determined to be 0.5 atomic% and 4 atomic%, respectively.
Atomic% was found. Further, when samarium and boron in the outer layer portion were analyzed by fluorescent X-rays, 35 atomic% and 48 atomic% were respectively determined with respect to the iron content in the outer layer portion.
At%, and these were found to be oxides. The saturation magnetization measured by applying a magnetic field of 16 kOe was 165 emu / g, and the coercive force was 1850 Oe.

【0038】[0038]

【発明の効果】以上説明したように、本発明の希土類−
鉄−半金属系磁性粉末は、粒状乃至楕円状の形状であり
ながらコア部分と外層部分に生じる磁気異方性に基づく
高い保磁力と、極めて微粒子であるにもかかわらず高い
飽和磁化を有する、従来の磁性粉末とは全く発想の異な
る新規な磁性粉末であることがわかる。従って、本発明
の磁性粉末は、高密度記録が要求される磁気記録媒体に
特に適した磁性粉末であり、その産業上の利用価値は極
めて大きなものである。
As explained above, the rare earth of the present invention
The iron-metalloid magnetic powder has a high coercive force based on magnetic anisotropy generated in the core portion and the outer layer portion while having a granular or elliptical shape, and has a high saturation magnetization despite being extremely fine particles. It can be seen that this is a novel magnetic powder that has a completely different idea from the conventional magnetic powder. Therefore, the magnetic powder of the present invention is a magnetic powder particularly suitable for a magnetic recording medium requiring high-density recording, and its industrial utility value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北畑 慎一 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 岸本 幹雄 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 4G002 AA09 AB02 AC00 AD03 AE03 5D006 BA04 BA08 5E040 AA04 BC01 CA06 HB09 HB14 HB17 NN06 NN17 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Kitahata 1-1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Mikio Kishimoto 1-188 Ushitora, Ibaraki City, Osaka Hitachi F-term (reference) in Maxell, Inc. 4G002 AA09 AB02 AC00 AD03 AE03 5D006 BA04 BA08 5E040 AA04 BC01 CA06 HB09 HB14 HB17 NN06 NN17 NN18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 鉄を少なくとも構成元素とする粒子サイ
ズが3〜50nmの範囲の粒状の磁性粉末であって、磁
性粉末にコア部分が存在し、磁性粉末の外層部分が希土
類元素と半金属元素を少なくとも構成元素とする化合物
を含み、表面から厚さ5nmの層内に希土類元素と半金
属元素の少なくとも一方が1原子%以上存在することを
特徴とする磁性粉末。
1. A granular magnetic powder having iron as a constituent element and having a particle size in the range of 3 to 50 nm, wherein a core portion is present in the magnetic powder, and an outer layer portion of the magnetic powder is composed of a rare earth element and a metalloid element. And at least one of a rare earth element and a metalloid element is present in a layer having a thickness of 5 nm from the surface in an amount of 1 atomic% or more.
【請求項2】 表面から厚さ5nmの層内に、希土類元
素と半金属元素がそれぞれ1原子%以上存在することを
特徴とする請求項1記載の磁性粉末。
2. The magnetic powder according to claim 1, wherein each of the rare earth element and the metalloid element is present in a layer having a thickness of 5 nm from the surface in an amount of 1 atomic% or more.
【請求項3】 磁性粉末の外層部分が希土類元素を含む
酸化物であることを特徴とした請求項1記載の磁性粉
末。
3. The magnetic powder according to claim 1, wherein the outer layer portion of the magnetic powder is an oxide containing a rare earth element.
【請求項4】 磁性粉末の外層部分が希土類元素および
半金属元素を含む酸化物であることを特徴とした請求項
1記載の磁性粉末。
4. The magnetic powder according to claim 1, wherein the outer layer portion of the magnetic powder is an oxide containing a rare earth element and a metalloid element.
【請求項5】 磁性粉末の外層部分が希土類元素および
ホウ素を含む酸化物であることを特徴とした請求項1記
載の磁性粉末。
5. The magnetic powder according to claim 1, wherein the outer layer portion of the magnetic powder is an oxide containing a rare earth element and boron.
【請求項6】 表面から厚さ5nmの層内に存在する化
合物中に含まれる希土類元素とコア部分に含まれる希土
類元素の存在比が1.5以上であることを特徴とする請
求項1記載の磁性粉末。
6. The rare earth element contained in the compound existing in the layer having a thickness of 5 nm from the surface and the rare earth element contained in the core portion have an abundance ratio of 1.5 or more. Magnetic powder.
【請求項7】 表面から厚さ5nmの層内において、半
金属元素が鉄に対して、5原子%以上含まれることを特
徴とする請求項1記載の磁性粉末。
7. The magnetic powder according to claim 1, wherein the metalloid element is contained in the layer having a thickness of 5 nm from the surface in an amount of 5 atomic% or more with respect to iron.
【請求項8】 磁性粉末全体としての希土類元素の含有
量が鉄に対して0.05〜20原子%であることを特徴
とする請求項1記載の磁性粉末。
8. The magnetic powder according to claim 1, wherein the content of the rare earth element in the whole magnetic powder is 0.05 to 20 atomic% with respect to iron.
【請求項9】 磁性粉末全体としての半金属元素の含有
量が鉄に対して0.1〜15原子%であることを特徴と
する請求項1記載の磁性粉末。
9. The magnetic powder according to claim 1, wherein the content of the metalloid element as a whole of the magnetic powder is 0.1 to 15 atomic% based on iron.
【請求項10】 希土類元素を添加するに際し、希土類
塩から選ばれる少なくとも1種類の塩にアルカリを添加
し、50℃〜250℃の温度範囲で1時間以上保持した
後、加熱還元することを特徴とする請求項1ないし9記
載の磁性粉末の製造方法。
10. A method of adding a rare earth element, comprising adding an alkali to at least one kind of salt selected from rare earth salts, maintaining the temperature in a temperature range of 50 ° C. to 250 ° C. for 1 hour or more, and then reducing by heating. The method for producing a magnetic powder according to any one of claims 1 to 9, wherein
【請求項11】 半金属元素を添加するに際し、0℃〜
15℃の温度範囲の半金属を溶解した溶液を用いること
を特徴とする請求項1ないし9記載の磁性粉末の製造方
法。
11. The method according to claim 1, wherein the addition of the metalloid element is carried out at 0 ° C.
The method for producing a magnetic powder according to any one of claims 1 to 9, wherein a solution in which a metalloid in a temperature range of 15 ° C is dissolved is used.
JP2000311450A 2000-10-12 2000-10-12 Magnetic powder and method for manufacturing magnetic powder Withdrawn JP2002121027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311450A JP2002121027A (en) 2000-10-12 2000-10-12 Magnetic powder and method for manufacturing magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311450A JP2002121027A (en) 2000-10-12 2000-10-12 Magnetic powder and method for manufacturing magnetic powder

Publications (1)

Publication Number Publication Date
JP2002121027A true JP2002121027A (en) 2002-04-23

Family

ID=18791210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311450A Withdrawn JP2002121027A (en) 2000-10-12 2000-10-12 Magnetic powder and method for manufacturing magnetic powder

Country Status (1)

Country Link
JP (1) JP2002121027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497892B2 (en) 2004-10-04 2009-03-03 Fujifilm Corporation Magnetic particles, method for producing the same, and magnetic recording medium
US7510790B2 (en) * 2002-09-20 2009-03-31 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510790B2 (en) * 2002-09-20 2009-03-31 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US7497892B2 (en) 2004-10-04 2009-03-03 Fujifilm Corporation Magnetic particles, method for producing the same, and magnetic recording medium

Similar Documents

Publication Publication Date Title
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JPH0722224A (en) Ferromagnetic metal powder
JP2004319923A (en) Iron nitride-based magnetic powder
Buchkov et al. Amorphous magnetic state established by Mössbauer spectroscopy on powders obtained by borohydride reduction
US5277977A (en) Ferromagnetic stabilized ultrafine spherical hexagonal crystalline Fe2
JP2008069431A (en) Method for producing magnetic particle, and magnetic particle
JPS608605B2 (en) Oxidation treatment method for metal magnetic powder for magnetic recording media
JP2002121027A (en) Magnetic powder and method for manufacturing magnetic powder
WO1998020507A1 (en) Powder for permanent magnet, method for its production and anisotropic permanent magnet made using said powder
US5221322A (en) Method of making ferromagnetic ultrafine particles
JP2925709B2 (en) Method for producing acicular magnetic iron oxide particles for magnetic recording
US5256479A (en) Ferromagnetic ultrafine particles, method of making, and recording medium using the same
Sasaki et al. Magnetic and structural properties of nano-sized Sm-FeCo-B particles
JPH0461041B2 (en)
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2779935B2 (en) Magnetoplumbite-type ferrite particle powder for magnetic card and method for producing the same
JP2002050508A (en) Method of manufacturing magnetic powder
CN1130288A (en) Alpha-Fe base RE-FE-B nm crystal alloy and its producing method and use
JP3132536B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2003217108A (en) Magnetic material for magnetic recording medium
JP2002050509A (en) Rare-earth-iron-metalloid magnetic powder and its manufacturing method
JP2003100507A (en) Magnetic powder
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JP2003034804A (en) Magnetic powder
JPH1083906A (en) Metallic powder for magnetic recording use and manufacture thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108