JP2002116151A - Method for spectroscopically evaluating bismuth layered structural ferroelectric material and manufacturing method for ferroelectric product - Google Patents

Method for spectroscopically evaluating bismuth layered structural ferroelectric material and manufacturing method for ferroelectric product

Info

Publication number
JP2002116151A
JP2002116151A JP2000308248A JP2000308248A JP2002116151A JP 2002116151 A JP2002116151 A JP 2002116151A JP 2000308248 A JP2000308248 A JP 2000308248A JP 2000308248 A JP2000308248 A JP 2000308248A JP 2002116151 A JP2002116151 A JP 2002116151A
Authority
JP
Japan
Prior art keywords
ferroelectric
phase
bismuth
ferroelectric material
layered structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000308248A
Other languages
Japanese (ja)
Inventor
Minoru Osada
実 長田
Masato Kakihana
眞人 垣花
Hiroshi Funakubo
浩 舟窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Rikogaku Shinkokai
Original Assignee
RIKEN Institute of Physical and Chemical Research
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Rikogaku Shinkokai filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2000308248A priority Critical patent/JP2002116151A/en
Publication of JP2002116151A publication Critical patent/JP2002116151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluating method capable of easily detecting, even in multiple phases, the microscopic area of a bismuth layered structural ferroelectric material which is difficult to detect by normal XRD(x-ray diffraction), and also capable of quantitatively determining its multiple phases. SOLUTION: The bismuth layered structural ferroelectric material including SBT(strontium bismuth tantalate), SBTN (niobium-doped SBT) or the like is analyzed by Raman spectroscopy, so that its phases can be quantitatively determined in addition to being identified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はビスマス層状構造強
誘電体の分光学的評価方法およびそれを利用した強誘電
体製品の製造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for spectroscopic evaluation of a bismuth layered structure ferroelectric and a method for manufacturing a ferroelectric product using the same.

【0002】[0002]

【従来の技術】強誘電体メモリは、揮発性であるDRA
Mにない特徴を有する不揮発性ランダムアクセスメモリ
として注目を集めている。強誘電体としてはPT(PbTi
O3), PZT((Pb(Zr,Ti)O3), PLZT((Pb,La)(Zr,Ti)O3)が代
表的であるが、これらの強誘電体は分極疲労劣化が大き
いという問題を有している。そこで、これらに代わる次
世代の強誘電体材料として、SrBi2Ta2O9(SBT), Sr
Bi2(Tax,Nb1-x)2O9(SBTN)などのビスマス層状構
造強誘電体が高い疲労抵抗の故に有望視され、これらの
材料についての開発研究が盛んに行われている。
2. Description of the Related Art Ferroelectric memory is a volatile DRA.
It has attracted attention as a non-volatile random access memory having features not found in M. PT (PbTi
O 3 ), PZT ((Pb (Zr, Ti) O 3 ) and PLZT ((Pb, La) (Zr, Ti) O 3 ) are typical, but these ferroelectrics have large polarization fatigue deterioration. Therefore, SrBi 2 Ta 2 O 9 (SBT), Sr
Bismuth layer-structured ferroelectrics such as Bi 2 (Ta x , Nb 1-x ) 2 O 9 (SBTN) are regarded as promising due to their high fatigue resistance, and development research on these materials is being actively conducted.

【0003】[0003]

【発明が解決しようとする課題】現在最も注目されてい
るSBT,SBTNなどのビスマス層状構造強誘電体材
料では、強誘電体相が安定相であるPZT系と違って、
強誘電体相とともに非強誘電体相が非化学量論的組成の
不純物相として生成しやすいので、強誘電体相の生成率
を高めて性能を改良することが重要である。しかしなが
ら、従来の強誘電体などの無機固体材料の一般的な評価
法である普通のX線回折法(XRD)では約30μm以
上の領域の平均的な構造しか観察できず、さらにはSB
TNなどにおける強誘電体相と不純物層としての非強誘
電体相との混在を見分けることが困難であるという問題
がある。最近、X線逆格子空間マッピングによる詳細な
解析によって多相の同定は可能であることが示された
が、これは非常に熟練と時間を要するものである。した
がって、従来は、また現在でも簡便には、SBT,SB
TNなどは普通のX線回折法(XRD)と薄膜の物性、
特性の直接測定により生成した強誘電体膜を評価してい
る。そのため、解釈の誤りも生じている。
In a bismuth layered structure ferroelectric material such as SBT or SBTN, which is currently receiving the most attention, unlike a PZT system in which the ferroelectric phase is a stable phase,
Since the non-ferroelectric phase is easily generated together with the ferroelectric phase as an impurity phase having a non-stoichiometric composition, it is important to improve the performance by increasing the generation rate of the ferroelectric phase. However, ordinary X-ray diffraction (XRD), which is a general method for evaluating inorganic solid materials such as conventional ferroelectrics, can only observe an average structure in a region of about 30 μm or more.
There is a problem that it is difficult to distinguish the mixture of a ferroelectric phase in TN and the like and a non-ferroelectric phase as an impurity layer. Recently, detailed analysis by X-ray reciprocal space mapping has shown that polyphase identification is possible, but this requires a great deal of skill and time. Therefore, conventionally and even now, SBT, SB
TN, etc. use ordinary X-ray diffraction (XRD) and physical properties of thin films,
The ferroelectric film produced by direct measurement of characteristics is evaluated. Therefore, an interpretation error has occurred.

【0004】そこで、本発明は普通のX線回折法では見
分けることが困難なビスマス層状構造強誘電体に含まれ
る強誘電体相と非強誘電体相の簡便で、有効な分析、評
価方法を提供することである。
Accordingly, the present invention provides a simple and effective method for analyzing and evaluating ferroelectric and non-ferroelectric phases contained in a bismuth layered ferroelectric which is difficult to distinguish by ordinary X-ray diffraction. To provide.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を達
成するために、ラマン分光法によりビスマス層状構造強
誘電体材料を分析することを特徴とするビスマス層状構
造強誘電体材料の評価方法を提供する。ビスマス層状構
造強誘電体材料の多くはペロブスカイト構造などの層状
結晶構造を有するが、特に低温の製膜では非化学量論的
な低温安定相である立方晶の蛍石型(フルオライト)構
造あるいはパイクロア構造の結晶相が不純物相として生
成し易い。このとき、蛍石型構造あるいはパイクロア構
造の結晶相のX線回折におけるメインピークがペロブス
カイト構造などの層状結晶構造の結晶相の強いピークと
重なって、通常の2θスキャンXRDのみでは相の同定
やお互いの相の混在を見分けることは困難な場合があ
る。例えば、SBTあるいはSBTNでは(115)に
強いピーク(特性ピーク)があるのに対して、その不純
物相としての蛍石型構造およびパイクロア構造の結晶相
では(111)および(222)にメインピークがある
が、いずれも2θ=約29°に現れてピークの領域が重
なる。特に、薄膜ではピークの幅が広がるのでよけいに
解析が難しい。
In order to achieve the above object, the present invention provides a method for evaluating a bismuth layered ferroelectric material, comprising analyzing the bismuth layered ferroelectric material by Raman spectroscopy. I will provide a. Many bismuth layer structure ferroelectric materials have a layer crystal structure such as a perovskite structure, but especially in low-temperature film formation, a cubic fluorite-type (fluorite) structure which is a non-stoichiometric low-temperature stable phase or A crystalline phase having a pyrochlore structure is easily generated as an impurity phase. At this time, the main peak in the X-ray diffraction of the crystal phase having the fluorite-type structure or the pyrochlore structure overlaps with the strong peak of the crystal phase having the layered crystal structure such as the perovskite structure. It may be difficult to identify the mixture of phases. For example, while SBT or SBTN has a strong peak (characteristic peak) at (115), the main peaks at (111) and (222) in the fluorite-type structure and the pyrochlore-type crystal phase as its impurity phase. However, both appear at 2θ = about 29 ° and the peak areas overlap. In particular, in the case of a thin film, the width of the peak is widened, so that analysis is difficult.

【0006】これに対して、ラマン分光ではこれらの多
相の各相の結晶構造のスペクトルパターンは固有であり
かつ相互に全く異なる。ラマン散乱は配位状態、欠陥な
どの局所構造変化に敏感であり、結晶系、結晶構造が異
なるとモードの本数と位置は全く異なるからである。ラ
マンスペクトルのこの特性を利用して簡便にビスマス層
状構造強誘電体材料の強誘電体相と非強誘電体相の判別
が可能になる。
On the other hand, in Raman spectroscopy, the spectral pattern of the crystal structure of each of these polyphases is unique and completely different from each other. This is because Raman scattering is sensitive to local structural changes such as coordination states and defects, and the number and position of modes are completely different if the crystal system or crystal structure is different. Utilizing this characteristic of the Raman spectrum, the ferroelectric phase and the non-ferroelectric phase of the bismuth layered structure ferroelectric material can be easily distinguished.

【0007】本発明では主として顕微ラマン分光を利用
するが、ラマン分光法は短時間(約1分)、非破壊、高
分解能(約1μm)の特徴を有している。この特徴は2
θスキャンXRDでは約1時間を要し、また分解能も高
くないこと、あるいは電子顕微鏡観察では長時間を要
し、破壊検査であることと対照される。また、ラマン分
光法によればビスマス層状構造強誘電体材料の簡便な同
定が可能であるのみならず、ビスマス層状構造強誘電体
材料中に存在する不純物相の半定量的な評価も可能であ
る。特により低温で製膜することが望まれている誘電体
材料では不純物相(蛍石型相やパイクロア相など)がよ
り生成しやすいので、その検出および定量的な評価は誘
電体材料の開発および製造において極めて重要であっ
て、本発明の中に存在する不純物相の定量的な評価方法
の提供がもつ意義はこの分野において極めて高いもので
ある。
In the present invention, microscopic Raman spectroscopy is mainly used. Raman spectroscopy has features of short time (about 1 minute), non-destructive, and high resolution (about 1 μm). This feature is 2
This is contrasted with the fact that θ scan XRD takes about one hour and the resolution is not high, or that electron microscope observation requires a long time and is a destructive inspection. Raman spectroscopy not only allows easy identification of bismuth layered ferroelectric materials but also enables semi-quantitative evaluation of impurity phases present in bismuth layered ferroelectric materials. . In particular, in a dielectric material that is desired to be formed at a lower temperature, an impurity phase (eg, a fluorite phase or a pyrochlore phase) is more likely to be generated. It is extremely important in the production, and the significance of providing a method for quantitatively evaluating the impurity phase present in the present invention is extremely high in this field.

【0008】[0008]

【発明の実施の形態】本発明が対象とするビスマス層状
構造強誘電体材料は、代表的にはペロブスカイト構造に
見られるように、結晶構造中に層状構造を含むことによ
って強誘電特性を発揮するビスマス含有化合物、通常ビ
スマス含有複合金属酸化物を指称し、化学式Bi2Am-1BmO
3m+3=(Bi2O2)2+(Am-1BmO3m+1)2-(式中、m=1〜4; A=Na+,
K+, Ba2+, Ca2+, Sr2+, Pb2+, Bi3+; B=Fe3+, Ga3+, T
i3+, Ta3+, Nb5+, V5+, Mo6+,W6+)で表わされる強誘電
体相、例えば、Bi4V2O11, Bi4Ti3O12, Bi2SrTa2O9, Bi2
SrNb2O9, SrBi2(Tax,Nb1-x)2O9, Bi2WO4などが含まれ
る。図1に、Bi2SrTa2O9のペロブスカイト結晶構造を示
すが、TaO6, Bi2O2の層状構造を含んでおり、図中の自
発分極軸(Ps)の方向に強誘電性を示す。このような
化合物は、良好な疲労特性などの優れた特徴を有する強
誘電体材料として、不揮発性ランダムアクセスメモリ用
材料として注目されている。
BEST MODE FOR CARRYING OUT THE INVENTION A bismuth layered structure ferroelectric material to which the present invention is directed exhibits ferroelectric properties by including a layered structure in a crystal structure, as typically seen in a perovskite structure. Bismuth-containing compound, usually a bismuth-containing composite metal oxide, has the chemical formula Bi 2 A m-1 B m O
3m + 3 = (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- (where m = 1 to 4; A = Na + ,
K + , Ba 2+ , Ca 2+ , Sr 2+ , Pb 2+ , Bi 3+ ; B = Fe 3+ , Ga 3+ , T
i 3+ , Ta 3+ , Nb 5+ , V 5+ , Mo 6+ , W 6+ ), for example, Bi 4 V 2 O 11 , Bi 4 Ti 3 O 12 , Bi 2 SrTa 2 O 9 , Bi 2
SrNb 2 O 9 , SrBi 2 (Ta x , Nb 1-x ) 2 O 9 , Bi 2 WO 4 and the like are included. FIG. 1 shows a perovskite crystal structure of Bi 2 SrTa 2 O 9 , which includes a layer structure of TaO 6 and Bi 2 O 2 , and exhibits ferroelectricity in the direction of the spontaneous polarization axis (Ps) in the figure. . Such a compound is attracting attention as a material for a nonvolatile random access memory as a ferroelectric material having excellent characteristics such as good fatigue characteristics.

【0009】このような化合物の製造方法は、製膜方法
を含めて公知であるが、先に述べたように、現在実用化
に向けてプロセスの低温化、微細化、集積化などな研究
開発が急速に展開されている。本発明の対象とするビス
マス層状構造強誘電体材料は公知のものでも、今後開発
されるものでも、そのいずれでもよい。本発明の方法
は、ビスマス層状構造強誘電体材料の種類や製造方法は
問題とせず、得られたビスマス層状構造強誘電体材料を
評価する方法に特徴があるからである。代表的な製膜方
法は有機金属化学気相堆積法、ゾルゲル法などである。
製膜する際の基板も限定されない。
Methods for producing such compounds are known, including film forming methods. However, as described above, research and development for lowering the temperature, miniaturization, integration, and the like of the process are currently in progress for practical use. Are rapidly evolving. The bismuth layered structure ferroelectric material to which the present invention is directed may be a known material, a material to be developed in the future, or any of them. This is because the method of the present invention is characterized by a method for evaluating the obtained bismuth layered structure ferroelectric material, irrespective of the type and manufacturing method of the bismuth layered structure ferroelectric material. Typical film forming methods include metal organic chemical vapor deposition and sol-gel.
The substrate for forming the film is not limited.

【0010】本発明で用いるラマン分析法自体は公知で
ある.試料に可視光を照射して試料から散乱される光の
スペクトルが分子の振動、回転の状態変化、結晶の格子
振動の状態などを表しているのでこれから物質を分析す
るものである。光源としては、汎用性の高いアルゴンレ
ーザー光(514.5nm)を用いることができる。顕微鏡を
用いることにより、試料あるいは微細・集積素子の微小
領域(サブミクロン領域/慣用のXRDでは30μm程
度が限度である)からの非破壊評価を行うことができ
る。所謂、顕微観察ができる。散乱光はCCDで検出
し、分光できるので、短時間(約1分)で済む特徴を有
する。
The Raman analysis method used in the present invention is known. Since the spectrum of light scattered from the sample by irradiating the sample with visible light indicates the vibration of molecules, the change of the state of rotation, the state of the lattice vibration of the crystal, etc., the substance is analyzed from this. As a light source, versatile argon laser light (514.5 nm) can be used. By using a microscope, nondestructive evaluation can be performed from a minute region of a sample or a microscopic / integrated device (submicron region / about 30 μm in conventional XRD). So-called microscopic observation is possible. Since the scattered light can be detected and separated by the CCD, it has a characteristic that it can be completed in a short time (about 1 minute).

【0011】ラマン分析装置は、公知であり、また市販
されていると共に、各種の改良が特許文献その他で提案
されているので、そのいずれを使用してもよい。また、
ビスマス層状構造強誘電体材料の純粋な結晶を入手する
こと、またそのビスマス層状構造強誘電体材料の非化学
量論的に生成する不純物相を純粋な結晶として入手する
こと、これらの純粋な結晶のラマンスペクトルは多く公
知であるが、公知でない場合でも、少なくとも不純物相
を含めてバルクの純粋な結晶を製造すること、その結晶
構造を同定することは慣用のXRDおよびX線逆格子空
間マッピングなどを駆使すれば可能であるから、その純
粋な結晶のラマンスペクトルを得ることも可能である。
したがって、一旦、或るビスマス層状構造強誘電体材料
を構成する不純物相を含む多相の各純粋相のラマンスペ
クトルを測定、入手したならば、特定の被測定材料をラ
マン分析し、得られるラマンスペクトルを、純粋な結晶
の既知のラマンスペクトルと比較して、ビスマス層状構
造強誘電体材料に含まれる相を同定し、その存在量を知
ることは、波形分析によって容易である。すなわち、ビ
スマス層状構造強誘電体材料におけるビスマス層状構造
強誘電体相の生成およびその純度を知ることができる。
Raman analyzers are known and commercially available, and various improvements have been proposed in patent literature and the like, and any of them may be used. Also,
Obtaining pure crystals of the bismuth layered ferroelectric material, and obtaining the non-stoichiometrically generated impurity phases of the bismuth layered ferroelectric material as pure crystals, these pure crystals Although many Raman spectra are known, even if they are not known, it is necessary to produce a bulk pure crystal including at least an impurity phase, and to identify the crystal structure thereof by using conventional XRD and X-ray reciprocal lattice spatial mapping. Since it is possible to make full use of this, it is also possible to obtain a Raman spectrum of the pure crystal.
Therefore, once the Raman spectrum of each pure phase of the polyphase including the impurity phase constituting a certain bismuth layered structure ferroelectric material is measured and obtained, the Raman analysis of the specific material to be measured is performed, and the obtained Raman spectrum is obtained. Comparing the spectrum with the known Raman spectrum of the pure crystal to identify the phases contained in the bismuth layered ferroelectric material and knowing its abundance is easy by waveform analysis. That is, it is possible to know the generation and the purity of the bismuth layer structure ferroelectric phase in the bismuth layer structure ferroelectric material.

【0012】本発明のビスマス層状構造強誘電体材料の
分光学的評価方法は、ビスマス層状構造強誘電体材料の
研究開発のみならず、ビスマス層状構造強誘電体材料を
含む強誘電体メモリなどの製造ラインのおける工程、製
品の検査などにも利用できる。後者ではオンラインでも
可能である。
The spectroscopic evaluation method for a bismuth layered structure ferroelectric material according to the present invention can be applied not only to the research and development of a bismuth layered structure ferroelectric material but also to a ferroelectric memory or the like containing the bismuth layered structure ferroelectric material. It can also be used for processes in the production line and product inspection. The latter is also possible online.

【0013】[0013]

【実施例】本実施例ではSrBi2(Ta0.7,Nb0.3)2O9(SB
TN)薄膜をMOCVD法で作製した。基板としてPt
/Ti/SiO2/Si(001)を用いた。原料とし
て所望の化学量組成を有するSr,Ta,Nbトリプル
エトキサイド及びトリメチルビスマスを用い、酸素雰囲
気下、670℃でSrBi2(Ta0.7,Nb0.3)2O9を厚さ200
nmに製膜した。この組成のSBTNはSBTより残留
分極が大きいことが知られている。得られた薄膜は、慣
用のXRDおよびX線逆格子空間マッピングで構造を調
べて、ペロブスカイト構造のSBTNが生成しているこ
とを確認した。
EXAMPLE In this example, SrBi 2 (Ta 0.7 , Nb 0.3 ) 2 O 9 (SB
TN) A thin film was formed by the MOCVD method. Pt as substrate
/ Ti / SiO 2 / Si ( 001) was used. Using Sr, Ta, Nb triple ethoxide and trimethyl bismuth having a desired stoichiometric composition as raw materials, SrBi 2 (Ta 0.7 , Nb 0.3 ) 2 O 9 is deposited at 670 ° C. in an oxygen atmosphere to a thickness of 200.
nm. It is known that SBTN having this composition has larger remanent polarization than SBT. The structure of the obtained thin film was examined by conventional XRD and X-ray reciprocal lattice space mapping, and it was confirmed that SBTN having a perovskite structure was generated.

【0014】次に、同様にして、但し原料のBi/(T
a+Nb)を上記の1.00から1.36および0.8
2に変更すると共に、基板温度をいずれも600℃とし
て、それぞれ蛍石型相およびパイロクロア相の薄膜を作
成した。これらの薄膜についても慣用のXRDおよびX
線逆格子空間マッピングで構造を調べて、それぞれ蛍石
型相およびパイロクロア型相が生成していることを確認
した。
Next, in the same manner, except that the material Bi / (T
a + Nb) from 1.00 above to 1.36 and 0.8
2, and the substrate temperature was set to 600 ° C., and thin films of the fluorite phase and the pyrochlore phase were formed. The conventional XRD and X
The structure was examined by line reciprocal space mapping, and it was confirmed that a fluorite phase and a pyrochlore phase were formed, respectively.

【0015】これらの薄膜のラマンスペクトルを、1m
WのArレーザ光(波長514.5nm)を試料上に直
径約1〜2μmのスポットに集光して、後方散乱光をC
CD検出器を具備した分光器(愛宕物産製 R6400)で検
出し、測定した。波数分解能約2cm-1とした。測定時
間は約1分であった。図2にこうして得られたSBTN
(SrBi2(Ta0.7,Nb0.3)2O9)、蛍石型相、パイクロア相
の2θスキャン(deg/CuKα)による典型的なX線回
折パターンを示す。よく知られているようにPtをコー
トしたSi(001)基板上に成長したSBTNあるい
はSBTは強く(115)配向して、2θ=29°付近
に(115)の強いピークが生じて、SBTNあるいは
SBTの特性ピークとして利用されている。しかし、蛍
石型相(111)、パイクロア相(222)はメインピ
ークであるが、29°付近にあって、SBTN(11
5)のピークの領域と重複する。蛍石型相とパイクロア
相はほかに強いピークがないので、通常の2θスキャン
のXRDだけではこれらの結晶相の同定や相の混在を判
定することは困難である。図示していないがSBTでも
同様である。
The Raman spectra of these thin films are 1 m
A W Ar laser beam (wavelength: 514.5 nm) is focused on a sample to a spot having a diameter of about 1 to 2 μm, and the backscattered light is
It was detected and measured by a spectroscope equipped with a CD detector (R6400 manufactured by Atago Bussan). The wave number resolution was about 2 cm -1 . The measurement time was about 1 minute. The SBTN thus obtained is shown in FIG.
1 shows a typical X-ray diffraction pattern of (SrBi 2 (Ta 0.7 , Nb 0.3 ) 2 O 9 ), a fluorite phase, and a pyrochlore phase by 2θ scan (deg / CuKα). As is well known, SBTN or SBT grown on a Pt-coated Si (001) substrate is strongly (115) oriented, and a strong peak of (115) is generated around 2θ = 29 °, and SBTN or It is used as a characteristic peak of SBT. However, although the fluorite type phase (111) and the pyrochlore phase (222) are the main peaks, they are near 29 °, and the SBTN (11)
It overlaps with the peak area of 5). Since the fluorite-type phase and the pyrochlore phase do not have any other strong peaks, it is difficult to identify these crystal phases and determine the mixture of the phases only by XRD of a normal 2θ scan. Although not shown, the same applies to the SBT.

【0016】図3は同じSBTN、蛍石型相、パイクロ
ア相のラマンスペクトルを示す。SBTNは28、5
8,210,593,824cm-1に強いモードを有す
る。この特徴はバルクのSBTNに報告されている性質
とよく一致するので、この薄膜が殆ど単相のSBTNか
らなり、歪は無視できる程度であることがわかる。これ
に対して、蛍石型相、パイクロア相のラマンスペクトル
は、ややブロードなピークを示し、パイクロア相ではモ
ードはバルクとよく一致するが、蛍石型相では不一致が
ある。これらの不完全な一致はこれらの構造の欠陥によ
るもので、これについては多くの報告がある。しかし、
重要なことは、これらの3つの結晶相のスペクトル(ラ
マンシフト、ラマン選択則)は各相に特徴的であるとい
うこと、そのためこれらのラマンスペクトルはこれらの
相の指紋として使用できるということである。
FIG. 3 shows Raman spectra of the same SBTN, fluorite phase, and pyrochlore phase. SBTN is 28,5
It has a strong mode at 8,210,593,824 cm -1 . Since this feature is in good agreement with the properties reported for bulk SBTN, it can be seen that this thin film consists almost entirely of single-phase SBTN, with negligible distortion. On the other hand, the Raman spectra of the fluorite phase and the pyrochlore phase show rather broad peaks, and the mode of the pyrochlore phase matches well with that of the bulk, but the mode of the fluorite phase does not match. These imperfect matches are due to defects in these structures, and there are many reports of this. But,
Importantly, the spectra (Raman shift, Raman selection rule) of these three crystalline phases are characteristic of each phase, so that these Raman spectra can be used as fingerprints of these phases. .

【0017】しかも、各相の間の判別はもちろんである
が、これらの相が混在していてもそれらの相の判別と存
在量の半定量的な分析が可能である。図4に、上記と同
様であるが、原料比を僅かにBi過剰〔Bi/(Ta+
Nb)=1.3〕とし、600℃で製膜したSBTN薄
膜のラマンスペクトルを示す。この薄膜が純粋なSBT
N相のほかに蛍石型相、パイクロア相が存在すること
は、純粋なSBTN相のラマンスペクトルからのズレ、
特に低波数(100cm- 1以下)におけるズレで容易に
わかる。しかし、さらに、純粋なSBTN相のラマンス
ペクトル(一点鎖線)と、蛍石型相あるいはパイクロア
相のラマンスペクトルとの加重平均のスペクトルパター
ン(破線)を上記薄膜のラマンスペクトル(実線)と比
較すると、図に示すように、上記の薄膜が70%SBT
N/30%パイクロア混合相であることが明らかであ
る。
In addition, the discrimination between each phase is of course.
However, even if these phases are mixed, the identification and existence of those phases
Semi-quantitative analysis of abundance is possible. FIG. 4 shows the same as above.
Although the raw material ratio is slightly excessive in Bi [Bi / (Ta +
Nb) = 1.3], and the SBTN thin film formed at 600 ° C.
3 shows a Raman spectrum of the film. This thin film is pure SBT
Presence of fluorite-type phase and pyrochlore phase in addition to N-phase
Is the deviation from the Raman spectrum of the pure SBTN phase,
Especially low wave number (100cm- 1Easily)
Understand. However, the ramance of pure SBTN phase
Pectol (dot-dash line) and fluorite phase or pike rock
Weighted average spectral pattern with Raman spectrum of phase
Ratio (dashed line) to the Raman spectrum (solid line) of the thin film.
In comparison, as shown in the figure, the above thin film was 70% SBT
It is clear that the mixed phase is N / 30% pyrochlore.
You.

【0018】図5は、やはり上記と同様であるが、原料
比を僅かにBi欠損〔Bi/(Ta+Nb)=0.8〕
とし、600℃で製膜したSBTN薄膜のラマンスペク
トルを示すが、これは図4の場合と同様にして、40%
SBTN/60%蛍石型混合相であることが明らかであ
る。図6に測定した各種のビスマス層状構造強誘電体材
料のラマンスペクトルを示す。ただし、図中Bi2Sr2CaCu
2O8は参照系の超伝導体材料である。これらのビスマス
層状構造強誘電体材料の薄膜についても、本発明のラマ
ン分光法によるビスマス層状構造強誘電体材料の分光学
的評価方法が有効に利用できることが明らかである。ま
た、本発明のビスマス層状構造強誘電体材料の評価方法
の有用性は、特定のビスマス層状構造強誘電体材料が通
常のXRDにおいて相間でピークの重複があるかどうか
とは必ずしも関係なく、その簡便さ,信頼性,定量化な
どにその根拠があるので、すべてのビスマス層状構造強
誘電体材料の評価に有用であることは明らかである。
FIG. 5 is also the same as above, except that the raw material ratio is slightly Bi-deficient [Bi / (Ta + Nb) = 0.8].
The Raman spectrum of the SBTN thin film formed at 600 ° C. is shown, which is 40% as in the case of FIG.
It is clear that this is a SBTN / 60% fluorite type mixed phase. FIG. 6 shows the measured Raman spectra of various bismuth layered structure ferroelectric materials. However, Bi 2 Sr 2 CaCu
2 O 8 is a reference superconductor material. It is clear that the method for spectroscopic evaluation of a bismuth layered structure ferroelectric material by Raman spectroscopy of the present invention can be effectively used for thin films of these bismuth layered structure ferroelectric materials. Further, the usefulness of the method for evaluating a bismuth layered structure ferroelectric material of the present invention is not necessarily related to whether or not a particular bismuth layered structure ferroelectric material has a peak overlap between phases in a normal XRD. Since there is a basis for simplicity, reliability, quantification, etc., it is clear that it is useful for evaluation of all bismuth layered structure ferroelectric materials.

【0019】[0019]

【発明の効果】以上の如く、本発明のラマン分光法を利
用したビスマス層状構造強誘電体材料の評価方法によれ
ば、簡便に、短時間に、微小領域を,多相でも検出する
ことができ、しかもその多相の定量化も可能であるの
で、次世代の不揮発性ランダムアクセスメモリ用強誘電
体材料として注目されているビスマス層状構造強誘電体
材料の簡易でかつ極めて有効な分析,検査手段が提供さ
れる。
As described above, according to the method for evaluating a bismuth layer-structured ferroelectric material using Raman spectroscopy of the present invention, it is possible to easily detect a minute region even in a multiphase in a short time. Simple and extremely effective analysis and inspection of bismuth layered structure ferroelectric material, which is attracting attention as a ferroelectric material for next-generation non-volatile random access memory, because it is possible and quantification of the multiphase is also possible. Means are provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Bi2SrTa2O9の結晶構造を示す。FIG. 1 shows a crystal structure of Bi 2 SrTa 2 O 9 .

【図2】SBTN相、蛍石型相およびパイクロア相のX
線回折パターンを示す。
FIG. 2: X of the SBTN phase, the fluorite phase and the pyrochlore phase
3 shows a line diffraction pattern.

【図3】SBTN相、蛍石型相およびパイクロア相のラ
マンスペクトルを示す。
FIG. 3 shows Raman spectra of an SBTN phase, a fluorite phase, and a pyrochlore phase.

【図4】図3と異なる条件で製膜したSBTN薄膜(7
0%SBTN/30%パイクロア混合相)のラマンスペ
クトルを示す。
FIG. 4 is a diagram showing a SBTN thin film (7
2 shows a Raman spectrum of a 0% SBTN / 30% pyrochlore mixed phase).

【図5】もうひとつ別の条件で製膜したSBTN薄膜
(40%SBTN/60%蛍石型混合相)のラマンスペ
クトルを示す。
FIG. 5 shows a Raman spectrum of an SBTN thin film (40% SBTN / 60% fluorite mixed phase) formed under another condition.

【図6】測定した各種のビスマス層状構造強誘電体材料
のラマンスペクトルを示す。
FIG. 6 shows measured Raman spectra of various bismuth layered structure ferroelectric materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 舟窪 浩 神奈川県横浜市緑区長津田町4259 東京工 業大学内 Fターム(参考) 2G043 AA03 CA05 EA03 FA02 JA01 KA02 KA09 LA03 NA06 4G048 AA05 AC02 AD06 4G077 AA03 BC33 BC36 DB08 GA06 HA06 4M106 AA13 AB08 BA05 CB21 DH12 DH32 DH60  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroshi Funakubo 4259 Nagatsutacho, Midori-ku, Yokohama-shi, Kanagawa F-term in Tokyo Institute of Technology (reference) 2G043 AA03 CA05 EA03 FA02 JA01 KA02 KA09 LA03 NA06 4G048 AA05 AC02 AD06 4G077 AA03 BC33 BC36 DB08 GA06 HA06 4M106 AA13 AB08 BA05 CB21 DH12 DH32 DH60

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ラマン分光法によりビスマス層状構造強
誘電体材料を分析することを特徴とするビスマス層状構
造強誘電体材料の分光学的評価方法。
1. A spectroscopic evaluation method for a bismuth layered structure ferroelectric material, comprising analyzing the bismuth layered structure ferroelectric material by Raman spectroscopy.
【請求項2】 前記ビスマス層状構造強誘電体材料が化
学式Bi2Am-1BmO3m+3=(Bi2O2)2+(Am-1BmO3m+1)2-(式中、
m=1〜4; A=Na+, K+, Ba2+, Ca2+, Sr2+, Pb2 +, Bi3+; B
=Fe3+, Ga3+, Ti3+, Ta3+, Nb5+, V5+, Mo6+, W6+)で表
わされる強誘電体相を含むものである請求項1記載のビ
スマス層状構造強誘電体材料の分光学的評価方法。
2. A ferroelectric material having a layered structure of bismuth having a structure
Formula BiTwoAm-1BmO3m + 3= (BiTwoOTwo)2+(Am-1BmO3m + 1)2-(Where
m = 1-4; A = Na+, K+, Ba2+, Ca2+, Sr2+, PbTwo +, Bi3+; B
= Fe3+, Ga3+, Ti3+, Ta3+, Nb5+, V5+, Mo6+, W6+)
2. The method according to claim 1, which comprises a ferroelectric phase.
A spectroscopic evaluation method for a ferroelectric material having a layered structure having a layered structure.
【請求項3】 前記ビスマス層状構造強誘電体材料が薄
膜である請求項1または2記載のビスマス層状構造強誘
電体材料の分光学的評価方法。
3. The spectroscopic evaluation method for a bismuth layered ferroelectric material according to claim 1, wherein the bismuth layered structure ferroelectric material is a thin film.
【請求項4】 前記ビスマス層状構造強誘電体材料を構
成する強誘電体相と非強誘電体相の種類および存在量を
分析する請求項1〜3のいずれかに記載のビスマス層状
構造強誘電体材料の分光学的評価方法。
4. The ferroelectric bismuth layered structure according to claim 1, wherein the types and abundances of the ferroelectric phase and the non-ferroelectric phase constituting the bismuth layered structure ferroelectric material are analyzed. Spectroscopic evaluation method of body material.
【請求項5】 前記ビスマス層状構造強誘電体材料がSr
Bi2Ta2O9またはSrBi2(Tax,Nb1-x)2O9であり、前記ビス
マス層状構造強誘電体材料に存在するSrBi2Ta 2O9または
SrBi2(Tax,Nb1-x)2O9相とフルオライト相および/または
パイクロア相の存在量を分析する請求項2〜4のいずれ
かに記載のビスマス層状構造強誘電体材料の分光学的評
価方法。
5. The ferroelectric material having a layered structure of bismuth having a structure of Sr
BiTwoTaTwoO9Or SrBi2 (Tax, Nb1-x)TwoO9And the screw
SrBi present in mass layered ferroelectric materialsTwoTa TwoO9Or
SrBiTwo(Tax, Nb1-x)TwoO9Phase and fluorite phase and / or
5. The method according to claim 2, wherein the amount of the pyrochlore phase is analyzed.
Spectroscopic Evaluation of Bismuth Layered Structure Ferroelectric Materials
Value method.
【請求項6】 請求項1〜5のいずれかに記載のビスマ
ス層状構造強誘電体材料の分光学的評価方法を製造工程
中に含む強誘電体製品の製造方法。
6. A method for manufacturing a ferroelectric product, comprising the method for spectroscopically evaluating a bismuth layered structure ferroelectric material according to claim 1 in a manufacturing process.
JP2000308248A 2000-10-06 2000-10-06 Method for spectroscopically evaluating bismuth layered structural ferroelectric material and manufacturing method for ferroelectric product Pending JP2002116151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308248A JP2002116151A (en) 2000-10-06 2000-10-06 Method for spectroscopically evaluating bismuth layered structural ferroelectric material and manufacturing method for ferroelectric product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308248A JP2002116151A (en) 2000-10-06 2000-10-06 Method for spectroscopically evaluating bismuth layered structural ferroelectric material and manufacturing method for ferroelectric product

Publications (1)

Publication Number Publication Date
JP2002116151A true JP2002116151A (en) 2002-04-19

Family

ID=18788592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308248A Pending JP2002116151A (en) 2000-10-06 2000-10-06 Method for spectroscopically evaluating bismuth layered structural ferroelectric material and manufacturing method for ferroelectric product

Country Status (1)

Country Link
JP (1) JP2002116151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320220A (en) * 2019-07-23 2019-10-11 中国科学技术大学 The device and method of analysis of material shot-range ordered structure and long range ordered structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320220A (en) * 2019-07-23 2019-10-11 中国科学技术大学 The device and method of analysis of material shot-range ordered structure and long range ordered structure

Similar Documents

Publication Publication Date Title
Kreisel et al. An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx) 0.5 Bi0. 5TiO3 (0 x1) solid solution
US5519235A (en) Polycrystalline ferroelectric capacitor heterostructure employing hybrid electrodes
Faraz et al. A study of the temperature dependence of the local ferroelectric properties of c-axis oriented Bi6Ti3Fe2O18 Aurivillius phase thin films: Illustrating the potential of a novel lead-free perovskite material for high density memory applications
Deluca et al. Advantages and developments of Raman spectroscopy for electroceramics
JP2002116151A (en) Method for spectroscopically evaluating bismuth layered structural ferroelectric material and manufacturing method for ferroelectric product
Zhigalina et al. Microstructure of PZT capacitor structures
Duclère et al. Evidence of intergrowth in SrBi2Nb2O9 (SBN) thin films grown by PLD on (1 0 0) SrTiO3 in relation with the composition
Ferri et al. Thickness effect on nanoscale electromechanical activity in Pb (Mg1/3Nb2/3) O3-PbTiO3 thin films studied by piezoresponse force microscopy
Nishida et al. Raman spectroscopic characterization of tetragonal PbZrxTi1-xO3 thin films: A rapid evaluation method for c-domain volume
Bauer et al. Combined in situ XRD and ex situ TEM studies of thin Ba0. 5Sr0. 5TiO3 films grown by PLD on MgO
Aydi et al. X-ray diffraction, dielectric measurements and Raman spectroscopy: Studies of the (1− x) CaSnO3− x NaNbO3 solid solution
Beklešovas et al. Structural, ferroelectric and magnetic properties of lead ferrite (Pb2Fe2O5) thin films synthesized by reactive magnetron deposition
Kumari et al. Structural, ferroelectric and optical properties of Bi 2 VO 5.5 thin films deposited on platinized silicon {(100) Pt/TiO 2/SiO 2/Si} substrates
Mihailova et al. Nanoscale phase transformations in relaxor-ferroelectric lead scandium tantalate and lead scandium niobate
Abdulvakhidov et al. Synthesis and physical properties of the ferroelectromagnetic composites (1− x) PbMn1/3Ta2/3O3–xPbTiO3
Iakovlev et al. Structural investigations of rare-earth doped PbTiO3 thin films
Milesi-Brault Old and New Antiferroelectrics: Experimental Studies of Phase Transitions in Model Materials
Rambabu et al. Crystal orientation dependent microwave dielectric properties of sputtered SBTi thin films on fused silica substrates
Das et al. Preparation and Characterization of Ba and Nb Substituted SrBi2Ta2O9 Compounds
Yakovlev Lanthanide ions doping effects on structural, electrophysical and functional properties of sol gel fabricated PbTiO3 thin films
Shimizu et al. Epitaxial Growth of Doped HfO2 Ferroelectric Materials
Das Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
Yakovlev Lanthanide Ions Doping Effects on Structural, Electrophysical and Functional Properties of Sol-gel Fabricated PbTiO3 Thin Films
Dixit Investigation on the structural dielectric and ferroelectric properties of sol-gel derived zirconium substituted barium titanate thin films
Bühlmann Patterned and self-assembled ferroelectric nano-structures obtained by epitaxial growth and e-beam lithography

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040817