JP2002105541A - Method for preventing fluctuation in plate width in continuous heat treatment fascility - Google Patents

Method for preventing fluctuation in plate width in continuous heat treatment fascility

Info

Publication number
JP2002105541A
JP2002105541A JP2000296726A JP2000296726A JP2002105541A JP 2002105541 A JP2002105541 A JP 2002105541A JP 2000296726 A JP2000296726 A JP 2000296726A JP 2000296726 A JP2000296726 A JP 2000296726A JP 2002105541 A JP2002105541 A JP 2002105541A
Authority
JP
Japan
Prior art keywords
width
steel strip
heat treatment
furnace
continuous heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000296726A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kaseda
良之 綛田
Keiji Yamanaka
敬二 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000296726A priority Critical patent/JP2002105541A/en
Publication of JP2002105541A publication Critical patent/JP2002105541A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing fluctuation in the plate width in a continuous heat treatment facilities for estimating the width shrinkage not only in a stationary condition but also the width shrinkage in a non-stationary condition when shifting from a preceding steel strip to a succeeding steel strip. SOLUTION: A leveler is provided inside a continuous heat treatment furnace, the width of the steel strip is measured with a plate width meter disposed at the inlet side of the continuous heat treatment furnace, the width shrinkage of a measured part in the continuous heat treatment furnace is estimated, the width shrinkage is subtracted from the measured value of the width of the steel strip to estimate the width of the steel strip on the outlet side of the continuous heat treatment furnace, and the elongation rate of the leveler is adjusted so that the estimated width of the steel strip agrees with the target value. The width shrinkage is obtained on the basis of the shape of a thermal crown and the temperature of the steel strip by calculating the temperature of the steel strip in the furnace and the temperature distribution in each hearth roll in the axial direction, and determining the shape of the thermal crown of each hearth roll on the basis of the temperature distribution in the axial direction thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連続焼鈍設備などの
連続熱処理設備における鋼帯の板幅変動防止方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing a width change of a steel strip in a continuous heat treatment facility such as a continuous annealing facility.

【0002】[0002]

【従来の技術】図1は連続焼鈍設備の一例を模式的に示
す概要図である。符号1は鋼帯、2はペイオフロール、
3は連続焼鈍炉、4はハースロール、5は加熱帯、6は
均熱帯、7は冷却帯、8は過時効帯、9は冷却帯、10
は調質圧延機、11はテンションリール、12は入側ル
ーパ、13は出側ルーパ、14,15はブライドルロー
ルを示す。
2. Description of the Related Art FIG. 1 is a schematic view schematically showing an example of a continuous annealing facility. 1 is a steel strip, 2 is a payoff roll,
3 is a continuous annealing furnace, 4 is a hearth roll, 5 is a heating zone, 6 is a soaking zone, 7 is a cooling zone, 8 is an overaging zone, 9 is a cooling zone, 10
Denotes a temper rolling mill, 11 denotes a tension reel, 12 denotes an entrance looper, 13 denotes an exit looper, and 14 and 15 denote bridle rolls.

【0003】図1において、鋼帯1はペイオフリール2
より連続的に連続焼鈍炉3内(以下、炉内ともいう)に
供給され、炉内に設けられた多数のハースロール4で支
持され、加熱帯5、均熱帯6、冷却帯7、過時効帯8お
よび冷却帯9を順次通過することで所定の熱処理を施さ
れ、調質圧延機10で圧延された後テンションリール1
1で巻き取られる。
In FIG. 1, a steel strip 1 is a payoff reel 2.
It is more continuously supplied into a continuous annealing furnace 3 (hereinafter also referred to as a furnace), is supported by a large number of hearth rolls 4 provided in the furnace, and has a heating zone 5, a soaking zone 6, a cooling zone 7, an overageing After passing through the band 8 and the cooling zone 9 in order, a predetermined heat treatment is performed, and the tension reel 1 is rolled by the temper rolling mill 10.
It is wound up by 1.

【0004】鋼帯1は蛇行防止のために所定の張力が負
荷された状態で炉内を走行し、また、加熱帯5出側から
均熱帯6における鋼帯温度は700℃〜850℃とな
る。このような高温状態下で張力を負荷された鋼帯は、
ハースロール4による繰返し曲げを受けて塑性変形が生
じる。すなわち、鋼帯の長手方向には伸びが生じ、幅方
向には縮み(以下、幅縮みともいう)が生じる。
[0004] The steel strip 1 runs in a furnace under a predetermined tension in order to prevent meandering, and the temperature of the steel strip in the soaking zone 6 from the exit side of the heating zone 5 is 700 ° C to 850 ° C. . Steel strips under tension under such high temperature conditions
The plastic deformation occurs due to repeated bending by the hearth roll 4. That is, the steel strip elongates in the longitudinal direction and contracts in the width direction (hereinafter also referred to as width contraction).

【0005】連続焼鈍設備に供給される鋼帯は、製品幅
に上記幅縮みを考慮して決定されており、幅縮み量の変
動が大きいと、次工程で幅トリムが必要となり歩留まり
の低下と作業コストの増加を招くといった問題や、最悪
の場合には幅不足で製品幅が確保できないといった問題
がある。したがって、幅縮み量の変動抑制は、連続焼鈍
設備出側での鋼帯幅を所定の寸法公差の範囲内に納める
ために重要であり、従来から種々の方法が提案されてい
る。
[0005] The steel strip to be supplied to the continuous annealing equipment is determined in consideration of the above-mentioned width reduction in the product width. If the width reduction amount is large, a width trim is required in the next process, and the yield decreases. There are problems such as an increase in work cost, and in the worst case, a product width cannot be secured due to a shortage of width. Therefore, suppression of the fluctuation of the width shrinkage amount is important for keeping the steel strip width on the exit side of the continuous annealing equipment within a predetermined dimensional tolerance, and various methods have been conventionally proposed.

【0006】特開平4−6226号公報には、焼鈍炉の
入側及び出側で板幅を測定し、その板幅に基づいて炉内
張力を制御する方法が開示されている。特開昭57−9
4525号公報には、炉内温度が高く、炉内張力が大き
いほど炉内での幅縮み量が大きくなることを前提とし
て、鋼帯幅が広い領域では大きな張力を付与し、鋼帯幅
が狭い領域では張力を緩めるようにして幅縮み量を制御
する方法が開示されている。
Japanese Unexamined Patent Publication No. Hei 4-6226 discloses a method in which the width of a plate is measured at the entrance and the exit of an annealing furnace, and the tension in the furnace is controlled based on the width of the plate. JP-A-57-9
No. 4525 discloses that, assuming that the furnace temperature is higher and the furnace tension is larger, the amount of width shrinkage in the furnace is larger, a large tension is applied in a region where the steel band width is large, and the steel band width is reduced. A method of controlling the amount of width reduction by relaxing the tension in a narrow area is disclosed.

【0007】特開昭63−171835号公報には、鋼
帯厚分布と鋼帯幅に基づいて炉内張力や炉内温度を調節
することにより、鋼帯の断面形状や鋼帯幅を制御する方
法が開示されている。
Japanese Patent Application Laid-Open No. 63-171835 discloses that the sectional shape and the width of a steel strip are controlled by adjusting the furnace tension and the furnace temperature based on the steel strip thickness distribution and the steel strip width. A method is disclosed.

【0008】特開平8−127820号公報には、鋼帯
に与えられるヒートサイクルによる鋼帯の降伏応力、弾
性係数、ハースロール本数、ハースロール径及び張力か
ら幅縮み量を予測する方法が開示されている。
Japanese Patent Application Laid-Open No. 8-127820 discloses a method for predicting the amount of width reduction from the yield stress, elastic modulus, number of hearth rolls, hearth roll diameter and tension of a steel strip due to a heat cycle given to the steel strip. ing.

【0009】特開平9−31550号公報には、ハース
ロールのクラウン量と焼鈍炉入側での鋼帯の平坦度に基
づき幅縮み量を予測し、その予測値が許容範囲を超える
ときにはクラウン制御ロールを用いて幅縮み量を制御す
る方法が開示されている。
Japanese Patent Application Laid-Open No. 9-31550 discloses that the width shrinkage amount is predicted based on the crown amount of the hearth roll and the flatness of the steel strip on the entrance side of the annealing furnace, and when the predicted value exceeds an allowable range, the crown control is performed. A method of controlling the amount of width reduction using a roll is disclosed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、特開平
4−6226号公報、特開昭57−94525号公報、
特開昭63−171835号公報に記載の方法では、炉
入側の板幅変動や板厚分布のみに対応させて炉内張力な
どの操業条件を設定しているため、必ずしも狙いの幅縮
み量が得られないという問題がある。また、この方法で
は、焼鈍炉の出側での鋼帯の幅を計測してフィードバッ
ク制御を行うとしても、高温域以降でも設備は長大であ
るため、その部分を通過している鋼帯に関しては制御で
きないという問題もある。
However, Japanese Patent Application Laid-Open Nos. Hei 4-6226 and 57-94525,
In the method described in JP-A-63-171835, operating conditions such as furnace tension are set only in response to plate width fluctuations and plate thickness distributions on the furnace entrance side. There is a problem that can not be obtained. Also, in this method, even if feedback control is performed by measuring the width of the steel strip at the outlet side of the annealing furnace, since the equipment is long even after the high temperature range, the steel strip passing therethrough is not used. There is also the problem of not being able to control.

【0011】特開平8−127820号公報や特開平9
−31550号公報に開示された方法は、ヒートサイク
ルや通板速度などの操業条件が一定の場合には幅縮み量
の推定が可能である。しかしながら、連続焼鈍において
は鋼帯が順次接続され連続的に処理されており、例えば
先行鋼帯とその鋼帯に接続された後行鋼帯との寸法や焼
鈍温度などの操業条件が異なる場合には、先行鋼帯と後
行鋼帯との接続部近傍の幅縮み量を正確に推定すること
ができないという問題がある。
[0011] Japanese Patent Application Laid-Open No. 8-127820 and
The method disclosed in JP-A-31550 can estimate the amount of width reduction when operating conditions such as a heat cycle and a passing speed are constant. However, in continuous annealing, steel strips are sequentially connected and continuously processed.For example, when operating conditions such as dimensions and annealing temperature of a preceding steel strip and a subsequent steel strip connected to the steel strip are different. However, there is a problem that it is not possible to accurately estimate the amount of width reduction near the connection between the preceding steel strip and the following steel strip.

【0012】本発明は、上記した従来の問題点に鑑みな
されたもので、その課題は定常状態での幅縮み量のみな
らず先行鋼帯から後行鋼帯に替わる際などの非定常状態
における幅縮み量を推定し、炉出側での幅変動を抑制す
ることができる連続焼鈍設備における板幅変動防止方法
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and its object is not only in the amount of width reduction in the steady state but also in the unsteady state such as when changing from the preceding steel strip to the succeeding steel strip. An object of the present invention is to provide a method for preventing a width change of a continuous annealing facility that can estimate a width shrinkage amount and suppress a width change on a furnace discharge side.

【0013】[0013]

【課題を解決するための手段】連続焼鈍炉では、焼鈍温
度や寸法の異なる鋼帯が順次接続され、また、所定のヒ
ータパターンを付与するために通板速度が変更されて連
続的に処理される。従って、ハースロールを通過する際
の鋼帯温度は常に一定でなく、先行鋼帯と後行鋼帯との
接続部近傍において経時的に変化する。そのため、鋼帯
との接触によりハースロールに形成されるサーマルクラ
ウンが変化し、それに伴いロールクラウンが変化する。
SUMMARY OF THE INVENTION In a continuous annealing furnace, steel strips having different annealing temperatures and dimensions are sequentially connected, and the stripping speed is changed to give a predetermined heater pattern, and the strip is continuously processed. You. Accordingly, the temperature of the steel strip when passing through the hearth roll is not always constant, and changes with time near the connection between the preceding steel strip and the following steel strip. Therefore, the thermal crown formed on the hearth roll by contact with the steel strip changes, and the roll crown changes accordingly.

【0014】本発明者らは、連続焼鈍炉を模擬したモデ
ル装置によりロールクラウンと幅縮みとの関係を調査
し、以下の知見を得た。図2はロールクラウンと幅縮み
の関係を示すグラフで、幅縮みを幅方向歪みとして表し
ている。
The present inventors have investigated the relationship between the roll crown and the width shrinkage using a model device simulating a continuous annealing furnace, and have obtained the following findings. FIG. 2 is a graph showing the relationship between the roll crown and the width contraction, in which the width contraction is expressed as distortion in the width direction.

【0015】(a)図2に示すように、ロールクラウン
が変化すると幅方向歪みすなわち幅縮みが変化する。従
ってサーマルクランが経時的に変化する状況では幅縮み
量が変動することになる。
(A) As shown in FIG. 2, when the roll crown changes, the distortion in the width direction, that is, the width shrinkage changes. Therefore, in a situation where the thermal clan changes with time, the width contraction amount fluctuates.

【0016】(b)先行鋼帯から後行鋼帯に替わる際に
生じる過渡的な幅変動の抑制には、サーマルクラウンの
変動を把握し、幅縮み量を推定する事が必要となる。 (c)図2に示すように、張力を変更すると幅縮み量は
変化する。従って、幅縮み量の変動を抑えるためにはサ
ーマルクラウンの変動に基づき推定される幅縮み量の変
動を相殺するように張力を制御することが有効となる。
(B) In order to suppress the transient width fluctuation occurring when changing from the preceding steel strip to the succeeding steel strip, it is necessary to grasp the fluctuation of the thermal crown and to estimate the width shrinkage. (C) As shown in FIG. 2, when the tension is changed, the width contraction amount changes. Therefore, in order to suppress the fluctuation of the width reduction, it is effective to control the tension so as to cancel the fluctuation of the width reduction estimated based on the fluctuation of the thermal crown.

【0017】(d)しかしながら、張力を大きく変更す
ると、鋼帯の通板に際し、蛇行やヒートバックルと呼ば
れる絞り込みが発生することがあり、張力の変更では限
界がある。
(D) However, when the tension is largely changed, a meandering or narrowing called a heat buckle may occur when the steel strip is passed, and there is a limit in changing the tension.

【0018】(e)炉内にレベラを設け、鋼帯に伸び歪
みを付与すると鋼帯幅が減少する。従って、炉内の幅縮
み量の変化に応じてレベラの伸び率を調整することによ
り、炉出側の鋼帯幅を目標幅に制御することができる。
(E) If a leveler is provided in the furnace and an elongation strain is applied to the steel strip, the width of the steel strip decreases. Therefore, by adjusting the elongation rate of the leveler according to the change in the width shrinkage in the furnace, the steel strip width on the furnace exit side can be controlled to the target width.

【0019】(f)ロールクラウンの変動が大きいと幅
縮み変動が大きくなる。従って、幅縮み変動の抑制には
ロールクラウンの変動要因となるサーマルクラウンの低
減が有効である。サーマルクラウンはロールの軸方向の
温度分布に起因するため、ロール加熱などでハースロー
ルの軸方向温度分布を所定の分布に変更することにより
サーマルクラウンを低減することができる。
(F) If the fluctuation of the roll crown is large, the fluctuation of the width shrinkage becomes large. Therefore, reduction of the thermal crown, which is a cause of roll crown fluctuation, is effective for suppressing width shrinkage fluctuation. Since the thermal crown is caused by the temperature distribution in the axial direction of the roll, the thermal crown can be reduced by changing the axial temperature distribution of the hearth roll to a predetermined distribution by heating the roll.

【0020】(g)ロール加熱によるサーマルクランの
低下と伸び率の変更の双方により幅縮みの変動を抑制す
る方法は、伸び率のみを調整する方法に比べて、伸び率
の変更量を少なくする利点がある。例えば、伸び率の変
更量が大きくなると、板厚が変化し、板厚精度が悪化す
る場合があり、伸び率の変更量を小さくすることにより
高い板厚精度を維持することができる。
(G) In the method of suppressing the fluctuation of the width shrinkage by both reducing the thermal clan and changing the elongation by heating the roll, the amount of change in the elongation is reduced as compared with the method of adjusting only the elongation. There are advantages. For example, when the amount of change in the elongation rate is large, the thickness of the sheet may change and the thickness accuracy may be deteriorated. By reducing the amount of change in the elongation rate, a high accuracy of the thickness can be maintained.

【0021】本発明は、上記の知見に基づいて完成され
たもので、その要旨は以下の通りである。 (1)張力を負荷した鋼帯を炉内に設けた複数のハース
ロールに巻掛けて搬送しながら熱処理を行う連続熱処理
炉と、該連続熱処理炉の内部に設けたレベラと、上記連
続熱処理炉の入側に設けた板幅計とを有する連続熱処理
設備における鋼帯の板幅変動防止方法であって、上記板
幅計で鋼帯幅を測定するとともに、測定した部位の連続
熱処理炉内での幅縮み量を推定し、上記鋼帯幅の測定値
から上記幅縮み量を減算して連続熱処理炉出側の鋼帯幅
を推定し、推定した鋼帯幅が目標値と一致するように上
記レベラの伸び率を調整することを特徴とする連続熱処
理設備における鋼帯の板幅変動防止方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows. (1) A continuous heat treatment furnace that heat-treats a steel strip loaded with tension while being wound around a plurality of hearth rolls provided in the furnace, a leveler provided inside the continuous heat treatment furnace, and the continuous heat treatment furnace A method for preventing the width change of the steel strip in a continuous heat treatment facility having a width gauge provided on the entrance side of the steel strip, and measuring the width of the steel strip with the width gauge, in a continuous heat treatment furnace of the measured portion. Estimate the width shrinkage of the steel strip width, subtract the width shrinkage from the measured value of the steel strip width to estimate the steel strip width on the exit side of the continuous heat treatment furnace, so that the estimated steel strip width matches the target value. A method for preventing a change in the width of a steel strip in a continuous heat treatment facility, comprising adjusting an elongation of the leveler.

【0022】(2)張力を負荷した鋼帯を炉内に設けた
複数のハースロールに巻掛けて搬送しながら熱処理を行
う連続熱処理炉と、該連続熱処理炉の内部に設けたレベ
ラと、上記連続熱処理炉の入側に設けた板幅計とを有す
る連続熱処理設備における鋼帯の板幅変動防止方法であ
って、上記ハースロールとしてハースロールの温度を調
整する加熱手段を内部に備えたロールを用い、上記板幅
計で鋼帯幅を測定するとともに、測定した部位の連続熱
処理炉内での幅縮み量を推定し、上記鋼帯幅の測定値か
ら上記幅縮み量を減算して連続熱処理炉出側の鋼帯幅を
推定し、推定した鋼帯幅が目標値と一致するように上記
レベラの伸び率と上記ハースロールの温度とを調整する
ことを特徴とする連続熱処理設備における鋼帯の幅変動
防止方法。
(2) A continuous heat treatment furnace for performing heat treatment while rolling and transporting a steel strip loaded with tension around a plurality of hearth rolls provided in the furnace, a leveler provided inside the continuous heat treatment furnace, A method for preventing a change in the width of a steel strip in a continuous heat treatment facility having a width gauge provided on an inlet side of a continuous heat treatment furnace, wherein the heat treatment means includes a heating means for adjusting a temperature of the hearth roll as the hearth roll. The steel strip width is measured with the sheet width meter, and the width shrinkage amount in the continuous heat treatment furnace of the measured portion is estimated, and the width shrinkage amount is subtracted from the measured value of the steel strip width to continuously perform the measurement. Estimating the steel strip width on the exit side of the heat treatment furnace, and adjusting the elongation rate of the leveler and the temperature of the hearth roll so that the estimated steel strip width matches the target value. A method for preventing band width fluctuation.

【0023】(3)連続熱処理炉内の幅縮み量を下記a
〜cの要領で推定することを特徴とする上記(1)項ま
たは(2)項に記載の連続熱処理設備における鋼帯の板
幅変動防止方法。 a.炉内の鋼帯温度ならびに各ハースロールの軸方向温
度分布を求める。 b.次いで上記軸方向温度分布に基づいて各ハースロー
ルのサーマルクラウン形状を求める。 c.上記サーマルクラウン形状と上記鋼帯温度とに基づ
いて幅縮み量を算出する。
(3) The width shrinkage amount in the continuous heat treatment furnace is defined as a
(C) The method for preventing a variation in the width of a steel strip in a continuous heat treatment facility according to the above (1) or (2), wherein the estimation is performed in the following manner. a. The steel strip temperature in the furnace and the axial temperature distribution of each hearth roll are determined. b. Next, the thermal crown shape of each hearth roll is determined based on the axial temperature distribution. c. The width shrinkage is calculated based on the thermal crown shape and the steel strip temperature.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面を参照して説明する。なお、本実施形態に係る連続
熱処理設備の説明は連続焼鈍設備を例にとる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The description of the continuous heat treatment equipment according to the present embodiment will be given by taking a continuous annealing equipment as an example.

【0025】図3は本実施形態に係る連続焼鈍設備を示
す概要図である。符号20はレベラ、21は炉内ブライ
ドルロール、22、23、26は炉内板幅計で、図1と
同じ要素は同一の符号で示す。
FIG. 3 is a schematic diagram showing the continuous annealing equipment according to the present embodiment. Reference numeral 20 indicates a leveler, reference numeral 21 indicates an in-furnace bridle roll, reference numerals 22, 23, and 26 indicate in-furnace plate width meters, and the same elements as those in FIG.

【0026】図3において、本実施形態に係る連続焼鈍
設備は入側から出側に向かい、ペイオフリール2、板幅
計22、入側ルーパ12、連続焼鈍炉3、出側ルーパ1
3、調質圧延機10及びテンションリール11とを備
え、更に連続焼鈍炉の内部にレベラ20と該レベラの後
方に設けた板幅計23(以下、炉内板幅計ともいう)と
を有する。連続焼鈍炉3は、炉入側から出側に向かっ
て、加熱帯5、均熱帯6、冷却帯7,過時効帯8及び冷
却帯9を順次備え、レベラは加熱炉の入口部に配置され
る。
In FIG. 3, the continuous annealing equipment according to this embodiment goes from the entrance side to the exit side, and includes a payoff reel 2, a width gauge 22, an entrance looper 12, a continuous annealing furnace 3, and an exit looper 1.
3. It has a temper rolling mill 10 and a tension reel 11, and further has a leveler 20 inside a continuous annealing furnace and a width gauge 23 (hereinafter also referred to as a furnace width gauge) provided behind the leveler. . The continuous annealing furnace 3 includes a heating zone 5, a soaking zone 6, a cooling zone 7, an overaging zone 8 and a cooling zone 9 in order from the furnace entrance side to the exit side, and the leveler is disposed at the entrance of the heating furnace. You.

【0027】図4は図3に示すレベラ20の構成を示す
模式図である。符号24はワークロール、25はバック
アップロールで、図3と同じ要素は同一の符号で示す。
図4に示すように、レベラ20は鋼帯1を挟んで千鳥状
に配置されたワークロール24,24,24を備え、そ
の入側と出側に炉内ブライドルロール21,21を有す
る。ワークロール24,24,24を鋼帯に押し込むこ
とにより鋼帯に伸び歪みが与えられる。
FIG. 4 is a schematic diagram showing the structure of the leveler 20 shown in FIG. Reference numeral 24 denotes a work roll, 25 denotes a backup roll, and the same elements as those in FIG. 3 are denoted by the same reference numerals.
As shown in FIG. 4, the leveler 20 includes work rolls 24, 24, 24 arranged in a staggered manner with the steel strip 1 interposed therebetween, and has in-furnace bridle rolls 21, 21 on the entrance side and the exit side. By pushing the work rolls 24, 24, 24 into the steel strip, elongation strain is given to the steel strip.

【0028】鋼帯1はペイオフリール2より連続的に供
給され、炉入側に設けた板幅計22(炉入側板幅計とも
いう)で連続して鋼帯幅が測定された後炉内に供給さ
れ、炉内に設けられた多数のハースロール4で支持さ
れ、加熱帯5、均熱帯6、冷却帯7、過時効帯8及び冷
却帯9を順次通過することで、所定の熱処理を施された
後、調質圧延され、テンションリール11で巻き取られ
る。その際、鋼帯1はレベラ20で伸び歪みが付与さ
れ、炉内板幅計23で連続して鋼帯幅が測定される。な
お、本発明に用いる連続焼鈍炉ならびにレベラは上記図
3、図4に示す例に限定されるものでなく、公知の装置
を用いることができる。
The steel strip 1 is continuously supplied from the pay-off reel 2, and the width of the steel strip is continuously measured by a strip width meter 22 (also referred to as a furnace entry side width gauge) provided on the furnace entrance side. And is supported by a large number of hearth rolls 4 provided in the furnace, and sequentially passes through a heating zone 5, a soaking zone 6, a cooling zone 7, an overaging zone 8 and a cooling zone 9, thereby performing a predetermined heat treatment. After being applied, it is temper-rolled and wound up by a tension reel 11. At this time, the steel strip 1 is given an elongation strain by the leveler 20 and the steel strip width is continuously measured by the furnace inner width meter 23. The continuous annealing furnace and the leveler used in the present invention are not limited to the examples shown in FIGS. 3 and 4, and a known device can be used.

【0029】図5は本発明方法の手順の例を示すフロー
チャートである。同図に示すように本発明は炉入側板幅
計で鋼帯の幅を測定するとともに測定した部位の連続焼
鈍炉内での幅縮み量を推定し、上記幅から上記幅縮み量
を減算して連続焼鈍炉出側での鋼帯幅を推定し、推定し
た鋼帯幅が目標値となるようにレベラの伸び率を調整す
るものである。ここで、幅縮み量は、操業条件から鋼帯
温度、ロールの軸方向温度分布、サーマルクラウン、ロ
ール形状を順次求め、次いでハースロール通過の際に生
じる幅縮み量と、ハースロール間すなわちフリースパン
での幅縮み量とから推定される。
FIG. 5 is a flowchart showing an example of the procedure of the method of the present invention. As shown in the drawing, the present invention measures the width of the steel strip with the furnace width meter at the furnace entrance side and estimates the width shrinkage amount in the continuous annealing furnace of the measured portion, and subtracts the width shrinkage amount from the width. The width of the steel strip on the exit side of the continuous annealing furnace is estimated by using the method, and the elongation of the leveler is adjusted so that the estimated width of the steel strip becomes a target value. Here, the width shrinkage is obtained from the operating conditions, the steel strip temperature, the axial temperature distribution of the roll, the thermal crown, and the roll shape in order. It is estimated from the width contraction amount at.

【0030】幅縮み量の計算は、炉内の鋼帯を長手方向
に分割したモデル(以下分割モデルという)にて行う。
図6は分割モデルの一例を示す図である。符号30はハ
ースロール、31は鋼帯を示す。
The width shrinkage is calculated using a model in which the steel strip in the furnace is divided in the longitudinal direction (hereinafter referred to as a divided model).
FIG. 6 is a diagram illustrating an example of the division model. Reference numeral 30 denotes a hearth roll, and 31 denotes a steel strip.

【0031】図6に示すように、N本のハースロール3
0が炉の上下に配置され、各ハースロールの位置で鋼帯
31を長手方向にN分割したモデルとする。各分割区間
での熱の出入りを計算する。図示例は各ハースロール位
置で鋼帯を分割しているが、更にハースロール間でも分
割し、分割数を多くすることで、計算精度を向上させる
ことができる。以下、図6に示すモデルで幅縮み量を推
定し、炉出側の鋼帯幅の変動を抑制する手順を図5に基
づいて説明する。なお、記号iは分割区間(i=1〜
N)、記号jは時間ステップ、記号kはハースロールの
幅方向位置を示す。
As shown in FIG. 6, N hearth rolls 3
0 is arranged above and below the furnace, and the steel strip 31 is divided into N parts in the longitudinal direction at each hearth roll position. Calculate the heat flow in and out of each split section. In the illustrated example, the steel strip is divided at each hearth roll position. However, by further dividing between the hearth rolls and increasing the number of divisions, the calculation accuracy can be improved. Hereinafter, a procedure for estimating the width shrinkage amount using the model shown in FIG. 6 and suppressing the fluctuation of the steel strip width on the furnace exit side will be described with reference to FIG. Note that the symbol i represents a divided section (i = 1 to
N), a symbol j indicates a time step, and a symbol k indicates a width direction position of the hearth roll.

【0032】鋼帯の温度計算:計算で求める方式として
はいくつか考えられるが本発明の実施態様としては次の
ものが計算精度の点で好ましい。計算開始時刻τ0での
ライン速度、板厚、板幅、鋼種、炉内温度から時刻δτ
経過後の各分割区間(以下区間ともいう)の鋼帯温度T
Sを(1)式で求める。
Calculation of temperature of steel strip: There are several methods for calculating the temperature of the steel strip, but the following is preferred as an embodiment of the present invention in terms of calculation accuracy. From the line speed, plate thickness, plate width, steel type, furnace temperature at calculation start time τ 0 , time δτ
Steel strip temperature T of each divided section (hereinafter also referred to as section) after elapse
S is obtained by equation (1).

【0033】[0033]

【数1】 ここで、δV:体積(δL×W×t)、δQ:面積(δ
L×W×2)にδτの間に鋼帯に投入される熱エネルギ
(炉から鋼帯への熱伝達、熱輻射及びロールとの熱伝
達)、δL:各分割区間の長さ、c:鋼帯比熱、t:鋼
帯厚、W:鋼帯幅である。
(Equation 1) Here, δV: volume (δL × W × t), δQ: area (δ
L × W × 2) and thermal energy (heat transfer from the furnace to the steel strip, heat radiation and heat transfer with the rolls) during δτ, δL: length of each divided section, c: Steel strip specific heat, t: steel strip thickness, W: steel strip width.

【0034】なお、上記区間における鋼帯温度を放射温
度計などで測定し、その測定値に基づき上記(1)式で
計算される鋼帯温度を検証、修正することにより計算精
度を高めることができる。
The accuracy of calculation can be improved by measuring the steel strip temperature in the above section using a radiation thermometer or the like, and verifying and correcting the steel strip temperature calculated by the above equation (1) based on the measured value. it can.

【0035】ハースロール軸方向温度分布の計算:この
ときの計算方式もいくつか考えられるが、前述の計算結
果を利用できることから次の方式が好ましい。上記
(1)式で計算される鋼帯温度に基づき、鋼帯との接触
熱伝達、炉からの熱伝達及び輻射熱を考慮してハースロ
ール内部の温度分布を計算する。ハースロール(以下、
単にロールともいう)を半径方向と軸方向に分割し、
l:半径方向分割位置、m:軸方向分割位置とすると、
ロール内部温度Tlmは、ロール内部の熱バランスから
得られる離散化した下記(2)式から計算される。
Calculation of the hearth roll axial temperature distribution: Several calculation methods can be considered at this time, but the following method is preferable because the above calculation results can be used. Based on the steel strip temperature calculated by the above equation (1), the temperature distribution inside the hearth roll is calculated in consideration of contact heat transfer with the steel strip, heat transfer from the furnace, and radiant heat. Hearth roll (hereinafter,
Is simply divided into a radial direction and an axial direction.
l: radial division position, m: axial division position,
The roll internal temperature T l , m is calculated from the following discrete equation (2) obtained from the heat balance inside the roll.

【0036】[0036]

【数2】 したがって、軸方向k位置におけるロール胴部の厚さ方
向の平均温度(以下、ロール温度ともいう)は、(2)
式で求まるロール内部温度を厚み方向に平均して計算さ
れる。これらの計算を全ロールを対象に同様に繰り返す
ことで全ロールのロール温度TR(i,j,k)、すな
わち全ロールの軸方向温度分布が下記(3)式で求ま
る。
(Equation 2) Accordingly, the average temperature in the thickness direction of the roll body at the axial position k (hereinafter also referred to as roll temperature) is (2)
Calculated by averaging the roll internal temperature determined by the formula in the thickness direction. Roll temperature T R of the total roll by repeating these calculations similarly for all rolls (i, j, k), i.e. the axial temperature distribution of all the roll is determined by the following equation (3).

【0037】[0037]

【数3】 ここで、l2:ロール外側座標、l1:ロール内側座標、
である。
(Equation 3) Here, l 2 : roll outside coordinates, l 1 : roll inside coordinates,
It is.

【0038】なお、上記各点のロール温度をロール内部
に設けた温度センサで測定し、その測定値に基づき上記
(3)式で計算されるロール温度を検証、修正すること
により計算精度を高めることができる。
The roll temperature at each point is measured by a temperature sensor provided inside the roll, and based on the measured value, the roll temperature calculated by the above equation (3) is verified and corrected to improve the calculation accuracy. be able to.

【0039】サーマルクラウンの計算:上記ロール温度
Rより、軸方向各位置での温度上昇量ΔTkを求め、離
散化した各位置で半径方向に等方的に働く力pkに換算
し、力pkがロールの円筒部に負荷されたと仮定して、
そのときのロールの膨らみ・へこみ形状を計算する。p
kは、温度上昇量ΔTkから下記(4)式で計算される。
The thermal crown calculation: from the roll temperature T R, determine the increase in temperature [Delta] T k in the axial direction each position, in terms of the force p k acting isotropically radially at each position discretized, Assuming that force pk is applied to the cylindrical part of the roll,
The roll bulge / dent shape at that time is calculated. p
k is calculated from the temperature rise amount ΔT k by the following equation (4).

【0040】[0040]

【数4】 xをロール軸方向座標とするとロールの膨らみ・へこみ
形状crk(x)は下記(5)式で計算される。
(Equation 4) When x is the coordinate in the roll axis direction, the roll bulge / dent shape cr k (x) is calculated by the following equation (5).

【0041】[0041]

【数5】 ここで、(Equation 5) here,

【0042】[0042]

【数6】 である。ただし、hS:ロール胴部厚み、ν:ロールの
ポアソン比、E:ロールの弾性係数、R0:ロール半径
である。
(Equation 6) It is. Here, h S : roll body thickness, ν: Poisson's ratio of the roll, E: elastic modulus of the roll, and R 0 : roll radius.

【0043】従って、サーマルクランCrは、(5)式
の総和として下記(6)式で表される。なお、ロール温
度は左右対称と仮定すれば、pk=p-kとしてよい。
Therefore, the thermal clan Cr is represented by the following equation (6) as the sum of the equations (5). Incidentally, assuming that the roll temperature is symmetrical, p k = p −k may be set.

【0044】[0044]

【数7】 ここで、keはロール胴部片側の分割数である。(Equation 7) Here, k e is the number of divisions of the roll barrel side.

【0045】ロール形状の計算:(6)式で得られるサ
ーマルクラウンに初期のロールクラウン等を加算して、
下記(7)式からロール形状を表すロール半径の幅方向
分布R(i,j,k)が求まる
Calculation of roll shape: The initial roll crown and the like are added to the thermal crown obtained by equation (6),
From the following equation (7), a width direction distribution R (i, j, k) of the roll radius representing the roll shape is obtained.

【0046】[0046]

【数8】 ここで、Crint は初期クラウン形状、Crwはロールのア
クスル部の拘束の影響によるたわみ形状である。
(Equation 8) Here, Cr int is the initial crown shape, and Crw is the flexure shape due to the effect of the constraint of the axle portion of the roll.

【0047】幅縮み量の計算:幅縮み量は、ハースロー
ル通過の際に生じる幅縮み量とハースロール間、すなわ
ちフリースパンにおける幅縮みの和として求めることが
出来る。ロールにクラウンがあると幅方向位置で伸びが
異なるため、伸びの計算には鋼帯を幅方向に分割し、分
割した各条についてその位置でのロールのクラウンを考
慮して伸び歪みを求める。ロールを一回通過することで
形成される各条の伸び歪みの増分は下記(8)式で計算
される曲げによる伸び歪みの増分と下記(9)式で計算
される曲げ戻しによる伸び歪みの増分との和になる。
Calculation of width reduction: The width reduction can be obtained as the sum of the width reduction generated when passing through the hearth roll and the width reduction between the hearth rolls, ie, the free span. If the roll has a crown, the elongation differs at the width direction position. Therefore, in calculating the elongation, the steel strip is divided in the width direction, and the elongation strain is calculated for each of the divided strips in consideration of the roll crown at that position. The increment of elongation strain of each strip formed by passing the roll once is the increment of elongation strain by bending calculated by the following equation (8) and the elongation strain by bending back calculated by the following equation (9). The sum with the increment.

【0048】[0048]

【数9】 ここで、、σT:張力、σX0:2次元降伏応力である。(Equation 9) Here, σ T : tension, σ X0 : two-dimensional yield stress.

【0049】従って、幅方向の歪み分布の比率を関数f
1で表すと、ハースロール通過の際に生じる幅方向歪み
δεWR は(10)式で与えられる。なお、関数f1は実
験によって得られる0<f1<0.5である。
Therefore, the ratio of the strain distribution in the width direction is calculated by the function f
Expressed as 1 , the widthwise strain δε WR generated when passing through the hearth roll is given by equation (10). The function f 1 satisfies 0 <f 1 <0.5 obtained by experiment.

【0050】[0050]

【数10】 フリースパンでの各条の伸び歪みの増分は、(11)式
で演算される。
(Equation 10) The increment of the elongation strain of each strip in the free span is calculated by equation (11).

【0051】[0051]

【数11】 ここで、[Equation 11] here,

【0052】[0052]

【数12】 である。(Equation 12) It is.

【0053】したがって、幅方向の歪み分布の比率を関
数f2とすると、フリースパンでの幅縮みδεWF は(1
3)式で与えられる。なお関数f2は実験によって得ら
れ、0<f2<0.5である。
Therefore, assuming that the ratio of the strain distribution in the width direction is a function f 2 , the width contraction δε WF in the free span is (1
It is given by equation 3). Incidentally function f 2 is obtained by experimentation and is 0 <f 2 <0.5.

【0054】[0054]

【数13】 炉出側の幅縮み量εwは、(10)式で与えられるハー
スロール通過の際の幅方向歪みと(13)式で与えられ
るフリースパンでの幅方向歪みとの全分割区間の総和と
して(14)式で演算される。
(Equation 13) The width contraction amount ε w on the furnace exit side is a sum of all the divided sections of the width direction distortion at the time of passing through the hearth roll given by the equation (10) and the width distortion at the free span given by the equation (13). It is calculated by equation (14).

【0055】[0055]

【数14】 炉出側の鋼帯幅の推定:炉入側板幅計で鋼帯幅を測定す
るとともに、測定した部位の炉内での幅縮み量を(1
4)式で推定し、上記鋼帯幅から上記幅縮み量を減算す
ることにより炉出側の鋼帯幅が推定される。
[Equation 14] Estimation of the steel strip width on the furnace exit side: The steel strip width is measured with the furnace width meter on the furnace entrance side, and the width shrinkage of the measured part in the furnace is calculated as (1
The width of the steel strip on the furnace exit side is estimated by estimating with the equation 4) and subtracting the width reduction amount from the steel strip width.

【0056】レベラの伸び率制御:上記方法で推定され
た炉出側の鋼帯幅(以下、推定値ともいう)が目標値と
一致するようにレベラの伸び率を調整する。すなわち、
推定値が目標値よりも大きい場合は伸び率を大きくし、
目標値より小さいときは伸び率を小さくするように伸び
率を調整することにより、幅縮み量の変動に起因する炉
出側の幅変動を防止することができる。例えば、炉出側
の鋼帯幅の目標値に幅縮み量を加算してレベラ出側の目
標幅(以下、レベラ出側目標幅ともいう)を算出し、炉
内板幅計で測定される鋼帯幅がレベラ出側目標幅になる
ようにレベラの伸び率を調整する。あるいは、連続焼鈍
設備が炉内板幅計を備えないときなどの場合には、鋼帯
の材質、温度、寸法などの条件毎にレベラでの伸び率と
伸び率の付与に伴う幅縮みの量との関係を予め実験的に
求めておき、この関係から上記推定値が目標値に一致す
るように伸び率を調整してもよい。
Leveler elongation rate control: The leveler elongation rate is adjusted such that the steel strip width on the furnace exit side (hereinafter also referred to as an estimated value) estimated by the above method matches the target value. That is,
If the estimated value is higher than the target value, increase the growth rate,
When the elongation is smaller than the target value, by adjusting the elongation so as to reduce the elongation, it is possible to prevent the width variation on the furnace discharge side due to the variation in the width shrinkage. For example, a target width on the leveler exit side (hereinafter, also referred to as a target level on the leveler exit side) is calculated by adding the width reduction amount to the target value of the steel strip width on the furnace exit side, and is measured by a furnace inner width meter. Adjust the elongation of the leveler so that the steel strip width is the target width on the leveler exit side. Alternatively, when the continuous annealing equipment is not equipped with a furnace width gauge, the elongation rate at the leveler and the amount of width shrinkage accompanying the elongation rate for each condition such as steel strip material, temperature, and dimensions May be experimentally determined in advance, and the elongation may be adjusted from this relationship so that the estimated value matches the target value.

【0057】図7は、本発明の別の方法の手順の例を示
すフローチャートである。本発明の別の方法は、ハース
ロールの内部にハースロールの温度を調節する加熱手段
を設け、炉出側の鋼帯幅を推定し、推定した鋼帯幅が目
標値に一致するように伸び率とハースロール温度とを同
時に制御する、あるいは最初に伸び率制御を行い、十分
でない場合に更にハースロールの温度制御を行う。
FIG. 7 is a flowchart showing an example of the procedure of another method of the present invention. Another method of the present invention is to provide a heating means for adjusting the temperature of the hearth roll inside the hearth roll, estimate the steel strip width on the furnace exit side, and extend the steel strip width so as to match the target value. The rate and the hearth roll temperature are simultaneously controlled, or the elongation rate is controlled first, and if not enough, the hearth roll temperature is further controlled.

【0058】炉出側の鋼帯幅は、上記と同様の手順で、
炉入側板幅計で測定される鋼帯幅と、(14)式で演算
される幅縮み量から求めることができる。ハースロール
の温度調節は、ハースロールとして内部に加熱手段を設
けた加熱ロールを用いることにより行うことができる。
The width of the steel strip on the furnace exit side is determined in the same manner as described above.
It can be obtained from the steel strip width measured by the furnace entrance side width gauge and the width reduction calculated by the equation (14). The temperature control of the hearth roll can be performed by using a heating roll having a heating means provided therein as the hearth roll.

【0059】レベラの伸び率制御とハースロールの温度
制御では、例えば、炉出側の鋼帯幅の推定値が目標値と
一致するようにハースロールの温度を制御するとともに
炉出側の鋼帯幅の目標値に幅縮み量を加算してレベラ出
側の目標幅を算出し、炉内板幅計で測定される鋼帯幅が
レベラ出側目標幅になるようにレベラの伸び率を制御す
る。あるいは、鋼帯の材質、温度、寸法などの条件毎に
レベラでの伸び率と伸び率付与に伴う幅縮み量との関係
を予め実験的に求めておき、炉出側の鋼帯幅の推定値が
目標値と一致するようにハースロールの温度を制御する
とともにレベラ出側目標幅を求め、上記関係から推定さ
れるレベラ出側の鋼帯幅がレベラ出側目標幅になるよう
にレベラの伸び率を制御する。
In the control of the elongation rate of the leveler and the temperature control of the hearth roll, for example, the temperature of the hearth roll is controlled so that the estimated value of the steel strip width on the furnace exit side matches the target value, and the steel strip on the furnace exit side is controlled. The target width on the leveler exit side is calculated by adding the width contraction amount to the target width value, and the elongation rate of the leveler is controlled so that the steel strip width measured by the furnace width gauge becomes the target level on the leveler exit side. I do. Alternatively, the relationship between the elongation rate at the leveler and the amount of width shrinkage accompanying the elongation rate is experimentally obtained in advance for each condition such as the material, temperature, and dimensions of the steel strip, and the steel strip width on the furnace exit side is estimated. The hearth roll temperature is controlled so that the value matches the target value, and the leveler exit side target width is obtained, and the leveler exit side target width estimated from the above relationship is set to the leveler exit side target width. Control elongation.

【0060】図8は加熱ロールの構造例を示す模式図で
ある。この加熱ロール40は、内部の幅方向に複数個の
ヒータ41と複数個の温度センサ42を備える。温度セ
ンサでロールの内部の温度分布を測定しながらそれぞれ
のヒータの出力を調節することによりロールの幅方向温
度分布の変更が可能となる。サーマルクラウンが低減す
るようにロールの幅方向温度分布を変更することで幅縮
み量の変動を抑制することが出来る。したがって、かか
る変更例では、伸び率の変更に加えて、ロール加熱によ
りロールの幅方向温度分布を変更することにより炉出側
の鋼帯幅の変動の抑制をより効果的に行うことができ
る。すなわち、伸び率の変更のみでは板厚精度が悪化す
る場合でもロール加熱を併用することにより板厚精度の
悪化を防止して炉出側の鋼帯幅の変動をより効果的に抑
制することができる。
FIG. 8 is a schematic view showing an example of the structure of a heating roll. The heating roll 40 includes a plurality of heaters 41 and a plurality of temperature sensors 42 in the internal width direction. By adjusting the output of each heater while measuring the temperature distribution inside the roll with a temperature sensor, it is possible to change the temperature distribution in the roll width direction. By changing the temperature distribution in the width direction of the roll so as to reduce the thermal crown, the fluctuation of the width shrinkage amount can be suppressed. Therefore, in such a modified example, in addition to the change in the elongation, the change in the widthwise temperature distribution of the roll by heating the roll can more effectively suppress the fluctuation of the steel strip width on the furnace exit side. That is, even when the thickness accuracy is deteriorated only by changing the elongation, it is possible to prevent the thickness accuracy from being deteriorated by using the roll heating in combination and to more effectively suppress the fluctuation of the steel strip width on the furnace exit side. it can.

【0061】例えば、焼鈍温度を上昇させる場合には、
予めロールの板幅外側を加熱することによりサーマルク
ラウンの増加を抑制することができる。板幅が広がる場
合には、予めロールの板幅外側を加熱して昇温すること
で、広幅に幅替わりする場合の板幅当たりのサーマルク
ラウンを低減できる。しかもロールクラウンに起因する
蛇行やヒートバックルが抑止される。
For example, when raising the annealing temperature,
By heating the outer side of the roll in advance, the increase of the thermal crown can be suppressed. When the sheet width is widened, the thermal crown per sheet width when the width is changed to a wide one can be reduced by heating the outside of the roll width in advance to increase the temperature. Moreover, meandering and heat buckle caused by the roll crown are suppressed.

【0062】本実施形態の説明では、連続熱処理設備と
して図3に示す連続焼鈍設備を用いる場合を例にとっ
た。しかし、本発明はこの形態には限定されず、張力を
負荷した鋼帯をハースロールに巻掛けて搬送しながら熱
処理を行う連続熱処理炉を備えた連続熱処理設備に対し
て同様に適用できる。
In the description of this embodiment, the case where the continuous annealing equipment shown in FIG. 3 is used as the continuous heat treatment equipment is taken as an example. However, the present invention is not limited to this mode, and can be similarly applied to a continuous heat treatment facility provided with a continuous heat treatment furnace for performing heat treatment while transporting a steel strip loaded with tension around a hearth roll and transporting it.

【0063】[0063]

【実施例】(実施例1)図9は連続焼鈍モデル通板装置
(モデル通板装置という)の基本構成を示す模式図であ
る。符号R1〜R12はハースロール、35は加熱装
置、36は加熱炉で、図3と同じ要素は同一の符号で示
す。
(Embodiment 1) FIG. 9 is a schematic view showing the basic structure of a continuous annealing model sheet passing apparatus (referred to as a model passing apparatus). Reference numerals R1 to R12 denote hearth rolls, 35 denotes a heating device, 36 denotes a heating furnace, and the same elements as those in FIG. 3 are denoted by the same reference numerals.

【0064】図9に示すモデル通板装置を用い、加熱装
置35で炉内Aゾーンを830℃、Bゾーンを500℃
に加熱した雰囲気として、表1に示す通板条件にて材質
SPCCの先行材と後行材を一定速度で連続して通板し
た。
Using the model passing device shown in FIG. 9, the heating device 35 sets the furnace A zone at 830 ° C. and the B zone at 500 ° C.
The preceding material and the following material of the material SPCC were continuously passed at a constant speed under the passing conditions shown in Table 1 as the atmosphere heated.

【0065】[0065]

【表1】 はじめに、250mm幅の鋼帯を走行させた後、続けて
350mm幅の鋼帯を走行させた。図5に示す手順に従
って、幅250mmから幅350mmへの板幅替わりで
の過渡的な状態を含め、サーマルクラウン形状変化の計
算をもとに幅縮み量を推定し、この幅縮み量と、炉入側
に設置した板幅計22で測定した鋼帯幅とから、加熱炉
36出側(以下、炉出側ともいう)の鋼帯幅を推定し、
炉出側の鋼帯幅が目標値と一致するようにレベラ出側目
標値を求め、炉内板幅計23で測定される鋼帯幅がその
レベラ出側目標値になるようにレベラ20の伸び率を調
整した。比較のためにレベラの伸び率を一定とした試験
(比較例)も実施した。炉出側に設けた板幅計26で鋼
帯幅を測定し、その鋼帯幅と目標値との差(以下、幅変
動量ともいう)を求めた。表2に幅変動量を示す。
[Table 1] First, after running a steel strip having a width of 250 mm, a steel strip having a width of 350 mm was continuously run. According to the procedure shown in FIG. 5, the width shrinkage amount is estimated based on the calculation of the thermal crown shape change, including the transitional state when the plate width is changed from the width of 250 mm to the width of 350 mm. From the steel strip width measured by the width gauge 22 installed on the entrance side, the steel strip width on the exit side of the heating furnace 36 (hereinafter, also referred to as the furnace exit side) is estimated,
The leveler outlet side target value is determined such that the steel strip width on the furnace outlet side matches the target value, and the leveler 20 is adjusted so that the steel strip width measured by the furnace inner width meter 23 becomes the leveler outlet side target value. The elongation was adjusted. For comparison, a test (comparative example) in which the elongation rate of the leveler was constant was also performed. The width of the steel strip was measured by a strip width meter 26 provided on the furnace exit side, and a difference between the steel strip width and a target value (hereinafter, also referred to as a width fluctuation amount) was obtained. Table 2 shows the width variation.

【0066】[0066]

【表2】 表2に示すように比較例では板幅が拡大することで、板
幅当たりのクラウンが増加し、ロールのサーマルクラウ
ンが安定するまでは、幅変動量が増加する傾向がみられ
た。本発明例では、比較例に比べて板幅替わりの過渡状
態の幅変動量が大幅に抑制された。 (実施例2)図9に示すモデル通板装置を用い、ハース
ロール(R2,R4,R6,R8,R11)には図8に
示す加熱ロールを用い、表1と同じ条件で材質SPCC
の先行材と後行材とを一定速度で連続して通板し、幅変
動量を調査した。
[Table 2] As shown in Table 2, in the comparative example, the width per sheet width was increased, the crown per sheet width was increased, and the width fluctuation amount tended to increase until the thermal crown of the roll became stable. In the example of the present invention, the width fluctuation amount in the transient state of the plate width change was significantly suppressed as compared with the comparative example. (Example 2) The model threading device shown in FIG. 9 was used, and the heating rolls shown in FIG. 8 were used for the hearth rolls (R2, R4, R6, R8, R11).
And the following material were continuously passed at a constant speed, and the width variation was investigated.

【0067】はじめに、250mm幅の鋼帯を走行させ
た後、続けて350mm幅の鋼帯を連続して走行させ
た。図7に示す手順に従って、板幅替わりでの過渡的な
状態を含め、サーマルクラン形状変化の計算をもとに幅
縮み量を推定し、この幅縮み量と炉入側に設けた板幅計
22で測定した鋼帯幅とから炉出側の鋼帯幅を推定し、
炉出側の鋼帯幅が目標値と一致するようにロール温度を
制御するとともにレベラ出側目標値を求め、炉内板幅計
で測定される鋼帯幅がそのレベラ出側目標値になるよう
にレベラの伸び率を制御した。比較のために伸び率一
定、温度制御無しとした試験(比較例)を実施した。上
記と同様に炉出側での幅変動量を調査した結果を表3に
示す。
First, after running a steel strip having a width of 250 mm, a steel strip having a width of 350 mm was continuously run. According to the procedure shown in FIG. 7, the width shrinkage amount is estimated based on the calculation of the thermal clan shape change including the transitional state at the time of changing the width of the plate width. Estimate the steel strip width on the furnace exit side from the steel strip width measured in 22,
Control the roll temperature so that the steel strip width on the furnace exit side matches the target value, obtain the leveler exit side target value, and the steel strip width measured by the furnace inner width meter becomes the leveler exit side target value. The elongation of the leveler was controlled as described above. For comparison, a test (comparative example) in which the elongation was constant and the temperature was not controlled was performed. Table 3 shows the results of the investigation of the width variation on the outlet side of the furnace in the same manner as described above.

【0068】[0068]

【表3】 表3に示すように、比較例では板幅が拡大することで、
板幅当たりのクラウンが増加し、ロールのサーマルクラ
ンが安定するまでは、幅変動量が増加する傾向がみられ
た。本発明例では、比較例に比べて板幅替わりの過渡状
態の幅変動量が大幅に抑制された。 (実施例3)図3に示す基本構成の連続焼鈍設備で、低
炭素鋼、厚み1.0mmm幅1200〜1300mmの鋼
帯を焼鈍温度800〜820℃で通板する条件を対象と
して本発明の効果を検証した。図5に示す要領で連続焼
鈍炉出側での幅縮み量を推定し、幅が目標値になるよう
にレベラの伸び率を制御した。炉出側に設けた板幅計2
6で鋼帯幅を測定し、その鋼帯幅と目標値との差(幅変
動量)を求めた。
[Table 3] As shown in Table 3, in the comparative example, the plate width was increased,
Until the crown per plate width increased and the thermal clan of the roll became stable, the width variation tended to increase. In the example of the present invention, the width fluctuation amount in the transient state of the plate width change was significantly suppressed as compared with the comparative example. (Example 3) In the continuous annealing equipment having the basic configuration shown in FIG. 3, the present invention is applied to a condition in which a low carbon steel, steel strip having a thickness of 1.0 mm and a width of 1200 to 1300 mm is passed at an annealing temperature of 800 to 820 ° C. The effect was verified. The width shrinkage amount on the exit side of the continuous annealing furnace was estimated in the manner shown in FIG. 5, and the elongation rate of the leveler was controlled so that the width became a target value. Plate width meter 2 provided on the furnace exit side
The steel strip width was measured in 6 and the difference (width variation) between the steel strip width and the target value was determined.

【0069】図10に幅変動量の分布を示す。なお、図
中の比較例はレベラの伸び率を一定とした場合である。
各種鋼帯が混在する条件下では幅縮み量にばらつきが生
じるため、図10に示すように比較例では幅変動量のば
らつきが大きくなったが、本発明例では幅変動量が大幅
に低減し、ほぼ均一な幅が得られた。従って、板幅精度
が向上し、従来では幅変動を考慮して大きく設定してい
たインライントリムのトリム代を両側で1.8mm程度
低減できるなど優れた効果が確認された。
FIG. 10 shows the distribution of the width variation. In addition, the comparative example in the figure is a case where the elongation rate of the leveler is constant.
Since the width shrinkage varies under the condition that various steel strips coexist, the variation in the width variation increases in the comparative example as shown in FIG. 10, but the width variation in the present invention example is greatly reduced. And a substantially uniform width was obtained. Accordingly, the plate width accuracy was improved, and excellent effects were confirmed, such as the trim margin of the in-line trim which was conventionally set to be large in consideration of the width fluctuation can be reduced by about 1.8 mm on both sides.

【0070】[0070]

【発明の効果】本発明によれば、鋼帯の寸法や、焼鈍温
度などの熱処理温度の変更などで過渡的に発生する幅変
動の抑制が可能となる。従って、鋼帯全長に亘って板幅
精度が大幅に向上し、鋼帯幅公差外れを未然に防ぐこと
が可能である。また、トリム代の低減が可能となり歩留
が向上する。更にまた、ロール加熱を併用することで、
幅変動の抑制効果が更に高まり、また、蛇行等の誘発も
防止できる。かかる効果を有する本発明の意義は極めて
大きい。
According to the present invention, it is possible to suppress a fluctuation in width which occurs transiently due to a change in the size of a steel strip or a heat treatment temperature such as an annealing temperature. Therefore, the plate width accuracy is greatly improved over the entire length of the steel strip, and it is possible to prevent deviation of the steel strip width tolerance. Also, the trim cost can be reduced, and the yield is improved. Furthermore, by using roll heating together,
The effect of suppressing the width fluctuation is further enhanced, and the induction of meandering and the like can be prevented. The significance of the present invention having such an effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続焼鈍設備の一例を示す概要図である。FIG. 1 is a schematic diagram showing an example of a continuous annealing facility.

【図2】ロールクラウンと幅縮みの関係を示すグラフで
ある。
FIG. 2 is a graph showing a relationship between a roll crown and width reduction.

【図3】本実施形態に係る連続焼鈍設備の一例を示す概
要図である。
FIG. 3 is a schematic diagram illustrating an example of a continuous annealing facility according to the present embodiment.

【図4】図3に示すレベラの構成を示す模式図である。FIG. 4 is a schematic view showing a configuration of the leveler shown in FIG.

【図5】本発明方法の手順の例を示すフローチャートで
ある。
FIG. 5 is a flowchart showing an example of a procedure of the method of the present invention.

【図6】分割モデルの一例を示す図である。FIG. 6 is a diagram illustrating an example of a division model.

【図7】本発明の別の方法の手順の例を示すフローチャ
ートである。
FIG. 7 is a flowchart showing an example of a procedure of another method of the present invention.

【図8】加熱ロールの構造例を示す模式図である。FIG. 8 is a schematic diagram showing a structural example of a heating roll.

【図9】連続焼鈍モデル通板装置の基本構成を示す模式
図である。
FIG. 9 is a schematic diagram showing a basic configuration of a continuous annealing model threading device.

【図10】幅変動の分布を示すグラフである。FIG. 10 is a graph showing distribution of width fluctuation.

【符号の説明】[Explanation of symbols]

1、31:鋼帯 2:ペイオフリール 3:連続焼鈍炉 4,30,R1〜R12:ハースロール 5:加熱帯 6:均熱帯 7:冷却帯 8:過時効帯 9:冷却帯 10:調質圧延機 11:テンションリール 12:入側ルーパ 13:出側ルーパ 14、15:ブライドルロール 20:レベラ 21:炉内ブライドルロール 22:板幅計(入側板幅計) 23:板幅計(炉内板幅計) 24:ワークロール 25:バックアップロール 26:板幅計 35:加熱装置 36:加熱炉 40:加熱ロール 41:ヒータ 42:温度センサ 1, 31: steel strip 2: pay-off reel 3: continuous annealing furnace 4, 30, R1 to R12: hearth roll 5: heating zone 6: uniform tropical zone 7: cooling zone 8: overaging zone 9: cooling zone 10: tempering Rolling Mill 11: Tension Reel 12: Inlet Looper 13: Outlet Looper 14, 15: Bridle Roll 20: Leveler 21: Furnace Bridle Roll 22: Strip Width Meter (Entry Side Strip Width Meter) 23: Strip Width Meter (Inside Furnace) 24: Work roll 25: Backup roll 26: Plate width gauge 35: Heating device 36: Heating furnace 40: Heating roll 41: Heater 42: Temperature sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 張力を負荷した鋼帯を炉内に設けた複数
のハースロールに巻掛けて搬送しながら熱処理を行う連
続熱処理炉と、該連続熱処理炉の内部に設けたレベラ
と、上記連続熱処理炉の入側に設けた板幅計とを有する
連続熱処理設備における鋼帯の板幅変動防止方法であっ
て、上記板幅計で鋼帯幅を測定するとともに、測定した
部位の連続熱処理炉内での幅縮み量を推定し、上記鋼帯
幅の測定値から上記幅縮み量を減算して連続熱処理炉出
側の鋼帯幅を推定し、推定した鋼帯幅が目標値と一致す
るように上記レベラの伸び率を調整することを特徴とす
る連続熱処理設備における鋼帯の板幅変動防止方法。
1. A continuous heat treatment furnace for performing heat treatment while winding and transporting a steel strip loaded with tension around a plurality of hearth rolls provided in the furnace, a leveler provided inside the continuous heat treatment furnace, A method for preventing a width change of a steel strip in a continuous heat treatment facility having a width gauge provided on an inlet side of a heat treatment furnace, wherein the width of the steel strip is measured by the width meter, and the continuous heat treatment furnace of the measured part is provided. Estimate the width shrinkage within, and estimate the steel strip width on the exit side of the continuous heat treatment furnace by subtracting the width shrinkage from the measured value of the steel strip width, and the estimated steel strip width matches the target value A method for preventing a change in the width of a steel strip in a continuous heat treatment facility, wherein the elongation of the leveler is adjusted as described above.
【請求項2】 張力を負荷した鋼帯を炉内に設けた複数
のハースロールに巻掛けて搬送しながら熱処理を行う連
続熱処理炉と、該連続熱処理炉の内部に設けたレベラ
と、上記連続熱処理炉の入側に設けた板幅計とを有する
連続熱処理設備における鋼帯の板幅変動防止方法であっ
て、上記ハースロールとしてハースロールの温度を調整
する加熱手段を内部に備えたロールを用い、上記板幅計
で鋼帯幅を測定するとともに、測定した部位の連続熱処
理炉内での幅縮み量を推定し、上記鋼帯幅の測定値から
上記幅縮み量を減算して連続熱処理炉出側の鋼帯幅を推
定し、推定した鋼帯幅が目標値と一致するように上記レ
ベラの伸び率と上記ハースロールの温度とを調整するこ
とを特徴とする連続熱処理設備における鋼帯の幅変動防
止方法。
2. A continuous heat treatment furnace for performing heat treatment while winding and transporting a tension-loaded steel strip around a plurality of hearth rolls provided in the furnace, a leveler provided inside the continuous heat treatment furnace, A method for preventing a width change of a steel strip in a continuous heat treatment facility having a width gauge provided on an inlet side of a heat treatment furnace, wherein a roll provided with heating means for adjusting a temperature of a hearth roll as the hearth roll is provided. Using, while measuring the steel strip width with the width meter, estimate the amount of width shrinkage in the continuous heat treatment furnace of the measured site, subtract the width shrinkage from the measured value of the steel strip width, continuous heat treatment Estimating the steel strip width on the furnace exit side, and adjusting the elongation of the leveler and the temperature of the hearth roll so that the estimated steel strip width matches the target value. Width fluctuation prevention method.
【請求項3】 連続熱処理炉内の幅縮み量を下記a〜c
の要領で推定することを特徴とする請求項1または2に
記載の連続熱処理設備における鋼帯の板幅変動防止方
法。 a.炉内の鋼帯温度ならびに各ハースロールの軸方向温
度分布を求める。 b.次いで上記軸方向温度分布に基づいて各ハースロー
ルのサーマルクラウン形状を求める。 c.上記サーマルクラウン形状と上記鋼帯温度とに基づ
いて幅縮み量を算出する。
3. The amount of width shrinkage in the continuous heat treatment furnace is defined as a to c below.
3. The method according to claim 1, wherein the steel strip width variation is prevented in the continuous heat treatment equipment. a. The steel strip temperature in the furnace and the axial temperature distribution of each hearth roll are determined. b. Next, the thermal crown shape of each hearth roll is determined based on the axial temperature distribution. c. The width shrinkage is calculated based on the thermal crown shape and the steel strip temperature.
JP2000296726A 2000-09-28 2000-09-28 Method for preventing fluctuation in plate width in continuous heat treatment fascility Withdrawn JP2002105541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296726A JP2002105541A (en) 2000-09-28 2000-09-28 Method for preventing fluctuation in plate width in continuous heat treatment fascility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296726A JP2002105541A (en) 2000-09-28 2000-09-28 Method for preventing fluctuation in plate width in continuous heat treatment fascility

Publications (1)

Publication Number Publication Date
JP2002105541A true JP2002105541A (en) 2002-04-10

Family

ID=18778953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296726A Withdrawn JP2002105541A (en) 2000-09-28 2000-09-28 Method for preventing fluctuation in plate width in continuous heat treatment fascility

Country Status (1)

Country Link
JP (1) JP2002105541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119475A (en) * 2007-11-12 2009-06-04 Nisshin Steel Co Ltd Method of monitoring variation amount of plate width in continuous plating line
WO2019180961A1 (en) * 2018-03-23 2019-09-26 Primetals Technologies Japan株式会社 Device and method for assisting operation of heat-treating furnace, and heat-treating facility and operation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119475A (en) * 2007-11-12 2009-06-04 Nisshin Steel Co Ltd Method of monitoring variation amount of plate width in continuous plating line
WO2019180961A1 (en) * 2018-03-23 2019-09-26 Primetals Technologies Japan株式会社 Device and method for assisting operation of heat-treating furnace, and heat-treating facility and operation method thereof
CN111742070A (en) * 2018-03-23 2020-10-02 普锐特冶金技术日本有限公司 Operation support device and operation support method for heat treatment furnace, heat treatment facility and operation method thereof
JPWO2019180961A1 (en) * 2018-03-23 2021-03-11 Primetals Technologies Japan株式会社 Heat treatment furnace operation support device and operation support method, heat treatment equipment and its operation method
JP7048721B2 (en) 2018-03-23 2022-04-05 Primetals Technologies Japan株式会社 Operation support device and operation support method for heat treatment furnace, heat treatment equipment and its operation method
US12061047B2 (en) 2018-03-23 2024-08-13 Primetals Technologies Japan, Ltd. Operation support apparatus and operation support method for heat-treatment furnace, and a heat-treatment facility and operation method therefor

Similar Documents

Publication Publication Date Title
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
CN104271277B (en) Temperature control equipment
JP5565200B2 (en) Finishing temperature control device in hot rolling
WO2010058457A1 (en) Controller
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
JP3979023B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2002105541A (en) Method for preventing fluctuation in plate width in continuous heat treatment fascility
JP4598580B2 (en) Cooling control method, apparatus, and computer program
JP2001181744A (en) Method for preventing variation of width in continuous annealing equipment
US20240167117A1 (en) Method for producing hot-rolled steel sheet, method for predicting temperature history of hot-rolled steel sheet, and method for predicting hardened portion of hot-rolled steel sheet
JP3173329B2 (en) Heat treatment furnace tension control method
JP4123582B2 (en) Steel plate shape prediction method and apparatus
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP2001158920A (en) Method of preventing variation of width in continuous annealing furnace
JP2019073754A (en) Method for producing heat-treated steel sheet, and steel sheet cooling device
EP3757236A1 (en) Steel sheet heating method in continuous annealing and continuous annealing facility
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
JP2950157B2 (en) Control cooling method
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP4352951B2 (en) Method for producing hot-rolled steel sheet made of high carbon steel or high carbon alloy steel
JP7207335B2 (en) Plate temperature control method, heating control device, and metal plate manufacturing method
JP2003253343A (en) Process for continuously heat treating metal strip
JPS5944367B2 (en) Water quenching continuous annealing method
JPH08127820A (en) Method for predicting width shrinkage amount in metal strip heat treatment apparatus, heat treatment method and width adjusting method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204