JP2002112596A - Motor controller - Google Patents

Motor controller

Info

Publication number
JP2002112596A
JP2002112596A JP2000294221A JP2000294221A JP2002112596A JP 2002112596 A JP2002112596 A JP 2002112596A JP 2000294221 A JP2000294221 A JP 2000294221A JP 2000294221 A JP2000294221 A JP 2000294221A JP 2002112596 A JP2002112596 A JP 2002112596A
Authority
JP
Japan
Prior art keywords
motor
permanent magnet
phase
current
δid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000294221A
Other languages
Japanese (ja)
Inventor
Yoshinari Yamagami
嘉也 山上
Yoshinori Nakayama
義紀 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000294221A priority Critical patent/JP2002112596A/en
Publication of JP2002112596A publication Critical patent/JP2002112596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-priced and high-performance controller for a permanent magnet type synchronous motor, which enables high efficiency and highly reliable operation through simplified control. SOLUTION: Two-phase currents Iu, Iv of the permanent magnet type synchronous motor 20 are detected and asynchronization and unstable region of the motor are detected, based on differences Δid, Δiq between actual current values Id, Iq of motor subjected to coordinate converted from two-phase currents having a coordinate conversion means 17 and current values Imd, Imq, calculated from a motor model calculation means 18. Here, if a d-axis current error Δid is such that a<Δid<b (a, b are predetermined values), present conditions are defined as the stable operating conditions. If the d-axis current error does not lie within the prescribed range, the present conditions are defined as unstable operating conditions. Moreover, if Δid<=a, the phase is controlled so as to be delayed, and ifb<=Δid, the phase is controlled so as to lead. In addition, if the present position θ of a rotor (not shown) of the permanent magnet type synchronous motor 20 is corrected, determination as to which is similar to the control as explained above is conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、インバータ等の
半導体電力変換器を用いて永久磁石型同期電動機を効率
よく運転するための制御装置に係り、詳しくは、同期電
動機の印加電圧と周波数をほぼ比例させて制御するセン
サレスベクトル制御方式の制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for efficiently operating a permanent magnet type synchronous motor by using a semiconductor power converter such as an inverter. The present invention relates to a sensorless vector control type control device that performs proportional control.

【0002】[0002]

【従来の技術】永久磁石型同期電動機やリラクタンスモ
ータのように回転子が突極性を有する同期電動機の制御
では、一般に回転子の位置(極性位置)を検出する位置
検出器が必要であり、検出した位置に同期して固定子巻
線の電流位相を制御している。ここで、回転子の位置検
出器としてはホール素子、エンコーダ、レゾルバ等が用
いられている。回転子の位置を検出可能な場合の高効率
運転は比較的容易に実現可能であり、永久磁石型同期電
動機では、回転子の永久磁石が作る磁束方向の電流すな
わちd軸電流をゼロにするId=0制御が一般に採用さ
れる。永久磁石型同期電動機のように回転子に突極性が
ある電動機の場合には、d軸電流はトルクに寄与しない
ため、Id=0制御によって固定子巻線に生じる銅損を
最小限に抑えることができるためである。一方、前述し
たように磁極位置を検出して電動機の電流位相を制御す
る制御方法の他に、電動機の電圧と周波数とを単に比例
させて制御するベクトル制御が良く知られている。図4
はベクトル制御の制御ブロック図を示している。図4に
おいて、周波数設定手段1により所望する永久磁石型同
期電動機7(以下、単に「電動機7」という。)の周波
数を設定し、加減速演算手段2により周波数をランプ関
数状に変化させる。周波数(f)/電圧(V)変換手段
3では、周波数にほぼ比例した電圧が記憶あるいは計算
によって求められ、周波数司令f´に応じた電圧指令V
´が出力される。
2. Description of the Related Art In controlling a synchronous motor having a salient polarity such as a permanent magnet type synchronous motor or a reluctance motor, a position detector for detecting the position (polar position) of the rotor is generally required. The current phase of the stator winding is controlled in synchronization with the set position. Here, a Hall element, an encoder, a resolver, or the like is used as a rotor position detector. High-efficiency operation when the position of the rotor can be detected can be relatively easily realized. In the permanent magnet type synchronous motor, the current in the magnetic flux direction generated by the permanent magnet of the rotor, that is, the d-axis current Id is set to zero. = 0 control is generally employed. In the case of a motor having saliency in the rotor, such as a permanent magnet type synchronous motor, the d-axis current does not contribute to the torque, so that Id = 0 control minimizes the copper loss in the stator winding. This is because On the other hand, besides the control method of detecting the magnetic pole position and controlling the current phase of the motor as described above, vector control for controlling the voltage and frequency of the motor simply in proportion is well known. FIG.
Shows a control block diagram of vector control. In FIG. 4, a desired frequency of a permanent magnet type synchronous motor 7 (hereinafter simply referred to as “motor 7”) is set by a frequency setting means 1, and the frequency is changed in a ramp function by an acceleration / deceleration calculation means 2. In the frequency (f) / voltage (V) conversion means 3, a voltage substantially proportional to the frequency is obtained by storage or calculation, and a voltage command V according to the frequency command f 'is obtained.
Is output.

【0003】積算手段4は、加減速演算手段2から出力
される周波数指令f´と後述する補正量Δf´との和で
あるf1´を積分し、電動機7の固定子巻線に印加する
電圧の位相θを演算する。PWM制御手段5は、電圧指
令ν´の大きさ及び位相θに基づいてパルス幅変調を行
い、駆動パルスを生成してインバータ6のスイッチング
素子をオン、オフ制御する。インバータ6からはパルス
幅制御された三相の交流電圧が出力され、この電圧は永
久磁石型同期電動機7の固定子巻線に印加されて回転磁
界を発生させる。ここで、一般にベクトル制御では、定
常的にトルクが振動したり、負荷が急変した場合には脱
調して運転不能になる等の点で、安定性に問題がある。
そこで、電動機7の入力電流を検出し、安定化制御手段
31により3相/2相変換、座標変換、フィルタ処理、
比例増幅処理、偏差演算処理等を行って印加電圧ベクト
ルに対し直交または平行な電流成分を検出し、これを補
正量Δf´として電圧の周波数指令f´に帰還すること
により、制御の安定性を高めている。
The integrating means 4 integrates f1 ', which is the sum of a frequency command f' output from the acceleration / deceleration calculating means 2 and a correction amount Δf 'described later, and applies a voltage to be applied to the stator winding of the motor 7. Is calculated. The PWM control unit 5 performs pulse width modulation on the basis of the magnitude and the phase θ of the voltage command ν ′, generates a drive pulse, and controls ON / OFF of the switching element of the inverter 6. The inverter 6 outputs a three-phase AC voltage of which pulse width is controlled, and this voltage is applied to the stator winding of the permanent magnet type synchronous motor 7 to generate a rotating magnetic field. Here, in general, the vector control has a problem in stability in that the torque oscillates steadily, and when the load suddenly changes, the motor loses synchronism and becomes inoperable.
Therefore, the input current of the motor 7 is detected, and the three-phase / two-phase conversion, coordinate conversion, filter processing,
By performing a proportional amplification process, a deviation calculation process, and the like, a current component orthogonal or parallel to the applied voltage vector is detected, and the detected current component is fed back to the voltage frequency command f ′ as a correction amount Δf ′, thereby improving control stability. Is increasing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、回転子
の位置検出器を備えた制御装置は、Id=0制御によっ
て高効率運転を比較的容易に実現できる反面、装置の小
型化に難点があり、また、検出器の信号を伝える複数本
の配線や受信回路が必要であるため、信頼性、作業性、
価格等の面で問題を抱えている。一方、図4に示した従
来のベクトル制御は、位置検出器が不要であり、且つ制
御が簡単であるので、制御装置の低価格化が可能である
が、回転子の位置が不明であるため、Id=0制御を採
用することができず、高効率運転が難しかった。
However, a control device provided with a rotor position detector can relatively easily realize high-efficiency operation by controlling Id = 0, but has a drawback in miniaturization of the device. In addition, since multiple wires and receiving circuits for transmitting the signal of the detector are required, reliability, workability,
There is a problem in terms of price, etc. On the other hand, the conventional vector control shown in FIG. 4 does not require a position detector and is simple in control, so that the cost of the control device can be reduced, but the position of the rotor is unknown. , Id = 0 control could not be adopted, and high-efficiency operation was difficult.

【0005】また、センサレスベクトル制御では、位置
検出器を搭載していないため、速度・位置情報を所定の
演算により推定を行っていたため、入力電圧の変動や推
定精度の問題で電動機が脱調する可能性が大きかった。
Further, in the sensorless vector control, since no position detector is mounted, speed / position information is estimated by a predetermined calculation, so that the motor loses synchronism due to a change in input voltage or a problem of estimation accuracy. The possibilities were great.

【0006】このため、本発明では、上述した課題を解
決し、簡単な制御で高効率、高信頼の運転を可能にす
る、安価かつ高性能な永久磁石型同期電動機の制御装置
を提供するものである。
Therefore, the present invention is to solve the above-mentioned problems and to provide a low-cost and high-performance permanent magnet type synchronous motor control device which enables highly efficient and reliable operation with simple control. It is.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、請求項1に記載の発明は、電力変換器により、永久
磁石型同期電動機の巻線に印加する電圧とその周波数と
をほぼ比例させて制御する永久磁石型同期電動機の制御
装置において、前記巻線に流れる少なくとも2相の電流
を検出する手段と、検出した電流を、電動機に印加する
電圧ベクトルに対し平行な電流成分及びこれに直交する
電流成分に分離する座標変換手段と、前記検出電流と座
標変換手段のモデルから算出した電流との差分から前記
電動機の脱調及び不安定領域を検出する手段とを備えた
ことである。
According to a first aspect of the present invention, a power converter converts a voltage applied to a winding of a permanent magnet type synchronous motor to a frequency substantially proportional to a voltage applied to the winding. In the control device for a permanent magnet type synchronous motor that controls the motor by controlling at least two-phase current flowing through the winding, a current component parallel to a voltage vector applied to the motor and a current component A coordinate conversion unit for separating the current into orthogonal current components, and a unit for detecting a step-out and unstable region of the motor from a difference between the detected current and a current calculated from a model of the coordinate conversion unit.

【0008】請求項1に記載の発明によれば、本発明の
制御装置は、演算のみで電動機の現在の動作状況の安定
性を検出することができる。
According to the first aspect of the present invention, the control device of the present invention can detect the stability of the current operation state of the electric motor only by calculation.

【0009】請求項2に記載の発明は、請求項1に記載
の電動機の脱調及び不安定領域を検出した電流の差分に
基づいて、電流目標値を補正して出力電圧の位相を補正
することである。
According to a second aspect of the present invention, a phase of an output voltage is corrected by correcting a current target value based on a difference between currents in which a step-out and an unstable region of the motor are detected. That is.

【0010】請求項2に記載の発明によれば、本発明の
制御装置は、脱調を検出した後、位相を補正するため、
Id電流目標値を補正することにより安定した電動機の
動作が可能となる。
According to the second aspect of the present invention, the control device of the present invention corrects the phase after detecting step-out,
Correcting the Id current target value enables stable operation of the motor.

【0011】請求項3に記載の発明は、請求項1に記載
の電動機の脱調及び不安定領域を検出した電流の差分に
基づいて、前記電動機のロータ位置推定部で推定した位
置を補正することである。
According to a third aspect of the present invention, the position of the motor estimated by the rotor position estimating unit is corrected based on the difference between the currents in which the step-out and the unstable region of the motor are detected. That is.

【0012】請求項3に記載の発明によれば、本発明の
制御装置は、脱調を検出した後、位相を補正するため、
推定した現在位置θを補正することにより安定した電動
機の動作が可能となる。
According to the third aspect of the present invention, the control device of the present invention corrects the phase after detecting out-of-step.
Correcting the estimated current position θ enables stable operation of the electric motor.

【0013】[0013]

【発明の実施の形態】以下、この発明の実施の形態を図
面に基づき説明する。図1及び図2は、本発明の基本原
理を説明するためのベクトル線図である。永久磁石型同
期電動機における回転子の永久磁石が作る磁束ベクトル
Ψmをd軸上に取った直交座標をd−q軸とし、電動機
の固定子巻線に印加する電圧ベクトルν´をP軸上に取
った直交座標をP−Q軸とする。また、両座標軸は負荷
角δを保ち、反時計方向に角周波数ωで回転していると
する。このときの電流ベクトルをiとすると、この電流
は、P−Q軸上で観測した際のP軸電流(有効電力成
分)ip及びQ軸電流(無効電力成分)iρとd−q軸
上で観測した際のd軸電流id及びq軸電流iρとの直
交2軸成分に夫々分けられる。まず、電圧ν´と電流i
ρとは直交関係にあるので、インバータが出力する無効
電力Qiは、数式1に示すように両者の積から求めるこ
とができる。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are vector diagrams for explaining the basic principle of the present invention. In a permanent magnet type synchronous motor, the magnetic flux vector Ψm created by the permanent magnet of the rotor is set on the d-axis, and the orthogonal coordinates obtained on the d-axis are dq axes. The obtained orthogonal coordinates are defined as PQ axes. It is also assumed that both coordinate axes maintain the load angle δ and rotate counterclockwise at an angular frequency ω. Assuming that the current vector at this time is i, the current is represented by a P-axis current (active power component) ip and a Q-axis current (reactive power component) iρ when observed on the PQ axis and a dq axis. It is divided into two orthogonal components of the d-axis current id and the q-axis current ip at the time of observation. First, the voltage ν ′ and the current i
Since ρ is orthogonal to ρ, the reactive power Qi output from the inverter can be obtained from the product of the two as shown in Expression 1.

【0014】[0014]

【数1】 次に、電動機側から見た場合の無効電力について、図2
を参照しながら説明する。永久磁石が作る磁束の回転に
よって発生する無負荷誘起電圧emは、その大きさがω
ψmで表されてq軸上に存在する(ψmは、ベクトルΨ
mの大きさを示す)。電圧emとこれに直交する電流i
dとの積、すなわちωψmidは、無効電力になる。ま
た、電流i(大きさI)によるリアクタンス降下eLの
大きさは、固定子巻線のインダクタンスLを用いてωL
Iとなる。eLとiとは直交関係にあるので、両者の
積、すなわちωLI2は無効電力となる。従って、電動
機側から見た無効電力Qmは、数式2に示すように両無
効電力の和として表される。
(Equation 1) Next, regarding the reactive power as viewed from the motor side, FIG.
This will be described with reference to FIG. The no-load induced voltage em generated by the rotation of the magnetic flux generated by the permanent magnet has a magnitude of ω
ψm is present on the q-axis (ψm is a vector Ψ
m)). Voltage em and current i orthogonal thereto
The product of d, ie, ωψmid, becomes reactive power. The magnitude of the reactance drop eL due to the current i (magnitude I) is calculated by using the inductance L of the stator winding as ωL
I. Since eL and i are in an orthogonal relationship, the product of the two, ie, ωLI2, is the reactive power. Therefore, the reactive power Qm viewed from the motor side is expressed as the sum of the two reactive powers as shown in Expression 2.

【0015】[0015]

【数2】 数式1及び数式2により求められる無効電力は、見方が
異なるだけで値は等しいことから、数式3の関係が成立
する。
(Equation 2) Since the values of the reactive powers obtained by Expressions 1 and 2 are equal only by different viewpoints, the relationship of Expression 3 is established.

【0016】[0016]

【数3】 数式3を、idのみに比例する項について解くと、数式
4になる。
[Equation 3] When Equation 3 is solved for a term proportional only to id, Equation 4 is obtained.

【0017】[0017]

【数4】 ψmは、永久磁石が作る磁束であり、電動機に対して一
義的に決まる。このため、数式4の右辺をゼロに近づけ
るように電圧を調整すれば、Id=0制御が可能にな
る。また、前述の数式3は次の数式5のように変形する
ことができる。
(Equation 4) ψm is the magnetic flux created by the permanent magnet, and is uniquely determined for the electric motor. Therefore, if the voltage is adjusted so that the right side of Equation 4 approaches zero, Id = 0 control becomes possible. In addition, the above equation 3 can be modified as in the following equation 5.

【0018】[0018]

【数5】 従って、数式5の右辺をゼロに近づけるように電圧を調
整すれば、idに比例した無効電力つまりωψmidを
ゼロにすることができる。
(Equation 5) Therefore, if the voltage is adjusted so that the right side of Equation 5 approaches zero, the reactive power proportional to id, that is, ωψmid, can be reduced to zero.

【0019】このように、回転子の位置検出器を持たな
い装置では本来なら知ることができないd軸電流idを
演算により求め、トルク発生に寄与しないidをゼロに
するように電動機の印加電圧を制御するものである。
As described above, the d-axis current id which cannot be known by a device having no rotor position detector is obtained by calculation, and the voltage applied to the motor is adjusted so that id which does not contribute to torque generation is made zero. Control.

【0020】図3は、本発明の実施形態を説明する制御
ブロック図であり、速度制御手段10、電流制御手段1
1、2相/3相座標変換手段12及び17、3相PWM
インバータ13、進み位相制御手段14、現在速度・位
置推定手段15、脱調検出手段16、電動機モデル演算
手段18、電流検出手段19、及び永久磁石型同期電動
機20とから構成される。
FIG. 3 is a control block diagram for explaining an embodiment of the present invention.
1, 2-phase / 3-phase coordinate conversion means 12 and 17, 3-phase PWM
It comprises an inverter 13, a lead phase control means 14, a current speed / position estimating means 15, a step-out detecting means 16, a motor model calculating means 18, a current detecting means 19, and a permanent magnet type synchronous motor 20.

【0021】この制御装置の動作としては、永久磁石型
同期電動機20の2相の電流Iu、Ivを電流検出手段
19で検出し、この電流値から2相/3相座標変換手段
17により座標変換した電動機の実電流値Id、Iq
と、電動機モデル演算手段18から算出した電流値Im
d、Imqとの差Δid、Δiqを基に電動機の脱調及
び不安定領域を検出する。
The operation of the control device is as follows. Two-phase currents Iu and Iv of the permanent magnet synchronous motor 20 are detected by the current detecting means 19, and the two-phase / 3-phase coordinate converting means 17 converts the current values into the coordinate values. Current values Id, Iq
And the current value Im calculated by the motor model calculating means 18
Based on the differences Δid and Δiq from d and Imq, a step-out and unstable region of the motor are detected.

【0022】ここで、d軸電流誤差Δidが、所定の範
囲の値a<Δid<bであれば、安定動作状態と判断
し、前記所定範囲外であれば不安定と判断する。
Here, if the d-axis current error Δid is within a predetermined range of a <Δid <b, it is determined that the operation is stable, and if it is outside the predetermined range, it is determined that the operation is unstable.

【0023】また、Δid≦aの時は、位相を遅らせる
ように制御し、b≦Δidの時は、位相を進めるように
制御する。
When .DELTA.id.ltoreq.a, control is performed to delay the phase, and when b.ltoreq..DELTA.id, control is performed to advance the phase.

【0024】更に、永久磁石型同期電動機20のロータ
(図示せず)の現在位置θを修正する時も、上述した制
御と同様の判定を行う。
Further, when correcting the current position θ of the rotor (not shown) of the permanent magnet type synchronous motor 20, the same judgment as in the above-described control is performed.

【0025】以上、本発明を上述した実施の形態に基づ
いて説明したが、本発明はこれに限定されるものではな
い。
Although the present invention has been described based on the above-described embodiment, the present invention is not limited to this.

【0026】[0026]

【発明の効果】以上に説明したように、請求項1に記載
の発明によれば、本発明の制御装置は、演算のみで電動
機の現在の動作状況の安定性を検出することができるた
め、高効率で信頼性の高い電動機の制御装置を安価で提
供することができる。
As described above, according to the first aspect of the present invention, the control device of the present invention can detect the stability of the current operating condition of the electric motor only by the calculation. A highly efficient and reliable motor control device can be provided at low cost.

【0027】請求項2に記載の発明によれば、本発明の
制御装置は、脱調を検出した後、位相を補正するため、
Id電流目標値を補正することにより安定した電動機の
動作が可能となり、高効率で信頼性の高い電動機の制御
装置を安価で提供することができる。
According to the second aspect of the present invention, the control device of the present invention corrects the phase after detecting step-out,
By correcting the Id current target value, stable operation of the motor is enabled, and a highly efficient and reliable motor control device can be provided at low cost.

【0028】請求項3に記載の発明によれば、本発明の
制御装置は、脱調を検出した後、位相を補正するため、
推定した現在位置θを補正することにより安定した電動
機の動作が可能となり、高効率で信頼性の高い電動機の
制御装置を安価で提供することができる。
According to the third aspect of the present invention, the control device of the present invention corrects the phase after detecting step-out,
By correcting the estimated current position θ, stable operation of the motor becomes possible, and a highly efficient and reliable motor control device can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るベクトル制御の基本原理を説明す
るためのベクトル線図である。
FIG. 1 is a vector diagram for explaining a basic principle of vector control according to the present invention.

【図2】本発明に係るベクトル制御の基本原理を説明す
るためのベクトル線図である。
FIG. 2 is a vector diagram for explaining a basic principle of vector control according to the present invention.

【図3】本発明の実施形態を示す永久磁石型同期電動機
の制御ブロック図である。
FIG. 3 is a control block diagram of a permanent magnet type synchronous motor showing an embodiment of the present invention.

【図4】従来の永久磁石型同期電動機の制御装置を示す
制御ブロック図である。
FIG. 4 is a control block diagram showing a control device of a conventional permanent magnet type synchronous motor.

【符号の説明】[Explanation of symbols]

12、17 座標変換手段 15 速度・位置推定手段 16 脱調検出手段 18 電動機モデル演算手段 19 電流検出手段 20 永久磁石型同期電動機 12, 17 coordinate conversion means 15 speed / position estimation means 16 out-of-step detection means 18 motor model calculation means 19 current detection means 20 permanent magnet type synchronous motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 義紀 栃木県足利市大月町1番地 三洋電機空調 株式会社内 Fターム(参考) 5H560 BB04 BB12 DC12 EB01 TT08 XA02 XA12 XA13 XA15 5H576 BB02 BB06 DD02 DD07 EE01 EE11 GG04 HB01 JJ04 LL12 LL22 LL39 LL41 LL56 MM10 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshinori Nakayama 1 Otsukicho, Ashikaga-shi, Tochigi Sanyo Electric Air Conditioning Co., Ltd. F-term (reference) 5H560 BB04 BB12 DC12 EB01 TT08 XA02 XA12 XA13 XA15 5H576 BB02 BB06 DD02 DD07 EE01 EE11 GG04 HB01 JJ04 LL12 LL22 LL39 LL41 LL56 MM10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電力変換器により、永久磁石型同期電動機
の巻線に印加する電圧とその周波数とをほぼ比例させて
制御する永久磁石型同期電動機の制御装置において、前
記巻線に流れる少なくとも2相の電流値を検出する手段
と、前記検出した電流値を、電動機に印加する電圧ベク
トルに対し平行な電流成分及びこれに直交する電流成分
に分離する座標変換手段と、前記検出電流と座標変換手
段のモデルから算出した電流値との差分から前記電動機
の脱調及び不安定領域を検出する手段とを備えたことを
特徴とする電動機の制御装置。
1. A control device for a permanent magnet type synchronous motor, wherein a voltage applied to a winding of the permanent magnet type synchronous motor and its frequency are controlled by a power converter in approximately proportion. Means for detecting a current value of a phase, coordinate conversion means for separating the detected current value into a current component parallel to a voltage vector applied to the motor and a current component orthogonal to the voltage vector, and the detected current and coordinate conversion Means for detecting a step-out and unstable region of the motor from a difference from a current value calculated from a model of the means.
【請求項2】請求項1に記載の電動機の脱調及び不安定
領域を検出した電流の差分に基づいて、電流目標値を補
正して出力電圧の位相を補正することを特徴とする電動
機の制御装置。
2. The motor according to claim 1, wherein the target current value is corrected based on the difference between the currents in which the step-out and the unstable region of the motor are detected to correct the phase of the output voltage. Control device.
【請求項3】請求項1に記載の電動機の脱調及び不安定
領域を検出した電流の差分に基づいて、前記電動機のロ
ータ位置推定部で推定した位置を補正することを特徴と
する電動機の制御装置。
3. The motor according to claim 1, wherein the position estimated by the rotor position estimating section of the motor is corrected based on the difference between the currents in which the step-out and the unstable region of the motor are detected. Control device.
JP2000294221A 2000-09-27 2000-09-27 Motor controller Pending JP2002112596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294221A JP2002112596A (en) 2000-09-27 2000-09-27 Motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294221A JP2002112596A (en) 2000-09-27 2000-09-27 Motor controller

Publications (1)

Publication Number Publication Date
JP2002112596A true JP2002112596A (en) 2002-04-12

Family

ID=18776869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294221A Pending JP2002112596A (en) 2000-09-27 2000-09-27 Motor controller

Country Status (1)

Country Link
JP (1) JP2002112596A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG104298A1 (en) * 2001-09-03 2004-06-21 Mitsubishi Electric Corp An apparatus for detecting a step-out in a synchronous motor, a method for detecting the step-out in the synchrounous motor, a drive of a closed comprossor, and a drive of a fan motor
JP2008245398A (en) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd Controller for inverters for driving motor and apparatus with the same
US8497646B2 (en) 2009-01-14 2013-07-30 Toyota Jidosha Kabushiki Kaisha Controller for AC electric motor and electric powered vehicle
JP2018074761A (en) * 2016-10-28 2018-05-10 コニカミノルタ株式会社 Control device for permanent magnet synchronous motor, control method, and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG104298A1 (en) * 2001-09-03 2004-06-21 Mitsubishi Electric Corp An apparatus for detecting a step-out in a synchronous motor, a method for detecting the step-out in the synchrounous motor, a drive of a closed comprossor, and a drive of a fan motor
JP2008245398A (en) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd Controller for inverters for driving motor and apparatus with the same
US8497646B2 (en) 2009-01-14 2013-07-30 Toyota Jidosha Kabushiki Kaisha Controller for AC electric motor and electric powered vehicle
JP2018074761A (en) * 2016-10-28 2018-05-10 コニカミノルタ株式会社 Control device for permanent magnet synchronous motor, control method, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4754417B2 (en) Control device for permanent magnet type rotating electrical machine
JP4764124B2 (en) Permanent magnet type synchronous motor control apparatus and method
US10260559B2 (en) Motor driving device and vacuum pump
TWI654827B (en) Converter control device and motor driving system
WO2016121751A1 (en) Inverter control apparatus and motor driving system
WO2012144276A1 (en) Motor control device
JP5652610B2 (en) Motor control device
WO2007001007A1 (en) Power conversion control device, power conversion control method, and power conversion control program
US7576511B2 (en) Motor control device and motor control method
JP2011147287A (en) Estimation device of magnetic pole position of motor
JP2008167566A (en) High-response control device of permanent magnet motor
WO2001015311A1 (en) Synchronous motor control device and method
WO2016121237A1 (en) Inverter control device and motor drive system
WO2012153624A1 (en) Applied-voltage electrical angle setting method for synchronous motor, and motor control apparatus
WO2012111505A1 (en) Motor control device
US20010007416A1 (en) Device and method for determining step-out of synchronous motor
JP2004289959A (en) Method and apparatus for controlling permanent-magnet synchronous motor
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
JP2003125594A (en) Controller of permanent magnet synchronous motor
JP2004254423A (en) Motor controller
JP2003219698A (en) Controller for synchronous machine
JP7304891B2 (en) Rotating machine control device and electric vehicle control device
JP2000232800A (en) Controller for permanent magnet synchronous motor
JP7082369B2 (en) Motor drive
JP3735836B2 (en) Vector control method for permanent magnet synchronous motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060131