JP2002114530A - Method for manufacturing large-sized quartz glass body - Google Patents

Method for manufacturing large-sized quartz glass body

Info

Publication number
JP2002114530A
JP2002114530A JP2001185921A JP2001185921A JP2002114530A JP 2002114530 A JP2002114530 A JP 2002114530A JP 2001185921 A JP2001185921 A JP 2001185921A JP 2001185921 A JP2001185921 A JP 2001185921A JP 2002114530 A JP2002114530 A JP 2002114530A
Authority
JP
Japan
Prior art keywords
quartz glass
rod
glass body
carbon
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001185921A
Other languages
Japanese (ja)
Other versions
JP4441649B2 (en
Inventor
Yoshihisa Kusano
善久 草野
Atsushi Shimada
敦之 嶋田
Toshiji Hiraoka
利治 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Shin Etsu Quartz Products Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Shin Etsu Quartz Products Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2001185921A priority Critical patent/JP4441649B2/en
Publication of JP2002114530A publication Critical patent/JP2002114530A/en
Application granted granted Critical
Publication of JP4441649B2 publication Critical patent/JP4441649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a large-sized quartz glass body having high purity and high accuracy at a low cost. SOLUTION: A rod-like body 3 formed by serially connecting columnar or cylindrical carbon fiber reinforced carbon composite material members (C/C composites) in threaded parts is arranged in the central part of a heat resistant casting mold in the method for manufacturing the large-sized quartz glass body by packing silicon dioxide powder 2 into the heat resistant casting mold and forming molten glass in a heating furnace. The threaded parts are formed as trapezoidal shapes, and further, the threaded parts are provided with layers impregnated with carbon and/or subjected to coating, by which the strength of the threaded parts is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大型の石英ガラス体の
製造方法に関し、さらに詳しくは、高純度で高精度の大
型石英ガラス体を、低コストで収率よく製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large quartz glass body, and more particularly, to a method for producing a large-sized quartz glass body with high purity and high precision at low cost and with high yield.

【0002】[0002]

【従来技術】従来、光ファイバの製造に用いる光ファイ
バ母材用の石英ガラス管やロッドには、高い寸法精度や
高純度が要求されることから、石英ガラス微粒子を種棒
の軸方向に付着し堆積して多孔質石英ガラス母材(スー
ト体)を形成し、それを加熱して透明ガラス化する気相
軸付け法(VAD法)をはじめ、外付け法(OVD
法)、MCVD法等が採用され実用化されている。さら
に近年は、ゾルゲル法その他の合成法の応用や、以上の
方法を(RIT/RIC法等、オーバクラッディング工
程を用いて)組み合わせた方法の開発も進められてい
る。そして、今後の光ファイバ需要量の拡大にむけて、
量産化・低コスト化のために光ファイバ用母材のより一
層の大型化・長尺化がはかられることが予測されるが、
前記VAD法、OVD法、MCVD法及びそれらの組合
せによる製法によってさらなる大型化を図るには、スー
ト体の製造装置や脱水焼結炉をはじめとした設備が大掛
かりなものとなり、それに伴うコストの増大やハンドリ
ングの困難性等が深刻な問題となっている。また、ゾル
ゲル法による光ファイバ用母材の製造には、その設備面
やハンドリング面で大きなメリットがあるが、石英ガラ
ス中の気泡その他の品質上の問題等、依然重大な課題が
克服されておらず、実用化には到っていない。そこで、
前記製造方法の改善とは別に、特開平5−58656号
公報他にみられるような、二酸化珪素粉を出発材とした
石英ガラス製光ファイバ用母材の製造が検討されてい
る。
2. Description of the Related Art Conventionally, quartz glass tubes and rods for optical fiber preforms used in the production of optical fibers have been required to have high dimensional accuracy and high purity. A porous quartz glass base material (soot body) is formed by depositing, and then heated and heated to form a transparent vitrified glass material (VAD method).
Method), the MCVD method and the like have been adopted and put to practical use. Furthermore, in recent years, application of a sol-gel method or other synthetic methods, and development of a method combining the above methods (using an overcladding step such as a RIT / RIC method) have been advanced. And, for the future expansion of optical fiber demand,
It is expected that the size and length of the optical fiber preform will be further increased for mass production and cost reduction.
In order to further increase the size by the VAD method, the OVD method, the MCVD method, or a method based on a combination thereof, equipment such as a soot body manufacturing apparatus and a dehydration sintering furnace becomes large-scale, and the cost increases accordingly. And difficulties in handling are serious problems. Although the production of optical fiber preforms by the sol-gel method has great advantages in terms of equipment and handling, it still overcomes significant problems such as bubbles in quartz glass and other quality problems. Has not been put to practical use. Therefore,
Apart from the improvement of the manufacturing method, the manufacture of a quartz glass optical fiber preform using silicon dioxide powder as a starting material as disclosed in Japanese Patent Application Laid-Open No. 5-58656 and the like has been studied.

【0003】また、半導体製造の分野においても、製造
工程に用いられる熱処理用治具(炉心管、ウエーハボー
トその他)の材料となる石英ガラス管又はインゴット類
(ブロック状の他に板状体や棒状体等を含む)には、高
純度や耐熱性が要求されることから、例えば酸水素火炎
中に石英粉を供給しながら溶融堆積させるいわゆるベル
ヌイ法等が採用されている。しかし、このベルヌイ法に
より大型石英ガラス体を製造しようとすると非常に長い
時間を要し、コスト高をまねくことになるため、それを
解消する大型石英ガラス体の製造として、例えば特開平
9−202632号公報他に記載されるごとくカーボン
等の耐熱性鋳型に二酸化珪素粉を充填し加熱炉内で溶融
し透明ガラス化する方法(以下「鋳型溶融法」という)
が提案されている。この鋳型溶融法は、従来のごとく石
英ガラスブロックを機械加工により所望の形状とする方
法と比べて研削や切断等の工程に要する作業負担や治工
具類等を大幅に低減することができ、また成形等が簡便
なだけでなく材料収率が極めて高いため、コスト的に大
きな優位性をもつものである。
Also, in the field of semiconductor manufacturing, quartz glass tubes or ingots (in addition to blocks, plates or rods) used as materials for heat treatment jigs (core tubes, wafer boats, etc.) used in the manufacturing process. Since high purity and heat resistance are required, for example, the so-called Bernoulli method of melting and depositing while supplying quartz powder into an oxyhydrogen flame is employed. However, it takes a very long time to manufacture a large quartz glass body by the Bernoulli method, which leads to an increase in cost. For example, Japanese Patent Application Laid-Open No. 9-202632 discloses a method for manufacturing a large quartz glass body. As described in Japanese Unexamined Patent Publication, a method of filling silicon dioxide powder into a heat-resistant mold such as carbon and melting in a heating furnace to form a transparent glass (hereinafter referred to as a "mold melting method")
Has been proposed. This mold melting method can greatly reduce the work load and jigs and the like required for steps such as grinding and cutting as compared with a conventional method of forming a quartz glass block into a desired shape by machining. Not only is molding simple, but also the material yield is extremely high, so that it has a great advantage in cost.

【0004】このように、二酸化珪素粉を出発材とする
石英ガラス体の製造方法にあって、より大型化し低コス
ト化を図るには、鋳型溶融法が好適である。しかし、こ
の鋳型溶融法であっても、一段と大型化・肉厚化するた
めには、使用する鋳型をより大型化するとともに棒状体
をより細径化・長尺化して二酸化珪素粉を鋳型内に多く
充填することが必要となる。前記公報記載の鋳型溶融法
では、カーボン鋳型の中心部に石英ガラス製の棒状体を
挿入・配置することが開示されているが、実用にあたっ
ては、アルミナやジルコニア、炭化珪素や窒化珪素等の
セラミックス、または黒鉛化した炭素材(グラファイト
カーボン、以下単に「黒鉛」ともいう)等の使用も可能
であると考えられる。ところが、石英ガラス製の棒状体
では強度上あるいはハンドリング面で細径化に限界があ
り、またセラミックスや炭素材の棒状体では加工性や高
純度化の関係でコスト面で問題がある。そこで、加工性
とともに耐荷重性にも耐熱性にも優れ、ハンドリング等
についても容易な素材でありながら、価格的にも優位
で、なお且つ高純度品も可能な素材として、炭素繊維強
化炭素複合材料(Carbon Fiber Rein
forcedCarbon Composite、以下
「C/Cコンポジット」という)の使用が好適であると
考えられる。しかしながら従来のC/Cコンポジット製
部材の場合、その寸法が大きくなるにつれて、素材の合
成や成型等の作製上の問題、あるいは加工精度上の問題
等が増してくるため、1000mmを超える長さのもの
を実用的に用いるには大きな困難が伴うものとされてい
た。そのため、それ以上の長尺化には複数のC/Cコン
ポジット製部材を直列に接合することが要求されること
となる。
[0004] As described above, in the method of manufacturing a quartz glass body using silicon dioxide powder as a starting material, a mold melting method is preferable in order to increase the size and reduce the cost. However, even with this mold melting method, in order to further increase the size and thickness, the size of the mold to be used is increased, and the rod-shaped body is made thinner and longer, and the silicon dioxide powder is placed in the mold. Need to be filled more. In the mold melting method described in the above publication, it is disclosed that a rod-shaped body made of quartz glass is inserted and arranged at the center of a carbon mold, but in practical use, ceramics such as alumina, zirconia, silicon carbide and silicon nitride are disclosed. It is also considered possible to use a graphitized carbon material (graphite carbon, hereinafter also referred to simply as "graphite"). However, a rod-shaped body made of quartz glass has a limitation in reducing the diameter in terms of strength or handling surface, and a rod-shaped body made of ceramics or carbon material has a problem in cost due to workability and high purity. Therefore, carbon fiber reinforced carbon composite is a material that excels in load resistance and heat resistance as well as workability, is easy to handle, etc., is also superior in price, and is also capable of high purity products. Materials (Carbon Fiber Rein
The use of a focused carbon composite (hereinafter "C / C composite") is considered suitable. However, in the case of a conventional C / C composite member, as the size of the member increases, problems in production of materials, molding and the like, and problems in processing accuracy increase. Practical use of the material was considered to involve great difficulties. Therefore, in order to increase the length, it is required to join a plurality of C / C composite members in series.

【0005】[0005]

【発明が解決しようとする課題】複数のC/Cコンポジ
ット製部材を直列に接合した場合、接合部分の強度が不
足すると、接続部で「折れ」や「がた」が生じてしま
い、棒状体が弓状に曲ってしまう等のおそれが生じる。
このことは特に棒状体を細径化した場合に顕しく、この
ような「曲がり」が生じると、石英ガラス体の精度が低
下することとなり、得られた石英ガラス体について改め
て研削やドリリング等の成形工程が必要となるため、ト
ータルでは低コスト化に寄与できなくなってしまう、と
いう問題が生じてしまう。例えば、複数のC/Cコンポ
ジット製部材の接合方法としては、部材の端部付近に孔
を穿ち接合用のピンにより係止するなど、各種の様々な
治具を用いて複数の部材を繋ぐ工夫がなされており、あ
る程度の強度を有する棒状体も可能となっている。とこ
ろが、鋳型溶融法でより一層大型の石英ガラス体を製造
しようとすると、溶融ガラス化の際の応力が増大し、従
来の接合用ピンによる係止の場合、過大な応力に耐えき
れずにピンが折れるといった事態が生じていた。このよ
うに接合部のピンの破損等が生じてしまうと、棒状体に
「曲がり」等の変形が生じるため、得られた石英ガラス
体の精度が低下することとなり、改めて研削やドリリン
グ等の工程を要する等、低コスト化を制限してしまう。
ゆえに、優れた耐熱性や強度を確保したままさらなる棒
状体の長尺化・細径化を実現するためには、複数のC/
Cコンポジット製部材をいかなる手段を用いて接合する
かという点が重要な課題となる。
When a plurality of C / C composite members are joined in series, if the strength of the joining portion is insufficient, "bending" or "backlash" occurs at the connecting portion, and the rod-like member is formed. May be bowed.
This is particularly evident when the diameter of the rod-shaped body is reduced.If such "bending" occurs, the accuracy of the quartz glass body decreases, and the obtained quartz glass body is subjected to grinding, drilling, etc. Since a molding step is required, there is a problem that it is impossible to contribute to cost reduction in total. For example, as a method of joining a plurality of C / C composite members, a method of connecting a plurality of members using various various jigs, such as making a hole near an end of the member and locking it with a joining pin. Therefore, a rod-shaped body having a certain strength is also possible. However, when attempting to produce a larger quartz glass body by the mold melting method, the stress at the time of melt vitrification increases, and in the case of locking with a conventional joining pin, the pin cannot withstand excessive stress and cannot withstand excessive stress. Was broken. If the pins at the joints are damaged as described above, the rod-shaped body is deformed such as "bending", so that the accuracy of the obtained quartz glass body is reduced, and steps such as grinding and drilling are performed again. And the cost is limited.
Therefore, in order to further increase the length and diameter of the rod while maintaining excellent heat resistance and strength, a plurality of C /
An important issue is how to join the C composite members.

【0006】[0006]

【課題を解決するための手段】前記の課題に鑑み、本発
明者等は、鋭意研究を続けた結果、高純度かつ高強度で
耐熱性も高いC/Cコンポジット製部材を複数個直列に
ねじで接合することで接合部分の強度不足や、接続部で
の「折れ」や「がた」がなくなり曲りのない長尺で、細
径化した棒状体が得られ、それをカーボン鋳型の中心部
に配置することで溶融ガラス化の際の変形等がなく、寸
法精度の高い大型石英ガラス体が製造できることを見出
した。そして、前記接合には台形ねじが実用的であり、
さらにその接合部を補強することで、ねじ部分自体の強
度が向上し、より細径化が容易となり、より大型で肉厚
の石英ガラス体の実現が可能となることを見出した。ま
た本発明者等は、棒状体を細径化すると二酸化珪素粉を
多く充填でき大型化・肉厚化が可能となる反面、鋳型内
の中心周辺部の充填二酸化珪素粉は外周部側に比べて溶
融ガラス化が遅くなるため外周部側で発生したガスが中
心部分に移動してそのまま気泡として残存する可能性が
高くなってしまうことがある、という問題に対しては、
中心部に配置した棒状体を円筒状とすることで改善でき
ることを見出した。すなわち、該棒状体を円筒形状とし
て中空部を形成することにより、その中空部から二酸化
珪素粉の溶融ガラス化時に発生するガスを抜くことがで
き、石英ガラス体中に残存する気泡を低減することが可
能となる。さらに、そのような「ガス抜き」について本
発明者等は、棒状体と二酸化珪素粉との間、または耐熱
性鋳型と二酸化珪素粉との間、もしくはその両方に黒鉛
製の中間材を介在させることにより、ガスを外部へ排出
する経路を設けて石英ガラス体中の気泡の残存を一層低
減できることを見出して、発明を完成したものである。
すなわち、
Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies and found that a plurality of C / C composite members having high purity, high strength and high heat resistance were screwed in series. By joining with, there is no strength of the joint part, there is no bending or backlash at the connection part, and a long, thin rod without bending is obtained, and it is the central part of the carbon mold It has been found that a large quartz glass body with high dimensional accuracy can be manufactured by disposing the glass material in a state where there is no deformation at the time of melt vitrification. And a trapezoidal screw is practical for the joining,
Furthermore, it has been found that by reinforcing the joint, the strength of the screw portion itself is improved, the diameter can be easily reduced, and a larger and thicker quartz glass body can be realized. In addition, the present inventors have found that when the rod-shaped body is reduced in diameter, a large amount of silicon dioxide powder can be filled and the size and thickness of the rod can be increased. For the problem that the possibility that the gas generated on the outer peripheral part side moves to the central part and the possibility of remaining as a bubble as it is because the melt vitrification is delayed may be increased,
It has been found that the improvement can be achieved by making the rod-shaped body disposed at the center part cylindrical. That is, by forming the hollow portion into a cylindrical shape by the rod-shaped body, it is possible to remove gas generated during the melt vitrification of the silicon dioxide powder from the hollow portion, and to reduce bubbles remaining in the quartz glass body. Becomes possible. Further, with respect to such "degassing", the present inventors have placed an intermediate material made of graphite between the rod and the silicon dioxide powder, or between the heat-resistant mold and the silicon dioxide powder, or both. Thus, the inventors have found that a path for discharging gas to the outside can be provided to further reduce bubbles remaining in the quartz glass body, and the present invention has been completed.
That is,

【0007】本発明は、耐熱性とともに強度に優れる棒
状体を用いて、高純度の大型石英ガラス体を、低コスト
で製造する方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a large-sized quartz glass body of high purity at low cost using a rod-shaped body having excellent strength as well as heat resistance.

【0008】また、本発明は、高精度の大型石英ガラス
体を、収率よく製造する方法を提供することを目的と
し、さらには気泡の含有が少ない大型石英ガラス体を効
率的に製造することを可能とする。
It is another object of the present invention to provide a method for producing a large-sized quartz glass body with high precision in a high yield, and to efficiently produce a large-sized quartz glass body containing less air bubbles. Is possible.

【0009】前記目的を達成する本発明は、耐熱性鋳型
に二酸化珪素粉を充填し加熱炉内で溶融ガラス化する大
型石英ガラス体の製造方法において、前記耐熱性鋳型の
中心部に円柱状又は円筒状のC/Cコンポジット製部材
がねじ部で直列に接合された棒状体が配置されているこ
とを特徴とする大型石英ガラス体の製造方法に係る。
In order to achieve the above object, the present invention provides a method for producing a large quartz glass body in which a heat-resistant mold is filled with silicon dioxide powder and is melted and vitrified in a heating furnace. The present invention relates to a method for manufacturing a large quartz glass body, characterized in that a rod-shaped body in which cylindrical C / C composite members are joined in series by screw portions is arranged.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて具体的に説明するが、いずれも本発明の
技術思想を説明するための例示であり、それにより本発
明が限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the accompanying drawings, but all are merely examples for explaining the technical idea of the present invention, and the present invention is thereby limited. It is not done.

【0011】前記の通り本発明の製造方法は、円柱状又
は円筒状のC/Cコンポジット製棒状体をカーボン製鋳
型の中心部に配置し、二酸化珪素粉を充填したのち加熱
炉で溶融ガラス化することにより、高精度の大型石英ガ
ラス体を低コストで製造するものであり、その例の概略
図を図1に示す。図1において、1は耐熱性鋳型、2は
二酸化珪素粉、3は棒状体、4はヒーター、5は不活性
ガス導入口、6は排気口である。
As described above, according to the production method of the present invention, a columnar or cylindrical C / C composite rod is placed at the center of a carbon mold, filled with silicon dioxide powder, and then melt-vitrified in a heating furnace. By doing so, a high-precision large quartz glass body is manufactured at low cost, and a schematic diagram of an example thereof is shown in FIG. In FIG. 1, reference numeral 1 denotes a heat-resistant mold, 2 denotes a silicon dioxide powder, 3 denotes a rod, 4 denotes a heater, 5 denotes an inert gas inlet, and 6 denotes an exhaust port.

【0012】前記棒状体3は、円柱状又は円筒状のC/
Cコンポジットからなる部材が2個以上直列にねじ接合
された棒状体であり、そのC/Cコンポジットは、かさ
密度が1.5g/cm3以上、曲げ強度が100MPa
以上、引張り強さが100MPa以上のものがよい。使
用するC/Cコンポジットが前記範囲未満では、十分な
強度が得られず、大型の石英ガラス体を溶融ガラス化す
る場合に棒状体の変形等が発生するおそれがあり好まし
くない。前記C/Cコンポジットは、例えば炭素繊維ク
ロスにピッチ又は樹脂を含浸させたプリプレグを複数枚
積層し平板形状に成形する。その後、焼成による炭素化
処理、ピッチ又は樹脂を再度含浸して焼成する等の緻密
化処理、黒鉛化処理を行い、さらにハロゲンガスを用い
て高純度化処理して製造される。C/Cコンポジット中
の不純物は、Na、K、Fe等が1ppm以下であるの
がよい。これにより不純物による汚染が低減でき、半導
体ウエハ製造用の石英ガラス治具を製造した場合、半導
体毒となる金属元素等による汚染を抑えることができ、
また、光ファイバ母材用石英ガラス管を製造した場合、
伝送特性の損失が少ない良好な光ファイバを得ることが
できる。
The rod-shaped member 3 has a cylindrical or cylindrical C /
A C / C composite having a bulk density of 1.5 g / cm 3 or more and a bending strength of 100 MPa is a rod-shaped body in which two or more members made of a C composite are screw-connected in series.
As described above, those having a tensile strength of 100 MPa or more are preferred. If the C / C composite used is less than the above range, sufficient strength cannot be obtained, and when a large quartz glass body is melted and vitrified, the rod-shaped body may be deformed, which is not preferable. The C / C composite is formed, for example, by laminating a plurality of prepregs obtained by impregnating a carbon fiber cloth with a pitch or a resin, and molding the prepreg into a flat plate shape. Thereafter, carbonization treatment by baking, densification treatment such as re-impregnation with a pitch or resin and baking, and graphitization treatment are performed, and further, high purity treatment is performed using a halogen gas. As impurities in the C / C composite, Na, K, Fe and the like are preferably 1 ppm or less. As a result, contamination by impurities can be reduced, and when a quartz glass jig for manufacturing a semiconductor wafer is manufactured, contamination by a metal element or the like that becomes a semiconductor poison can be suppressed.
Also, when manufacturing a quartz glass tube for optical fiber preform,
A good optical fiber with little loss in transmission characteristics can be obtained.

【0013】前記C/Cコンポジットからなる部材をね
じ部で直列に接合するねじの形状としては、断面形状が
「台形型」である「台形ねじ」が雄ねじと雌ねじとの接
触面積が大きいため強度が高く、なおかつねじ加工や接
合などの作業性にも優れており、大型石英ガラス体がよ
り精度よく低コストで製造できる。本発明においては、
この台形ねじの他にも「三角ねじ」、「角ねじ」、「の
こ歯ねじ」等を適宜用いることができる。前記台形ねじ
を設けた棒状体の例を図2に示す。図2において、7は
両端のうち一方の側に雄ねじを設けたC/Cコンポジッ
ト製ロッド、8は両端のうち一方の側に雌ねじを設けた
C/Cコンポジット製ロッド、9はC/Cコンポジット
製ロッド7の雄ねじ部、10はC/Cコンポジット製ロ
ッド8の雌ねじ部である。さらに、図3に示されるごと
く、前記C/Cコンポジット製ロッドのねじ部炭素の
含浸及び/又は被覆が施された層11を設けることがで
きる。この層11を設けると、ねじ部の強度が一段と向
上し、外径30mmのロッドにおける引張り強さが黒鉛
製ロッドの約4倍にも達する。そのため棒状体を長尺
化、細径化しても、ねじ部での破損が起こる可能性が低
減されて好適である。さらに、ねじ部を補強するために
図4に示すようにねじ部外周にC/Cコンポジット製の
補強部材12を設けることができる。この補強部材を設
けることでねじ接合部の補強が一層強固となり、ねじ部
の熱膨張やねじ部の接触面積の減少が抑制でき、さらに
高い耐荷重性を確保することができ、細径化が可能とな
る。前記補強部材を形成するC/Cコンポジットは、例
えば炭素繊維にピッチ又は樹脂を含浸させたプリプレグ
を円柱状の支持体の上に巻つけ、円筒状に形成する。そ
の後、前述の炭素化処理、緻密化処理、黒鉛化処理、高
純度化処理を行い、さらに炭素の含浸及び/又は被覆が
施された層を設けて製造される。前記炭素の含浸及び/
又は被覆により補強部材からのパーティクルの発生が抑
えられ、一段と高純度の石英ガラス体が得られる。補強
部材はまた炭素の含浸及び/又は被覆を施さないC/C
コンポジットで形成することもできる。
[0013] As for the shape of the screw for joining the members made of the C / C composite in series with the screw portion, the "trapezoidal screw" having a "trapezoidal" cross-sectional shape has a large contact area between the male screw and the female screw. It is excellent in workability such as threading and joining, and a large quartz glass body can be manufactured more accurately and at low cost. In the present invention,
In addition to the trapezoidal screw, a “triangular screw”, a “square screw”, a “saw tooth screw” or the like can be appropriately used. FIG. 2 shows an example of a rod-shaped body provided with the trapezoidal screw. In FIG. 2, 7 is a C / C composite rod provided with a male thread on one side of both ends, 8 is a C / C composite rod provided with a female thread on one side of both ends, and 9 is a C / C composite. The male thread portion 10 of the rod 7 is a female thread portion of the C / C composite rod 8. Further, as shown in FIG. 3, the threaded portion of the C / C composite rod can be provided with a layer 11 impregnated with carbon and / or coated. When this layer 11 is provided, the strength of the thread portion is further improved, and the tensile strength of a rod having an outer diameter of 30 mm reaches about four times that of a graphite rod. Therefore, even if the rod-shaped body is made longer and smaller in diameter, the possibility of breakage in the screw portion is reduced, which is preferable. Further, as shown in FIG. 4, a reinforcing member 12 made of a C / C composite can be provided on the outer periphery of the screw portion to reinforce the screw portion. By providing this reinforcing member, the reinforcement of the threaded joint becomes stronger, the thermal expansion of the threaded part and the decrease in the contact area of the threaded part can be suppressed, a higher load resistance can be ensured, and the diameter can be reduced. It becomes possible. The C / C composite forming the reinforcing member is formed, for example, by winding a prepreg obtained by impregnating carbon fibers with a pitch or a resin on a columnar support, and forming the prepreg into a cylindrical shape. Thereafter, the carbonization treatment, the densification treatment, the graphitization treatment, and the high-purification treatment are performed, and a carbon impregnated and / or coated layer is provided. The carbon impregnation and / or
Alternatively, the generation of particles from the reinforcing member is suppressed by the coating, and a higher purity quartz glass body can be obtained. The reinforcing member may also be C / C without carbon impregnation and / or coating.
It can also be formed of a composite.

【0014】前記炭素の含浸及び/又は被覆が施された
層とは、炭化水素系ガスなどを使ったCVI処理及び/
又はCVD処理、もしくは樹脂の含浸・被覆、硬化、焼
成処理等を施すことによって、C/Cコンポジットに、
(i)CVI処理で熱分解炭素が表面から気孔内部へと
含浸・被覆されるか又は樹脂の処理等でガラス状炭素な
どの物質が含浸されることにより形成された層、(i
i)CVD処理で熱分解炭素が表面に被覆されるか又は
樹脂の処理等でガラス状炭素などの物質が表面に被覆さ
れることにより形成された層、又は(iii)CVI処
理で熱分解炭素が表面から気孔内部へと含浸・被覆され
るか又は樹脂の処理等でガラス状炭素などの物質が含浸
され、なおかつその表面にCVD処理で熱分解炭素が表
面に被覆されるか又は樹脂の処理等でガラス状炭素など
の物質を表面に被覆されることにより形成された層、を
いう。なお、前記「含浸」と「被覆」にあたっては、こ
れらの層の形成の工程前後に、必要に応じて機械的な表
面処理や仕上げ加工を行なうことは、工業的に通常行な
われることである。
The layer impregnated and / or coated with carbon is a CVI treatment using a hydrocarbon gas or the like.
Alternatively, the C / C composite is subjected to CVD treatment or resin impregnation / coating, curing, baking treatment, etc.
(I) a layer formed by impregnating and coating pyrolytic carbon from the surface to the inside of pores by CVI treatment or by impregnating a substance such as glassy carbon by resin treatment or the like;
i) a layer formed by coating the surface with pyrolytic carbon by CVD processing, or coating the surface with a substance such as glassy carbon by resin treatment, or (iii) pyrolytic carbon by CVI processing. Is impregnated and coated from the surface to the inside of the pores, or is impregnated with a substance such as glassy carbon by resin treatment, and the surface is coated with pyrolytic carbon by CVD processing, or the resin is treated. Etc. means a layer formed by coating the surface with a substance such as glassy carbon. In the above-mentioned "impregnation" and "coating", mechanical surface treatment and finishing as necessary before and after the step of forming these layers are generally performed industrially.

【0015】前記大型石英ガラス体の製造において、C
/Cコンポジット製棒状体と石英ガラス体との付着及び
/又は耐熱性鋳型と石英ガラス体との付着を防止するた
め、棒状体と二酸化珪素粉との間及び/又は耐熱性鋳型
と二酸化珪素粉との間に、黒鉛製の中間材を介在させる
のがよい。前記黒鉛製の中間材としては、具体的にグラ
ファイトシート及び/又はグラファイトフェルトが挙げ
られ、このグラファイトシート及び/又はグラファイト
フェルトで棒状体の外周を被覆したり鋳型の内側を覆う
ことにより、棒状体及び/又は鋳型と石英ガラス体との
付着が防止できるため、石英ガラス体を容易に抜き取る
ことができ、C/Cコンポジット製棒状体や耐熱性鋳型
の再使用が可能となり、それらの長寿命化をはかること
も可能となる。さらに、前記被覆により、二酸化珪素粉
の溶融ガラス化に伴う応力を緩和することにより、鋳型
の変形や破損が防止でき、またグラファイトの伸縮性と
ガス透過性とにより、ガラス化時に発生するガスを外に
逃す経路が設けられることとなるので、石英ガラス体中
に残存する気泡を一層低減することも可能となる。な
お、前記棒状体や鋳型を黒鉛製中間材で被覆する場合に
は、グラファイトシート又はグラファイトフェルトのど
ちらか一方を用いても、グラファイトフェルトを被覆し
た上にさらにグラファイトシートで覆ってもよく、例え
ば特開平11−278857号公報に開示されるごと
く、鋳型の底面部と側面部とで異なる素材を使い分けて
もよい。
In the production of the large quartz glass body, C
/ C between the rod and silicon dioxide powder and / or the heat-resistant mold and silicon dioxide powder to prevent adhesion between the composite rod and the quartz glass and / or the adhesion between the heat-resistant mold and the quartz glass. And an intermediate material made of graphite is preferably interposed between them. Specific examples of the graphite intermediate material include a graphite sheet and / or graphite felt, and the graphite sheet and / or graphite felt is used to cover the outer periphery of the rod or cover the inside of the mold to form the rod. And / or the adhesion between the mold and the quartz glass body can be prevented, so that the quartz glass body can be easily extracted and the C / C composite rod or heat-resistant mold can be reused, and the life thereof can be extended. It is also possible to measure. Furthermore, the coating reduces the stress associated with the vitrification of the silicon dioxide powder, thereby preventing deformation and breakage of the mold, and the elasticity and gas permeability of graphite reduce gas generated during vitrification. Since a path to escape to the outside is provided, it is possible to further reduce bubbles remaining in the quartz glass body. In the case where the rod-shaped body or the mold is coated with a graphite intermediate material, either one of a graphite sheet or graphite felt may be used, and the graphite felt may be further coated on the graphite sheet. As disclosed in Japanese Patent Application Laid-Open No. H11-278857, different materials may be used for the bottom part and the side part of the mold.

【0016】本発明の製造方法で使用する二酸化珪素粉
としては、用途やコスト等に応じて適宜選択することが
できるが、例えば、一定以上の高純度とともに高耐熱性
が要求される半導体治具用の石英ガラス体の場合には、
天然石英(水晶)、珪砂、珪石等を粉砕して得られる結
晶質シリカ粉を純化したものがコスト上好ましく、それ
らを溶融した非晶質シリカ粉もまた用いることができ
る。また、光ファイバ用母材を製造するためのシリンダ
ー状石英ガラス体を製造する場合など、より純度の高い
粉体が求められる場合には、シリコアルコキシド、ハロ
ゲン化珪素(四塩化珪素ほか)、珪酸ソーダその他の珪
素化合物を出発材料として、ゾルゲル法、スート法、火
炎燃焼法等で得られる合成石英ガラス粉を用いるのがよ
い。その他にも、フュームドシリカや沈降シリカ等も利
用できる。
The silicon dioxide powder used in the production method of the present invention can be appropriately selected according to the application and cost. For example, a semiconductor jig which requires a high purity and a high heat resistance above a certain level is required. In the case of quartz glass body for
Purified crystalline silica powder obtained by pulverizing natural quartz (quartz), silica sand, silica stone, or the like is preferable in terms of cost, and amorphous silica powder obtained by fusing them is also usable. When a powder having higher purity is required, for example, when manufacturing a cylindrical quartz glass body for manufacturing a base material for an optical fiber, a silicon alkoxide, a silicon halide (such as silicon tetrachloride), a silicate, It is preferable to use a synthetic quartz glass powder obtained by a sol-gel method, a soot method, a flame combustion method, or the like, using soda or another silicon compound as a starting material. In addition, fumed silica, precipitated silica, and the like can be used.

【0017】前記結晶質または非晶質の二酸化珪素粉の
サイズとしては、加熱溶融条件その他に応じて適宜使い
分ければよいが、好ましいものの一例として、その粒径
が1〜1000μmの範囲の粉、より好ましいものの一
例として、その粒径が10〜300μmの範囲の粉を挙
げることができる。使用する二酸化珪素粉の粒径が大き
すぎる場合、粉の充填密度が低下するため均一なガラス
化が困難となり、均質な石英ガラス体が得られなくなっ
てしまうというおそれがあるので、1000μmを超え
る二酸化珪素粉は用いないことが望ましい。また、粒径
が小さすぎる場合、取り扱い上の問題が生じるおそれが
あるので、粒径が1μm未満の二酸化珪素粉は用いない
ことが望ましい。なお、特に合成石英ガラス粉を使用す
る場合には、粉の溶融が速くなるため気泡の残存を助長
してしまい、結果的に気泡の含有数が増えてしまうとい
うおそれがあるため、その点からも、ある程度大きな粒
径の粉を使用するのが望ましい。また、本発明において
は、天然又は合成もしくは結晶質又は非晶質の二酸化珪
素粉等を石英ガラス体の用途その他に応じて適宜使い分
けることが可能であり、具体的には、天然石英粉、天然
石英ガラス粉、合成石英ガラス粉及び合成石英粉から適
宜選択することができ、また前記各種の粉に特定の作用
(耐熱性向上、光透過性向上、その他)を有する元素
(アルミニウム、窒素、水素、その他)をドープした粉
を用いることも可能である。さらに、前に述べた二酸化
珪素粉等の充填密度や溶融速度を制御するという観点か
ら、前記各種二酸化珪素粉を混合したり組み合わせたり
することも有効である。例えば、粒径1〜1000μm
の範囲内で、ある程度粒径が異なる石英粉を混合するこ
とにより、充填密度を向上させ均一な溶融ガラス化を促
すことが可能となり、また、鋳型の内側(中心部分近
傍)には石英ガラス粉を充填し、外側(外周部近傍)に
は石英粉を充填することにより、外側の溶融が速くなり
すぎることを防止して気泡の含有を抑えることも可能と
なる。
The size of the crystalline or amorphous silicon dioxide powder may be appropriately selected according to the heating and melting conditions and the like. Preferred examples thereof include powders having a particle size in the range of 1 to 1000 μm, A more preferred example is a powder having a particle size in the range of 10 to 300 μm. If the particle size of the silicon dioxide powder to be used is too large, it is difficult to obtain a uniform vitreous glass because the packing density of the powder is reduced, and a homogeneous quartz glass body may not be obtained. It is desirable not to use silicon powder. If the particle size is too small, there may be a problem in handling. Therefore, it is desirable not to use silicon dioxide powder having a particle size of less than 1 μm. In particular, when using synthetic quartz glass powder, the melting of the powder is accelerated, which promotes the remaining of bubbles, and as a result, there is a possibility that the number of contained bubbles may be increased. However, it is desirable to use a powder having a relatively large particle size. Further, in the present invention, natural or synthetic or crystalline or amorphous silicon dioxide powder or the like can be appropriately used depending on the use of the quartz glass body and the like. Specifically, natural quartz powder, natural stone It can be appropriately selected from English glass powder, synthetic quartz glass powder and synthetic quartz powder, and elements (aluminum, nitrogen, hydrogen) having a specific action (improving heat resistance, improving light transmittance, etc.) in the above-mentioned various powders , Etc.) can be used. Further, from the viewpoint of controlling the filling density and melting rate of the above-mentioned silicon dioxide powder or the like, it is also effective to mix or combine the various silicon dioxide powders. For example, a particle size of 1 to 1000 μm
Within this range, it is possible to increase the packing density and promote uniform melt vitrification by mixing quartz powder with a certain degree of particle size within the range described above. Is filled, and the outside (near the outer peripheral portion) is filled with quartz powder, so that the melting of the outside can be prevented from becoming too fast, and the inclusion of bubbles can be suppressed.

【0018】前記二酸化珪素粉の加熱溶融条件として
は、例えば特開平9−202632号に記載する条件を
採用するのがよい。すなわち、 室温から1600℃まで 200〜600℃/時間 1600℃〜石英粉の溶融温度まで 10〜100℃/時間 の昇温速度で、充填二酸化珪素粉層の厚さ5cm当たり
少なくとも30分の時間を要して加熱し、充填二酸化珪
素粉内の気体を排気しながら加熱溶融する。この加熱溶
融後少なくとも2時間、好ましくは3〜5時間前記溶融
温度に保持するとともに不活性ガスを導入し真空破壊
し、0.5〜3気圧の加圧下にする。前記溶融条件を採
ることにより、より一層石英ガラス体が大型化しても、
その内部に残存する気泡を低減することが可能となる。
さらに好ましくは、前記C/Cコンポジット製棒状体を
円筒状とし、その中空部からガスを排出しながら溶融す
ると、さらに気泡の残存を抑える効果がある。なお、以
上の記述は透明な石英ガラス体を製造することを前提と
したものであるが、遮熱性や遮光性を備える不透明石英
ガラス体を得ようとする場合にも、本発明の製造方法を
応用することが可能であり、その場合は充填二酸化珪素
粉に発泡剤を添加したり、加熱の際に温度プロファイル
を適宜変更する等の方策を講じればよい。
As the heating and melting conditions of the silicon dioxide powder, for example, the conditions described in JP-A-9-202632 are preferably used. That is, from room temperature to 1600 ° C, from 200 to 600 ° C / hour, from 1600 ° C to the melting temperature of quartz powder, at a rate of 10 to 100 ° C / hour, at least 30 minutes per 5 cm thickness of the filled silicon dioxide powder layer. In short, it is heated and melted while exhausting the gas in the filled silicon dioxide powder. After the heating and melting, the temperature is maintained at the above-mentioned melting temperature for at least 2 hours, preferably 3 to 5 hours. By adopting the melting conditions, even if the quartz glass body is further enlarged,
It is possible to reduce the air bubbles remaining inside.
More preferably, if the C / C composite rod is made cylindrical and melted while discharging gas from the hollow portion, there is an effect of further suppressing the remaining of bubbles. Note that the above description is based on the premise that a transparent quartz glass body is manufactured.However, even when an opaque quartz glass body having heat-shielding properties and light-shielding properties is to be obtained, the manufacturing method of the present invention is not required. In this case, it is possible to add a foaming agent to the filled silicon dioxide powder, or to appropriately change the temperature profile at the time of heating.

【0019】以上に述べたごとく、本発明の製造方法で
使用するC/Cコンポジット製棒状体は高純度であると
ともに高い耐熱性と強度を有することから、大型石英ガ
ラス体を作成する際の焼成や搬送等においても変形や中
心のブレがなく、寸法精度が高く気泡の含有が少ない大
型石英ガラス体を低コストで製造することができる。
As described above, the C / C composite rod used in the production method of the present invention has high purity and high heat resistance and strength. A large quartz glass body having high dimensional accuracy and containing few bubbles can be manufactured at low cost without deformation or center deviation even during transfer or transportation.

【0020】[0020]

【実施例】次に具体例をあげて本発明を詳細に説明する
が、これらの実施例は例示的に示されるものであって、
本発明はそれにより限定されるものではない。
Now, the present invention will be described in further detail with reference to Examples. However, these Examples are illustrative only.
The present invention is not limited thereby.

【0021】実施例1 東レ(株)製の炭素繊維(トレカT−300)の6K平
織りクロスにフェノール樹脂を含浸させてプリプレグを
製造し、約820mm×410mmに裁断して積層し、
160℃で熱圧プレス成形を行って、約820mm×4
10mm×35mmのサイズの成形体を得た。この成形
体を、電気炉内で800℃まで昇温して加熱し、焼成体
を得た。その焼成体にピッチ含浸と焼成を繰り返し行っ
て緻密化した後、2000℃で熱処理して、約820m
m×410mm×35mmの平板状のC/Cコンポジッ
トを得た。このC/Cコンポジット平板の物性値を測定
したところ、かさ密度1.62g/cm3、曲げ強さ1
55MPa、引張り強さ220MPaであった。この平
板から、長さ800mm、直径30mmφの円柱ロッド
を12本作製し、そのうち2本のロッドについて、1本
の端部外周を削により端面から50mm長さまで台形
型雄ねじとする一方、もう一本の端部内周を研削により
台形型雌ねじとし、ハロゲンガスによる高純度化処理を
行った後、2本を直列に繋ぎ合わせて接合し、長さ15
50mm、直径30mmφのC/Cコンポジット製棒状
体を得た。得られた棒状体を引張り試験装置に取り付
け、変移速度0.5mm/minの静的引張り荷重に
て、破断荷重の測定を行った。その結果、ねじ山が破断
し、その時の破断荷重は14200N(ニュートン)で
あり、接合部は十分な強度を有していることが確認され
た。
Example 1 A prepreg was manufactured by impregnating a 6K plain weave cloth of carbon fiber (Torayca T-300) manufactured by Toray Industries Co., Ltd. with a phenol resin, cut into about 820 mm × 410 mm, and laminated.
Perform hot press molding at 160 ° C, about 820mm x 4
A compact having a size of 10 mm × 35 mm was obtained. The molded body was heated to 800 ° C. in an electric furnace and heated to obtain a fired body. The fired body is densified by repeatedly performing pitch impregnation and firing, and then heat-treated at 2,000 ° C. to about 820 m
A flat C / C composite of mx 410 mm x 35 mm was obtained. When the physical properties of the C / C composite plate were measured, the bulk density was 1.62 g / cm 3 and the bending strength was 1
It was 55 MPa and the tensile strength was 220 MPa. This flat, length 800 mm, to prepare 12 a cylindrical rod having a diameter of 30 mm?, The two of which rods, while the trapezoidal male thread from the end surface to 50mm in length by Grinding the one end periphery, another The inner circumference of the end of the book is formed into a trapezoidal female screw by grinding, and after performing high-purity treatment with a halogen gas, the two pieces are connected in series and joined to form a length of 15 mm.
A C / C composite rod having a diameter of 50 mm and a diameter of 30 mm was obtained. The obtained rod was attached to a tensile tester, and the breaking load was measured with a static tensile load at a transition speed of 0.5 mm / min. As a result, the thread was broken, and the breaking load at that time was 14,200 N (Newton), confirming that the joint had sufficient strength.

【0022】さらに、残りの10本のロッドについて、
前記と同様に台形型雄ねじと台形型雌ねじを設けた(こ
こでは、1本のロッドには1端側に雄ねじのみを、8本
については1端側に雄ねじ、その反対側に雌ねじを、残
りの1本のロッドには1端側に雌ねじのみを、それぞれ
設けた)後、ハロゲンガスによる高純度化処理を行っ
た。そして、それらの10本のロッドを、前記と同様に
雄ねじと雌ねじとにより9箇所を接合して、長さ755
0mm、直径30mmφのC/Cコンポジット製棒状体
A(3)を得た。
Further, regarding the remaining ten rods,
A trapezoidal male screw and a trapezoidal female screw were provided in the same manner as described above. (Here, one rod has only one male screw at one end, eight rods have one male screw at one end, and the other has a female screw at the other end. Only one female screw was provided on one end side of each of the rods), and a high-purity treatment was performed with a halogen gas. Then, these ten rods are joined at nine locations with male and female threads in the same manner as described above, and a length of 755
A C / C composite rod A (3) having a diameter of 0 mm and a diameter of 30 mm was obtained.

【0023】前記C/Cコンポジット製棒状体A(3)
を内径155mmφ、長さ1000mmの円筒状のカー
ボン製鋳型1の中心に配置したのち、石英粉2(総金属
不純物30ppm以下、粒度分布60〜280μm、平
均粒径180μm)を振動を与えながら充填し、高さ約
950mmに詰めた。前記充填物の密度は約1.45g
/cm3であった。カーボン製鋳型1全体を真空炉内に
セットし、1×10-4mmHg以下の真空度まで減圧し
た後、昇温を開始した。加熱源としてはカーボン抵抗ヒ
ーター4を使用し、温度を熱電対で測定しながら、室温
から1780℃まで7時間で加熱し、1780℃に2時
間保持したのち、窒素ガスで炉内の真空を破壊し、大気
圧に戻し、溶融・徐冷終了まで大気圧下を維持すること
により、中空シリンダー形状の大型石英ガラス体を製造
した。得られた石英ガラス体は気泡の含有が無く、曲り
や偏心のない寸法精度の良好なものであり、光ファイバ
用母材として好適な石英ガラス中空体であった。
The C / C composite rod A (3)
Is placed in the center of a cylindrical carbon mold 1 having an inner diameter of 155 mmφ and a length of 1000 mm, and then filled with quartz powder 2 (total metal impurities 30 ppm or less, particle size distribution 60 to 280 μm, average particle size 180 μm) while applying vibration. And a height of about 950 mm. The density of the packing is about 1.45g
/ Cm 3 . The entire carbon mold 1 was set in a vacuum furnace, the pressure was reduced to a degree of vacuum of 1 × 10 −4 mmHg or less, and then the temperature was raised. Using a carbon resistance heater 4 as a heating source, the temperature is measured from room temperature to 1780 ° C. for 7 hours while the temperature is measured with a thermocouple, and the temperature is maintained at 1780 ° C. for 2 hours, and then the vacuum in the furnace is broken with nitrogen gas. Then, the pressure was returned to the atmospheric pressure, and the pressure was maintained at the atmospheric pressure until the completion of the melting and slow cooling, thereby producing a large quartz glass body having a hollow cylinder shape. The obtained quartz glass body did not contain bubbles, had good dimensional accuracy without bending or eccentricity, and was a quartz glass hollow body suitable as a base material for optical fibers.

【0024】実施例2 実施例1と同様に、長さ800mm、直径30mmφの
円柱ロッドを12本作製した。そのうち2本のロッドに
ついて、1本の端部外周を研削により端面から50mm
長さまで台形型雄ねじとする一方、もう1本の端部内周
を研削により台形型雌ねじとした。これらのねじ部が形
成された2本のロッドについて、ハロゲンガスによる高
純度化処理を行った後、気相蒸着炉に入れ、CVI処理
により熱分解炭素の含浸・被覆を行い、その2本のロッ
ドを直列に繋ぎ合わせて接合して、長さ1550mm、
直径30mmφのC/Cコンポジット製棒状体を得た。
得られたC/Cコンポジット製棒状体について、実施例
1と同様に静的引張り荷重による破断荷重の測定を行っ
たところ、ねじ山が破断し、その時の破断荷重は167
00Nであり、実施例1よりもさらに優れた強度を有し
ていることが確認された。
Example 2 As in Example 1, twelve cylindrical rods having a length of 800 mm and a diameter of 30 mm were produced. Of the two rods, the outer circumference of one end was ground 50 mm from the end face.
A trapezoidal female screw was formed by grinding the inner periphery of the other end while a trapezoidal male screw was formed up to the length. The two rods having these threaded portions are subjected to a high-purity treatment with a halogen gas, then put into a vapor deposition furnace, and impregnated and coated with pyrolytic carbon by a CVI treatment. The rods are connected in series and joined, and the length is 1550 mm,
A C / C composite rod having a diameter of 30 mm was obtained.
About the obtained C / C composite rod-shaped body, when the breaking load by the static tensile load was measured in the same manner as in Example 1, the thread was broken, and the breaking load at that time was 167.
00N, and it was confirmed that it had a strength that was even better than that of Example 1.

【0025】さらに、残りの10本のロッドについて、
ハロゲンガスによる高純度化処理を行った後、前記と同
様にCVI処理によりねじ部に熱分解炭素の含浸・被覆
を行い、台形型雄ねじと台形型雌ねじにより実施例1の
棒状体と同様に9箇所を接合して、長さ7550mm、
直径30mmφのC/Cコンポジット製棒状体B(3)
を得た。
Further, for the remaining ten rods,
After performing the purification treatment with halogen gas, the screw portion is impregnated and coated with pyrolytic carbon by the CVI treatment in the same manner as described above, and the trapezoidal male screw and the trapezoidal female screw are used in the same manner as in the rod-shaped body of Example 1 to obtain 9 parts. Join the parts, length 7550mm,
30 mmφ diameter C / C composite rod B (3)
Got.

【0026】前記C/Cコンポジット製棒状体B(3)
の外周をグラファイトシートにより被覆し、その棒状体
Bを内径155mmφ、長さ1000mmの円筒状のカ
ーボン製鋳型1の中心に配置したのち、石英粉2(総金
属不純物30ppm以下、粒度分布60〜280μm、
平均粒径180μm)を振動を与えながら充填し、高さ
約950mmに詰めた。この石英粉の充填されたカーボ
ン製鋳型1全体を、実施例1と同様の条件で真空炉によ
り加熱し、中空シリンダー形状の大型石英ガラス体を製
造した。得られた石英ガラス体は気泡の含有が無く、曲
りや偏心のない寸法精度の良好なものであり、光ファイ
バ用母材として好適な石英ガラス中空体であった。ま
た、グラファイトシートを剥がしたC/Cコンポジット
製棒状体B(3)は、その表面に劣化等の変質が認めら
れず、繰り返し同様に使用可能であることがうかがえ
た。
The C / C composite rod B (3)
Is covered with a graphite sheet, and the rod B is placed at the center of a cylindrical carbon mold 1 having an inner diameter of 155 mmφ and a length of 1000 mm, and then a quartz powder 2 (total metal impurities 30 ppm or less, particle size distribution 60 to 280 μm) ,
(Average particle size: 180 μm) while applying vibration, and packed to a height of about 950 mm. The whole carbon mold 1 filled with the quartz powder was heated in a vacuum furnace under the same conditions as in Example 1 to produce a large hollow cylindrical quartz glass body. The obtained quartz glass body did not contain bubbles, had good dimensional accuracy without bending or eccentricity, and was a quartz glass hollow body suitable as a base material for optical fibers. Further, the C / C composite rod-shaped body B (3) from which the graphite sheet was peeled off did not show any deterioration such as deterioration on its surface, indicating that it could be used repeatedly.

【0027】実施例3 実施例1及び2と同様に、長さ800mm、直径30m
mφの円柱ロッドを12本作製し、そのうち2本のロッ
ドについて、1本の端部外周を研削により端面から50
mm長さまで台形型雄ねじとする一方、もう1本の端部
内周を研削により台形型雌ねじとした。次いで、前記雌
ねじ部の外周部分を深さ1mm、長さ30mm分切削し
た。これはその切削部分に、円周で補強するための円筒
形状のC/Cコンポジット製補強部材を取り付けるため
のものである。これらのねじ部が形成された2本のロッ
ドについて、ハロゲンガスによる高純度化処理を行った
後、気相蒸着炉に入れ、CVI処理により熱分解炭素の
含浸・被覆を行い、その2本のロッドを直列に繋ぎ合わ
せて接合し、長さ1550mm、直径30mmφのC/
Cコンポジット製棒状体を得た。前記補強部材は、東レ
(株)製の炭素繊維(トレカT−300)12Kフィラ
メントをフィラメントワィンディング装置によりフェノ
ール樹脂を含浸しながらシリンダー形状に成形し、その
成形体にピッチ含浸、焼成を数回繰り返し緻密化を行な
った後、2000℃で熱処理を行った。このシリンダー
形状品を幅20mmに切断し内部に2分割の金属治具を
挿入し、引張り試験機を用い上下に引張る方法で引張り
強さを測定したところ300MPaの強度があった。前
記補強部材は、C/Cコンポジット製棒状体の雌ねじ部
外周の切削部分に合うように内外径、長さを加工し、図
3に示したように雌ねじ部外周の切削部分に篏合した。
前記補強部材は、さらに実施例2と同様に、ハロゲンガ
スによる高純度化処理及び熱分解炭素の含浸・被覆を施
した。得られたC/Cコンポジット製棒状体について、
実施例1及び2と同様に静的引張り荷重による破断荷重
の測定を行ったところ、ねじ山が破断し、その時の破断
荷重は21000Nであり、実施例2よりもさらに優れ
た強度を有していることが確認された。
Example 3 As in Examples 1 and 2, the length was 800 mm and the diameter was 30 m.
Twelve cylindrical rods of mφ were prepared, and of two rods, the outer periphery of one end was ground from the end face by grinding.
While a trapezoidal male screw was formed up to the length of mm, the inner periphery of the other end was ground to form a trapezoidal female screw. Next, the outer peripheral portion of the female screw portion was cut by a depth of 1 mm and a length of 30 mm. This is for attaching a cylindrical C / C composite reinforcing member for reinforcing around the circumference to the cut portion. The two rods having these threaded portions are subjected to a high-purity treatment with a halogen gas, then put into a vapor deposition furnace, and impregnated and coated with pyrolytic carbon by a CVI treatment. Rods are connected in series and joined to form a 1550 mm long, 30 mm diameter C /
A C composite rod was obtained. The reinforcing member is formed by molding a carbon fiber (Torayca T-300) 12K filament manufactured by Toray Industries, Inc. into a cylindrical shape while impregnating a phenolic resin with a filament winding device, and repeatedly performing pitch impregnation and firing on the molded body several times. After densification, heat treatment was performed at 2000 ° C. This cylinder-shaped product was cut into a width of 20 mm, and a metal jig divided into two was inserted therein. The tensile strength was measured by a method of pulling up and down using a tensile tester. The tensile strength was 300 MPa. The inner and outer diameters and lengths of the reinforcing member were machined so as to match the outer peripheral portion of the female screw portion of the C / C composite rod, and fitted to the outer peripheral portion of the internal thread portion as shown in FIG.
The reinforcing member was subjected to a high-purity treatment with a halogen gas and impregnation / coating with pyrolytic carbon in the same manner as in Example 2. About the obtained C / C composite rod,
When the measurement of the breaking load by the static tensile load was performed in the same manner as in Examples 1 and 2, the thread was broken, and the breaking load at that time was 21,000 N, and the strength was higher than that of Example 2. Was confirmed.

【0028】さらに、残りの10本のロッドについて、
ハロゲンガスによる高純度化処理を行った後、前記と同
様にCVI処理によりねじ部に熱分解炭素の含浸・被覆
を行い、前記と同様に台形型雄ねじと円筒形状のC/C
コンポジット製補強部材が取り付けられた台形型雌ねじ
により、実施例1及び2の棒状体と同様に9箇所を接合
して、長さ7550mm、直径30mmφのC/Cコン
ポジット製棒状体C(3)を得た。
Further, regarding the remaining ten rods,
After high purity treatment with halogen gas, the screw portion is impregnated and coated with pyrolytic carbon by CVI treatment as described above, and a trapezoidal male screw and cylindrical C / C are formed as described above.
Nine places are joined by a trapezoidal female screw to which a composite reinforcing member is attached in the same manner as the rods of Examples 1 and 2 to form a C / C composite rod C (3) having a length of 7550 mm and a diameter of 30 mmφ. Obtained.

【0029】内径155mm、長さ1000mmの円筒
状のカーボン製鋳型1の内壁面をグラファイトフェルト
で覆い、その鋳型1の中心に前記C/Cコンポジット製
棒状体C(3)を配置したのち、石英粉2(総金属不純
物30ppm以下、粒度分布60〜280μm、平均粒
径180μm)を振動を与えながら充填し、高さ約95
0mmに詰めた。この石英粉の充填されたカーボン製鋳
型1全体を、実施例1及び2と同様の条件で真空炉によ
り加熱し、中空シリンダー形状の大型石英ガラス体を製
造した。得られた石英ガラス体は気泡の含有が無く、曲
りや偏心のない寸法精度の良好なものであり、光ファイ
バ用母材として好適な石英ガラス中空体であった。ま
た、グラファイトフェルトの内貼りを剥がしたカーボン
製鋳型1の内壁は、その表面に劣化等の変質が認められ
ず、複数回繰り返して使用可能であることが窺えた。
The inner wall surface of a cylindrical carbon mold 1 having an inner diameter of 155 mm and a length of 1000 mm is covered with graphite felt, and the C / C composite rod C (3) is arranged at the center of the mold 1 and then quartz. Powder 2 (total metal impurities 30 ppm or less, particle size distribution 60 to 280 μm, average particle size 180 μm) is filled while applying vibration, and a height of about 95
Packed to 0 mm. The entirety of the carbon mold 1 filled with the quartz powder was heated in a vacuum furnace under the same conditions as in Examples 1 and 2, to produce a large quartz glass body having a hollow cylinder shape. The obtained quartz glass body did not contain bubbles, had good dimensional accuracy without bending or eccentricity, and was a quartz glass hollow body suitable as a base material for optical fibers. In addition, the inner wall of the carbon mold 1 from which the graphite felt was peeled off did not show any deterioration such as deterioration on its surface, indicating that the inner wall could be used plural times.

【0030】比較例1 長さ800mm、直径30mmφの円柱ロッドを、高純
度等方性高密度黒鉛(商品名ISO−630、東洋炭素
(株)製)で12本作製し、そのうち2本のロッドを台
形型雄ねじと台形型雌ねじにより直列に繋ぎ合わせ、長
さ1550mm、直径30mmφの高純度等方性高密度
黒鉛製棒状体を得た。使用した高純度等方性高密度黒鉛
のかさ密度は1.82g/cm3、引張り強さは53.
9MPaであり、灰分は10ppm以下であった。得ら
れた棒状体について、実施例1〜3と同様に静的引張り
荷重による破断荷重の測定を行ったところ、ねじ山が破
断し、その時の破断荷重は3900Nであった。さら
に、残りの10本のロッドについて、高純度化処理を行
った後、台形型雄ねじと台形型雌ねじにより9箇所を接
合し、長さ7550mm、直径30mmφの高純度等方
性高密度黒鉛製棒状体E(3)を得た。
COMPARATIVE EXAMPLE 1 Twelve cylindrical rods having a length of 800 mm and a diameter of 30 mmφ were made of high-purity isotropic high-density graphite (trade name: ISO-630, manufactured by Toyo Carbon Co., Ltd.), and two rods were prepared. Were connected in series with a trapezoidal male screw and a trapezoidal female screw to obtain a high-purity isotropic high-density graphite rod having a length of 1550 mm and a diameter of 30 mmφ. The high-purity isotropic high-density graphite used had a bulk density of 1.82 g / cm 3 and a tensile strength of 53.
It was 9 MPa and the ash content was 10 ppm or less. When the breaking load by static tensile load was measured on the obtained rod-shaped body in the same manner as in Examples 1 to 3, the thread was broken, and the breaking load at that time was 3900N. Further, after performing the purification treatment on the remaining 10 rods, nine places are joined by a trapezoidal male screw and a trapezoidal female screw, and a rod made of high-purity isotropic high-density graphite having a length of 7550 mm and a diameter of 30 mmφ is formed. Body E (3) was obtained.

【0031】実施例1と同様に、前記高純度等方性高密
度黒鉛製棒状体E(3)を円筒状カーボン製鋳型1の中
心に配置したのち、石英粉2を充填して鋳型1に詰め
た。この石英粉2の充填されたカーボン製鋳型1全体
を、実施例1〜3と同様の条件で真空炉により加熱し、
中空シリンダー形状の大型石英ガラス体を製造した。使
用した棒状体には僅かながら変形が生じていたため、石
英ガラス体の内周側(中空部分)に寸法精度の誤差がみ
とめられた。
In the same manner as in Example 1, the high-purity isotropic high-density graphite rod-shaped body E (3) is placed at the center of the cylindrical carbon mold 1, and then the quartz powder 2 is filled into the mold 1. Stuffed. The whole carbon mold 1 filled with the quartz powder 2 was heated in a vacuum furnace under the same conditions as in Examples 1 to 3,
A large quartz glass body having a hollow cylinder shape was manufactured. Since the used rod-shaped body was slightly deformed, an error in dimensional accuracy was found on the inner peripheral side (hollow portion) of the quartz glass body.

【0032】比較例2 実施例1〜3と同様に、長さ800mm、直径30mm
φの円柱ロッドを12本作製した。次いで、そのうち2
本のロッドを用いて、1本の円柱ロッド13の端部にス
リット16加工を施し、もう1本の円柱ロッドに挿入
し、図5に示すようなピン挿入孔14を設けピン15を
挿入して2本のロッドを固定し、長さ1550mm、直
径30mmφのC/Cコンポジット製棒状体を得た。得
られた棒状体について、実施例1〜3と同様に静的引張
り荷重による破断荷重の測定を行ったところ、ピンが破
断し、その時の破断荷重は9500Nであった。さら
に、残りの10本のロッドについて、高純度化処理を行
なった後、前記と同様にピン固定により9箇所を繋ぎ合
わせ、長さ7550mm、直径30mmφのC/Cコン
ポジット製棒状体F(3)を得た。
Comparative Example 2 As in Examples 1 to 3, a length of 800 mm and a diameter of 30 mm
Twelve φ cylindrical rods were produced. Then two of them
Using one rod, the end of one cylindrical rod 13 is slit 16 and inserted into another cylindrical rod, and a pin insertion hole 14 as shown in FIG. The two rods were fixed to obtain a C / C composite rod having a length of 1550 mm and a diameter of 30 mmφ. When the breaking load of the obtained rod-shaped body was measured by a static tensile load in the same manner as in Examples 1 to 3, the pin was broken, and the breaking load at that time was 9,500 N. Further, after the remaining 10 rods were subjected to a high-purification treatment, 9 places were joined together by pin fixing in the same manner as described above, and a C / C composite rod F (3) having a length of 7550 mm and a diameter of 30 mmφ was used. Got.

【0033】実施例1及び比較例1と同様に、前記C/
Cコンポジット製棒状体F(3)を円筒状カーボン製鋳
型1の中心に配置したのち、石英粉2を充填して鋳型1
に詰めた。この石英粉2の充填されたカーボン製鋳型1
全体を、実施例1〜3及び比較例1と同様の条件で真空
炉により加熱し、中空シリンダー形状の大型石英ガラス
体を製造した。使用した棒状体はピン固定部で曲りが生
じていたため、石英ガラス体から引き抜くことが困難と
なってしまい、加熱と荷重によって無理に引き抜いたと
ころ、石英ガラス体の内周側が大きく変形してしまっ
た。
As in Example 1 and Comparative Example 1, the C /
After the C composite rod F (3) is placed at the center of the cylindrical carbon mold 1, the quartz powder 2 is filled and the mold 1
Packed in. Carbon mold 1 filled with this quartz powder 2
The whole was heated in a vacuum furnace under the same conditions as in Examples 1 to 3 and Comparative Example 1, to produce a large quartz glass body having a hollow cylinder shape. Since the used rod-shaped body was bent at the pin fixing part, it was difficult to pull it out of the quartz glass body.When the bar was forcibly pulled out by heating and load, the inner peripheral side of the quartz glass body was greatly deformed. Was.

【0034】[0034]

【発明の効果】本発明の製造方法では、高純度で高精度
の大型石英ガラス体を、低コストで収率よく製造するこ
とができる。得られた石英ガラス体は、半導体製造用石
英ガラス治具の材料としても、また光ファイバ母材用石
英ガラスの材料としても好適に使用され、その工業的価
値は高いものがある。
According to the production method of the present invention, a large-sized quartz glass body with high purity and high precision can be produced at low cost and with high yield. The obtained quartz glass body is suitably used as a material for a quartz glass jig for manufacturing a semiconductor and also as a material for quartz glass for an optical fiber preform, and its industrial value is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための耐熱性鋳型に二酸化珪
素粉を充填したときの概略断面図である。
FIG. 1 is a schematic sectional view when a heat-resistant mold for carrying out the present invention is filled with silicon dioxide powder.

【図2】本発明の大型石英ガラス体の製造に用いられる
棒状体の接合部の概略断面図である。
FIG. 2 is a schematic sectional view of a joint portion of a rod-shaped body used for manufacturing a large quartz glass body of the present invention.

【図3】ねじ部に炭素の含浸及び/又は被覆が施された
層を有する棒状体の接合部の概略断面図である。
FIG. 3 is a schematic cross-sectional view of a joint portion of a rod-like body having a layer in which a thread is impregnated and / or coated with carbon.

【図4】ねじ部外周に補強部材が形成された棒状体の接
合部の概略断面図である。
FIG. 4 is a schematic cross-sectional view of a joint portion of a rod-shaped body in which a reinforcing member is formed on the outer periphery of a screw portion.

【図5】ピン固定で直列に繋ぎ合わせた棒状体の接合部
の概略断面図である。
FIG. 5 is a schematic cross-sectional view of a joint portion of a rod-shaped body fixed in a pin and connected in series.

【符号の説明】[Explanation of symbols]

1 耐熱性鋳型 2 二酸化珪素粉 3 棒状体 4 ヒーター 5 不活性ガス導入口 6 排気口 7 ロッド(一方の端側に雄ねじを設けたロッ
ド) 8 ロッド(一方の端側に雌ねじを設けたロッ
ド) 9 ロッド7の雄ねじ部 10 ロッド8の雌ねじ部 11 炭素の含浸及び/又は被覆が施された層 12 C/Cコンポジット製の補強部材 13 ロッド(一方の端側にスリットを設けたロ
ッド) 14 ピン挿入孔 15 ピン 16 スリット
DESCRIPTION OF SYMBOLS 1 Heat resistant mold 2 Silicon dioxide powder 3 Rod 4 Heater 5 Inert gas introduction port 6 Exhaust port 7 Rod (Rod with male screw on one end) 8 Rod (Rod with female screw on one end) 9 Male thread portion of rod 7 10 Female thread portion of rod 8 11 Layer impregnated and / or coated with carbon 12 Reinforcing member made of C / C composite 13 Rod (rod with slit on one end side) 14 pin Insertion hole 15 Pin 16 Slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嶋田 敦之 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社郡山工場内 (72)発明者 平岡 利治 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 Fターム(参考) 4G014 AH08  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Atsuyuki Shimada 88, Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Prefecture Inside the Koriyama Plant, Shin-Etsu Quartz Co., Ltd. Toyo Carbon Co., Ltd. F-term (reference) 4G014 AH08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】耐熱性鋳型に二酸化珪素粉を充填し加熱炉
内で溶融ガラス化する大型石英ガラス体の製造方法にお
いて、円柱状又は円筒状の炭素繊維強化炭素複合材料製
部材がねじ部で直列に接合された棒状体を、前記耐熱性
鋳型の中心部に配置することを特徴とする大型石英ガラ
ス体の製造方法。
1. A method for producing a large quartz glass body in which a heat-resistant mold is filled with silicon dioxide powder and melted and vitrified in a heating furnace, wherein a columnar or cylindrical carbon fiber reinforced carbon composite material member is formed by a screw portion. A method for producing a large quartz glass body, comprising: disposing a rod-shaped body joined in series at the center of the heat-resistant mold.
【請求項2】炭素繊維強化炭素複合材料製部材を接合す
るねじ部が台形ねじであることを特徴とする請求項1記
載の大型石英ガラス体の製造方法。
2. The method for manufacturing a large quartz glass body according to claim 1, wherein the screw portion for joining the members made of carbon fiber reinforced carbon composite material is a trapezoidal screw.
【請求項3】ねじ部に炭素の含浸及び/又は被覆が施さ
れていることを特徴とする請求項1又は2記載の大型石
英ガラス体の製造方法。
3. The method for producing a large quartz glass body according to claim 1, wherein the thread portion is impregnated with carbon and / or coated.
【請求項4】ねじ部外周に炭素繊維強化炭素複合材料製
の補強部材が設けられていることを特徴とする請求項1
ないし3のいずれか1に記載の大型石英ガラス体の製造
方法。
4. A reinforcing member made of carbon fiber reinforced carbon composite material is provided on the outer periphery of the screw portion.
4. The method for producing a large quartz glass body according to any one of items 3 to 3.
【請求項5】棒状体が中空部を有する円筒状であって、
その中空部からガスを排出することを特徴とする請求項
1ないし4のいずれか1に記載の大型石英ガラス体の製
造方法。
5. A rod-like body having a cylindrical shape having a hollow portion,
The method for producing a large quartz glass body according to any one of claims 1 to 4, wherein gas is discharged from the hollow portion.
【請求項6】棒状体と二酸化珪素粉との間及び/又は耐
熱性鋳型と二酸化珪素粉との間に、黒鉛製の中間材を介
在させることを特徴とする請求項1ないし5のいずれか
1に記載の大型石英ガラス体の製造方法。
6. An intermediate material made of graphite is interposed between the rod and the silicon dioxide powder and / or between the heat-resistant mold and the silicon dioxide powder. 2. The method for producing a large quartz glass body according to 1.
JP2001185921A 2000-07-31 2001-06-20 Manufacturing method of large quartz glass body Expired - Lifetime JP4441649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185921A JP4441649B2 (en) 2000-07-31 2001-06-20 Manufacturing method of large quartz glass body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-230135 2000-07-31
JP2000230135 2000-07-31
JP2001185921A JP4441649B2 (en) 2000-07-31 2001-06-20 Manufacturing method of large quartz glass body

Publications (2)

Publication Number Publication Date
JP2002114530A true JP2002114530A (en) 2002-04-16
JP4441649B2 JP4441649B2 (en) 2010-03-31

Family

ID=26596985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185921A Expired - Lifetime JP4441649B2 (en) 2000-07-31 2001-06-20 Manufacturing method of large quartz glass body

Country Status (1)

Country Link
JP (1) JP4441649B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100460A (en) * 2008-10-22 2010-05-06 Olympus Corp Method of manufacturing optical element
US20160152501A1 (en) * 2014-11-28 2016-06-02 Jay Markel Non-Woven Textile Cores and Molds for Making Complex Sculptural Glass Bottle Interiors and Exteriors
CN111747643A (en) * 2019-03-29 2020-10-09 株式会社藤仓 Heating element for optical fiber drawing furnace, and method for manufacturing optical fiber
JP2022185594A (en) * 2020-10-23 2022-12-14 ビーシーエンシー カンパニー・リミテッド Method for manufacturing synthetic quartz

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100460A (en) * 2008-10-22 2010-05-06 Olympus Corp Method of manufacturing optical element
US20160152501A1 (en) * 2014-11-28 2016-06-02 Jay Markel Non-Woven Textile Cores and Molds for Making Complex Sculptural Glass Bottle Interiors and Exteriors
US9783446B2 (en) * 2014-11-28 2017-10-10 Jay Markel Non-woven textile cores and molds for making complex sculptural glass bottle interiors and exteriors
CN111747643A (en) * 2019-03-29 2020-10-09 株式会社藤仓 Heating element for optical fiber drawing furnace, and method for manufacturing optical fiber
JP2022185594A (en) * 2020-10-23 2022-12-14 ビーシーエンシー カンパニー・リミテッド Method for manufacturing synthetic quartz
JP7428413B2 (en) 2020-10-23 2024-02-06 ビーシーエンシー カンパニー・リミテッド Synthetic quartz manufacturing method

Also Published As

Publication number Publication date
JP4441649B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US20060236724A1 (en) Mandrel for producing quartz glass and production method for optical fiber mother material, optical fiber and quartz glass body using the same
US5053359A (en) Cristobalite reinforcement of high silica glass
US9145338B2 (en) Method for producing a composite including a ceramic matrix
US4362545A (en) Support member for an optical waveguide preform
US4286978A (en) Method for substantially continuously drying, consolidating and drawing an optical waveguide preform
KR101725359B1 (en) Process for producing a quartz glass cylinder and also surpport for carrying out the process
JP5340921B2 (en) Method for producing semi-finished products from synthetic quartz glass
US4289517A (en) Method of forming an optical waveguide preform
JP4441649B2 (en) Manufacturing method of large quartz glass body
US20030101772A1 (en) Manufacturing method for optical fiber preform
JP2808857B2 (en) Heating furnace and manufacturing method of glass preform for optical fiber
CA2350275A1 (en) Process for fabricating optical fiber involving overcladding during sintering
US20060144094A1 (en) Method for the production of a hollow cylinder made of synthetic quartz glass with the aid of a holding device, and appropriate holding device for carrying out said method
JP3797567B2 (en) Manufacturing method of optical fiber preform
JP4359867B2 (en) Quartz glass manufacturing mandrel
US4289522A (en) Support member for an optical waveguide preform
JP4674886B2 (en) Support for optical fiber manufacturing
JPH10245275A (en) Production of carbon fiber-reinforced raw material using graphite mold
JP4674887B2 (en) Manufacturing method of large optical fiber preform
CN111995240A (en) Low-boron-doped stress rod and preparation method and application thereof
JP6265961B2 (en) Optical fiber preform manufacturing method
JPH10167879A (en) Crucible for pulling up single crystal
CN114232074B (en) Quartz fiber/carbon fiber reinforced carbon-based composite guide cylinder and preparation method thereof
JPH028973B2 (en)
JP2893873B2 (en) Heating furnace for manufacturing glass preform for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4441649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term