JP2002116160A - Method of measuring impurity concentration of cadmium telluride powder and method of making film of cadmium telluride - Google Patents

Method of measuring impurity concentration of cadmium telluride powder and method of making film of cadmium telluride

Info

Publication number
JP2002116160A
JP2002116160A JP2000308351A JP2000308351A JP2002116160A JP 2002116160 A JP2002116160 A JP 2002116160A JP 2000308351 A JP2000308351 A JP 2000308351A JP 2000308351 A JP2000308351 A JP 2000308351A JP 2002116160 A JP2002116160 A JP 2002116160A
Authority
JP
Japan
Prior art keywords
ratio
cdte
cadmium
film
cadmium telluride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000308351A
Other languages
Japanese (ja)
Inventor
Seiji Kumazawa
誠二 熊澤
Hiroshi Higuchi
洋 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP2000308351A priority Critical patent/JP2002116160A/en
Publication of JP2002116160A publication Critical patent/JP2002116160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a simple method of measuring the concentrations of trace quantities of impurities in CdTe powder and to provide a CdTe film of good quality and a solar battery of excellent output characteristics at a low cost by enabling the CdTe powder for formation of the CdTe film to be quickly and appropriately evaluated prior to its use. SOLUTION: The ratio of the atomic concentrations of Cd, Te and a third element, which is calculated from multi-point measurements with an X-ray microanalyzer, is plotted onto a triangle chart whose apexes represent the three elements; the ratio of the number of atoms in each impurity (metal Cd, metal Te and oxygen compound or the like) to the total number of atoms in a sample is calculated from the ratio, to the total number of measuring points, of the number of measuring points where the atomic concentration ratio is plotted in a predetermined area on the triangle chart, which area is characteristic of each impurity. This measuring method is used for calculating the atomic number ratio of the impurities and a CdTe film is manufactured by proximate sublimation method using the evaluated raw CdTe powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、テルル化カドミウ
ム(CdTe)粉末中の不純物濃度の測定方法、および
原料としてCdTe粉末を用いるCdTe膜の製造方法
に関するものである。
The present invention relates to a method for measuring the impurity concentration in cadmium telluride (CdTe) powder and a method for producing a CdTe film using CdTe powder as a raw material.

【0002】[0002]

【従来の技術】CdTe粉末は近接昇華法(CSS法)
によるCdTe膜の製膜における原料などとして用いら
れる。また、CdTe膜は多くの場合にCdTe系太陽
電池のp型半導体層として用いられている。CSS法に
よるCdTe膜の製膜方法は、CdTeを主成分とする
原料層を配設したソース保持体と薄膜形成用基板とを僅
かな空隙を挟んで配設し、一般的には不活性ガス雰囲気
中で、原料を薄膜形成用基板よりも高い温度に加熱して
昇華させ、薄膜形成用基板上にCdTeを析出させる方
法である。
2. Description of the Related Art CdTe powder is produced by proximity sublimation (CSS).
As a raw material in the production of a CdTe film. In many cases, the CdTe film is used as a p-type semiconductor layer of a CdTe-based solar cell. In a method of forming a CdTe film by the CSS method, a source holder provided with a raw material layer containing CdTe as a main component and a thin film forming substrate are provided with a small gap therebetween, and generally, an inert gas is used. In this method, the raw material is heated to a higher temperature than the substrate for forming a thin film and sublimated in an atmosphere to deposit CdTe on the substrate for forming a thin film.

【0003】CSS法については、T. L. Chuらによっ
て技術開示(The Conference Recordof the 22nd IEEE
Photovoltaic Specialists Conference (1991) Vol. 2,
p952-956など)されており、例えば、原料として5N
という高純度の多結晶CdTe、もしくは構成元素とド
ーパントを直接合成させた多結晶CdTeを用いる方法
が記述されている。この製膜法では結晶性の良好なCd
Te膜が得られるが、原料が極めて高価なことが難点で
ある。
The CSS method has been disclosed by TL Chu et al. (The Conference Record of the 22nd IEEE).
Photovoltaic Specialists Conference (1991) Vol. 2,
p952-956), for example, as a raw material 5N
Using high-purity polycrystalline CdTe or polycrystalline CdTe obtained by directly synthesizing constituent elements and dopants. In this film forming method, Cd having good crystallinity is used.
Although a Te film can be obtained, it is a disadvantage that the raw material is extremely expensive.

【0004】このため一般的な工業用原料としては、C
d粉末とTe粉末を混合し、不活性ガス中で700℃以
上に加熱して生成させたCdTeを粉砕した市販のCd
Te粉末が用いられている。しかし、この市販CdTe
粉末を用いた場合には、原料中の不純物が得られたCd
Te膜の結晶状態を悪化させる。従ってこれら不純物は
CdTe膜を用いた太陽電池の特性に大きな悪影響を与
える。
For this reason, general industrial raw materials include C
d powder and Te powder are mixed, and heated to 700 ° C. or more in an inert gas, and the produced CdTe is pulverized into commercially available Cd.
Te powder is used. However, this commercial CdTe
In the case of using powder, Cd from which impurities in the raw material were obtained
It deteriorates the crystalline state of the Te film. Therefore, these impurities have a significant adverse effect on the characteristics of a solar cell using a CdTe film.

【0005】上記の市販CdTe粉末には、多くの場合
に不純物として金属Teが含まれている。CdTe粉末
を作製するための出発材料であるTe粉末が、Cd粉末
よりも過剰なモル比で配合されると、生成したCdTe
粉末中に未反応Teが残存し、不純物として含有され
る。逆に、Cdのモル比が過剰な場合にも、未反応Cd
とともに若干量(数百ppm程度)の未反応Teが残存
する場合が多い。これは、TeよりもCdの気化温度が
低いので、CdTeの生成温度以下でCdが優先的に気
化して飛散し易く、Teと反応すべきCdの量が減少す
るためと考えられる。このようなことから、一般的な原
料である市販CdTe粉末中には、金属Teや金属Cd
が不純物として存在するのは避けられない問題である。
[0005] The above-mentioned commercially available CdTe powder often contains metallic Te as an impurity. When Te powder, which is a starting material for producing CdTe powder, is blended in an excess molar ratio with respect to Cd powder, the resulting CdTe
Unreacted Te remains in the powder and is contained as an impurity. Conversely, when the molar ratio of Cd is excessive, unreacted Cd
In addition, a small amount (about several hundred ppm) of unreacted Te often remains. This is presumably because Cd has a lower vaporization temperature than Te, so that Cd is likely to be preferentially vaporized and scattered below the CdTe generation temperature, and the amount of Cd that should react with Te decreases. Therefore, commercially available CdTe powder, which is a general raw material, contains metal Te and metal CdTe.
Is an unavoidable problem that exists as an impurity.

【0006】例えば、CdS/CdTe太陽電池の作製
過程では、透明導電膜と硫化カドミウム(CdS)膜が
順次形成された薄膜形成用基板上にCSS法によりCd
Te膜を形成する。この場合の原料中に金属Teが存在
すると、これがCdTeに優先して低温で気化する。そ
のため、CdTe膜の形成以前にTeの蒸気が下地のC
dS膜と反応してこれを侵食する。その結果、CdS膜
表面に著しい凹凸が発生してCdTe膜との接合が妨げ
られる。侵食が著しい場合には、CdS膜表面にピンホ
ールが発生し、露出した下地の透明導電膜上に部分的に
CdTe膜が形成される。このようなCdTe膜を用い
た場合には、太陽電池の光電特性が著しく悪化する。従
って、良好なCdTe膜の形成、あるいは光電特性が優
れた太陽電池の作製のためには、実質的に悪影響がない
レベルまで不純物含量が低減されたCdTe粉末を原料
として用いる必要がある。
For example, in the manufacturing process of a CdS / CdTe solar cell, Cd is deposited on a thin film forming substrate on which a transparent conductive film and a cadmium sulfide (CdS) film are sequentially formed by a CSS method.
A Te film is formed. If metal Te is present in the raw material in this case, it vaporizes at a low temperature in preference to CdTe. Therefore, before the formation of the CdTe film, the vapor of Te
Reacts with and erodes the dS film. As a result, significant irregularities occur on the surface of the CdS film, and the bonding with the CdTe film is hindered. When erosion is significant, pinholes are generated on the surface of the CdS film, and a CdTe film is partially formed on the exposed underlying transparent conductive film. When such a CdTe film is used, the photoelectric characteristics of the solar cell are significantly deteriorated. Therefore, in order to form a good CdTe film or to manufacture a solar cell having excellent photoelectric characteristics, it is necessary to use a CdTe powder whose impurity content is reduced to a level at which there is substantially no adverse effect as a raw material.

【0007】上記のCdTe粉末中の数万〜数千ppm
程度の多量の不純物は、例えばX線回折法や化学分析等
により定量することが可能である。しかし、数十〜数千
ppm程度の微量な不純物を定量的に容易に測定する方
法がなかった。そのため、使用前に原料をロット毎に分
析して評価することが非常に困難であった。その結果、
得られたCdTe膜あるいはこれを用いて作製した太陽
電池の特性が安定せず、歩留まりが極めて悪かった。
Tens of thousands to thousands of ppm in the above CdTe powder
A large amount of impurities can be quantified by, for example, X-ray diffraction, chemical analysis, or the like. However, there is no method for quantitatively and easily measuring a trace amount of impurities of several tens to several thousand ppm. Therefore, it was very difficult to analyze and evaluate the raw materials for each lot before use. as a result,
The characteristics of the obtained CdTe film or a solar cell manufactured using the same were not stable, and the yield was extremely poor.

【0008】そのため、従来はCdTe膜の製造に先だ
って、各ロット毎に採取した原料の試料を用いて先行的
にCdTe膜あるいは太陽電池を試作し、その試作品の
特性評価を行うことにより、各原料ロットの良否判定を
行わざるを得なかった。しかし、この方法では、原料ロ
ットの評価結果が判明するまでに多くの工数と長時間を
要するため、量産化の防げとなっていた。
Conventionally, prior to the production of a CdTe film, a CdTe film or a solar cell is prototyped in advance using a sample of a raw material collected for each lot, and the characteristics of the prototype are evaluated. It was necessary to judge the quality of the raw material lot. However, this method requires a lot of man-hours and a long time until the evaluation result of the raw material lot is found out, thus preventing mass production.

【0009】[0009]

【発明が解決しようとする課題】上記問題点に鑑み、本
発明はCdTe粉末中のTe、Cdなどの微量な不純物
を簡便かつ正確に定量する方法を提供することを目的と
する。さらにこの方法を適用してCdTe膜形成用原料
の評価を迅速且つ適格に行い、良質で安価なCdTe膜
を形成すること、および光電特性の優れたCdS/Cd
Te太陽電池を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method for simply and accurately quantifying trace impurities such as Te and Cd in CdTe powder. Further, by applying this method, a raw material for forming a CdTe film is quickly and appropriately evaluated to form a high-quality and inexpensive CdTe film, and CdS / Cd having excellent photoelectric characteristics.
An object is to provide a Te solar cell.

【0010】[0010]

【課題を解決するための手段】本発明のCdTe粉末の
不純物濃度の測定方法は、CdTe粉末試料中の金属C
d、金属Te、および、第3の元素を含む化合物からな
る不純物の濃度を測定する方法であって、X線マイクロ
アナライザによって前記試料の多点測定を行い、各測定
点で求められたCd、Te、および前記第3の元素から
なる三元素の原子濃度比を、前記三元素を頂点とする三
角図上にプロットし、前記三角図上の前記各不純物に固
有の所定領域内に前記原子濃度比がプロットされた測定
点数を求め、その測定点数が全測定点数に占める割合か
ら、前記試料中の総原子数に対する前記各不純物中の原
子数の比率を求めることを特徴とするものである。本発
明の不純物濃度の測定方法により、CdTe粉末中の不
純物である金属Te、金属Cd、および、第3の元素を
簡略な手法で正確に定量することができる。
The method for measuring the impurity concentration of a CdTe powder according to the present invention comprises the steps of:
d, metal Te, and a method for measuring the concentration of an impurity composed of a compound containing a third element, wherein a multi-point measurement of the sample is performed by an X-ray microanalyzer, and Cd, Te, and the atomic concentration ratio of the three elements consisting of the third element are plotted on a triangular diagram having the three elements as vertices, and the atomic concentration ratio in a predetermined region specific to each of the impurities on the triangular diagram is plotted. The number of measurement points on which the ratio is plotted is determined, and the ratio of the number of atoms in each impurity to the total number of atoms in the sample is determined from the ratio of the number of measurement points to the total number of measurement points. According to the method for measuring the impurity concentration of the present invention, metal Te, metal Cd, and the third element, which are impurities in the CdTe powder, can be accurately quantified by a simple method.

【0011】本発明のCdTe粉末の不純物濃度の測定
方法において、第3の元素が酸素である場合に、CdT
eおよび各不純物に固有の前記所定領域は次のように定
められる。 1)前記三角図上のCdとTeの原子濃度比(Cd原子
濃度/Te原子濃度)が3/2以上で、Cdと酸素の原
子濃度比(Cd原子濃度/酸素原子濃度)が3/2以上
である領域を、金属Cdに固有の前記所定領域と定め
て、試料中の総原子数に対する前記金属Cdの原子数の
比率を求めることができる。 2)前記三角図上のCdとTeの原子濃度比が2/3以
下で、Teと酸素の原子濃度比(Te原子濃度/酸素原
子濃度)が3/2以上である領域を、金属Teに固有の
前記所定領域と定めて、試料中の総原子数に対する前記
金属Teの原子数の比率を求めることができる。 3)前記三角図上のCdとTeの各々の頂点を結ぶ直線
上のCdとTeの原子濃度比が2/3を越え、3/2未
満の領域、前記三角図上のCdとTeの原子濃度比が3
/2以上で、Cdと酸素の原子濃度比が3/2以上であ
る領域、および前記三角図上のCdとTeの原子濃度比
が2/3以下で、テルルと酸素の原子濃度比が3/2以
上である領域、の三領域を除いた領域を、酸素化合物に
固有の前記所定領域と定めて、試料中の総原子数に対す
る前記酸素化合物中の酸素原子数の比率を求めることが
できる。
In the method for measuring the impurity concentration of CdTe powder according to the present invention, when the third element is oxygen, CdT
The predetermined region unique to e and each impurity is defined as follows. 1) The atomic concentration ratio of Cd and Te (Cd atomic concentration / Te atomic concentration) on the triangular diagram is 3/2 or more, and the atomic concentration ratio of Cd and oxygen (Cd atomic concentration / oxygen atomic concentration) is 3/2. The above-mentioned region is defined as the predetermined region unique to the metal Cd, and the ratio of the number of atoms of the metal Cd to the total number of atoms in the sample can be obtained. 2) A region where the atomic concentration ratio of Cd and Te on the triangular diagram is 2/3 or less and the atomic concentration ratio of Te and oxygen (Te atomic concentration / oxygen atomic concentration) is 3/2 or more is defined as metal Te. By defining the specific predetermined region, a ratio of the number of atoms of the metal Te to the total number of atoms in the sample can be obtained. 3) A region where the atomic concentration ratio of Cd and Te on a straight line connecting each vertex of Cd and Te on the triangular diagram exceeds 2/3 and is less than 3/2, and the atoms of Cd and Te on the triangular diagram Concentration ratio is 3
/ 2 or more and the atomic concentration ratio of Cd and oxygen is 3/2 or more, and the atomic concentration ratio of Cd and Te on the triangular diagram is 2/3 or less and the atomic concentration ratio of tellurium and oxygen is 3 A region excluding three regions of / 2 or more is defined as the predetermined region unique to the oxygen compound, and the ratio of the number of oxygen atoms in the oxygen compound to the total number of atoms in the sample can be determined. .

【0012】本発明のCdTe膜の製造方法は、上記の
本発明による測定方法によって予め原料CdTe粉末の
ロットから採取した試料中の総原子数に対する前記各不
純物中の各元素(Cd、Te、および酸素)の原子数の
比率を求め、その比率が所定の条件を満たすCdTe粉
末ロットを原料として用い、近接昇華法によりCdTe
膜を形成するものである。本発明により、原料として用
いるCdTe粉末を使用前に迅速、且つ適格に評価する
ことができ、その結果、CdS膜などの下地の膜を侵食
せず、下地との接合性が良い、良質なCdTe膜を歩留
まり良く効率的に製造することができる。
In the method for producing a CdTe film of the present invention, each of the elements (Cd, Te, and Cd) in each of the impurities is determined based on the total number of atoms in a sample previously collected from a lot of the raw CdTe powder by the measurement method according to the present invention. A ratio of the number of atoms of (oxygen) is determined, and a CdTe powder lot whose ratio satisfies a predetermined condition is used as a raw material, and CdTe is obtained by proximity sublimation.
It forms a film. According to the present invention, CdTe powder used as a raw material can be quickly and appropriately evaluated before use, and as a result, a high quality CdTe powder which does not erode the underlying film such as a CdS film and has good bonding properties with the underlying material. The film can be efficiently manufactured with high yield.

【0013】本発明の製造方法により形成されたCdT
e膜をp形半導体として用いることにより、高変換効率
の太陽電池を低コストで提供することができる。
CdT formed by the manufacturing method of the present invention
By using the e film as a p-type semiconductor, a solar cell with high conversion efficiency can be provided at low cost.

【0014】[0014]

【発明の実施の形態】CdTe粉末を大気中に放置して
おくと、CdTe粉末中の未反応のTeやCdは、酸化
されて酸化テルルや酸化カドミウムとなり易い。これら
の酸素化合物中の酸素は、先述の金属Teや金属Cdと
同じように、良質なCdTe膜の形成を妨げる。従っ
て、CdTe粉末中の不純物測定では、金属Teや金属
Cdと共に、Te、Cd以外の第3の元素(とりわけT
eやCdの酸素化合物に含まれる酸素原子)を定量する
ことが重要である。第3の元素を含む化合物としては、
上記の酸素化合物以外に、CdTe粉末の作成段階で混
入したり、原料のCd粉末やTe粉末中に当初から含ま
れている鉄や銅、およびこれらの酸化物などがある。本
発明により、CdTe粉末中に不純物として含有されて
いる金属Te、金属Cdおよび上記酸素、鉄、あるいは
銅などの第3の元素について、試料中の総原子数に対す
る原子数比率を求めることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When CdTe powder is left in the air, unreacted Te and Cd in the CdTe powder are easily oxidized to tellurium oxide and cadmium oxide. Oxygen in these oxygen compounds hinders the formation of a high-quality CdTe film, as in the case of the aforementioned metal Te and metal Cd. Therefore, in the measurement of impurities in the CdTe powder, the third element other than Te and Cd (particularly, T
It is important to determine the amount of oxygen atoms contained in oxygen compounds of e and Cd. As the compound containing the third element,
In addition to the above oxygen compounds, there are iron, copper, oxides thereof, and the like which are mixed in the step of preparing the CdTe powder or are originally contained in the Cd powder or Te powder as a raw material. According to the present invention, the ratio of the number of atoms to the total number of atoms in the sample can be obtained for the metal Te, metal Cd, and the third element such as oxygen, iron, or copper contained in the CdTe powder as impurities. .

【0015】本発明のCdTe粉末の不純物濃度の測定
方法では、先ず、X線マイクロアナライザによって前記
CdTe粉末の多点測定を行い、各測定点におけるC
d、Te、および第3の元素、からなる三元素の原子濃
度比を前記三元素を頂点とする三角図上にプロットす
る。上記の各測定点における各元素の原子濃度は、各測
定点で計測されたX線マイクロアナライザのピーク強度
と、予め計測された標準試料中の当該元素のピーク強度
と原子濃度との関係、とから求められる。標準試料とし
ては、結合した原子の比率が正確に把握された化合物を
選択する必要がある。
In the method for measuring the impurity concentration of CdTe powder according to the present invention, first, multi-point measurement of the CdTe powder is performed by an X-ray microanalyzer, and the C at each measurement point is measured.
The atomic concentration ratio of three elements consisting of d, Te, and the third element is plotted on a triangular diagram having the three elements as vertices. Atomic concentration of each element at each of the above measurement points, the peak intensity of the X-ray microanalyzer measured at each measurement point, the relationship between the previously measured peak intensity and the atomic concentration of the element in the standard sample, Required from. As a standard sample, it is necessary to select a compound in which the ratio of the bonded atoms is accurately grasped.

【0016】例えば、Cd、あるいはTeのピーク強度
と原子濃度の関係を求めるためには、Cd原子とTe原
子が1:1で結合しているCdTe単結晶を標準試料と
して選択するのが好都合である。CdTe単結晶のX線
マイクロアナライザによるCdのピーク強度をx、Te
のピーク強度をyとすると、xはCd原子が50%、y
はTe原子が50%の濃度で存在している場合のピーク
強度を示していることになる。CdTe粉末試料の各測
定点で計測されたCdのピーク強度をx1、Teのピー
ク強度をy1とすると、Cdの原子濃度は(x1/x)×
50%、Teの原子濃度は(y1/y)×50%として
求められる。
For example, in order to determine the relationship between the peak intensity of Cd or Te and the atomic concentration, it is convenient to select a CdTe single crystal in which Cd atoms and Te atoms are bonded 1: 1 as a standard sample. is there. The peak intensity of Cd by X-ray microanalyzer of CdTe single crystal is x, Te
Is the peak intensity of y, x is 50% of Cd atoms, and y is y.
Indicates the peak intensity when Te atoms are present at a concentration of 50%. Assuming that the peak intensity of Cd measured at each measurement point of the CdTe powder sample is x 1 and the peak intensity of Te is y 1 , the atomic concentration of Cd is (x 1 / x) ×
The atomic concentration of Te is obtained as (y 1 / y) × 50%.

【0017】上記の第3の元素としての酸素あるいは鉄
の原子濃度を求めるための標準試料としては、例えばF
eが酸素と厳密に1:1で結合していることが保証され
ているFeOの粉末を選択すればよい。この場合、Fe
Oの標準試料の酸素のピーク強度をa、鉄のピーク強度
をbとし、各測定点の酸素のピーク強度をa1、鉄のピ
ーク強度をb1すると、各測定点の酸素の原子濃度は
(a1/a)×50%、鉄の原子濃度は(b1/b)×5
0%、として求められる。また、酸素あるいは銅の原子
濃度を求めるためには、CuOの粉末を標準試料として
用いれば良い。
As a standard sample for determining the atomic concentration of oxygen or iron as the third element, for example, F
It is sufficient to select a powder of FeO that is guaranteed that e is bonded exactly to oxygen with 1: 1. In this case, Fe
When the peak intensity of oxygen of the O standard sample is a, the peak intensity of iron is b, the peak intensity of oxygen at each measurement point is a 1 , and the peak intensity of iron is b 1 , the atomic concentration of oxygen at each measurement point is (A 1 / a) × 50%, the atomic concentration of iron is (b 1 / b) × 5
0%. In order to determine the atomic concentration of oxygen or copper, a powder of CuO may be used as a standard sample.

【0018】本発明による測定方法では、X線マイクロ
アナライザによる測定点数を多くするほど測定精度を高
めることができ、例えば全測定点数を10万点以上とす
ることにより、CdTe粉末中に含まれる数十〜数千p
pm程度の原子数比率の微量な不純物でも定量すること
が可能となる。
In the measuring method according to the present invention, the measuring accuracy can be improved as the number of measuring points by the X-ray microanalyzer is increased. For example, by setting the total number of measuring points to 100,000 or more, the number contained in the CdTe powder can be improved. Tens to thousands
It is possible to quantify even a very small amount of impurities having an atomic ratio of about pm.

【0019】測定点の成分が金属Cdのみである場合に
は、その点の原子濃度比(Cd:Te:O)は1:0:
0なので、本来ならば三角図上のCdの頂点上にプロッ
トされるはずである。しかし、実際にはX線マイクロア
ナライザで試料に照射される測定用X線のビーム径が原
子レベルよりも大きいため、不純物である金属Cdが存
在する箇所を測定しようとした場合に、その周辺のCd
Teなどの影響を受けてCd以外に若干のTeのピーク
が検出されることがある。したがって、これらのピーク
強度から求められた原子濃度比は、Cdの頂点からTe
側にシフトした位置にプロットされる場合が多い。同様
の理由により、測定点の成分が金属Teのみである場合
には、原子濃度比は、Teの頂点からCd側にシフトし
た位置にプロットされる場合が多い。
When the component at the measurement point is only metal Cd, the atomic concentration ratio (Cd: Te: O) at that point is 1: 0:
Since it is 0, it should be plotted on the vertex of Cd on the triangular diagram. However, since the beam diameter of the X-ray for measurement applied to the sample by the X-ray microanalyzer is actually larger than the atomic level, when an attempt is made to measure a portion where metal Cd as an impurity exists, the surrounding area is not measured. Cd
Under the influence of Te or the like, a slight Te peak other than Cd may be detected. Therefore, the atomic concentration ratio obtained from these peak intensities is Te from the top of Cd.
It is often plotted at a position shifted to the side. For the same reason, when the component at the measurement point is only metal Te, the atomic concentration ratio is often plotted at a position shifted from the top of Te to the Cd side.

【0020】また、CdTeの原子濃度比は理論的には
Cd:Te:酸素が1/2:1/2:0の点、即ち純C
dTeはCdの頂点とTeの頂点を結ぶ線上の中心点の
みにプロットされるはずである。しかし実際には、粉体
状の純CdTe試料を測定する場合には、測定しようと
する箇所のCdTe粒子以外に、結晶方位が異なる隣接
粒子中のTe原子やCd原子の影響を受けて、前記中心
点からTeまたはCd側にシフトした位置に原子濃度比
がプロットされる場合が多い。
The atomic concentration ratio of CdTe is theoretically the point where Cd: Te: oxygen is 1/2: 1/2: 0, that is, pure C
dTe should be plotted only at the center point on the line connecting the vertices of Cd and Te. However, in practice, when measuring a powdery pure CdTe sample, in addition to the CdTe particles at the location to be measured, the influence of Te atoms and Cd atoms in adjacent particles having different crystal orientations is obtained. The atomic concentration ratio is often plotted at a position shifted from the center point to the Te or Cd side.

【0021】そこで、本発明者らは、純CdTeおよび
これに正確に秤量された不純物(Cd粉末、Te粉末、
およびCdTeO3粉末)を添加して各種の不純物濃度
が既知の試料を調製し、これら各濃度既知試料について
上記のX線マイクロアナライザによる多点測定を行い、
上記シフトの度合いを実験的に調べた。そして本発明者
らは、各測定点で求められた原子濃度比を三角図上にプ
ロットした状態と、濃度既知試料中の各元素の既知原子
数比率とを照合することにより、CdTe粉末中の総原
子数に対する各不純物中の各元素の原子(金属Cd中の
Cd原子、金属Te中のTe原子、および酸素化合物中
の酸素原子)の数の比率を求める方法を見出した。
Therefore, the present inventors considered that pure CdTe and impurities accurately weighed thereto (Cd powder, Te powder,
And CdTeO 3 powder) were added to prepare samples with various known impurity concentrations, and these samples with known concentrations were subjected to multipoint measurement using the X-ray microanalyzer described above.
The degree of the shift was examined experimentally. Then, the present inventors collated the state where the atomic concentration ratio obtained at each measurement point was plotted on a triangular diagram with the known atomic number ratio of each element in the sample with a known concentration, thereby obtaining the CdTe powder. A method for finding the ratio of the number of atoms of each element in each impurity (Cd atom in metal Cd, Te atom in metal Te, and oxygen atom in oxygen compound) to the total number of atoms was found.

【0022】すなわち、図1の三角図において、Cdと
Teの原子濃度比(Cd/Te)が3/2以上で、Cd
と酸素の原子濃度比(Cd/酸素)が3/2以上の正三
角形の領域1(以下、Cdの領域という)にプロットさ
れた測定点数が全測定点数に占める割合を、試料中の総
原子数に対する金属Cdの原子数の比率と見なし、Cd
/Teが2/3以下で、Teと酸素の原子濃度比(Te
/酸素)が3/2以上の正三角形の領域2(以下、Te
の領域という)にプロットされた測定点数が全測定点数
に占める割合を、試料中の総原子数に対する金属Teの
原子数の比率と見なすことにより、前記の既知の原子数
比率と最も一致した比率が求められることが分かった。
That is, in the triangular diagram of FIG. 1, when the atomic concentration ratio (Cd / Te) of Cd and Te is 3/2 or more, Cd
The ratio of the number of measurement points plotted in an equilateral triangular region 1 (hereinafter referred to as a Cd region) having an atomic concentration ratio (Cd / oxygen) of 3/2 or more to the total number of measurement points is represented by the total number of atoms in the sample. Considering the ratio of the number of atoms of metal Cd to the number of atoms, Cd
/ Te is 2/3 or less, and the atomic concentration ratio of Te and oxygen (Te
/ Oxygen) is an equilateral triangular region 2 (hereinafter Te)
Is regarded as the ratio of the number of atoms of metal Te to the total number of atoms in the sample, whereby the ratio that most closely matches the known atomic number ratio is considered. Was found to be required.

【0023】また、Cdの頂点とTeの頂点を結ぶ線上
のCd/Teが2/3を越え、3/2未満の直線部分3
(以下、CdTeの領域という)にプロットされた測定
点数が全測定点数に占める割合を、全試料に対するCd
Teのモル比と見なすことにより、濃度既知試料の純度
と最も一致したCdTeモル濃度が求められることが分
かった。さらに、図1の三角図の前記Cdの領域1、T
eの領域2、およびCdTeの領域3とを除く残りの領
域4(以下、酸素化合物の領域)にプロットされた測定
点数が全測定点数に占める割合を、試料中の総原子数に
対する酸素原子の原子数の比率と見なすことにより、前
記の既知の原子数比率と最も一致した比率が求められる
ことが分かった。
Further, a straight line portion 3 where Cd / Te on the line connecting the vertices of Cd and Te is more than 2/3 and less than 3/2.
The ratio of the number of measurement points plotted in the area (hereinafter referred to as CdTe area) to the total number of measurement points is represented by Cd
It was found that by considering the molar ratio of Te, the molar concentration of CdTe most consistent with the purity of the sample of known concentration was determined. Further, the Cd region 1, T in the triangular diagram of FIG.
The ratio of the number of measurement points plotted in the remaining region 4 (hereinafter, oxygen compound region) excluding the region 2 of e and the region 3 of CdTe to the total number of measurement points is represented by the ratio of oxygen atoms to the total number of atoms in the sample. It was found that by considering the ratio of the number of atoms, a ratio most consistent with the known ratio of the number of atoms was obtained.

【0024】本発明のCdTe膜の製造方法は、原料テ
ルル化カドミウム粉末から採取した試料について、本発
明によるCdTe粉末の不純物濃度の測定方法によって
不純物濃度を測定し、試料中の総原子数に対する金属T
eの原子数の比率が1000ppm以下、酸素原子数の
比率が5000ppm以下、あるいは金属Cdの原子数
が金属Teの原子数以上である原料テルル化カドミウム
粉末をソース保持体上に配設し、この原料テルル化カド
ミウム粉末を加熱し気化させることにより、前記ソース
保持体に近接させて対向配置した薄膜形成用基板上にテ
ルル化カドミウム膜を形成するものである。
In the method for producing a CdTe film of the present invention, an impurity concentration of a sample collected from a raw material cadmium telluride powder is measured by the method for measuring an impurity concentration of a CdTe powder according to the present invention, and the metal concentration relative to the total number of atoms in the sample is measured. T
A raw material cadmium telluride powder in which the ratio of the number of atoms of e is 1000 ppm or less, the ratio of the number of oxygen atoms is 5000 ppm or less, or the number of atoms of metal Cd is not less than the number of atoms of metal Te is disposed on the source holder. The cadmium telluride powder is heated and vaporized to form a cadmium telluride film on a thin film forming substrate disposed close to and opposed to the source holder.

【0025】CdTe粉末中には不純物である金属Te
を全く含まないことが理想的であるが、原子数比率で1
000ppm以下という微量を含有していても、下地の
CdSを侵食する現象は実質的には殆ど認められず、良
好なCdS/CdTe界面と結晶性の良好なCdTe膜
が得られる。しかし、1000ppmより大きい原子数
比率で金属Teを含むCdTe粉末を用いた場合には、
下地のCdS膜が侵食されて部分的にCdSが欠除した
箇所や凹凸が発生する現象を避けられない。
CdTe powder contains metal Te as an impurity.
Is ideally not contained at all,
Even if a trace amount of 000 ppm or less is contained, substantially no erosion of the underlying CdS is observed, and a good CdS / CdTe interface and a CdTe film having good crystallinity can be obtained. However, when a CdTe powder containing metal Te in an atomic ratio greater than 1000 ppm is used,
It is unavoidable that the underlying CdS film is eroded and a part where CdS is partially removed and irregularities occur.

【0026】CdTe粉末中にCdやTeの酸素化合物
が多量に存在すると、薄膜形成に用いられるCdおよび
Teの量が少なくなるので、高密度のCdTe膜が形成
されず、CdTe膜の品質が低下する。また、薄膜形成
用基板の温度が500℃以上の高温の場合には、酸素化
合物中の酸素により下地のCdSが酸化されてCdS表
面に欠陥部が生じ、良好なCdS/CdTe界面が得ら
れない。CdTe粉末中の酸素原子数の比率が5000
ppm以下の低率であれば、上記の問題は殆ど発生しな
い。
When a large amount of oxygen compounds of Cd and Te are present in the CdTe powder, the amount of Cd and Te used for forming a thin film is reduced, so that a high-density CdTe film is not formed and the quality of the CdTe film is deteriorated. I do. When the temperature of the substrate for forming a thin film is as high as 500 ° C. or higher, oxygen in the oxygen compound oxidizes the underlying CdS to cause a defect on the CdS surface, failing to obtain a good CdS / CdTe interface. . The ratio of the number of oxygen atoms in the CdTe powder is 5000
At a low rate of less than ppm, the above problem hardly occurs.

【0027】CdはTeよりも低温で早く気化するた
め、金属Cdが金属Teよりも多く残存しているCdT
e粉末を原料として用いることにより、Teによる下地
CdSの侵食が防止される。これにより、良好なCdS
/CdTe界面が得られ、結晶性の良好なCdTe膜が
得られる。
Since Cd vaporizes at a lower temperature than Te, the CdT in which the metal Cd remains more than the metal Te
By using e powder as a raw material, erosion of the underlying CdS by Te is prevented. Thereby, good CdS
/ CdTe interface is obtained, and a CdTe film having good crystallinity is obtained.

【0028】本発明による太陽電池は、透光性絶縁基板
上に透明導電膜、n形半導体としてのCdS膜を順次形
成し、前記CdS膜上に本発明の製造方法によりp形半
導体としてのCdTe膜を形成したものである。本発明
により、CdS/CdTe界面のCdTe膜の結晶性が
向上し、特に、波長500〜650ナノメートルにおけ
る分光感度特性が優れ、短絡電流が大きい、高変換効率
の太陽電池を提供することができる。
In the solar cell according to the present invention, a transparent conductive film and a CdS film as an n-type semiconductor are sequentially formed on a translucent insulating substrate, and CdTe as a p-type semiconductor is formed on the CdS film by the manufacturing method of the present invention. It is a film formed. ADVANTAGE OF THE INVENTION By this invention, the crystallinity of the CdTe film | membrane of CdS / CdTe interface improves, In particular, the spectral sensitivity characteristic in the wavelength of 500-650 nanometer is excellent, a short circuit current is large, and the solar cell of high conversion efficiency can be provided. .

【0029】[0029]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0030】《実施例1》まず、標準試料(CdTe単
結晶および原子比が正確に1:1であるFeO)につい
て、X線マイクロアナライザによるCd、Te、および
酸素のピーク強度と、それぞれの元素の原子濃度との関
係を求めた。その結果、Cdの原子濃度50%に対応す
るCdのピーク強度は3862カウント、Teの原子濃
度50%に対応するTeのピーク強度は1987カウン
ト、酸素の原子濃度50%に対応する酸素のピーク強度
は3708カウントであった。
Example 1 First, with respect to a standard sample (CdTe single crystal and FeO having an atomic ratio of exactly 1: 1), the peak intensities of Cd, Te, and oxygen by an X-ray microanalyzer, The relationship with the atomic concentration was determined. As a result, the peak intensity of Cd corresponding to the atomic concentration of Cd of 50% was 3,862 counts, the peak intensity of Te corresponding to the atomic concentration of Te of 1987 was 1987, and the peak intensity of oxygen corresponding to the atomic concentration of oxygen of 50%. Was 3708 counts.

【0031】次いで、各種のCdTe粉末の試料をそれ
ぞれ2mm角の試料台に敷き詰め、X線マイクロアナラ
イザにより100万点のCd、Teおよび酸素の各ピー
ク強度を測定した。これら測定された各ピーク強度と、
先に標準試料により求められた各元素の原子濃度50%
の時の各ピーク強度との関係から、各測定点のCd、T
eおよび酸素の三元素の原子濃度とそれらの比をX線マ
イクロアナライザ機器内のコンピュータで算出し、これ
ら算出された原子濃度比を機器内のプロッタにより三角
図上にプロットした。
Next, various CdTe powder samples were spread on a 2 mm square sample table, respectively, and the peak intensities of one million Cd, Te and oxygen were measured by an X-ray microanalyzer. With each of these measured peak intensities,
Atomic concentration of each element 50% previously determined from the standard sample
From the relationship with each peak intensity at the time of Cd, Td at each measurement point
The atomic concentrations of the three elements e and oxygen and their ratios were calculated by a computer in an X-ray microanalyzer, and the calculated atomic concentration ratios were plotted on a triangular diagram by a plotter in the device.

【0032】測定試料として、まずCdTe単結晶を粉
砕した粉末を選び、上記の方法で求めた各測定点の原子
濃度比を三角図上にプロットした。この場合には、多く
の測定点の原子濃度比は、CdTe単結晶の場合と同じ
く図1のCdの頂点とTeの頂点との中間点にプロット
され、図1に示すCdTeの領域3内にすべての測定点
の原子濃度比がプロットされた。次に、CdTe単結晶
を粉砕した粉末へのCd粉末の添加量を変化させた金属
Cd添加量既知の各種試料を調製し、それらの試料につ
いて、先記の方法で各測定点の原子濃度比を求め、三角
図上にプロットした。この場合、各測定点の原子濃度比
は、前記CdTeの領域3以外に、Cdの領域1の正三
角形内にもプロットされた。表1に、各試料中の金属C
dの既知原子数比率と本発明により求めた原子数比率と
の関係を示す。
First, a powder obtained by pulverizing a CdTe single crystal was selected as a measurement sample, and the atomic concentration ratio of each measurement point obtained by the above method was plotted on a triangular diagram. In this case, the atomic concentration ratios of many measurement points are plotted at the midpoint between the vertices of Cd and Te in FIG. 1 as in the case of the CdTe single crystal, and within the region 3 of CdTe shown in FIG. The atomic concentration ratio of all measurement points was plotted. Next, various samples of known amounts of metal Cd were prepared by changing the amount of Cd powder added to the powder obtained by pulverizing the CdTe single crystal, and the atomic concentration ratio of each measurement point was determined for each of the samples by the method described above. And plotted on a triangular diagram. In this case, the atomic concentration ratio of each measurement point was plotted in the equilateral triangle of the Cd region 1 in addition to the CdTe region 3. Table 1 shows the metal C in each sample.
The relation between the known atomic number ratio of d and the atomic number ratio obtained by the present invention is shown.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示すように、金属Cdの既知原子数
比率と、Cdの領域1内に原子濃度比がプロットされた
測定点数の全測定点数に対する割合から求めたCdの原
子数比率とは、Cdの添加量を原子数比率で10〜10
000ppmの範囲で変化させた全ての試料において定
量的に良く一致した。このことから、全測定点数に対す
る金属Cdの領域1の範囲内にプロットされた測定点数
の割合をCdTe粉末中の金属Cdの原子数比率と見な
すことにより、各試料中の金属Cdの濃度をほぼ定量的
に測定できることが確認された。尚、各CdTe粉末の
X線回折パターンを測定した結果、金属Cdを1000
0ppmの原子数比率で添加した試料では僅かにCdの
ピークが観測されたが、それ以外の試料では何れもCd
Te以外のピークは観測されなかった。
As shown in Table 1, the known atomic number ratio of metal Cd and the atomic number ratio of Cd obtained from the ratio of the number of measurement points where the atomic concentration ratio is plotted in region 1 of Cd to the total number of measurement points are as follows. , Cd in an atomic ratio of 10 to 10
Quantitatively good agreement was obtained in all samples changed in the range of 000 ppm. From this, by regarding the ratio of the number of measurement points plotted within the range of the region 1 of the metal Cd to the total number of measurement points as the atomic ratio of the metal Cd in the CdTe powder, the concentration of the metal Cd in each sample was substantially reduced. It was confirmed that the measurement could be performed quantitatively. Incidentally, as a result of measuring the X-ray diffraction pattern of each CdTe powder, it was found that metal Cd was 1000
A slight Cd peak was observed in the sample added at the atomic ratio of 0 ppm, but in all other samples, the Cd peak was observed.
No peak other than Te was observed.

【0035】次いで、CdTe単結晶を粉砕した粉末へ
のTe粉末の添加量を変化させた金属Te添加量既知の
各種試料を調製し、それらの試料について、先記の方法
で各測定点の原子濃度比を求め、三角図上にプロットし
た。この場合、各測定点の原子濃度比は、前記CdTe
の領域3以外に、Teの領域2の正三角形内にもプロッ
トされた。表2に、各試料中の金属Teの既知原子数比
率と本発明により求めた原子数比率との関係を示す。
Next, various samples with known amounts of metal Te were prepared by changing the amount of Te powder added to the powder obtained by pulverizing the CdTe single crystal, and the samples at the respective measurement points were determined by the method described above. The concentration ratio was determined and plotted on a triangular diagram. In this case, the atomic concentration ratio of each measurement point is determined by the CdTe.
In addition to the area 3 of, the plot was also made in the equilateral triangle of the area 2 of Te. Table 2 shows the relationship between the known atomic ratio of metal Te in each sample and the atomic ratio determined according to the present invention.

【0036】[0036]

【表2】 [Table 2]

【0037】表2に示すように、金属Teの既知の原子
数比率と、金属Teの領域2内に原子濃度比がプロット
された測定点数の全測定点数に対する割合から求めた金
属Teの原子数比率とは、金属Teの原子数比率を10
〜10000ppmの範囲で変化させた全ての試料にお
いて定量的に良く一致した。このことから、全測定点数
に対する金属Teの領域2内にプロットされた測定点数
の割合をCdTe粉末中の金属Teの原子数比率と見な
すことにより、各試料中の金属Teの濃度をほぼ定量的
に測定できることが確認された。尚、各CdTe粉末の
X線回折パターンを測定した結果、Teを10000p
pmの原子数比率で添加した試料以外は何れもTeのピ
ークは観測されなかった。
As shown in Table 2, the known atomic number ratio of metal Te and the atomic number of metal Te obtained from the ratio of the number of measurement points where the atomic concentration ratio is plotted in region 2 of metal Te to the total number of measurement points The ratio refers to a ratio of the number of atoms of metal Te of 10
Quantitative agreement was good in all samples changed in the range of 10000 ppm to 10000 ppm. From this, the ratio of the number of measurement points plotted in the region 2 of metal Te to the total number of measurement points is regarded as the ratio of the number of atoms of metal Te in the CdTe powder, whereby the concentration of metal Te in each sample is almost quantitatively determined. It was confirmed that measurement was possible. In addition, as a result of measuring the X-ray diffraction pattern of each CdTe powder, Te
No Te peak was observed in any samples other than the sample added at the atomic ratio of pm.

【0038】さらに、CdTe単結晶を粉砕した粉末へ
のCdTeO3粉末の添加量を変化させ、酸素原子数比
率が既知の各種試料を調製し、それらの試料について、
先記の方法で各測定点の原子濃度比を求め、三角図上に
プロットした。この場合、各測定点の原子濃度比は、前
記CdTeの領域3以外に、酸素化合物の領域4内にも
プロットされた。表3に、各種CdTeO3添加試料の
既知酸素原子数比率と本発明により測定した酸素原子数
比率との関係を示す。
Further, by changing the amount of CdTeO 3 powder added to the powder obtained by pulverizing the CdTe single crystal, various samples having a known oxygen atom ratio were prepared.
The atomic concentration ratio at each measurement point was determined by the method described above, and plotted on a triangular diagram. In this case, the atomic concentration ratio at each measurement point was plotted in the oxygen compound region 4 in addition to the CdTe region 3. Table 3 shows the relationship between the known oxygen atom number ratios of various CdTeO 3 added samples and the oxygen atom number ratios measured according to the present invention.

【0039】[0039]

【表3】 [Table 3]

【0040】表3に示すように、各試料の既知酸素原子
数比率と、酸素化合物の領域4内に原子濃度比がプロッ
トされた測定点数の全測定点数に対する割合から求めた
酸素原子数比率とは、酸素原子数比率を7.5〜750
0ppmの範囲で変化させた全ての試料において定量的
に良く一致した。このことから、全測定点数に対する酸
素化合物の領域4にプロットされた測定点数の割合をC
dTe粉末中の酸素原子数比率と見なすことにより、各
試料中の酸素化合物の濃度をほぼ定量的に測定できるこ
とが確認された。尚、各CdTe粉末のX線回折パター
ンを測定した結果、酸素原子数比率の測定値が1000
0ppmの試料以外では何れもCdTeO3のピークは
観測されなかった。
As shown in Table 3, the known oxygen atom number ratio of each sample and the oxygen atom number ratio obtained from the ratio of the number of measurement points at which the atomic concentration ratio was plotted in the oxygen compound region 4 to the total number of measurement points were obtained. Has an oxygen atom ratio of 7.5 to 750.
Quantitative agreement was good in all samples changed in the range of 0 ppm. From this, the ratio of the number of measurement points plotted in the oxygen compound region 4 to the total number of measurement points is expressed as C
It was confirmed that the concentration of the oxygen compound in each sample can be measured almost quantitatively by considering the ratio of the number of oxygen atoms in the dTe powder. As a result of measuring the X-ray diffraction pattern of each CdTe powder, the measured value of the oxygen atom number ratio was 1000.
No CdTeO 3 peak was observed in any samples other than the 0 ppm sample.

【0041】本実施例では、Cd、Te以外の第3元素
として酸素を例に取り上げたが、酸素以外の銅や鉄等を
第3の元素として不純物を測定する場合には、酸素を上
記の第3の元素に置き換えて求めた原子濃度比を三角図
上にプロットすることにより、同様な方法で酸素以外の
第3の元素の原子数比率を求めることができる。
In this embodiment, oxygen is taken as an example of the third element other than Cd and Te. However, when measuring impurities such as copper or iron other than oxygen as the third element, oxygen is used as the third element. By plotting the atomic concentration ratio obtained by replacing the element with the third element on a triangular diagram, the atomic number ratio of the third element other than oxygen can be obtained by the same method.

【0042】《実施例2》実施例1で金属Teの原子数
比率を求めた表2に示す試料と同じ組成の各CdTe粉
末を原料として用いて、各種CdTe膜の製膜を行っ
た。図2は製膜時の主要部材の配置を示すもので、原料
層7と薄膜形成用基板9とは、スペーサ8を介して3m
mの空隙を挟んで対向させ、薄膜形成用基板9の温度を
550℃、ソース保持体6の温度を薄膜形成用基板9の
温度よりも150℃高い温度に設定し、窒素雰囲気中で
薄膜形成用基板9の表面に厚さ約5μmのCdTe膜1
3を形成した。
Example 2 Various CdTe films were formed using, as raw materials, CdTe powders having the same composition as the samples shown in Table 2 in which the atomic ratio of metal Te was determined in Example 1. FIG. 2 shows the arrangement of the main members at the time of film formation. The raw material layer 7 and the thin film forming substrate 9 are 3 m apart from each other via a spacer 8.
The temperature of the substrate 9 for thin film formation is set to 550 ° C., the temperature of the source holder 6 is set to 150 ° C. higher than the temperature of the substrate 9 for thin film formation, and the thin film is formed in a nitrogen atmosphere. CdTe film 1 having a thickness of about 5 μm on the surface of
3 was formed.

【0043】薄膜形成用基板9は、硼珪酸ガラスからな
る厚さ3mm、10mm角のガラス基板10上に、化学
気相成長法により厚さ5000オングストロームの酸化
錫の透明導電膜11を形成し、その上に、ジエチルジチ
オカルバミン酸カドミウムを熱分解させて、厚さ800
オングストロームのCdS膜12を形成して作製した。
ソース保持体6には、厚さ3mm、10mm角のカーボ
ン板を用い、原料層7は、粉末状の原料をソース保持体
6上にほぼ均一な厚さに敷き詰めて形成した。
The thin film forming substrate 9 is formed by forming a 5000-Å-thick transparent conductive film 11 of tin oxide on a glass substrate 10 of 3 mm and 10 mm square made of borosilicate glass by a chemical vapor deposition method. Then, cadmium diethyldithiocarbamate is thermally decomposed to a thickness of 800
An Angstrom CdS film 12 was formed.
A carbon plate having a thickness of 3 mm and 10 mm square was used for the source holder 6, and the raw material layer 7 was formed by spreading a powdery raw material on the source holder 6 to a substantially uniform thickness.

【0044】各原料を用いて作製した各CdTe膜につ
いて、X線回折パターンの測定と化学分析を行った。そ
の結果、何れの膜も(111)面に配向しており、膜中
のCdとTeの原子比率は何れもほぼ1:1であった。
CdS膜とCdTe膜の界面近傍の断面をSEMで観測
した結果、表2の金属Teの測定原子数比率が1000
ppmを越えるCdTe粉末を用いた場合には、CdS
膜が侵食されて欠落した箇所が部分的に観測された。こ
れは、CdTe膜形成に先立って昇華したTeがCdS
膜を侵食した結果と思われる。特に、金属Teの原子数
比率が5000ppmを越えるCdTe粉末を用いた場
合は、CdS膜の大きなピンホールとその上の部分のC
dTe膜にもピンホールが観測された。一方、金属Te
の原子数比率が1000ppm以下のCdTe粉末を用
いた場合は、何れもCdS膜が侵食されていないことが
確認された。
For each CdTe film produced using each raw material, an X-ray diffraction pattern was measured and a chemical analysis was performed. As a result, all the films were oriented in the (111) plane, and the atomic ratio of Cd and Te in the films was almost 1: 1.
As a result of observing a cross section near the interface between the CdS film and the CdTe film by SEM, the measured atomic ratio of metal Te in Table 2 was 1000.
When CdTe powder exceeding ppm is used, CdS
A part where the membrane was eroded and missing was partially observed. This is because Te sublimated prior to CdTe film formation is CdS
This may be the result of erosion of the membrane. In particular, when a CdTe powder in which the atomic ratio of metal Te exceeds 5000 ppm is used, a large pinhole in the CdS film and the C
Pinholes were also observed in the dTe film. On the other hand, metal Te
When CdTe powder having an atomic ratio of 1000 ppm or less was used, it was confirmed that the CdS film was not eroded in any case.

【0045】CdSが欠落した箇所のSnO2/CdT
e界面と、CdSの侵食が無い箇所のCdS/CdTe
界面のTEM観測を行った。その結果、SnO2/Cd
Te界面近傍ではCdTe原子配列が不規則な箇所が多
く存在し、CdS/CdTe界面近傍では規則正しい原
子配列が確認できた。以上のことより、実施例1に示す
測定方法で測定した金属Teの原子数比率が1000p
pm以下のCdTe粉末を原料として用いることによ
り、CdS膜とCdTe膜との界面状態が改善され、そ
の上に形成されたCdTe膜の結晶性がさらに向上する
ことが明らかになった。
SnO 2 / CdT where CdS is missing
e CdS / CdTe at the interface and where there is no CdS erosion
TEM observation of the interface was performed. As a result, SnO 2 / Cd
There were many places where the CdTe atomic arrangement was irregular near the Te interface, and a regular atomic arrangement could be confirmed near the CdS / CdTe interface. From the above, the atomic ratio of metal Te measured by the measurement method shown in Example 1 was 1000 p.
It has been clarified that the use of a CdTe powder of pm or less as a raw material improves the interface state between the CdS film and the CdTe film, and further improves the crystallinity of the CdTe film formed thereon.

【0046】《実施例3》実施例1で酸素の原子数比率
を測定した表3に示す試料と同じ組成の各CdTe粉末
を原料として用いた以外は、実施例2に示したと同様の
方法でCdTe膜を作製した。
Example 3 A method similar to that of Example 2 was used except that each CdTe powder having the same composition as the sample shown in Table 3 in which the atomic ratio of oxygen was measured in Example 1 was used as a raw material. A CdTe film was produced.

【0047】各原料を用いて作製した実施例3の各Cd
Te膜のX線回折パターンを測定した。その結果、何れ
の膜も(111)面に配向していることが確認された。
また、各CdTe膜を化学分析した結果、膜中のCdと
Teの原子数比率は何れもほぼ1:1であった。また、
CdS膜とCdTe膜の界面近傍の断面をSEMで観測
した結果、酸素原子数比率の測定値が5000ppmを
越えるCdTe粉末を用いた場合は、CdSが侵食され
て欠如した箇所が部分的に観測された。これは、原料中
に含まれる酸素原子が、CdS膜のCdと反応してCd
OとなってCdS膜を侵食した結果と思われる。CdS
の欠落部の上部のCdTe膜にもピンホールが観測さ
れ、CdTe膜の膜厚減少も確認された。
Each Cd of Example 3 produced using each raw material
The X-ray diffraction pattern of the Te film was measured. As a result, it was confirmed that all the films were oriented in the (111) plane.
Further, as a result of chemical analysis of each CdTe film, the ratio of the number of atoms of Cd to Te in each film was almost 1: 1. Also,
As a result of observing the cross section near the interface between the CdS film and the CdTe film with a SEM, when a measured value of the oxygen atom number ratio exceeds 5000 ppm, a portion where CdS is eroded and missing is partially observed. Was. This is because oxygen atoms contained in the raw material react with Cd of the CdS film to form Cd.
This is considered to be the result of becoming O and eroding the CdS film. CdS
Pinholes were also observed in the CdTe film on the upper part of the missing part, and a decrease in the thickness of the CdTe film was also confirmed.

【0048】CdSが欠落した箇所のSnO2/CdT
e界面と、CdSの侵食が無い箇所のCdS/CdTe
界面のTEM観測を行った。その結果、SnO2/Cd
Te界面近傍ではCdTe原子配列が不規則な箇所が多
く、CdS/CdTe界面近傍では規則正しい原子配列
が確認できた。また、ピンホール近傍のCdTe膜のT
EM観測でも、CdTeの欠落箇所やCdTe原子配列
が不規則な箇所が多く存在していた。
SnO 2 / CdT where CdS is missing
e CdS / CdTe at the interface and where there is no CdS erosion
TEM observation of the interface was performed. As a result, SnO 2 / Cd
There were many places where the CdTe atomic arrangement was irregular near the Te interface, and an orderly atomic arrangement could be confirmed near the CdS / CdTe interface. In addition, the Td of the CdTe film near the pinhole
In EM observations as well, there were many places where CdTe was missing or where the CdTe atomic arrangement was irregular.

【0049】以上のことより、実施例1に示す測定方法
によって求めた酸素化合物のモル濃度が5000ppm
以下のCdTe粉末中を原料を用いることにより、Cd
S膜とCdTe膜との界面状態が改善され、その上に形
成されたCdTe膜の結晶性がさらに向上することが明
らかになった。
From the above, the molar concentration of the oxygen compound determined by the measuring method shown in Example 1 was 5000 ppm.
By using a raw material in the following CdTe powder, Cd
It was found that the interface state between the S film and the CdTe film was improved, and the crystallinity of the CdTe film formed thereon was further improved.

【0050】《実施例4》原料として、粉砕したCdT
e単結晶に一定量のTe粉末を添加し、これにCd粉末
を添加量を変化させて添加した6種類のCdTe粉末試
料を調製した。これら原料の不純物を実施例1と同様の
方法で測定した結果、金属Teの原子数比率は何れも2
000ppm、金属Cdの原子数比率は各々、10pp
m、101ppm,1015ppm、2000ppm、
4995ppm,および9996ppmであった。これ
らの原料を用いた以外は、実施例2と同様の方法でCd
Te膜を作製した。
Example 4 Pulverized CdT as a raw material
Six types of CdTe powder samples were prepared by adding a certain amount of Te powder to the e-single crystal and adding Cd powder to the single crystal at varying amounts. As a result of measuring the impurities of these raw materials in the same manner as in Example 1, the atomic ratio of metal Te was 2 in each case.
000 ppm, and the atomic ratio of metal Cd is 10 pp, respectively.
m, 101 ppm, 1015 ppm, 2000 ppm,
4995 ppm and 9996 ppm. Cd in the same manner as in Example 2 except that these raw materials were used.
A Te film was produced.

【0051】各原料を用いて作製した各CdTe膜につ
いてX線回折パターンを測定し、化学分析を行った結
果、何れの膜も(111)面に配向し、膜中のCdとT
eの原子比率は何れもほぼ1:1であった。また、Cd
S膜とCdTe膜の界面近傍の断面をSEMで観測した
結果、金属Teのモル濃度よりも金属Cdのモル濃度が
低いCdTe粉末を用いた場合には、CdSが侵食され
て欠落した箇所が部分的に観測された。これは、原料中
に含まれる金属TeによりCdS膜を侵食された結果と
思われる。一方、金属Cdの原子数比率がTeの原子数
比率以上の場合では、何れもCdS膜の侵食が観測され
なかった。これは、Teより低温で昇華したCdが、T
eによるCdS膜の侵食を防いだためと考えられる。
An X-ray diffraction pattern was measured for each CdTe film produced using each raw material, and a chemical analysis was carried out. As a result, all the films were oriented to the (111) plane, and Cd and Td in the film were determined.
The atomic ratio of e was almost 1: 1. Also, Cd
A cross section near the interface between the S film and the CdTe film was observed by SEM. As a result, when CdTe powder having a lower molar concentration of metal Cd than that of metal Te was used, a portion where CdS was eroded and missing was partially removed. Was observed. This is considered to be the result of the erosion of the CdS film by the metal Te contained in the raw material. On the other hand, when the atomic ratio of metal Cd was equal to or higher than the atomic ratio of Te, no erosion of the CdS film was observed in any case. This is because Cd sublimated at a lower temperature than Te
This is probably because the erosion of the CdS film by e was prevented.

【0052】以上のことより、実施例1に示す測定方法
で求めた金属Cdの原子数比率が金属Teの原子数比率
と同等以上であるCdTe粉末を原料を用いることによ
り、CdS膜とCdTe膜との界面状態が改善され、さ
らにその上に形成されたCdTe膜の結晶性が向上する
ことが明らかになった。
From the above, the CdS film and the CdTe film can be obtained by using a CdTe powder having the atomic ratio of metal Cd obtained by the measuring method shown in Example 1 equal to or greater than the atomic ratio of metal Te. It has been clarified that the interface state between the CdTe film and the CdTe film formed thereon is improved.

【0053】《実施例5》図3に実施例として作製した
太陽電池の断面を示す。実施例2で示した薄膜形成用基
板上にCdTe膜13を形成し、このCdTe膜13上
に塩化カドミウムの水溶液をコートし、乾燥した後、4
00℃で30分間熱処理し、CdTeのグレインを成長
させた。次いで、このCdTe膜13上に、樹脂の有機
溶媒溶液と炭素粉末とを練合したカーボンペーストをス
クリーン印刷法により塗布、乾燥し、焼き付けによるカ
ーボン電極14を形成した。次に、カーボン電極14の
周囲のCdTe膜13を、金属製の治具で削り取ってC
dS膜12の表面を露出させ、その露出部およびカーボ
ン電極層14上に銀粉末、インジウム粉末および樹脂の
有機溶媒溶液とを練合したペーストを塗布して、乾燥
し、マイナス側電極15、およびプラス側電極16をそ
れぞれ形成した。CdTe膜の原料としては、実施例1
の方法で測定した不純物濃度が表4の値を示したA〜I
の9種類のCdTe粉末を用いた。作製した太陽電池の
変換効率を、ソーラシュミレータにより、AM1.5、
100mW/cm2の条件下で測定した。表4にその測
定結果を示す。
Example 5 FIG. 3 shows a cross section of a solar cell manufactured as an example. A CdTe film 13 was formed on the thin film forming substrate shown in Example 2, an aqueous solution of cadmium chloride was coated on the CdTe film 13, dried, and dried.
Heat treatment was performed at 00 ° C. for 30 minutes to grow CdTe grains. Next, on the CdTe film 13, a carbon paste obtained by kneading an organic solvent solution of a resin and carbon powder was applied by screen printing, dried, and baked to form a carbon electrode 14 by baking. Next, the CdTe film 13 around the carbon electrode 14 is scraped with a metal jig to remove CdTe film 13.
The surface of the dS film 12 is exposed, a paste obtained by kneading a silver powder, an indium powder and an organic solvent solution of a resin on the exposed portion and the carbon electrode layer 14 is applied, dried, and the negative electrode 15, and The positive electrode 16 was formed. Example 1 was used as a raw material for the CdTe film.
A to I in which the impurity concentrations measured by the method described in (1) are the values in Table 4.
9 kinds of CdTe powders were used. The conversion efficiency of the manufactured solar cell was measured using a solar simulator, AM 1.5,
It was measured under the condition of 100 mW / cm 2 . Table 4 shows the measurement results.

【0054】[0054]

【表4】 [Table 4]

【0055】表4より、CdTe粉末中に含まれる金属
Teの原子数比率が1000ppm以下で、酸素の原子
数比率が5000ppm以下である場合(試料A、B、
C)には、太陽電池の変換効率が高く、とりわけ金属T
eの原子数比率が1000ppm以下で、酸素化合物の
原子数比率が5000ppm以下であり、且つ金属Cd
の原子数比率が金属Teの割合よりも高い場合(試料
A)が、最も変換効率が高いことが確認された。また、
金属Teの原子数比率が1000ppm以上の場合で
も、金属Cdの原子数比率が金属Teの原子数比率と同
等以上の場合(試料G、H)には、比較的太陽電池の変
換効率が高いことが確認された。これらの太陽電池につ
いては変換効率以外にも、短絡電流、開放電圧および曲
線因子を測定したが、変換効率が良好な場合には他の何
れの特性も良好であった。
From Table 4, it can be seen that the atomic ratio of metal Te contained in the CdTe powder is 1000 ppm or less and the atomic ratio of oxygen is 5000 ppm or less (samples A, B,
C) shows that the conversion efficiency of the solar cell is high,
e is not more than 1000 ppm, the oxygen compound is not more than 5000 ppm, and the metal Cd
It was confirmed that the conversion efficiency was highest when the atomic ratio of was higher than the ratio of metal Te (sample A). Also,
Even when the atomic ratio of metal Te is 1000 ppm or more, when the atomic ratio of metal Cd is equal to or greater than the atomic ratio of metal Te (samples G and H), the conversion efficiency of the solar cell is relatively high. Was confirmed. For these solar cells, short-circuit current, open-circuit voltage, and fill factor were measured in addition to the conversion efficiency. When the conversion efficiency was good, all other characteristics were good.

【0056】次に、実施例5の太陽電池の内、金属Te
および酸素の原子数比率が最も少ない試料(A)を用い
て作製した本発明の太陽電池と、金属Teおよび酸素の
原子数比率が最も多い試料(I)を用いて作製した比較
例の太陽電池について、分光感度特性を比較するため相
対電流強度の波長依存性を測定した。その結果を図4に
示す。図4より、試料(A)を用いた場合は、試料
(I)を用いた場合と比較して、主に500〜650n
mの波長域で相対電流強度が向上していることが分か
る。これは、金属Teあるいは酸素の原子数比率が少な
いCdTe粉末を用いることにより、CdS膜とCdT
e膜の界面のCdTe膜の結晶性が向上し、取り出し得
るキャリアが増加したためだと考えられる。
Next, of the solar cell of Example 5, metal Te
And the solar cell of the present invention manufactured using the sample (A) having the smallest atomic ratio of oxygen, and the solar cell of the comparative example manufactured using the sample (I) having the highest atomic ratio of metal Te and oxygen. The wavelength dependence of the relative current intensity was measured to compare the spectral sensitivity characteristics of the samples. FIG. 4 shows the results. As shown in FIG. 4, when the sample (A) was used, 500 to 650 n was mainly used as compared with the case where the sample (I) was used.
It can be seen that the relative current intensity is improved in the wavelength range of m. This is because a CdS film and a CdT film are formed by using CdTe powder having a small atomic ratio of metal Te or oxygen.
This is probably because the crystallinity of the CdTe film at the interface of the e film was improved and the number of carriers that could be taken out was increased.

【0057】なお、上記各実施例では、透明導電膜とし
て酸化錫膜を用いたが、酸化インジウム錫膜、酸化亜鉛
膜等の他の膜を用いた場合でも同様の効果が得られる。
また、CdS膜はジエチルジチオカルバミン酸カドミウ
ムを熱分解させて製膜したが、他のカドミウム有機錯体
を熱分解させる方法、液相成長法、近接昇華法、蒸着
法、スパッタ法など他の手法で製膜した場合にも、同様
の効果が得られる。
In each of the above embodiments, a tin oxide film is used as the transparent conductive film. However, similar effects can be obtained when another film such as an indium tin oxide film or a zinc oxide film is used.
The CdS film was formed by thermally decomposing cadmium diethyldithiocarbamate. However, the CdS film was formed by other methods such as a method of thermally decomposing other cadmium organic complexes, a liquid phase growth method, a proximity sublimation method, a vapor deposition method, and a sputtering method. The same effect can be obtained when the film is formed.

【0058】また、実施例2〜5では、原料層7をソー
ス保持体6上に敷き詰めて形成したが、CdTe粉末に
溶剤を加えてペースト化し、耐熱性基板上に塗布、乾燥
して原料層7を形成する方法で形成しても同様の効果が
得られる。さらに、実施例5では硼硅酸ガラス製の透光
性基板を用いてCdS/CdTe太陽電池を作製した
が、ソーダライムガラスなどの他のガラス基板、あるい
はガラス基板以外の他の透光性基板を用いることもでき
る。また、CdS膜以外のCdZnS等のn形半導体膜
を用いた各種のCdTe系太陽電池も同様の方法で作製
することができる。
Further, in Examples 2 to 5, the raw material layer 7 was formed by laying it on the source holder 6, but a solvent was added to the CdTe powder to form a paste, which was applied on a heat-resistant substrate and dried to form a raw material layer. The same effect can be obtained by forming by the method of forming. Furthermore, in Example 5, a CdS / CdTe solar cell was manufactured using a light-transmitting substrate made of borosilicate glass, but another glass substrate such as soda-lime glass or another light-transmitting substrate other than the glass substrate was used. Can also be used. Also, various CdTe-based solar cells using an n-type semiconductor film such as CdZnS other than the CdS film can be manufactured by the same method.

【0059】[0059]

【発明の効果】本発明によれば、CdTe粉末中の微量
な不純物(金属Te、金属Cd、および酸素化合物な
ど)の濃度を簡便な測定方法で定量的に正確に測定でき
る。また、この測定方法により、各不純物中の原子数が
試料中の総原子数に占める比率を求め、その比率が所定
条件を満たすCdTe粉末を近接昇華法によるCdTe
膜形成の原料として用いることにより、良質なCdTe
膜および安価で変換効率が高いCdTe/CdS太陽電
池を作製できる。
According to the present invention, the concentration of trace impurities (metal Te, metal Cd, oxygen compounds, etc.) in CdTe powder can be quantitatively and accurately measured by a simple measuring method. Further, according to this measuring method, the ratio of the number of atoms in each impurity to the total number of atoms in the sample is determined, and CdTe powder whose ratio satisfies a predetermined condition is converted to CdTe by proximity sublimation.
High quality CdTe by using as a material for film formation
A film and a CdTe / CdS solar cell that is inexpensive and has high conversion efficiency can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において、Cd、Te、および第3の元
素からなる三元素の原子濃度比がプロットされる三角図
を示す模式図である。
FIG. 1 is a schematic diagram showing a triangular diagram in which an atomic concentration ratio of three elements including Cd, Te, and a third element is plotted in the present invention.

【図2】本発明の実施例のCdTe膜製膜時の主要部材
配置を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an arrangement of main members when a CdTe film is formed according to an embodiment of the present invention.

【図3】本発明の実施例の太陽電池の縦断面図である。FIG. 3 is a longitudinal sectional view of a solar cell according to an example of the present invention.

【図4】本発明の太陽電池と比較例の太陽電池の分光感
度特性を示す図である。
FIG. 4 is a diagram showing spectral sensitivity characteristics of the solar cell of the present invention and a solar cell of a comparative example.

【符号の説明】[Explanation of symbols]

1 金属Cdの領域 2 金属Teの領域 3 CdTeの領域 4 酸素化合物の領域 6 ソース保持体 7 原料層 8 スペーサ 9 薄膜形成用基板 10 ガラス基板 11 透明導電膜 12 CdS膜 13 CdTe膜 14 カーボン電極 15 マイナス側電極 16 プラス側電極 Reference Signs List 1 Metal Cd region 2 Metal Te region 3 CdTe region 4 Oxygen compound region 6 Source holder 7 Raw material layer 8 Spacer 9 Thin film formation substrate 10 Glass substrate 11 Transparent conductive film 12 CdS film 13 CdTe film 14 Carbon electrode 15 Negative electrode 16 Positive electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 BA04 CA01 FA02 HA01 JA12 JA13 KA01 LA02 MA04 NA03 NA10 NA17 SA12 2G055 AA05 AA09 BA01 CA01 CA25 FA04 5F051 AA09 CB11 KA09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G001 AA01 BA04 CA01 FA02 HA01 JA12 JA13 KA01 LA02 MA04 NA03 NA10 NA17 SA12 2G055 AA05 AA09 BA01 CA01 CA25 FA04 5F051 AA09 CB11 KA09

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 テルル化カドミウム粉末試料中の金属カ
ドミウム、金属テルル、および、第3の元素を含む化合
物からなる不純物の濃度を測定する方法であって、X線
マイクロアナライザによって前記試料の多点測定を行
い、各測定点で求められたカドミウム、テルル、および
前記第3の元素からなる三元素の原子濃度比を、前記三
元素を頂点とする三角図上にプロットし、前記三角図上
の前記各不純物に固有の所定領域内に前記原子濃度比が
プロットされた測定点数を求め、その測定点数が全測定
点数に占める割合から、前記試料中の総原子数に対する
前記各不純物中の原子数の比率を求めることを特徴とす
るテルル化カドミウム粉末の不純物濃度の測定方法。
1. A method for measuring the concentration of a metal cadmium, a metal tellurium, and an impurity comprising a compound containing a third element in a cadmium telluride powder sample, the method comprising the steps of: Cadmium, tellurium determined at each measurement point, and the atomic concentration ratio of the three elements consisting of the third element are plotted on a triangular diagram having the three elements as vertices. The number of measurement points in which the atomic concentration ratio is plotted in a predetermined region unique to each impurity is obtained, and the ratio of the number of measurement points to the total number of measurement points indicates the number of atoms in each impurity with respect to the total number of atoms in the sample. A method for measuring the impurity concentration of cadmium telluride powder, characterized by determining the ratio of cadmium telluride.
【請求項2】 前記第3の元素が酸素である請求項1に
記載のテルル化カドミウム粉末の不純物濃度の測定方
法。
2. The method for measuring the impurity concentration of cadmium telluride powder according to claim 1, wherein the third element is oxygen.
【請求項3】 前記三角図上のカドミウムとテルルの原
子濃度比が3/2以上で、カドミウムと酸素の原子濃度
比が3/2以上である領域が、金属カドミウムに固有の
前記所定領域である請求項2に記載のテルル化カドミウ
ム粉末の不純物濃度の測定方法。
3. A region where the atomic concentration ratio between cadmium and tellurium on the triangular diagram is 3/2 or more and the atomic concentration ratio between cadmium and oxygen is 3/2 or more is the predetermined region unique to metal cadmium. A method for measuring the impurity concentration of a cadmium telluride powder according to claim 2.
【請求項4】 前記三角図上のカドミウムとテルルの原
子濃度比が2/3以下で、テルルと酸素の原子濃度比が
3/2以上である領域が、金属テルルに固有の前記所定
領域である請求項2に記載のテルル化カドミウム粉末の
不純物濃度の測定方法。
4. A region where the atomic concentration ratio of cadmium and tellurium on the triangular diagram is 2/3 or less and the atomic concentration ratio of tellurium and oxygen is 3/2 or more is the predetermined region unique to metallic tellurium. A method for measuring the impurity concentration of a cadmium telluride powder according to claim 2.
【請求項5】 前記三角図上のカドミウムとテルルの各
々の頂点を結ぶ直線上のカドミウムとテルルの原子濃度
比が2/3を越え、3/2未満の領域、前記三角図上の
カドミウムとテルルの原子濃度比が3/2以上で、カド
ミウムと酸素の原子濃度比が3/2以上である領域、お
よび前記三角図上のカドミウムとテルルの原子濃度比が
2/3以下で、テルルと酸素の原子濃度比が3/2以上
である領域、の三領域を除いた領域が酸素化合物に固有
の前記所定領域である請求項2に記載のテルル化カドミ
ウム粉末の不純物濃度の測定方法。
5. A region where the atomic concentration ratio of cadmium to tellurium on a straight line connecting the vertices of cadmium and tellurium on the triangular diagram exceeds 2/3 and is less than 3/2, A region where the atomic concentration ratio of tellurium is 3/2 or more, the atomic concentration ratio of cadmium and oxygen is 3/2 or more, and the atomic concentration ratio of cadmium and tellurium on the triangular diagram is 2/3 or less, The method for measuring the impurity concentration of cadmium telluride powder according to claim 2, wherein a region excluding three regions of which the atomic concentration ratio of oxygen is 3/2 or more is the predetermined region unique to an oxygen compound.
【請求項6】 原料テルル化カドミウム粉末から採取し
た試料について、請求項4に記載の測定方法によって金
属テルルの濃度を測定し、前記試料中の総原子数に対す
るテルルの原子数の比率が1000ppm以下である原
料テルル化カドミウム粉末をソース保持体上に配設し、
この原料テルル化カドミウム粉末を加熱し気化させるこ
とにより、前記ソース保持体に近接させて対向配置した
薄膜形成用基板上にテルル化カドミウム膜を形成するテ
ルル化カドミウム膜の製造方法。
6. A sample taken from a raw material cadmium telluride powder, the concentration of metal tellurium is measured by the measuring method according to claim 4, wherein the ratio of the number of tellurium atoms to the total number of atoms in the sample is 1000 ppm or less. The raw material cadmium telluride powder is disposed on the source holder,
A method for producing a cadmium telluride film, wherein the raw material cadmium telluride powder is heated and vaporized to form a cadmium telluride film on a thin film forming substrate disposed close to and opposed to the source holder.
【請求項7】 原料テルル化カドミウム粉末から採取し
た試料について、請求項5に記載の測定方法によって酸
素化合物の濃度を測定し、前記試料中の総原子数に対す
る酸素化合物中の酸素原子数の比率が5000ppm以
下である原料テルル化カドミウム粉末をソース保持体上
に配設し、この原料テルル化カドミウム粉末を加熱し気
化させることにより、前記ソース保持体に近接させて対
向配置した薄膜形成用基板上にテルル化カドミウム膜を
形成するテルル化カドミウム膜の製造方法。
7. A sample collected from a raw material cadmium telluride powder, the concentration of the oxygen compound is measured by the measuring method according to claim 5, and the ratio of the number of oxygen atoms in the oxygen compound to the total number of atoms in the sample is measured. A cadmium telluride powder having a content of 5,000 ppm or less is provided on a source holder, and the cadmium telluride powder is heated and vaporized, so that the cadmium telluride powder on the thin film forming substrate is disposed close to and opposed to the source holder. A method for producing a cadmium telluride film, wherein a cadmium telluride film is formed on the substrate.
【請求項8】 原料テルル化カドミウム粉末から採取し
た試料について、請求項3および4に記載の測定方法に
よって金属カドミウムと金属テルルのそれぞれの濃度を
測定し、全試料中の総原子数に対する原子数の比率が金
属カドミウム≧金属テルルの関係にある原料テルル化カ
ドミウム粉末をソース保持体上に配設し、この原料テル
ル化カドミウム粉末を加熱し気化させることにより、前
記ソース保持体に近接させて対向配置した薄膜形成用基
板上にテルル化カドミウム膜を形成するテルル化カドミ
ウム膜の製造方法。
8. For a sample collected from a raw material cadmium telluride powder, the respective concentrations of metal cadmium and metal tellurium are measured by the measuring method according to claim 3 and 4, and the number of atoms relative to the total number of atoms in all samples is measured. Cadmium telluride powder having a ratio of metal cadmium ≧ metal tellurium is disposed on a source holder, and the raw material cadmium telluride powder is heated and vaporized, so that the source cadmium telluride powder is brought close to and opposed to the source holder. A method for producing a cadmium telluride film, wherein a cadmium telluride film is formed on an arranged thin film forming substrate.
【請求項9】 透光性絶縁基板上に透明導電膜と硫化カ
ドミウム膜が順次形成され、前記硫化カドミウム膜上
に、請求項6〜8のいずれかに記載の製造方法によりテ
ルル化カドミウム膜が形成された太陽電池。
9. A transparent conductive film and a cadmium sulfide film are sequentially formed on a light-transmitting insulating substrate, and a cadmium telluride film is formed on the cadmium sulfide film by the manufacturing method according to claim 6. Formed solar cells.
JP2000308351A 2000-10-06 2000-10-06 Method of measuring impurity concentration of cadmium telluride powder and method of making film of cadmium telluride Pending JP2002116160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308351A JP2002116160A (en) 2000-10-06 2000-10-06 Method of measuring impurity concentration of cadmium telluride powder and method of making film of cadmium telluride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308351A JP2002116160A (en) 2000-10-06 2000-10-06 Method of measuring impurity concentration of cadmium telluride powder and method of making film of cadmium telluride

Publications (1)

Publication Number Publication Date
JP2002116160A true JP2002116160A (en) 2002-04-19

Family

ID=18788673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308351A Pending JP2002116160A (en) 2000-10-06 2000-10-06 Method of measuring impurity concentration of cadmium telluride powder and method of making film of cadmium telluride

Country Status (1)

Country Link
JP (1) JP2002116160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535619A (en) * 2006-04-28 2009-10-01 エックスアールエフ アナリティカル エービー Method in spectroscopy for the investigation of samples containing at least two elements
US20150187981A1 (en) * 2011-10-31 2015-07-02 First Solar, Inc. Method for Deposition
CN115117184A (en) * 2022-06-28 2022-09-27 河海大学 Method for determining structure of heterojunction solar cell to be recovered

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535619A (en) * 2006-04-28 2009-10-01 エックスアールエフ アナリティカル エービー Method in spectroscopy for the investigation of samples containing at least two elements
US20150187981A1 (en) * 2011-10-31 2015-07-02 First Solar, Inc. Method for Deposition
CN115117184A (en) * 2022-06-28 2022-09-27 河海大学 Method for determining structure of heterojunction solar cell to be recovered
CN115117184B (en) * 2022-06-28 2024-04-30 河海大学 Method for determining heterojunction solar cell structure to be recovered

Similar Documents

Publication Publication Date Title
Sacchetto et al. ITO/MoOx/a-Si: H (i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration
Peng et al. Design of semiconducting tetrahedral Mn 1− x Zn x O alloys and their application to solar water splitting
Dappadwad et al. Synthesis and characterization of Zn0. 5Hg0. 5Se thin films
TW201732066A (en) Photonic device and vapor deposition process for depositing layer in the same, and photoactive material
Schlenker et al. On the difficulties in characterizing ZnO nanowires
Dagan et al. Ion migration in chalcopyrite semiconductors
Del Frari et al. Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1− x) 2Te3 films
Pern et al. Device quality thin films of CuInSe2 by a one-step electrodeposition process
Biçer et al. Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates
Bamiduro et al. Synthesis and characterization of one-step electrodeposited CuIn (1− x) GaxSe2/Mo/glass films at atmospheric conditions
Delphine et al. Review of material properties of (Mo/W) Se2-layered compound semiconductors useful for photoelectrochemical solar cells
Bozheyev et al. Preparation of highly (001)‐oriented photoactive tungsten diselenide (WSe2) films by an amorphous solid–liquid‐crystalline solid (aSLcS) rapid‐crystallization process
Ugarte et al. Electrodeposition of CuInSe2 thin films in a glycine acid medium
McCandless et al. Correlation of surface phases with electrical behavior in thin-film CdTe devices
Caballero-Briones et al. CuInSe2 films prepared by three step pulsed electrodeposition. Deposition mechanisms, optical and photoelectrochemical studies
Islam et al. Tailoring of the structural and optoelectronic properties of zinc-tin-oxide thin films via oxygenation process for solar cell application
Vásquez et al. Enhancement of CdS/CdTe solar cells by the interbuilding of a nanostructured Te-rich layer
Ponomarev et al. Highly oriented photoactive polycrystalline MoS2 layers obtained by van der Waals rheotaxy technique from electrochemically deposited thin films
Hankare et al. A novel method to grow polycrystalline HgSe thin film
JP2002116160A (en) Method of measuring impurity concentration of cadmium telluride powder and method of making film of cadmium telluride
DE2805582A1 (en) DIRECT-BAND SPACING SEMICONDUCTOR COMPONENT
Jeong et al. Influence of precursor uniformity on the performance of Cu2ZnSnSxSe4− x thin film solar cells prepared by the sputtering method
Fernandez et al. Preparation and photocharacterization of Cu–Sb–Se films by electrodeposition technique
Sabli et al. Effect of under nitrogen annealing on photo-electrochemical characteristics of films deposited from authentic Cu2SnSe3 sources by thermal vacuum under argon gas condensation
Datta et al. Controlled growth of CdTe films by periodic voltammetry for solar cell applications