JP2002116142A - Method for measuring moisture content, grain size, and magnesium concentration of salt at the same time using infrared rays and method for correcting measurement - Google Patents

Method for measuring moisture content, grain size, and magnesium concentration of salt at the same time using infrared rays and method for correcting measurement

Info

Publication number
JP2002116142A
JP2002116142A JP2000307580A JP2000307580A JP2002116142A JP 2002116142 A JP2002116142 A JP 2002116142A JP 2000307580 A JP2000307580 A JP 2000307580A JP 2000307580 A JP2000307580 A JP 2000307580A JP 2002116142 A JP2002116142 A JP 2002116142A
Authority
JP
Japan
Prior art keywords
magnesium concentration
salt
measurement
measured
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000307580A
Other languages
Japanese (ja)
Other versions
JP3466556B2 (en
Inventor
Koji Masaoka
功士 正岡
Masami Hasegawa
正巳 長谷川
Yasushi Shimizu
泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Original Assignee
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLT INDUSTRY CT OF JAPAN, Salt Industry Center of Japan. filed Critical SOLT INDUSTRY CT OF JAPAN
Priority to JP2000307580A priority Critical patent/JP3466556B2/en
Publication of JP2002116142A publication Critical patent/JP2002116142A/en
Application granted granted Critical
Publication of JP3466556B2 publication Critical patent/JP3466556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately and quickly measure the moisture content, grain size, and magnesium concentration of salt at the same time. SOLUTION: Seven kinds of filters 4 allowing infrared rays of predetermined wavelengths to pass through are mounted on a rotating board 3 and rotated so that infrared rays from a light source 2 are separated into seven kinds of specific wavelengths for irradiation of salt crystal 6 as irradiation light rays 5. By detecting the reflected light rays 7 with a photocell 8, absorbances 1 to 7 are measured. For the sample salt measured, a calibration curve for measuring the moisture content is formed from the relationship between the moisture content measured by dry method and the seven absorbances; a calibration curve for measuring the grain size is formed from the relationship between the average grain size measured by screening method and the seven absorbances; and a calibration curve for measuring the magnesium concentration is formed from the relationship between the magnesium concentration measured by chelatometric titration and the seven absorbances. Using a similar method, an unknown salt crystal is irradiated with infrared rays and its absorbances are applied to the calibration curves, thereby, the moisture content, the grain size and the magnesium concentration of the salt crystal are calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精度よく迅速にか
つ同時に測定する赤外線を用いた塩の水分、粒径および
マグネシウム濃度の同時測定方法および測定の補正方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simultaneously measuring the water content, particle size and magnesium concentration of a salt using infrared rays which are measured accurately, quickly and simultaneously, and a method for correcting the measurement.

【0002】[0002]

【従来の技術】工業的製塩工程においては、製品である
塩の水分、粒径およびマグネシウム濃度を製品品質に関
わる重要な因子として、これらの測定に多くの時間と人
手を費やしている。
2. Description of the Related Art In an industrial salt production process, a great deal of time and labor are spent on the measurement of water, particle size and magnesium concentration of a product salt as important factors relating to product quality.

【0003】このうち水分は、財団法人塩事業センター
発行の「塩試験方法」(平成9年4月)8ページ記載の
140℃乾燥法が水分管理に適用されている。
[0003] Among them, the 140 ° C drying method described on page 8 of “Salt Test Method” (April 1997) issued by the Salt Business Center of Japan is applied to moisture management.

【0004】この方法は、塩を140℃で90分乾燥し
たときの減量を測定し水分とする方法である。
[0004] In this method, the weight loss when a salt is dried at 140 ° C for 90 minutes is measured to determine the water content.

【0005】粒径に関しては財団法人塩事業センター発
行の「塩試験方法」(平成9年4月)138ページ記載
のふるい分け法が用いられることが多く、この方法は塩
を乾燥した後、篩を多段に装着したロータップ式自動ふ
るい機でふるい分けして粒度を測定するものである。
Regarding the particle size, the sieving method described on page 138 of “Salt Test Method” (April 1997) published by the Salt Business Center of Japan is often used. In this method, the salt is dried and then sieved. The particle size is measured by sieving with a low tap type automatic sieving machine installed in multiple stages.

【0006】マグネシウム濃度に関しては財団法人塩事
業センター発行の「塩試験方法」(平成9年4月)15
ページ記載のキレート滴定法が用いられる。
[0006] Regarding the magnesium concentration, "Salt Test Method" published by the Salt Business Center of Japan (April 1997) 15
The chelate titration method described on the page is used.

【0007】この方法は、塩を蒸留水に溶解して一定量
を採取し、pH10に調整した後、エリオクロムブラッ
クT指示薬を加えてEDTA溶液で滴定してカルシウム
とマグネシウムの合計含量を求め、別に採取してpH1
2〜13とした溶液にHSNN指示薬を加えて、EDT
A溶液で滴定することによって求めたカルシウム量を差
し引いてマグネシウム量を定量する方法である。
In this method, a salt is dissolved in distilled water, a certain amount is collected, adjusted to pH 10, then an eriochrome black T indicator is added, and titrated with an EDTA solution to obtain the total content of calcium and magnesium. Separately collected and pH 1
The HSTN indicator was added to the solution prepared as 2 to 13, and EDT was added.
In this method, the amount of magnesium is determined by subtracting the amount of calcium determined by titration with the solution A.

【0008】これらの方法の他に、赤外線を塩に照射し
て、水分、粒径、マグネシウム濃度をそれぞれ単独に測
定する方法がある。
[0008] In addition to these methods, there is a method of irradiating a salt with infrared rays and measuring water, particle diameter and magnesium concentration independently.

【0009】このうち赤外線を用いた水分測定法は、特
開昭58−204336記載の通り、水分子による赤外
線の吸収帯を利用して3種類の波長の赤外線を照射して
水分を測定する方法である。
As described in Japanese Patent Application Laid-Open No. 58-204336, a method of measuring moisture by irradiating infrared rays of three wavelengths using an infrared absorption band of water molecules is described in Japanese Patent Application Laid-Open No. 58-204336. It is.

【0010】すなわち参照波長として水分子によって吸
光度が変化しない波長、外乱要因によって吸光度が変化
しない波長、測定波長として水分子によって吸光度が変
化する波長を用いて、これらの波長の赤外線を被測定物
に照射して反射光の吸光度から水分を測定するものであ
る。
That is, by using a wavelength at which the absorbance does not change due to water molecules as a reference wavelength, a wavelength at which the absorbance does not change due to disturbance factors, and a wavelength at which the absorbance changes due to water molecules as the measurement wavelength, an infrared ray of these wavelengths is applied to the object to be measured. Irradiation is used to measure the water content from the absorbance of the reflected light.

【0011】また赤外線を用いた粒径測定法は、特開平
6−288892記載の通りJohnsonの式より粒
径と反射率との関係を求め、3種類の波長の赤外線の反
射光量から粒径を測定する方法である。
As described in Japanese Patent Application Laid-Open No. 6-288892, a particle size measuring method using infrared rays obtains the relationship between the particle size and the reflectance according to the Johnson equation and calculates the particle size from the reflected light amounts of infrared rays of three wavelengths. It is a method of measuring.

【0012】すなわち参照波長として粒径によって吸光
度が変化しない波長、測定波長として粒径によって吸光
度が変化する2つの波長を用いて、これらの波長の赤外
線を被測定物に照射して反射光の吸光度から粒径を測定
するものである。
That is, by using a wavelength at which the absorbance does not change depending on the particle size as a reference wavelength and two wavelengths at which the absorbance changes according to the particle size as the measurement wavelength, the object to be measured is irradiated with infrared rays of these wavelengths and the absorbance of the reflected light is measured. Is used to measure the particle size.

【0013】また赤外線を用いたマグネシウム濃度測定
法は、特開平8−240526記載の通りマグネシウム
イオンが水分子の変角振動に影響を与えることを利用し
た測定方法である。
The magnesium concentration measuring method using infrared rays is a measuring method utilizing the fact that magnesium ions affect the bending vibration of water molecules as described in JP-A-8-240526.

【0014】すなわち参照波長として水によって吸光度
が変化しない波長を、測定波長として水分子の変角振動
の倍音となる波長の2波長の赤外線を被測定物に照射し
て、反射光の吸光度からマグネシウム濃度を測定するも
のである。
That is, the object to be measured is irradiated with two wavelengths of infrared light having a wavelength at which the absorbance does not change due to water as a reference wavelength and a wavelength which is an overtone of the bending vibration of water molecules as a measurement wavelength. It measures the concentration.

【0015】[0015]

【発明が解決しようとする課題】しかし、140℃乾燥
法、ふるい分け法およびキレート滴定法は、測定の操作
に多くの時間と熟練した技術を必要とするという問題点
がある。
However, the drying method at 140 ° C., the sieving method and the chelate titration method have the problem that the measurement operation requires a lot of time and skill.

【0016】また3種類の赤外線波長を用いた水分測定
法では、赤外線が塩結晶を透過しやすいことからサンプ
ル表面だけでなく塩層内の影響も受けるため、塩の粒径
およびマグネシウム濃度によって吸光度が変化してしま
うという問題点がある。
In the moisture measurement method using three kinds of infrared wavelengths, since infrared rays easily penetrate the salt crystal and are affected not only on the sample surface but also in the salt layer, the absorbance depends on the particle size of the salt and the magnesium concentration. Is changed.

【0017】また同様の理由で粒径の測定においては、
塩の水分とマグネシウム濃度により、マグネシウム濃度
の測定では水分と粒径により吸光度が変化してしまうた
め、精度の高い測定が行えないという問題点がある。
For the same reason, in the measurement of the particle size,
Since the absorbance changes depending on the water content and the particle size in the measurement of the magnesium concentration due to the water content and the magnesium concentration of the salt, there is a problem that highly accurate measurement cannot be performed.

【0018】またいずれの方法でも、塩の水分、粒径、
マグネシウム濃度を単独に測定することとなり、工程管
理上は非効率的である。
In any of the methods, the water content of the salt, the particle size,
Since the magnesium concentration is measured independently, it is inefficient in process control.

【0019】本発明はこのような問題点を解決し、塩の
水分、粒径およびマグネシウム濃度を同時に精度よく、
迅速に測定することを課題とする。
The present invention solves such a problem, and simultaneously measures the water content, particle size and magnesium concentration of the salt with high accuracy.
The task is to measure quickly.

【0020】[0020]

【課題を解決するための手段】本発明の請求項1の赤外
線を用いた塩の水分、粒径およびマグネシウム濃度の同
時測定方法は、塩結晶に、水分測定用、粒径測定用およ
びマグネシウム濃度測定用の複数の赤外線を照射し、各
赤外線の反射光を検出して各吸光度を求め、予め求めた
水分測定用検量線、粒径測定用検量線およびマグネシウ
ム濃度測定用検量線に前記各吸光度をあてはめること
で、水分、粒径およびマグネシウム濃度を迅速に測定す
ることを特徴とする。
According to the first aspect of the present invention, there is provided a method for simultaneously measuring the water content, particle size and magnesium concentration of a salt using infrared rays. Irradiation with a plurality of infrared rays for measurement, the reflected light of each infrared ray is detected to determine each absorbance, and the above-mentioned absorbances are determined in advance by a calibration curve for moisture measurement, a calibration curve for particle size measurement, and a calibration curve for magnesium concentration measurement. The method is characterized in that moisture, particle size and magnesium concentration are quickly measured by applying

【0021】本発明の請求項1の赤外線を用いた塩の水
分、粒径およびマグネシウム濃度の同時測定方法では、
水分測定用、粒径測定用の赤外線として水分子および粒
径により吸光度が変化する波長と変化しない波長の赤外
線を、また、マグネシウム濃度測定用の赤外線として水
分子の変角振動の倍音となる波長および外乱要因により
変化しない波長の赤外線を数秒間照射して、各反射光を
検出して各吸光度を求める。そして、この吸光度を、予
め作成した各検量線にあてはめることで水分、粒径およ
びマグネシウム濃度の測定を行う。
According to the method of the present invention for simultaneously measuring the water content, particle size and magnesium concentration of a salt using infrared rays,
As infrared rays for moisture measurement and particle size measurement, infrared rays of wavelengths at which the absorbance changes with water molecules and particle size and wavelengths at which the absorbance does not change are used, and as infrared rays for magnesium concentration measurement, wavelengths that are harmonics of the deformation vibration of water molecules. In addition, an infrared ray having a wavelength that does not change due to a disturbance factor is irradiated for several seconds, each reflected light is detected, and each absorbance is obtained. Then, the absorbance is applied to calibration curves prepared in advance to measure the water content, the particle size, and the magnesium concentration.

【0022】これにより、迅速に水分、粒径およびマグ
ネシウム濃度の同時測定ができる。
Thus, simultaneous measurement of water content, particle size, and magnesium concentration can be quickly performed.

【0023】前述の通り、赤外線を用いて水分、粒径、
マグネシウム濃度をそれぞれ単独で測定する場合は、測
定しようとする要因以外の要因が相互に影響し合い正確
に測定できず、またこのため測定しようとする要因に最
適であるが、他の要因の影響を受けやすい波長は測定に
用いることができないという問題点があるが、本発明で
は以下のように、測定に使用する全ての波長を用いて要
因毎の検量線を作成し、その要因に対する他の影響をひ
とつの検量線の中で除去する方法により補正し正確な測
定を行うものである。
As described above, moisture, particle size,
When measuring magnesium concentration alone, factors other than the factors to be measured influence each other and cannot be measured accurately, and are therefore optimal for the factors to be measured. There is a problem that wavelengths that are susceptible to measurement cannot be used for measurement, but in the present invention, a calibration curve is created for each factor using all wavelengths used for measurement, and other In this method, the influence is corrected by a method that eliminates the influence in one calibration curve, and accurate measurement is performed.

【0024】本発明の請求項2の赤外線を用いた塩の水
分、粒径およびマグネシウム濃度の測定の補正方法は、
塩結晶に、水分測定用、粒径測定用およびマグネシウム
濃度測定用の複数の赤外線を照射し、各赤外線の反射光
を検出して各吸光度を求め、予め求めた水分測定用検量
線、粒径測定用検量線およびマグネシウム濃度測定用検
量線に前記各吸光度をあてはめることを特徴とする。
According to the second aspect of the present invention, there is provided a method for correcting the measurement of water content, particle size and magnesium concentration of a salt using infrared rays.
The salt crystal is irradiated with a plurality of infrared rays for moisture measurement, particle size measurement, and magnesium concentration measurement, and the reflected light of each infrared ray is detected to obtain each absorbance. The above-mentioned respective absorbances are applied to a calibration curve for measurement and a calibration curve for measurement of magnesium concentration.

【0025】本発明の請求項2によれば、塩の水分測定
の補正方法では、塩の粒径とマグネシウム濃度の影響を
差し引くことで補正を行うことができる。
According to the second aspect of the present invention, in the correction method for measuring the water content of the salt, the correction can be performed by subtracting the influence of the particle size of the salt and the magnesium concentration.

【0026】また同様に本発明の請求項2によれば、塩
の粒径測定の補正方法では、塩の水分とマグネシウム濃
度の影響を差し引くことで補正を行うことができる。
Similarly, according to the second aspect of the present invention, in the correction method for measuring the particle size of the salt, the correction can be performed by subtracting the influence of the water content and the magnesium concentration of the salt.

【0027】また同様に本発明の請求項2によれば、塩
のマグネシウム濃度測定の補正方法では、粒径と水分の
影響を差し引くことで補正を行うことができる。
Similarly, according to the second aspect of the present invention, in the correction method for measuring the magnesium concentration of the salt, the correction can be performed by subtracting the influence of the particle size and the moisture.

【0028】さらに本発明の請求項2によれば、塩の水
分、粒径およびマグネシウム濃度測定の補正方法では、
互いに誤差因子となる水分、粒径およびマグネシウム濃
度を測定するための波長の吸光度を全て含んだ検量線を
作成し、同時に測定することにより相互に補正を行うこ
とができる。
According to a second aspect of the present invention, in the method for correcting the water content, the particle size and the magnesium concentration of a salt,
Mutual correction can be made by creating a calibration curve including all absorbances of wavelengths for measuring water, particle diameter and magnesium concentration, which are error factors, and measuring them at the same time.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0030】まず塩をエタノールで洗浄し温度50℃で
24時間乾燥し、ふるいにて分級して、各粒径範囲を持
つように調製した。
First, the salt was washed with ethanol, dried at a temperature of 50 ° C. for 24 hours, and classified by a sieve to prepare each particle size range.

【0031】所定濃度の塩化マグネシウム水溶液に塩化
ナトリウムを過剰に添加して飽和溶液としたものを、こ
の結晶が所定の水分となるように添加してこれを試料塩
とした。
A saturated solution obtained by excessively adding sodium chloride to an aqueous solution of magnesium chloride having a predetermined concentration was added so that the crystals had a predetermined water content, and this was used as a sample salt.

【0032】図1は本発明の塩の水分、粒径およびマグ
ネシウム濃度の同時測定方法を実施した装置の概念図を
示している。
FIG. 1 is a conceptual diagram of an apparatus for implementing the method for simultaneously measuring the water content, particle size and magnesium concentration of a salt according to the present invention.

【0033】所定の赤外線波長を通すような7種類のフ
ィルター4を回転盤3に取り付けて回転させることによ
り、光源2からの赤外線を7種類それぞれ特定の波長に
分離し照射光5として、シャーレ上の塩結晶6に照射し
反射光7を受光素子8にて検出した。
By attaching and rotating seven types of filters 4 that pass predetermined infrared wavelengths to the turntable 3, each of the seven types of infrared rays from the light source 2 is separated into specific wavelengths, and is radiated as irradiation light 5 on a petri dish. And the reflected light 7 was detected by the light receiving element 8.

【0034】なお7種類のフィルター4は水分測定用と
して1790nm近傍、2100nm近傍および194
0nm近傍(以下、「波長1〜3」)と、粒径測定用と
して1680nm近傍、2310nm近傍および185
0nm近傍(以下、「波長4〜6」)、そしてマグネシ
ウム測定用として1790nm近傍(波長1)、210
0nm近傍(波長2)および1590nm近傍(以下、
「波長7」)の波長が透過できるものとした。
The seven types of filters 4 are used for measuring moisture, in the vicinity of 1790 nm, in the vicinity of 2100 nm and in the area of 194 nm.
0 nm (hereinafter, "wavelengths 1 to 3"), 1680 nm, 2310 nm, and 185 nm for particle size measurement.
Around 0 nm (hereinafter, "wavelengths 4 to 6"), and around 1790 nm (wavelength 1) for measuring magnesium, 210
0 nm (wavelength 2) and 1590 nm (hereinafter, referred to as
The wavelength of “wavelength 7”) can be transmitted.

【0035】試料塩約300gをシャーレ口径160m
mに充填し、表面が平らになるように平板で押し付け
た。
Approximately 300 g of a sample salt is applied to a petri dish with a diameter of 160 m.
m, and pressed with a flat plate so that the surface became flat.

【0036】上部より波長1〜7の赤外線を数秒照射
し、受光素子8にて検出した反射光の各吸光度を吸光度
1〜7として測定した。
An infrared ray having a wavelength of 1 to 7 was irradiated from above for several seconds, and the respective absorbances of the reflected light detected by the light receiving element 8 were measured as absorbances 1 to 7.

【0037】なお、シャーレを回転させることにより各
試料塩につき3箇所の部位について吸光度の測定を行っ
た。
The absorbance was measured at three sites for each sample salt by rotating the petri dish.

【0038】測定した試料塩について140℃乾燥法に
より測定した水分と7つ吸光度との関係から水分を測定
するための水分測定用検量線を、ふるい分け法により測
定した平均粒径と7つ吸光度との関係から平均粒径を測
定するための粒径測定用検量線を、キレート滴定法によ
り測定したマグネシウム濃度と7つ吸光度との関係から
マグネシウム濃度を測定するためのマグネシウム濃度測
定用検量線をそれぞれ作成し、それを基に7波長の赤外
線を用いた測定を行った。
A calibration curve for moisture measurement for measuring the water content from the relationship between the water content measured by the drying method at 140 ° C. and the seven absorbance values of the measured sample salt was used to determine the average particle size and the seven absorbance values measured by the sieving method. And a calibration curve for measuring the magnesium concentration for measuring the magnesium concentration from the relationship between the magnesium concentration measured by the chelate titration method and the seven absorbances, respectively. It was prepared, and a measurement using infrared rays of seven wavelengths was performed based on the prepared sample.

【0039】具体的には、波長1〜波長7の吸光度をX
1 〜X7 として、以下の検量線により塩の水分、粒径、
マグネシウム濃度を求めた。
Specifically, the absorbance at wavelengths 1 to 7 is represented by X
As 1 to X 7, following salt water by calibration curve, the particle diameter,
The magnesium concentration was determined.

【0040】水分測定用検量線 H:水分、X1 〜X7 :吸光度、A1 〜A8 :係数、a
1 〜a7 :係数 H=A1X1 2+a1X1+A2X2 2+a2X2+A3X3 2+a3X3+A4X4 2+a4X4+A5X5
2+a5X5+A6X6 2+a6X6+A7X7 2+a7X7+A8
Calibration curve for moisture measurement H: moisture, X 1 to X 7 : absorbance, A 1 to A 8 : coefficient, a
1 ~a 7: Factor H = A 1 X 1 2 + a 1 X 1 + A 2 X 2 2 + a 2 X 2 + A 3 X 3 2 + a 3 X 3 + A 4 X 4 2 + a 4 X 4 + A 5 X 5
2 + a 5 X 5 + A 6 X 6 2 + a 6 X 6 + A 7 X 7 2 + a 7 X 7 + A 8

【0041】粒径測定用検量線 Dav :平均粒径、X1 〜X7 :吸光度、B1 〜B8 :係
数、b1 〜b7 :係数 Dav=B1X1 2+b1X1+B2X2 2+b2X2+B3X3 2+b3X3+B4X4 2+b4X4+B5
X5 2+b5X5+B6X6 2+b6X6+B7X7 2+b7X7+B8
Calibration curve for particle size measurement Dav: average particle size, X 1 to X 7 : absorbance, B 1 to B 8 : coefficient, b 1 to b 7 : coefficient Dav = B 1 X 12 2 + b 1 X 1 + B 2 X 2 2 + b 2 X 2 + B 3 X 3 2 + b 3 X 3 + B 4 X 4 2 + b 4 X 4 + B 5
X 5 2 + b 5 X 5 + B 6 X 6 2 + b 6 X 6 + B 7 X 7 2 + b 7 X 7 + B 8

【0042】マグネシウム濃度測定用検量線 CMg :マグネシウム濃度測定、X1 〜X7 :吸光度、係
数C1 〜C8 、:係数、c1 〜c7 :係数 CMg=C1X1 2+c1X1+C2X2 2+c2X2+C3X3 2+c3X3+C4X4 2+c4X4+C5
X5 2+c5X5+C6X6 2+c6X6+C7X7 2+c7X7+C8
The magnesium concentration determination calibration CMg: magnesium concentration measurement, X 1 to X 7: absorbance coefficient C 1 -C 8,: coefficients, c 1 to c 7: Factor CMg = C 1 X 1 2 + c 1 X 1 + C 2 X 2 2 + c 2 X 2 + C 3 X 3 2 + c 3 X 3 + C 4 X 4 2 + c 4 X 4 + C 5
X 5 2 + c 5 X 5 + C 6 X 6 2 + c 6 X 6 + C 7 X 7 2 + c 7 X 7 + C 8

【0043】また比較として、同一の試料塩について1
40℃乾燥法により測定した水分と波長1〜3の吸光度
との関係から水分を測定するための検量線を、ふるい分
け法により測定した平均粒径と波長4〜6の吸光度との
関係から平均粒径を測定するための検量線を、キレート
滴定法により測定したマグネシウム濃度と波長1、2お
よび7の吸光度との関係からマグネシウム濃度を測定す
るための検量線をそれぞれ作成し、それを基に3波長の
赤外線を用いた測定を行った。
For comparison, the same sample salt was used for 1
A calibration curve for measuring water from the relationship between the moisture measured by the drying method at 40 ° C. and the absorbance at wavelengths 1 to 3 was used. The average particle size was determined from the relationship between the average particle size measured by the sieving method and the absorbance at wavelengths 4 to 6. A calibration curve for measuring the magnesium concentration was prepared from the relationship between the magnesium concentration measured by the chelate titration method and the absorbance at wavelengths 1, 2 and 7, and a calibration curve for measuring the magnesium concentration was determined based on the calibration curve. The measurement using infrared light of a wavelength was performed.

【0044】次に、この実施例において実験的に得られ
た知見について詳細に述べる。
Next, the findings experimentally obtained in this embodiment will be described in detail.

【0045】図2および図3は塩結晶を本発明の実施例
により作製した検量線を用い7波長および3波長の赤外
線で測定した水分と、その塩結晶の140℃乾燥法によ
る水分との関係を示したものである。
FIGS. 2 and 3 show the relationship between the water content of a salt crystal measured by infrared rays at 7 and 3 wavelengths using a calibration curve prepared according to the embodiment of the present invention, and the water content of the salt crystal obtained by drying at 140 ° C. It is shown.

【0046】3波長の赤外線による水分測定は塩結晶の
粒径やマグネシウム濃度の影響を受けて誤差を生じ、1
40℃乾燥法測定値との相関係数は0.757である
が、本発明の7波長の赤外線を用いた場合では波長の数
を増やすことによりこれらの影響を打ち消し、140℃
乾燥法測定値との相関係数は0.998と正確に測定す
ることができた。
The measurement of water content by infrared light of three wavelengths causes an error due to the influence of the particle size of the salt crystals and the magnesium concentration.
The correlation coefficient with the measured value of the drying method at 40 ° C. is 0.757. In the case of using the infrared ray of 7 wavelengths of the present invention, these effects are canceled by increasing the number of wavelengths, and the temperature is increased by 140 ° C.
The correlation coefficient with the measured value by the drying method was 0.998, which was accurately measured.

【0047】図4および図5は塩結晶を本発明の実施例
により作製した検量線を用い7波長および3波長の赤外
線の吸光度から測定した平均粒径と、その塩結晶のふる
い分け法により測定した平均粒径の関係を示したもので
ある。
FIGS. 4 and 5 show the average particle size of salt crystals measured from the absorbance of infrared rays at 7 and 3 wavelengths using a calibration curve prepared according to the example of the present invention, and the salt crystals were measured by a sieving method. It shows the relationship between the average particle sizes.

【0048】3波長の赤外線による粒径測定は、塩結晶
の水分とマグネシウム濃度の影響を受けて誤差を生じふ
るい分け法測定値との相関係数は0.411であるが、
本発明の7波長の赤外線を用いた場合では波長の数を増
やすことによりこれらの影響を打ち消し、ふるい分け法
測定値との相関係数は0.964と正確に測定すること
ができた。
In the particle size measurement using infrared rays of three wavelengths, an error occurs due to the influence of the water content and the magnesium concentration of the salt crystal, and the correlation coefficient between the measured value and the sieving method is 0.411.
In the case of using the infrared rays of the seven wavelengths of the present invention, these effects were canceled by increasing the number of wavelengths, and the correlation coefficient with the measured value by the sieving method could be accurately measured as 0.964.

【0049】図6および図7は塩結晶を本発明の実施例
により作製した検量線を用い7波長および3波長の赤外
線の吸光度から測定したマグネシウム濃度と、その塩結
晶のキレート滴定法によって測定したマグネシウム濃度
の関係を示したものである。
FIGS. 6 and 7 show the magnesium concentration measured from the absorbance of infrared rays at 7 wavelengths and 3 wavelengths using a calibration curve prepared according to an embodiment of the present invention, and the salt crystals were measured by the chelate titration method. It shows the relationship between magnesium concentrations.

【0050】3波長の赤外線によるマグネシウム濃度測
定は、塩結晶の水分と粒径の影響を受けて誤差を生じキ
レート滴定法測定値との相関係数は0.854である
が、本発明の7波長の赤外線を用いた場合では波長の数
を増やすことによりこれらの影響を打ち消し、キレート
滴定法測定値との相関係数は0.984と正確に測定す
ることができた。
In the measurement of magnesium concentration by infrared rays of three wavelengths, an error is caused by the influence of the water content and the particle size of the salt crystal, and the correlation coefficient between the measured value and the measured value by the chelate titration method is 0.854. In the case of using infrared light of the wavelength, these effects were canceled by increasing the number of wavelengths, and the correlation coefficient with the chelate titration measurement value was accurately measured as 0.984.

【0051】[0051]

【発明の効果】以上に説明したように、本発明によれば
製塩における製品水分、粒径およびマグネシウム濃度を
精度よく、迅速に同時測定ができる。
As described above, according to the present invention, the product moisture, particle size and magnesium concentration in the salt production can be measured simultaneously with high accuracy and speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製塩における製品水分、粒径およびマ
グネシウム濃度の同時測定方法を実施するために好適に
用いられる装置を説明する図である。
FIG. 1 is a diagram for explaining an apparatus suitably used for carrying out a method for simultaneously measuring product moisture, particle size and magnesium concentration in salt production of the present invention.

【図2】本発明によって測定した水分と140℃乾燥法
による減量(水分)の関係を示した図である。
FIG. 2 is a graph showing a relationship between water measured according to the present invention and weight loss (water) by a 140 ° C. drying method.

【図3】3種類の赤外線波長によって測定した水分と1
40℃乾燥法による減量(水分)の関係を示した図であ
る。
FIG. 3 shows water and 1 measured by three infrared wavelengths.
It is the figure which showed the relationship of weight loss (moisture) by 40 degreeC drying method.

【図4】本発明によって測定した平均粒径とふるい分け
法によって測定した平均粒径の関係を示した図である。
FIG. 4 is a diagram showing the relationship between the average particle size measured according to the present invention and the average particle size measured by a sieving method.

【図5】3種類の赤外線波長によって測定した平均粒径
とふるい分け法によって測定した平均粒径の関係を示し
た図である。
FIG. 5 is a diagram showing a relationship between an average particle diameter measured by three kinds of infrared wavelengths and an average particle diameter measured by a sieving method.

【図6】本発明によって測定したマグネシウム濃度とキ
レート滴定法によって測定したマグネシウム濃度の関係
を示した図である。
FIG. 6 is a graph showing a relationship between a magnesium concentration measured by the present invention and a magnesium concentration measured by a chelate titration method.

【図7】3種類の赤外線波長によって測定したマグネシ
ウム濃度とキレート滴定法によって測定したマグネシウ
ム濃度の関係を示した図である。
FIG. 7 is a diagram showing the relationship between magnesium concentration measured by three types of infrared wavelengths and magnesium concentration measured by chelate titration.

【符号の説明】[Explanation of symbols]

1 測定装置 2 赤外線光源 3 回転盤 4 赤外線透過フィルター 5 照射光 6 塩 7 反射光 8 受光素子 DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Infrared light source 3 Turntable 4 Infrared transmission filter 5 Irradiation light 6 Salt 7 Reflected light 8 Light receiving element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 泰 神奈川県小田原市酒匂4丁目13番20号 財 団法人 塩事業センター 技術部海水総合 研究所内 Fターム(参考) 2G059 AA01 AA05 CC09 CC20 EE02 EE12 HH01 JJ02 KK02 MM03 MM12 NN01 PP01  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasushi Shimizu 4-13-20 Sakami, Odawara-shi, Kanagawa F Saltwater Research Institute, Salt Business Center, F-term (reference) 2G059 AA01 AA05 CC09 CC20 EE02 EE12 HH01 JJ02 KK02 MM03 MM12 NN01 PP01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 塩結晶に、水分測定用、粒径測定用およ
びマグネシウム濃度測定用の複数の赤外線を照射し、各
赤外線の反射光を検出して各吸光度を求め、予め求めた
水分測定用検量線、粒径測定用検量線およびマグネシウ
ム濃度測定用検量線に前記各吸光度をあてはめること
で、水分、粒径およびマグネシウム濃度を迅速に測定す
ることを特徴とする赤外線を用いた塩の水分、粒径およ
びマグネシウム濃度の同時測定方法。
1. A method for irradiating a salt crystal with a plurality of infrared rays for moisture measurement, particle size measurement and magnesium concentration measurement, detecting reflected light of each infrared ray to determine each absorbance, and obtaining a previously determined moisture measurement. By fitting the respective absorbances to a calibration curve, a calibration curve for particle size measurement and a calibration curve for magnesium concentration measurement, moisture, water content of salt using infrared rays, which is characterized by rapidly measuring the particle size and magnesium concentration, Simultaneous measurement method of particle size and magnesium concentration.
【請求項2】 塩結晶に、水分測定用、粒径測定用およ
びマグネシウム濃度測定用の複数の赤外線を照射し、各
赤外線の反射光を検出して各吸光度を求め、予め求めた
水分測定用検量線、粒径測定用検量線およびマグネシウ
ム濃度測定用検量線に前記各吸光度をあてはめることを
特徴とする赤外線を用いた塩の水分、粒径およびマグネ
シウム濃度の測定の補正方法。
2. A method for irradiating a salt crystal with a plurality of infrared rays for moisture measurement, particle size measurement and magnesium concentration measurement, detecting reflected light of each infrared ray to determine each absorbance, and obtaining a previously determined moisture measurement. A method for correcting the measurement of water content, particle size and magnesium concentration of a salt using infrared rays, wherein the respective absorbances are applied to a calibration curve, a calibration curve for particle size measurement and a calibration curve for magnesium concentration measurement.
JP2000307580A 2000-10-06 2000-10-06 Method for Simultaneous Measurement of Moisture, Particle Size and Magnesium Concentration of Salt Using Infrared Ray and Correction Method for Measurement Expired - Fee Related JP3466556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307580A JP3466556B2 (en) 2000-10-06 2000-10-06 Method for Simultaneous Measurement of Moisture, Particle Size and Magnesium Concentration of Salt Using Infrared Ray and Correction Method for Measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307580A JP3466556B2 (en) 2000-10-06 2000-10-06 Method for Simultaneous Measurement of Moisture, Particle Size and Magnesium Concentration of Salt Using Infrared Ray and Correction Method for Measurement

Publications (2)

Publication Number Publication Date
JP2002116142A true JP2002116142A (en) 2002-04-19
JP3466556B2 JP3466556B2 (en) 2003-11-10

Family

ID=18788069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307580A Expired - Fee Related JP3466556B2 (en) 2000-10-06 2000-10-06 Method for Simultaneous Measurement of Moisture, Particle Size and Magnesium Concentration of Salt Using Infrared Ray and Correction Method for Measurement

Country Status (1)

Country Link
JP (1) JP3466556B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004999A1 (en) * 2008-07-07 2010-01-14 新日本製鐵株式会社 Method for measuring water content in a compound and water content measuring device
JP2014530736A (en) * 2011-10-28 2014-11-20 コーニンクレッカ フィリップス エヌ ヴェ Analysis and control of aerosol flow
KR101483002B1 (en) 2014-02-14 2015-01-22 한국식품연구원 Method for measuring sun-dried salt using analyzing disused ingredients and water in sun-driedsalt

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004999A1 (en) * 2008-07-07 2010-01-14 新日本製鐵株式会社 Method for measuring water content in a compound and water content measuring device
JP4890645B2 (en) * 2008-07-07 2012-03-07 新日本製鐵株式会社 Moisture measurement method for blended raw materials
KR101247445B1 (en) 2008-07-07 2013-03-26 신닛테츠스미킨 카부시키카이샤 Method for measuring water content in a compound and water content measuring device
JP2014530736A (en) * 2011-10-28 2014-11-20 コーニンクレッカ フィリップス エヌ ヴェ Analysis and control of aerosol flow
US9599550B2 (en) 2011-10-28 2017-03-21 Koninklijke Philips N.V. Analysis and control of aerosol flow
KR101483002B1 (en) 2014-02-14 2015-01-22 한국식품연구원 Method for measuring sun-dried salt using analyzing disused ingredients and water in sun-driedsalt

Also Published As

Publication number Publication date
JP3466556B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP7305727B2 (en) Porous film measurement
JP4505598B2 (en) Method for quantifying chemical components contained in tea leaves
CN106769937B (en) Spectral data processing method
CA2846816C (en) Sensor system and method for determining paper sheet quality parameters
JP2005513498A5 (en)
CN108037084B (en) Anti-interference measuring method suitable for photometric principle water quality automatic analyzer
JP2005257676A5 (en)
CN105548070A (en) Apple soluble solid near-infrared detection part compensation method and system
JP2018526624A (en) Holmium oxide glass as a calibration standard for near infrared moisture sensors
JP4372567B2 (en) Method for measuring water and aqueous solution by ultraviolet light
JPH054629B2 (en)
JP2002116142A (en) Method for measuring moisture content, grain size, and magnesium concentration of salt at the same time using infrared rays and method for correcting measurement
JP3868847B2 (en) Apple internal quality inspection method
CN107064026A (en) Total nitrogen total phosphorus determines device
CN106706554A (en) Method for rapidly and nondestructively determining content of straight-chain starch of corn single-ear grains
US7751051B2 (en) Method for cross interference correction for correlation spectroscopy
JP2007263883A (en) Residual agricultural chemical detection method
CN108007888B (en) Amino acid modified nanogold multichannel sensor and preparation method and application thereof
Garcia et al. Determination of iron at ng/ml level by solid phase spectrophotometry after preconcentration on cation exchange filters
Zhang et al. Moisture sorption as a potential condition marker for historic silks: noninvasive determination by near-infrared spectroscopy
JP2003106999A (en) Soil component analyzing method
JP2002257723A (en) Method and instrument for determining concentration of liquid sample
CN113795748A (en) Method for configuring a spectrometric device
JP5045871B2 (en) Method for correcting machine difference in spectroscopic analyzer
US6671629B2 (en) Method and device for measuring characteristics of a sample

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees