JP2002104909A - Composite germicide and germicidal treatment method - Google Patents

Composite germicide and germicidal treatment method

Info

Publication number
JP2002104909A
JP2002104909A JP2000289498A JP2000289498A JP2002104909A JP 2002104909 A JP2002104909 A JP 2002104909A JP 2000289498 A JP2000289498 A JP 2000289498A JP 2000289498 A JP2000289498 A JP 2000289498A JP 2002104909 A JP2002104909 A JP 2002104909A
Authority
JP
Japan
Prior art keywords
composite
silver
water
precursor
silver phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000289498A
Other languages
Japanese (ja)
Other versions
JP3572353B2 (en
Inventor
Yoshiro Onodera
嘉郎 小野寺
Toshio Sato
利夫 佐藤
Shunji Sunayama
俊二 砂山
Takeo Ebina
武雄 蛯名
Rein In
レイン イン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000289498A priority Critical patent/JP3572353B2/en
Publication of JP2002104909A publication Critical patent/JP2002104909A/en
Application granted granted Critical
Publication of JP3572353B2 publication Critical patent/JP3572353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite germicide enabling simple and safe germicidal treatment, and to provide a germicidal treatment method. SOLUTION: This composite germicide is characterized by consisting of an inorganic/inorganic composite with extremely high germicidal capability obtained by bearing a silver phosphate compound shown by Ag3PO4 or Ag4P2O7 in the pores of a porous inorganic carrier. The 2nd objective method for producing such a composite germicide is characterized by comprising synthesizing the silver phosphate compound in the pores of the porous inorganic carrier by applying multistage-fashion an impregnating crystallization method and bearing the silver phosphate compound in the pores, and the 3rd objective a germicidal treatment method for to-be-treated water or moisture-containing gases using such a composite germicide. This composite germicide has such germicidal characteristics that on contact of the bacteria in water or a moisture- containing gas with the composite germicide, the bacteria are completely exterminated within a short time by the surface characteristics thereof, namely, by the germicidal effect of the silver phosphate compound dispersed and borne in the form of microparticles therein, therefore enables the germicidal treatment of (to-be-treated) water or moisture-containing gases easily and safely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飲料用水や生活用
水などの水の殺菌処理並びに呼気や病室等の菌の存在す
る含水気体の殺菌処理に使用される殺菌剤に関するもの
であり、特に多孔性無機物担体−リン酸銀(Ag3 PO
4 /Ag427 )複合体を殺菌剤の有効成分とし、
水中の細菌を簡単にしかも安全に殺菌処理することが可
能な殺菌剤とそれを用いた殺菌処理方法に関するもので
ある。尚、本明細書において「又は」を「/」で表すこ
とがある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disinfectant used for disinfecting water such as drinking water and domestic water and for disinfecting water-containing gas in which bacteria such as breath and sick rooms are present. Inorganic carrier-silver phosphate (Ag 3 PO
4 / Ag 4 P 2 O 7 ) complex as an active ingredient of a fungicide,
The present invention relates to a disinfectant capable of easily and safely disinfecting bacteria in water and a disinfecting method using the same. In the present specification, “or” may be represented by “/”.

【0002】[0002]

【従来の技術】水の殺菌法は、飲料水や生活用水の確保
のため、古くから欠くことのできない技術である。最近
では、食品や医薬品の製造からLSIの製造に至るま
で、高度に殺菌された水が必要とされ、広範囲な工業的
分野においても、製造工程上重要な技術の一つとなりつ
つある。現在、その方法として、生活用水などの確保に
は、飲料水の塩素殺菌に代表されるような化学的殺菌法
が主流であり、また、工業分野では、加熱や紫外線によ
る物理的殺菌法が主流となっている。また、病人の呼気
や病室等の菌の存在する含水気体においても同様に物理
的殺菌法が主体である。化学的殺菌法が飲料水や生活用
水の殺菌法として普及した理由は、殺菌処理の基本操作
が薬剤の混入のみであり、操作が簡単でかつコストも低
く、大量に必要な飲料水や生活用水の殺菌法として適し
ていたためである。
2. Description of the Related Art Water disinfection has long been an indispensable technique for securing drinking water and domestic water. Recently, highly sterilized water is required from the production of foods and pharmaceuticals to the production of LSIs, and is becoming one of the important technologies in the production process even in a wide range of industrial fields. At present, chemical disinfection methods such as chlorine disinfection of drinking water are the mainstream for securing domestic water, etc.In the industrial field, physical disinfection methods using heating or ultraviolet rays are the mainstream. It has become. Similarly, a physical sterilization method is mainly used for a gas containing water such as a patient's breath or a sick room where bacteria exist. The reason why the chemical sterilization method became popular as a sterilization method for drinking water and domestic water is that the basic operation of the sterilization treatment is only mixing of chemicals, the operation is simple and the cost is low, and large quantities of drinking water and domestic water are required. This was because it was suitable as a sterilization method.

【0003】しかし、近年、上水道の殺菌に使用される
塩素だけでなく、下水や工場廃水のBOD値達成及び滅
菌処理に使用される塩素による上水道源の回帰的汚染
が、発ガン性物質であるトリハロメタン類の成長を助長
していることが明らかとなり、このような薬剤を用いる
化学的殺菌法に代わる疫学的に安全な新しい殺菌法の開
発が急務とされている(澤井ら、無機マテリアル、4,
156−162(1997))。このため、種々の抗菌
性金属をゼオライトのような耐熱性の高い無機担体に担
持して調製される無機抗菌・殺菌剤の開発及びそれらの
生活、産業分野への応用が注目されている。 種々の抗菌
性金属のうち、銀は抗菌スペクトルが広く(岩田、ゼオ
ライト、13(2)、8−15(1996))かつ安全
性も比較的高いため(大谷、防菌防黴、24(6)、4
29−432(1996))、銀を種々の無機担体に担
持した抗菌・殺菌剤の開発研究が盛んに行われている
(例えば、テイーアイシイー社発行、“抗菌・抗かび性
セラミックス(I);(II)、1995;199
8)。無機担体として、ゼオライトを始め、各種リン酸
塩、酸化チタン、各種層状化合物、ガラス等が用いられ
ている(例えば、テイーアイシイー社発行、“抗菌・抗
かび性セラミックス(I);(II)、1995;19
98)。
However, in recent years, not only chlorine used for disinfection of waterworks but also recurrent contamination of waterworks sources by chlorine used for achieving BOD value of sewage and industrial wastewater and for sterilization is a carcinogen. It has been clarified that they are promoting the growth of trihalomethanes, and there is an urgent need to develop new epidemiologically safe sterilization methods that can replace chemical sterilization methods using such agents (Sawai et al., Inorganic Materials, 4). ,
156-162 (1997)). For this reason, the development of inorganic antibacterial / bactericides prepared by supporting various antibacterial metals on a highly heat-resistant inorganic carrier such as zeolite and their application to daily life and industrial fields have attracted attention. Among various antibacterial metals, silver has a broad antibacterial spectrum (Iwata, zeolite, 13 (2), 8-15 (1996)) and relatively high safety (Otani, antibacterial and antifungal, 24 (6) ), 4
29-432 (1996)), and development of antibacterial and bactericidal agents in which silver is supported on various inorganic carriers has been actively conducted (for example, "Antibacterial and antifungal ceramics (I)", issued by TAIC Corporation). (II), 1995; 199
8). As the inorganic carrier, zeolite, various phosphates, titanium oxide, various layered compounds, glass and the like are used (for example, “Antibacterial and antifungal ceramics (I); (II) , 1995; 19
98).

【0004】しかし、無機担体への銀イオンの直接担持
は、多くの場合、担体と銀イオンとの間の親和性があま
り大きくないため、担持銀イオンが容易に溶離されて殺
菌寿命が短いという欠点があった。 このため、銀を担持
する過程で有機処理法を併用して銀の溶出速度を制御し
た試剤の調製も試みられている(大谷、防菌防黴、20
(8)、413−418(1992))。しかし、一般
に、このような有機処理法の併用は、処理工程が複雑か
つ製造コストが嵩むこと、さらに有機物の導入による試
剤の耐熱性の低下等が問題となる。 このため、殺菌寿命
が長くかつ殺菌力及び耐熱性に優れた銀担持無機系殺菌
剤の簡単かつ製造コストの安い調製方法の開発が望まれ
ていた。
However, in the case of directly supporting silver ions on an inorganic carrier, the affinity between the carrier and silver ions is often not so large that the supported silver ions are easily eluted and the sterilization life is short. There were drawbacks. For this reason, an attempt has been made to prepare a reagent in which silver is eluted at a controlled rate by using an organic treatment method in the process of carrying silver (Otani, Bactericidal and Fungicide, 20
(8), 413-418 (1992)). However, in general, the combined use of such an organic treatment method causes problems such as a complicated treatment step and an increase in production cost, and a decrease in heat resistance of the reagent due to introduction of an organic substance. Therefore, development of a simple and low-cost preparation method of a silver-carrying inorganic bactericide having a long bactericidal life and excellent bactericidal power and heat resistance has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたものであり、簡単でかつ安全な殺菌処理
が可能な新しい殺菌剤の提供を目的としている。また、
本発明は、上記殺菌剤による被処理水や含水気体の新し
い殺菌処理方法の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a new disinfectant capable of simple and safe disinfection. Also,
An object of the present invention is to provide a new sterilization treatment method for water to be treated and water-containing gas by the above-mentioned sterilizing agent.

【0006】本発明者らは、上記目的を達成するべく鋭
意研究を重ねた結果、多孔性無機物担体にオルトリン酸
塩溶液あるいはリン酸水素塩溶液/二リン酸塩溶液を含
浸後、乾燥させて上記の担体細孔内にオルトリン酸塩あ
るいはリン酸水素塩/二リン酸塩を析出させて得られる
前駆複合体に、さらに銀溶液を含浸させ前駆複合体中の
オルトリン酸塩あるいはリン酸水素塩/二リン酸塩の1
価陽イオンを銀イオンで置換して得られる難溶性リン酸
銀(Ag3 PO4 /Ag427 )を担持した複合体
殺菌剤を用い、これらを水や含水気体に接触させること
によりそれらの表面特性を利用して、水中の細菌の迅速
かつ、完全な殺菌が可能であることを見いだし、本発明
を完成させた。
The present inventors have conducted intensive studies to achieve the above object. As a result, the porous inorganic carrier was impregnated with an orthophosphate solution or a hydrogen phosphate solution / diphosphate solution and then dried. The precursor complex obtained by precipitating orthophosphate or hydrogen phosphate / diphosphate in the pores of the carrier is further impregnated with a silver solution, and the orthophosphate or hydrogen phosphate in the precursor complex is impregnated. / 1 of diphosphate
Using a complex disinfectant carrying poorly soluble silver phosphate (Ag 3 PO 4 / Ag 4 P 2 O 7 ) obtained by substituting valent cations with silver ions and bringing them into contact with water or a gas containing water. Have found that rapid and complete disinfection of bacteria in water is possible by utilizing their surface properties, and have completed the present invention.

【0007】[0007]

【課題を解決するための手段】即ち、上記課題を解決す
るための本発明は、以下の技術的手段から構成される。 (1)多孔性無機物担体の細孔内に、Ag3 PO4 又は
Ag427 で表されるリン酸銀化合物を合成・担持
して得られる高い殺菌性を有する無機・無機複合体から
なることを特徴とする複合殺菌剤。 (2)前記(1)記載の複合殺菌剤を製造する方法であ
って、Ag3 PO4 又はAg42 7 で表されるリン
酸銀化合物を、含浸晶出法を多段に適用することにより
多孔性無機物担体の細孔内に合成・担持することを特徴
とする殺菌剤の製造方法。 (3)上記のAg3 PO4 で表されるリン酸銀化合物を
合成する際に、一般式M3 PO4 で表されるメタリン酸
塩(式中のMは1価陽イオンを表し、Na+ 、NH4
+ 、K+ 等のイオンである)あるいはMn3-n PO4
で表されるリン酸水素塩(式中のMは1価陽イオンを表
し、Na+ 、NH4 + 、K+ 等のイオンである。また、
nは1,2,3のいずれかの値をとる)を前駆化合物と
して用いることを特徴とする前記(2)記載の製造方
法。 (4)上記のAg427 で表されるリン酸銀化合物
を合成する際に、一般式MI 42 7 で表される二リ
ン酸塩(式中のMは1価陽イオンを表し、Na+ 、H
+ 、K+ 等のイオンである)を前駆化合物として用いる
ことを特徴とする前記(2)記載の製造方法。 (5)多孔性無機物担体に前駆化合物のメタリン酸塩あ
るいはリン酸水素塩を合成・担持して得られる前駆複合
体に、さらに銀塩溶液を含浸し前駆複合体中のメタリン
酸塩あるいはリン酸水素塩の1価陽イオンを銀イオンで
置換することによりリン酸銀化合物(Ag3 PO4 )に
変換することを特徴とする前記(2)記載の製造方法。 (6)多孔性無機物担体に前駆化合物の二リン酸塩を合
成・担持して得られる前駆複合体に、さらに銀塩溶液を
含浸し前駆複合体中の二リン酸塩の1価陽イオンを銀イ
オンで置換することによりリン酸銀化合物(Ag42
7 )に変換することを特徴とする前記(2)記載の製
造方法。 (7)前記(1)記載の複合殺菌剤に被処理水や含水気
体を接触せしめ、該殺菌剤の表面特性によって被処理水
や含水気体の殺菌を行うことを特徴とする殺菌処理方
法。
Means for Solving the Problems That is, the above objects can be achieved.
The present invention includes the following technical means. (1) Ag in the pores of the porous inorganic carrierThree POFourOr
AgFour PTwo O7 Synthesizes and supports a silver phosphate compound represented by
From a highly bactericidal inorganic-inorganic composite
A composite disinfectant characterized by comprising: (2) A method for producing the composite germicide according to (1).
What is AgThree POFour Or AgFour PTwoO7 Phosphorus represented by
By applying impregnated crystallization method in multiple stages
Characterized by being synthesized and supported in the pores of a porous inorganic carrier
A method for producing a disinfectant. (3) The above AgThree POFour The silver phosphate compound represented by
When synthesizing, the general formula MThree POFour Metaphosphoric acid represented by
Salt (M in the formula represents a monovalent cation, Na+ , NHFour 
+ , K+ Etc.) or Mn H3-nPOFour 
(M in the formula represents a monovalent cation.)
And Na+ , NHFour + , K+ And the like. Also,
n is 1, 2, or 3) as a precursor compound
The method according to (2) above, wherein
Law. (4) The above AgFour PTwo O7 Silver phosphate compound represented by
When synthesizing the general formula MI Four PTwoO7 The two represented by
Phosphate (wherein M represents a monovalent cation and Na+ , H
+ , K+ Is used as a precursor compound
The manufacturing method according to the above (2), wherein (5) The precursor inorganic compound metaphosphate is added to the porous inorganic carrier.
Or precursor composite obtained by synthesizing and supporting hydrogen phosphate
The body is further impregnated with a silver salt solution,
The monovalent cation of acid salt or hydrogen phosphate with silver ion
By substitution, a silver phosphate compound (AgThree POFour )
The manufacturing method according to the above (2), which comprises converting. (6) The diphosphate of the precursor compound is added to the porous inorganic carrier.
A silver salt solution is further added to the precursor complex obtained by forming and supporting
The monovalent cation of the diphosphate in the impregnated precursor complex is replaced with silver ion.
By substitution with on, a silver phosphate compound (AgFour PTwo 
O7 )).
Construction method. (7) The composite germicide according to (1) is treated with water to be treated or contains water.
The body is brought into contact and the water to be treated is
Sterilization method characterized by sterilizing water and gas containing water
Law.

【0008】[0008]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の複合殺菌剤は、第一段階として、シリカ等
の多孔性無機物担体の細孔内に、一般式M3 PO4 で表
されるメタリン酸塩(式中のMは1価陽イオンを表し、
Na+ 、NH4 + 、K+ 等のイオンである)あるいはM
n3-n PO4 で表されるリン酸水素塩(式中のMは1
価陽イオンを表し、通常、Na+ 、NH4 + 、K+ 等の
イオンである。また、nは1,2,3のいずれかの値を
とる)/一般式MI 4 27 で表される二リン酸塩
(式中のMは1価陽イオンを表し、通常、Na+ 、H
+ 、K+ 等のイオンである)の溶液を含浸させた後、乾
燥して上記のメタリン酸塩あるいはリン酸水素塩/二リ
ン酸塩の前駆化合物を晶出させ、これらの前駆化合物と
多孔性無機物担体からなる前駆複合体を調製する。次
に、第二段階として、先の前駆複合体に硝酸銀等の水溶
性銀化合物の溶液を含浸して、前駆化合物中の1価陽イ
オンを銀イオンで置換した後、乾燥してリン酸銀化合物
(Ag3 PO4 /Ag427 )を担持した複合殺菌
剤を調製するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
You. The composite germicide of the present invention comprises, as a first step, silica or the like.
In the pores of the porous inorganic carrier of the general formula MThree POFour In table
A metaphosphate (wherein M represents a monovalent cation;
Na+ , NHFour + , K+ Etc.) or M
n H3-n POFour (Wherein M is 1
Represents a cation, usually Na+ , NHFour + , K+ Etc.
It is an ion. N is one of 1, 2, and 3
Take) / general formula MI FourPTwo O7 Diphosphate represented by
(M in the formula represents a monovalent cation, usually Na+ , H
+ , K+ Is impregnated with a solution of
After drying, add the above metaphosphate or hydrogen phosphate
Crystallize the precursor compounds of phosphate
A precursor composite comprising a porous inorganic carrier is prepared. Next
Then, as a second step, the precursor complex is dissolved in water, such as silver nitrate.
Impregnated with a solution of a neutral silver compound to form
After replacing on with silver ions, dry and dry the silver phosphate compound
(AgThree POFour / AgFour PTwo O7 Combined sterilization carrying)
The preparation of the agent.

【0009】多孔性無機物担体としては、上記のシリカ
の他、アルミナ、シリカ−アルミナ、ガラス、ゼオライ
ト、粘土、活性炭、カーボンブラック、種々の多孔性セ
ラミックス等、が例示されるが、これらに限らず、多孔
性でかつある程度の機械的強度を有するものであれば市
販品、天然物を問わず用いることが出来る。
Examples of the porous inorganic carrier include, in addition to the above-mentioned silica, alumina, silica-alumina, glass, zeolite, clay, activated carbon, carbon black, various porous ceramics, etc., but are not limited thereto. Commercially available products and natural products can be used as long as they are porous and have a certain level of mechanical strength.

【0010】また、上記の複合殺菌剤は、担体の形状に
より粒状、膜状、あるいは微粉末状等、種々の形状の成
形体に成形可能である。また、微粉末状の物を繊維や紙
等の中に分散させて用いることも可能である。
[0010] The above-mentioned composite bactericide can be formed into various shapes such as granules, films, and fine powders depending on the shape of the carrier. It is also possible to use a fine powder in a state of being dispersed in fibers, paper or the like.

【0011】本発明の複合殺菌剤を用いて水の殺菌処理
を行うには、複合殺菌剤に水を接触させれば良く、水中
に殺菌剤を投入し撹拌放置するだけで水の殺菌処理が可
能である。また、流水を連続的に殺菌処理する方法とし
ては、複合殺菌剤からなる透水層に被処理水を透過させ
る方法が好適である。このように、複合殺菌剤を用いた
水の殺菌処理は極めて簡単な操作によって実施可能であ
り、上水、下水の塩素殺菌法の代替として使用可能であ
る他、家庭用浄水器、給水設備や風呂などの細菌付着防
止用、空気清浄器や加湿器の細菌繁殖防止、携帯用水処
理器などとして応用が可能である。
[0011] To sterilize water using the composite disinfectant of the present invention, water can be brought into contact with the composite disinfectant. It is possible. Further, as a method for continuously sterilizing the flowing water, a method in which the water to be treated permeates through a water-permeable layer made of a composite sterilizing agent is preferable. Thus, the sterilization treatment of water using the complex disinfectant can be carried out by an extremely simple operation, and can be used as an alternative to the chlorine sterilization method for tap water and sewage, as well as household water purifiers, water supply equipment and It can be applied to prevent bacteria from adhering to baths, prevent the growth of bacteria in air purifiers and humidifiers, and be used as a portable water treatment device.

【0012】以上は水の殺菌について述べたが、本発明
は、これにのみ適用されるものでなく、水分が含まれる
気体、例えば、人間の呼気やさらには大気を殺菌するこ
とができる。この場合、本発明の殺菌剤を通気性包袋に
収納してマスクに配置して使用すると、これを病人が使
用すれば、病人の呼気ガスとの接触により呼気中の菌は
殺菌され、大気に放散することが防止され、また、病院
での病室等の換気や冷暖房装置に本発明の殺菌剤を配置
することにより、室内の殺菌処理を行うことができ、防
疫上有効である。
Although the above has described sterilization of water, the present invention is not limited to this and can sterilize a gas containing water, for example, human breath or even the atmosphere. In this case, when the disinfectant of the present invention is stored in a gas-permeable wrapper and placed on a mask and used by a sick person, the bacteria in the exhaled air are sterilized by contact with the sick person's exhaled gas, and the air is removed. In addition, by disposing the disinfectant of the present invention in a ventilation or cooling / heating device of a hospital room or the like in a hospital, it is possible to perform a disinfection treatment in a room, which is effective in epidemics prevention.

【0013】[0013]

【作用】本発明の複合殺菌剤は、含浸晶出法を用いて多
孔性無機物担体の細孔内にオルトリン酸塩あるいはリン
酸水素塩/二リン酸塩を担持して得られる前駆複合体
に、さらに銀溶液を含浸させ前駆複合体中の1価陽イオ
ンを銀イオンで置換して得られるリン酸銀(Ag3 PO
4 /Ag427 )−多孔性無機担体複合体であり、
これらの殺菌剤中に微粒子状で分散担持されたリン酸銀
に水や含水気体中の細菌が接触して殺菌されることか
ら、本発明に係わる殺菌剤は、水中細菌に対し高い殺菌
効果を有している。従って、本発明に係わる複合殺菌剤
を用いることにより、簡単にしかも安全に水や含水気体
の殺菌処理を行うことができる。
The composite germicide of the present invention is used as a precursor composite obtained by supporting orthophosphate or hydrogen phosphate / diphosphate in the pores of a porous inorganic carrier by using an impregnation crystallization method. And a silver phosphate (Ag 3 PO) obtained by impregnating a silver solution and substituting monovalent cations in the precursor complex with silver ions.
4 / Ag 4 P 2 O 7 ) -porous inorganic carrier composite,
Since bacteria in water or water-containing gas are sterilized by contacting silver phosphate dispersed and supported in fine particles in these disinfectants, the disinfectant according to the present invention has a high disinfecting effect on underwater bacteria. Have. Therefore, by using the complex disinfectant according to the present invention, it is possible to easily and safely perform the disinfection treatment of water and water-containing gas.

【0014】[0014]

【実施例】以下、本発明に係わる複合殺菌剤の製法、水
処理の実施例を例示してその殺菌効果を具体的に説明す
るが、本発明は、以下の実施例によって何ら限定される
ものではない。 (1)使用菌株及び試料液の調製 実験に使用した菌株は、大腸菌(Escherichi
a coli:E.coli(JCM 1649))及
び黄色ブドウ球菌(Staphylococcus a
ureus:S.aureus(FDA209P))で
ある。これらの菌株は、それぞれ普通寒天斜面培地に毎
月一回継代保存したもので、実験にあたっては、普通ブ
イヨン10mlを分注したL字管にて37℃、20±2
時間振とう培養後、さらに同培地150mlを入れた三
角フラスコに移植し37℃、18時間振とう培養した。
この培養液から遠心集菌(4℃、6000rpm、10
分間)した菌体を滅菌生理食塩液にて2回、滅菌精製水
にて1回洗浄し、これを滅菌精製水300mlに菌濃度
106 〜107 個/mlとなるように均一に浮遊させ、
試料菌浮遊液とした(以下、試料液という)。
EXAMPLES Hereinafter, the bactericidal effect of the composite bactericide according to the present invention will be described in detail with reference to examples of the production method and water treatment, but the present invention is not limited by the following examples. is not. (1) Preparation of used strain and sample solution The strain used in the experiment was Escherichia coli (Escherichia).
a coli: E. a. coli (JCM 1649)) and Staphylococcus a.
ureus: S. aureus (FDA209P)). Each of these strains was subcultured once a month on a normal agar slant medium. In the experiment, at 37 ° C., 20 ± 2 in an L-shaped tube into which 10 ml of a common broth was dispensed.
After culturing with shaking for an hour, the culture was further transferred to an Erlenmeyer flask containing 150 ml of the same medium and cultured with shaking at 37 ° C. for 18 hours.
Centrifugal harvest (4 ° C., 6000 rpm, 10
The washed cells were washed twice with sterile physiological saline and once with sterile purified water, and then uniformly suspended in 300 ml of sterile purified water so as to have a bacterial concentration of 10 6 to 10 7 cells / ml. ,
It was used as a sample suspension (hereinafter referred to as a sample solution).

【0015】(2)殺菌実験に用いた試料 殺菌実験に用いた複合殺菌剤試料及び担体試料の諸特性
を表1に示した。以下に、複合殺菌剤試料の製法及び特
性を説明する。
(2) Samples Used in Sterilization Experiments Table 1 shows the properties of the composite germicidal samples and carrier samples used in the sterilization experiments. Hereinafter, the production method and characteristics of the composite disinfectant sample will be described.

【0016】[0016]

【表1】 [Table 1]

【0017】リン酸銀(Ag3 PO4 /Ag42
7 )含有複合殺菌剤試料の製造方法は、天然あるいは合
成の多孔性無機物担体をオルトリン酸塩溶液やリン酸水
素塩溶液/二リン酸塩溶液と接触させ、これらの溶液を
多孔体の細孔内に含浸させた後、乾燥してオルトリン酸
塩やリン酸水素塩/二リン酸塩を析出させて得られる前
駆複合体に、さらに銀溶液を含浸させて前駆複合体中の
オルトリン酸塩やリン酸水素塩/二リン酸塩の1価陽イ
オンを銀イオンで置換することにより作製される。例え
ば、表1に示した細孔特性の異なる3種の市販の粒状シ
リカ担体(100〜300μm)を担体試料として用い
た調製例について詳しく説明する。
Silver phosphate (Ag 3 PO 4 / Ag 4 P 2 O)
7 ) The method for producing the composite fungicide-containing sample is as follows: a natural or synthetic porous inorganic carrier is brought into contact with an orthophosphate solution or a hydrogen phosphate solution / diphosphate solution; After impregnating the precursor complex, the precursor complex obtained by drying and precipitating orthophosphate or hydrogen phosphate / diphosphate is further impregnated with a silver solution to form orthophosphate or orthophosphate in the precursor complex. It is prepared by replacing monovalent cations of hydrogen phosphate / diphosphate with silver ions. For example, preparation examples using three types of commercially available granular silica carriers (100 to 300 μm) having different pore characteristics shown in Table 1 as carrier samples will be described in detail.

【0018】1)リン酸銀(Ag3 PO4 )含有複合殺
菌剤試料の製造 110℃で24時間乾燥、脱水後、密封容器中に保存し
た担体試料400LS、075LSあるいは005LS
の3gを20mLの三角フラスコにとり、これに0.2
M(M=mole/L) リン酸二水素アンモニウム (N
42 PO4 ) 水溶液10mlを添加し、常温、減圧
下に30分間保持し、リン酸二水素アンモニウム水溶液
を担体細孔内に含浸させた。余剰のリン酸二水素アンモ
ニウム水溶液を吸引除去した後、含浸試料を12時間凍
結乾燥し、リン酸二水素アンモニウムを担持した前駆複
合体試料を得た。 次に、この前駆複合体試料に0.2M
硝酸銀水溶液10mlを添加し、常温、減圧下に30分
間保持した後、さらに生成リン酸銀化合物の熟成を目的
に同一条件下に2時間保持した。余剰の硝酸銀水溶液を
吸引除去した後、含浸試料を12時間凍結乾燥した。得
られた乾燥試料を100メッシュのふるいを用いて水簸
し細粒を除去した後、80℃で24時間乾燥して、本発
明のリン酸銀(Ag3 PO4 )−シリカ担体からなる粒
状複合殺菌剤試料を得た。
1) Silver phosphate (Ag)Three POFour ) Contained compound killing
Preparation of microbial agent sample Dry at 110 ° C for 24 hours, dehydrate and store in a sealed container
Carrier sample 400LS, 075LS or 005LS
Was placed in a 20 mL Erlenmeyer flask, and 0.2 g
M (M = mole / L) ammonium dihydrogen phosphate (N
HFour HTwo POFour ) Add 10 ml of aqueous solution,
Hold for 30 minutes under an aqueous solution of ammonium dihydrogen phosphate
Was impregnated into the pores of the carrier. Surplus dihydrogen phosphate ammo
After removing the aqueous solution by suction, freeze the impregnated sample for 12 hours.
Precursor that has been dried and supported with ammonium dihydrogen phosphate
A united sample was obtained. Next, 0.2M was added to this precursor composite sample.
An aqueous solution of silver nitrate (10 ml) was added, and the mixture was stirred at room temperature under reduced pressure for 30 minutes.
After holding for a while, further ripening of the formed silver phosphate compound
For 2 hours under the same conditions. Excess silver nitrate solution
After removal by suction, the impregnated sample was lyophilized for 12 hours. Profit
Elutriation of the dried sample using a 100 mesh sieve
After removing fine granules, dry at 80 ° C for 24 hours.
Ming silver phosphate (AgThree POFour )-Particles composed of silica carrier
A composite fungicide sample was obtained.

【0019】以下、担体400LS、075LSあるい
は005LSを上記の処理をして得られたリン酸銀(A
3 PO4 )担持複合殺菌剤試料を各々S3P−400
LS、S3P−075LS及びS3P−005LSと略
記する。ここで、上記の処理による目的複合殺菌剤試料
の生成は、S3P−400LS、S3P−075LS及
びS3P−005LSの粉末X線回折パターンの測定
(CuKα線使用)により容易に確認できる。すなわ
ち、表1に示したように、担体試料はいずれも非晶質シ
リカに特有の、約2θ=22°を中心とするハローのみ
がみられた。これに対し、S3P−400LS、S3P
−075LS及びS3P−005LSでは、いずれも上
記の非晶質シリカに特有のハローの他に、Ag3 PO4
に帰属される幾つかの回折ピーク(面間隔d値(Å) =
2.69、2.46、3.01)(1998 JCPD
S ファイル No.06−0505)が確認された。
なお、リン酸銀(Ag3 PO4 )の担持量は、含浸溶液
の濃度及び含浸回数の増加とともに大きくなるため、そ
れらの処理条件を制御することにより容易に調整でき
る。Ag3 PO4 の担持量が小さい場合には、X線回折
パターン上にはAg3 PO4 の最強回折線(d値(Å)
=2.69)のみがみられる。
The silver phosphate (A) obtained by subjecting the carrier 400LS, 075LS or 005LS to the above treatment is described below.
g 3 PO 4 ) -supported composite germicide samples were each subjected to S3P-400.
LS, S3P-075LS and S3P-005LS. Here, the production of the target composite germicide sample by the above treatment can be easily confirmed by measuring the powder X-ray diffraction patterns (using CuKα rays) of S3P-400LS, S3P-075LS and S3P-005LS. That is, as shown in Table 1, in each of the carrier samples, only a halo centered at about 2θ = 22 °, which is characteristic of amorphous silica, was observed. In contrast, S3P-400LS, S3P
In -075LS and S3P-005LS, in addition to the specific halo Both the amorphous silica of the, Ag 3 PO 4
Some diffraction peaks (d-value of plane distance (d) =
2.69, 2.46, 3.01) (1998 JCPD
S file No. 06-0505) was confirmed.
Note that the amount of silver phosphate (Ag 3 PO 4 ) supported increases as the concentration of the impregnating solution and the number of times of impregnation increase, and can be easily adjusted by controlling the processing conditions. When the carrying amount of Ag 3 PO 4 is small, the strongest diffraction line of Ag 3 PO 4 (d value (Å)) is shown on the X-ray diffraction pattern.
= 2.69) only.

【0020】2)リン酸銀(Ag427 )含有複合
殺菌剤試料の製造 110℃で24時間乾燥、脱水後、密封容器中に保存し
た担体試料400LS、075LSあるいは005LS
の3gを20mLの三角フラスコにとり、これに0.1
M(M=mole/L) 二リン酸ナトリウム (Na4
27 ) 水溶液10mlを添加し、常温、減圧下に30
分間保持し、二リン酸ナトリウム水溶液を担体細孔内に
含浸させた。余剰の二リン酸ナトリウム水溶液を吸引除
去した後、含浸試料を12時間凍結乾燥し、二リン酸ナ
トリウムを担持した前駆複合体試料を得た。 次に、この
前駆複合体試料に0.1M硝酸銀水溶液10mlを添加
し、常温、減圧下に30分間保持した後、さらに生成リ
ン酸銀化合物の熟成を目的に同一条件下に2時間保持し
た。余剰の硝酸銀水溶液を吸引除去した後、含浸試料を
12時間凍結乾燥した。得られた乾燥試料を100メッ
シュのふるいを用いて水簸し細粒を除去した後、80℃
で24時間乾燥して、本発明のリン酸銀(Ag42
7 )−シリカ担体からなる粒状複合殺菌剤試料を得た。
2) Preparation of a composite fungicide sample containing silver phosphate (Ag 4 P 2 O 7 ) A carrier sample 400 LS, 075 LS or 005 LS dried at 110 ° C. for 24 hours, dehydrated and stored in a sealed container.
In a 20 mL Erlenmeyer flask, and add 0.1 g
M (M = mole / L) sodium diphosphate (Na 4 P
2 O 7 ) 10 ml of aqueous solution was added,
The solution was kept for 1 minute, and an aqueous solution of sodium diphosphate was impregnated into the pores of the carrier. After the excess sodium diphosphate aqueous solution was removed by suction, the impregnated sample was freeze-dried for 12 hours to obtain a precursor composite sample carrying sodium diphosphate. Next, 10 ml of a 0.1 M aqueous solution of silver nitrate was added to the precursor composite sample, and the mixture was kept at room temperature and under reduced pressure for 30 minutes, and further kept under the same conditions for 2 hours for ripening of the formed silver phosphate compound. After the excess silver nitrate aqueous solution was removed by suction, the impregnated sample was freeze-dried for 12 hours. The obtained dried sample was elutriated using a 100-mesh sieve to remove fine particles.
For 24 hours, and the silver phosphate of the present invention (Ag 4 P 2 O)
7 ) -A granular composite bactericide sample comprising a silica carrier was obtained.

【0021】以下、担体400LS、075LSあるい
は005LSを上記の処理をして得られたリン酸銀(A
4 27 )担持複合殺菌剤試料を各々S4P2−4
00LS、S4P2−075LS及びS4P2−005
LSと略記する。ここで、上記の処理による目的複合殺
菌剤試料の生成は、S4P2−400LS、S4P2−
075LS及びS4P2−005LSの粉末X線回折パ
ターンの測定(CuKα線使用)により容易に確認でき
る。すなわち、表1に示したように、担体試料はいずれ
も非晶質シリカに特有の、約2θ=22°を中心とする
ハローのみがみられた。これに対し、S4P2−400
LS、S4P2−075LS及びS4P2−005LS
では、いずれも上記の非晶質シリカに特有のハローの他
に、Ag427 に帰属される幾つかの回折ピーク
(面間隔d値(Å) =2.76、3.11、3.28)
(1998 JCPDS ファイル No.37−01
87)が確認された。なお、リン酸銀(Ag4 2
7 )の担持量は、含浸溶液の濃度及び含浸回数の増加と
ともに大きくなるため、それらの処理条件を制御するこ
とにより容易に調整できる。Ag427 の担持量が
小さい場合には、X線回折パターン上にはAg42
7 の最強回折線(d値(Å) =2.76)のみがみられ
る。
The carrier 400LS, 075LS or 005LS is then treated with silver phosphate (A)
g 4 P 2 O 7 ) -supported complex germicide samples were each S4P2-4.
00LS, S4P2-075LS and S4P2-005
Abbreviated as LS. Here, the production of the target composite germicide sample by the above-described processing is performed in S4P2-400LS, S4P2-
It can be easily confirmed by measuring the powder X-ray diffraction patterns of 075LS and S4P2-005LS (using CuKα rays). That is, as shown in Table 1, in each of the carrier samples, only a halo centered at about 2θ = 22 °, which is characteristic of amorphous silica, was observed. In contrast, S4P2-400
LS, S4P2-075LS and S4P2-005LS
In each case, in addition to the halo characteristic of the above-mentioned amorphous silica, several diffraction peaks belonging to Ag 4 P 2 O 7 (plane spacing d value (Å) = 2.76, 3.11, 3.28)
(1998 JCPDS File No. 37-01
87) was confirmed. In addition, silver phosphate (Ag 4 P 2 O)
7 ) The amount of loading increases with an increase in the concentration of the impregnating solution and the number of times of impregnation, and thus can be easily adjusted by controlling the processing conditions. When the carrying amount of Ag 4 P 2 O 7 is small, the Ag 4 P 2 O
Only the 7 strongest diffraction lines (d value (Å) = 2.76) are seen.

【0022】(3)殺菌実験 6種の複合殺菌剤の殺菌能力を担体試料のそれと比較し
て測定した。殺菌効果の測定は全てバッチ法で行った。
図1にその概要を示す。300mL容量の三角フラスコ
2に前述した試料液1を150mL入れ、これに上記の
粒状複合殺菌剤試料あるいは担体試料の1種を10mg
添加し、沈降しない程度にシェーカーにて定速円形攪拌
(20℃、130rpm)させ、これらから経時的に一
部の液を採取したものを処理液とした。また、並行して
菌試料液を同条件で単に攪拌したものをコントロール液
とした。 殺菌効果の判定は、試料を添加する前の試料液
を予め一部分取しておき、経時的に処理液を採取すると
同時に、この分取した試料液からも一部採取し、各々の
1mLを滅菌生理食塩水で適当段階10倍希釈し、その
希釈溶液の0.1mlを普通寒天平板培地に塗沫し、3
7℃、24時間培養後、各々の集落数を測定し、試料液
の集落数に対する処理液の集落数の%を算出し生菌率と
して判定した。また、殺菌試験前後の各処理液及びコン
トロール液をそれぞれ1mLを採取しメンブランフィル
ターにて濾過後の各濾液のpHをpHメーターにて測定
した。
(3) Sterilization Experiment The sterilization ability of the six complex fungicides was measured in comparison with that of the carrier sample. All measurements of the bactericidal effect were performed by the batch method.
FIG. 1 shows the outline. 150 mL of the aforementioned sample solution 1 is placed in a 300 mL Erlenmeyer flask 2, and 10 mg of one of the above-mentioned granular composite disinfectant sample or carrier sample is added thereto.
The mixture was added and stirred at a constant speed with a shaker (20 ° C., 130 rpm) to such an extent that sedimentation did not occur. In addition, a control solution was prepared by simply stirring the bacterial sample solution under the same conditions. To determine the bactericidal effect, a portion of the sample solution before sample addition is taken in advance, and at the same time as the treatment solution is collected over time, a portion is also collected from this sampled solution, and 1 mL of each is sterilized. Dilute 10-fold with physiological saline at an appropriate stage, and spread 0.1 ml of the diluted solution on a normal agar plate medium.
After culturing at 7 ° C. for 24 hours, the number of colonies in each was measured, and the percentage of the number of colonies of the treatment solution to the number of colonies of the sample solution was calculated and determined as the viable bacterial ratio. In addition, 1 mL of each treatment solution and control solution before and after the sterilization test were collected, and the pH of each filtrate after filtration with a membrane filter was measured with a pH meter.

【0023】実施例1 粒状複合体殺菌剤試料(S3P−400LS、S3P−
075LS、S3P−005LS)及び担体試料(40
0LS、075LS、005LS)の各々10mgを添
加した系における添加30分、60分、90分及び12
0分後に採取した処理液のpH及びE.coliの生菌
率の測定結果を表2に示す。
Example 1 Samples of a granular composite disinfectant (S3P-400LS, S3P-
075LS, S3P-005LS) and carrier sample (40
0LS, 075LS, and 005LS) were added for 30 minutes, 60 minutes, 90 minutes, and 12 minutes in a system to which 10 mg of each was added.
The pH and E.C. Table 2 shows the results of measuring the viability of E. coli.

【0024】[0024]

【表2】 [Table 2]

【0025】先ず担体である005LS、075LS及
び400LS添加系であるが、添加120分の生菌率は
それぞれ79.0%、18.3%及び11.4%であ
り、生菌率が一桁低下している。 このことは、1)実験
に用いた大腸菌E.coliは、精製水中では3時間耐
性があり、60分間では増殖、死滅のどちらも示さない
ことが公知であること、及び2)比表面積の大きな担体
(表1)ほど生菌率が低いことから、E.coliが上
記の担体試料に物理的に吸着された結果、水相の生菌数
が見掛け上減少したためと考えられる。 これに対し、複
合殺菌剤試料S3P−005LS、S3P−075LS
及びS3P−400LS添加系であるが、S3P−00
5LS、S3P−075LS添加系ともに、添加30分
後で生菌率は0%となり、顕著な殺菌効果が認められ
た。S3P−400LS添加系では添加30分後の生菌
率は0.001%であるが添加60分後の生菌率は0%
となり、S3P−005LS及びS3P−075LS添
加系と比較すると接触時間は長いものの顕著な殺菌効果
が認められた。
First, the carrier systems of 005LS, 075LS and 400LS were added. The viable cell ratio after 120 minutes of addition was 79.0%, 18.3% and 11.4%, respectively. Is declining. This means that 1) the E. coli E. It is known that E. coli is resistant to purified water for 3 hours and shows neither growth nor death in 60 minutes, and 2) a carrier having a larger specific surface area (Table 1) has a lower viability. , E .; It is considered that as a result of E. coli being physically adsorbed to the carrier sample, the viable cell count in the aqueous phase apparently decreased. On the other hand, the composite disinfectant samples S3P-005LS and S3P-075LS
And S3P-400LS addition system, but S3P-00
In both 5LS and S3P-075LS-added systems, the viable cell rate became 0% 30 minutes after the addition, and a remarkable bactericidal effect was observed. In the S3P-400LS addition system, the viability rate 30 minutes after addition is 0.001%, but the viability rate 60 minutes after addition is 0%.
The contact time was longer than that of the S3P-005LS and S3P-075LS addition systems, but a remarkable bactericidal effect was observed.

【0026】実施例2 複合体殺菌剤試料(S3P−400LS、S3P−07
5LS、S3P−005LS)及び担体試料(400L
S、075LS、005LS)の各々10mgを添加し
た系における添加30分、60分、90分及び120分
後に採取した処理液のpH及びS.aureusの生菌
率の測定結果を表3に示す。
Example 2 Complex bactericide samples (S3P-400LS, S3P-07)
5LS, S3P-005LS) and carrier sample (400L
S, 075 LS, and 005 LS) were added at 30 minutes, 60 minutes, 90 minutes, and 120 minutes after the addition to the system to which 10 mg of the treatment solution was added. Table 3 shows the results of measuring the viable cell ratio of Aureus.

【0027】[0027]

【表3】 [Table 3]

【0028】先ず担体である005LS、075LS及
び400LS添加系であるが、添加120分後の生菌率
はそれぞれ43.6%、43.8%及び21.8%であ
り、生菌率が一桁低下している。 これは、E.coli
同様にS.aureusの場合も担体の005LS、0
75LS及び400LSに物理的に吸着され水相の生菌
数が見掛け上減少したためと考えられる。 これに対し、
複合殺菌剤試料S3P−005LS、S3P−075L
S及びS3P−400LS添加系であるが、添加30分
後の生菌率はそれぞれ0.005%、0.001%及び
0.001%であるが、添加60分後では3系ともに生
菌率は0%であり、顕著な殺菌効果が認められた。S3
P−005LS、S3P−075LS添加系とも生菌率
が0%となるにはE.coliに比べ長い接触時間を必
要とするが、S3P−400LS添加系ではE.col
i及びS.aureusともに添加60分後に生菌率は
0%であり、殺菌速度に差は認められなかった。
First, the carriers 005 LS, 075 LS and 400 LS were added, and the viability after 120 minutes of addition was 43.6%, 43.8% and 21.8%, respectively. Digit has dropped. This is E.I. coli
Similarly, S.I. Aureus also has a carrier of 005LS, 0
This is probably because the viable cell count in the aqueous phase was physically reduced by the physical adsorption at 75 LS and 400 LS. In contrast,
Composite disinfectant sample S3P-005LS, S3P-075L
S and S3P-400LS were added, and the viable cell rate after 30 minutes of addition was 0.005%, 0.001%, and 0.001%, respectively. Was 0%, and a remarkable bactericidal effect was recognized. S3
In order for the viable cell ratio to be 0% in both the P-005LS and S3P-075LS addition systems, E. coli. Although a longer contact time is required as compared with E. coli, in the S3P-400LS addition system, E. coli is required. col
i and S.I. 60 minutes after the addition of Aureus, the viable cell rate was 0%, and no difference was observed in the sterilization rate.

【0029】実施例3 複合体殺菌剤試料(S4P2−400LS、S4P2−
075LS、S4P2−005LS)及び担体試料(4
00LS、075LS、005LS)の各々10mgを
添加した系における添加30分、60分、90分及び1
20分後に採取した処理液のpH及びE.coliの生
菌率の測定結果を表4に示す。
Example 3 Samples of complex bactericides (S4P2-400LS, S4P2-
075LS, S4P2-005LS) and carrier sample (4
00LS, 075LS, and 005LS) were added for 30 minutes, 60 minutes, 90 minutes and 1
After 20 minutes, the pH and E.C. Table 4 shows the results of measuring the viable cell ratio of E. coli.

【0030】[0030]

【表4】 [Table 4]

【0031】先ず担体である005LS、075LS及
び400LS添加系であるが、添加120分後の生菌率
はそれぞれ79.0%、18.3%及び11.4%であ
り、生菌率が一桁低下している。 このことは、1)実験
に用いた大腸菌E.coliは、精製水中では3時間耐
性があり60分間では増殖、死滅のどちらも示さないこ
とが公知であること、及び2)比表面積の大きな担体
(表1)ほど生菌率が低いことから、E.coliが上
記の担体試料に物理的に吸着された結果、水相の生菌数
が見掛け上減少したためと考えられる。 これに対し、複
合殺菌剤試料S4P2−005LS、S4P2−075
LS及びS4P2−400LS添加系であるが、S4P
2−005LS、S4P2−075LS添加系ととも
に、添加30分後で生菌率は0%となり顕著な殺菌効果
が認められた。S4P2−400LS添加系では添加3
0分後の生菌率は0.009%であるが、添加60分後
の生菌率は0%となり、S4P2−005LS及びS4
P2−075LS添加系より長い接触時間を必要とする
ものの、顕著な殺菌効果が認められた。
First, the carriers 005 LS, 075 LS and 400 LS were added, and the viability after 120 minutes of addition was 79.0%, 18.3% and 11.4%, respectively. Digit has dropped. This means that 1) the E. coli E. It is known that E. coli is resistant to purified water for 3 hours and does not grow or die in 60 minutes, and 2) a carrier having a larger specific surface area (Table 1) has a lower viable cell rate. E. FIG. It is considered that as a result of E. coli being physically adsorbed to the carrier sample, the viable cell count in the aqueous phase apparently decreased. On the other hand, the composite disinfectant samples S4P2-005LS, S4P2-075
LS and S4P2-400LS addition system, but S4P
30 minutes after the addition, the viable cell rate became 0% and a remarkable bactericidal effect was observed with the system containing 2-005LS and S4P2-075LS. Addition 3 for S4P2-400LS addition system
The viability rate after 0 minutes is 0.009%, but the viability rate 60 minutes after addition is 0%, indicating that S4P2-005LS and S4P
Although a longer contact time was required than the P2-075LS addition system, a remarkable bactericidal effect was observed.

【0032】実施例4 複合体殺菌剤試料(S4P2−400LS、S4P2−
075LS、S4P2−005LS)及び担体試料(4
00LS、075LS、005LS)の各々10mgを
添加した系における添加30分、60分、90分及び1
20分後に採取した処理液のpH及びS.aureus
の生菌率の測定結果を表5に示す。
Example 4 Complex bactericide samples (S4P2-400LS, S4P2-
075LS, S4P2-005LS) and carrier sample (4
00LS, 075LS, and 005LS) were added for 30 minutes, 60 minutes, 90 minutes and 1
After 20 minutes, the pH and S.P. aureus
Table 5 shows the measurement results of the viable cell ratio of.

【0033】[0033]

【表5】 [Table 5]

【0034】先ず担体である005LS、075LS及
び400LS添加系であるが、添加120分後の生菌率
はそれぞれ43.6%、43.8%及び21.8%であ
り、生菌率が一桁低下している。 これは、E.coli
と同様にS.aureusの場合も担体の005LS、
075LS及び400LSに物理的に吸着され、水相の
生菌数が見掛け上減少したためと考えられる。 これに対
し、複合殺菌剤試料S4P2−005LS、S4P2−
075LS及びS4P2−400LS添加系であるが、
添加30分後の生菌率はそれぞれ0.029%、0.0
27%及び0.007%であるが、添加60分後では3
系とも生菌率は0%であり、顕著な殺菌効果が認められ
た。S4P2−005LS、S4P2−075LS添加
系とも生菌率が0%となるにはE.coliに比べ長い
接触時間を必要とするが、S4P2−400LS添加系
ではE.coliとS.aureusに対する殺菌速度
に差は認められなかった。
First, the carriers 005 LS, 075 LS and 400 LS were added, and the viability after 120 minutes of addition was 43.6%, 43.8% and 21.8%, respectively. Digit has dropped. This is E.I. coli
As in S. aureus in the case of carrier 005LS,
It is considered that this was physically absorbed by 075 LS and 400 LS, and the viable cell count in the aqueous phase was apparently reduced. On the other hand, the composite disinfectant samples S4P2-005LS, S4P2-
075LS and S4P2-400LS addition system,
The viable cell rates 30 minutes after the addition were 0.029% and 0.029%, respectively.
27% and 0.007%, but 3 minutes after addition 60 minutes.
The viable cell rate was 0% in both systems, and a remarkable bactericidal effect was observed. In order for the viable cell ratio to be 0% for both the S4P2-005LS and the S4P2-075LS-added systems, E. coli. Although a longer contact time is required as compared with E. coli, the S4P2-400LS addition system requires E. coli. coli and S. Aureus showed no difference in sterilization rate.

【0035】また、表2〜5に示したように、各系とも
処理液のpHは6.0〜6.6の範囲のほぼ中性域であ
り、コントロール液との差も±0.1〜0.4であり殆
ど差が見られなかった。E.coli、S.aureu
sともにpH5〜9の範囲では生菌率に殆ど変化が見ら
れない(Onodera,Y.,et al.,App
l.Clay Sci.,掲載予定(2000))こと
から、複合殺菌剤試料に見られた上記の殺菌効果が菌溶
液のpH上昇による(Suzuki,T.,et a
l.,DENKI KAGAKU,52,272(19
84))ものでないことは明らかである。以上の結果か
ら、本発明の複合殺菌剤試料はE.coli及びS.a
ureusに係わらず顕著な殺菌効果を持つことは明ら
かである。
As shown in Tables 2 to 5, in each system, the pH of the treatment solution was almost neutral in the range of 6.0 to 6.6, and the difference from the control solution was ± 0.1. 0.40.4, and almost no difference was observed. E. FIG. coli, S.E. aureu
s in the range of pH 5 to 9, there is almost no change in the viable cell rate (Onodera, Y., et al., App.
l. Clay Sci. , To be published (2000)), the above-mentioned bactericidal effect observed in the complex bactericide sample is caused by an increase in the pH of the bacterial solution (Suzuki, T., et a).
l. , DENKI KAGAKU, 52, 272 (19
84)). From the above results, the composite fungicide sample of the present invention was obtained from E. coli. coli and S. coli. a
Obviously, it has a significant bactericidal effect regardless of ureus.

【0036】[0036]

【発明の効果】以上説明したように、1)高い殺菌性を
有する無機・無機複合体からなる複合殺菌剤が提供され
る、2)本発明の粒状複合殺菌剤は、被処理水や水分を
含有する含水気体と接触させることによってこれらの殺
菌剤の表面特性により比処理水や含水気体の殺菌処理が
可能となる、3)即ち、殺菌剤中に微粒子状で分散担持
されているリン酸銀化合物の広大な表面に細菌が接触す
ると銀の殺菌作用により細菌が完全かつ短時間内に死滅
する、いう殺菌特性により、被処理水や含水気体の殺菌
処理が可能である、4)従って、この殺菌剤を用いるこ
とにより、塩素殺菌法のように処理水に塩素などの二次
汚染物質を残留させることなく被処理水の殺菌処理が可
能となり、また、菌が存在する含水気体を殺菌処理する
ことができる、という格別の効果が得られる。
As described above, 1) a composite germicide comprising an inorganic-inorganic composite having high bactericidal properties is provided. 2) The granular composite germicide of the present invention can remove water to be treated and water. The surface properties of these disinfectants make it possible to disinfect the treated water or the impregnated gas by contact with the contained hydrous gas. 3) That is, silver phosphate dispersed and supported in fine particles in the disinfectant When bacteria contact the vast surface of the compound, the bacteria kill completely and within a short time due to the bactericidal action of silver. Therefore, sterilization of water to be treated and gas containing water is possible. By using a disinfectant, it is possible to disinfect the water to be treated without leaving secondary contaminants such as chlorine in the treated water as in the chlorine disinfection method, and disinfect the water-containing gas in which bacteria exist. Can be Cormorant special effects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】殺菌実験の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of a sterilization experiment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 25/37 C01B 25/37 Z 25/42 25/42 C02F 1/50 510 C02F 1/50 510A 520 520B 531 531T 540 540E (72)発明者 蛯名 武雄 宮城県仙台市青葉区中江2丁目15−1 108号 (72)発明者 イン レイン 宮城県仙台市青葉区国見6丁目77番5号 204 Fターム(参考) 4C058 AA20 BB07 DD07 JJ05 JJ21 JJ26 4C080 AA05 AA07 BB05 HH05 HH09 JJ04 KK08 LL02 LL10 MM01 NN02 NN03 NN04 NN05 NN06 4H011 AA02 BA01 BB18 BC18 DA02 DC10 DD01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01B 25/37 C01B 25/37 Z 25/42 25/42 C02F 1/50 510 C02F 1/50 510A 520 520B 531 531T 540 540E (72) Inventor Takeo Ebina 2-1-15-1 Nakae, Aoba-ku, Aoba-ku, Sendai-city, Miyagi Prefecture (72) In-rain Ingen 6-77-5, Kunimi, Aoba-ku, Sendai-shi, Miyagi Prefecture 204 F-term (reference) 4C058 AA20 BB07 DD07 JJ05 JJ21 JJ26 4C080 AA05 AA07 BB05 HH05 HH09 JJ04 KK08 LL02 LL10 MM01 NN02 NN03 NN04 NN05 NN06 4H011 AA02 BA01 BB18 BC18 DA02 DC10 DD01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 多孔性無機物担体の細孔内に、Ag3
4 又はAg42 7 で表されるリン酸銀化合物を合
成・担持して得られる高い殺菌性を有する無機・無機複
合体からなることを特徴とする複合殺菌剤。
1. The method according to claim 1, wherein Ag is contained in the pores of the porous inorganic carrier.Three P
OFour Or AgFour PTwo O7 Silver phosphate compound represented by
Inorganic / inorganic composite with high bactericidal properties obtained by forming and supporting
A composite fungicide characterized by being combined.
【請求項2】 請求項1記載の複合殺菌剤を製造する方
法であって、Ag3PO4 又はAg42 7 で表され
るリン酸銀化合物を、含浸晶出法を多段に適用すること
により多孔性無機物担体の細孔内に合成・担持すること
を特徴とする殺菌剤の製造方法。
2. A method for manufacturing a composite disinfectant according to claim 1, wherein the silver phosphate compound represented by Ag3PO 4 or Ag 4 P 2 O 7, applying the impregnated crystal Deho multistage A method for producing a bactericide, characterized in that the bactericide is synthesized and supported in the pores of a porous inorganic carrier.
【請求項3】 上記のAg3 PO4 で表されるリン酸銀
化合物を合成する際に、一般式M3 PO4 で表されるメ
タリン酸塩(式中のMは1価陽イオンを表し、Na+
NH4 + 、K+ 等のイオンである)あるいはMn3-n
PO4 で表されるリン酸水素塩(式中のMは1価陽イオ
ンを表し、Na+ 、NH4 + 、K+ 等のイオンである。
また、nは1,2,3のいずれかの値をとる)を前駆化
合物として用いることを特徴とする請求項2記載の製造
方法。
3. When synthesizing the silver phosphate compound represented by Ag 3 PO 4 , a metaphosphate represented by the general formula M 3 PO 4 (where M represents a monovalent cation) , Na + ,
NH 4 + , K + etc.) or M n H 3-n
Hydrogen phosphate represented by PO 4 (M in the formula represents a monovalent cation, and is an ion such as Na + , NH 4 + , and K + .
3. The method according to claim 2, wherein (n is one of 1, 2, and 3) is used as the precursor compound.
【請求項4】 上記のAg427 で表されるリン酸
銀化合物を合成する際に、一般式MI 4 27 で表さ
れる二リン酸塩(式中のMは1価陽イオンを表し、Na
+ 、H+ 、K+ 等のイオンである)を前駆化合物として
用いることを特徴とする請求項2記載の製造方法。
In the synthesis of silver phosphate compound represented by wherein the above Ag 4 P 2 O 7, the general formula M I 4 P 2 diphosphate represented by O 7 (in the formula M is Represents a monovalent cation, Na
+ , H + , K +, etc.) as the precursor compound.
【請求項5】 多孔性無機物担体に前駆化合物のメタリ
ン酸塩あるいはリン酸水素塩を合成・担持して得られる
前駆複合体に、さらに銀塩溶液を含浸し前駆複合体中の
メタリン酸塩あるいはリン酸水素塩の1価陽イオンを銀
イオンで置換することによりリン酸銀化合物(Ag3
4 )に変換することを特徴とする請求項2記載の製造
方法。
5. A precursor composite obtained by synthesizing and supporting a metaphosphate or hydrogen phosphate of a precursor compound on a porous inorganic carrier, and further impregnating a silver salt solution with the metal phosphate or metaphosphate in the precursor composite. By substituting the monovalent cation of the hydrogen phosphate with silver ion, a silver phosphate compound (Ag 3 P
3. The method according to claim 2, wherein said compound is converted to O 4 ).
【請求項6】 多孔性無機物担体に前駆化合物の二リン
酸塩を合成・担持して得られる前駆複合体に、さらに銀
塩溶液を含浸し前駆複合体中の二リン酸塩の1価陽イオ
ンを銀イオンで置換することによりリン酸銀化合物(A
427 )に変換することを特徴とする請求項2記
載の製造方法。
6. The precursor inorganic compound phosphorus on a porous inorganic carrier.
The precursor complex obtained by synthesizing and supporting
Monovalent cation of diphosphate in precursor complex impregnated with salt solution
Silver phosphate compound (A)
gFour PTwo O7 3. The method according to claim 2, wherein
Manufacturing method.
【請求項7】 請求項1記載の複合殺菌剤に被処理水や
含水気体を接触せしめ、該殺菌剤の表面特性によって被
処理水や含水気体の殺菌を行うことを特徴とする殺菌処
理方法。
7. A sterilization method comprising contacting water to be treated or a gas containing water with the composite disinfectant according to claim 1, and sterilizing the water to be treated or gas containing water according to the surface characteristics of the disinfectant.
JP2000289498A 2000-09-22 2000-09-22 Composite disinfectant and disinfection method Expired - Lifetime JP3572353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000289498A JP3572353B2 (en) 2000-09-22 2000-09-22 Composite disinfectant and disinfection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000289498A JP3572353B2 (en) 2000-09-22 2000-09-22 Composite disinfectant and disinfection method

Publications (2)

Publication Number Publication Date
JP2002104909A true JP2002104909A (en) 2002-04-10
JP3572353B2 JP3572353B2 (en) 2004-09-29

Family

ID=18772887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000289498A Expired - Lifetime JP3572353B2 (en) 2000-09-22 2000-09-22 Composite disinfectant and disinfection method

Country Status (1)

Country Link
JP (1) JP3572353B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544953A (en) * 2005-05-10 2008-12-11 チバ ホールディング インコーポレーテッド Antibacterial porous silicon oxide particles
JP2010184917A (en) * 2009-02-13 2010-08-26 Mitsubishi Materials Corp Antibacterial member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544953A (en) * 2005-05-10 2008-12-11 チバ ホールディング インコーポレーテッド Antibacterial porous silicon oxide particles
JP2010184917A (en) * 2009-02-13 2010-08-26 Mitsubishi Materials Corp Antibacterial member

Also Published As

Publication number Publication date
JP3572353B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
Bacakova et al. Applications of zeolites in biotechnology and medicine–a review
Delgadillo-Velasco et al. Bone char with antibacterial properties for fluoride removal: preparation, characterization and water treatment
Jadalannagari et al. Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique
Copcia et al. Antibacterial activity of silver-modified natural clinoptilolite
CN106518006A (en) In-situ composite antibacterial filtering ceramic as well as preparation method and application thereof
De la Rosa-Gómez et al. Bactericides of coliform microorganisms from wastewater using silver-clinoptilolite rich tuffs
CN112205420A (en) Negative oxygen ion disinfectant, and preparation method and application thereof
KR101503022B1 (en) Manufacturing method of silver iodide coated ball, and silver iodide coated ball made by the same
JP3361324B2 (en) Silver-iodine plating activated carbon with bactericidal effect
US11974875B2 (en) Methods for producing silver-amended carbon materials
Salim et al. Review of modified Zeolites by surfactant and Silver as antibacterial agents
JP2002104909A (en) Composite germicide and germicidal treatment method
RU2559498C2 (en) Product for purifying fluids and method of production
Yuan et al. Functionally modified zeolite powders for delivering antibacterial performance to cellulosic paper
JPH03229690A (en) Purifying agent for water purifier using natural zeolite
US20100260869A1 (en) Biocidal materials
CN114011377A (en) Air sterilizing and purifying material and preparation method thereof
Onodera et al. Bactericidal allophanic materials prepared from allophane soil: II. Bactericidal activities of silver/phosphorus–silver-loaded allophanic specimens
JP2020164857A (en) Antibacterial colloid and method for manufacturing the same
Tessema et al. Synthesis and evaluation of the anti-bacterial effect of modified silica gel supported silver nanoparticles on E. coli and S. aureus
Gemishev et al. Preparation of Silver Nanoparticles–Natural Zeolite Composite and Study of its Antibacterial Properties
SALIM SYNTHESIS AND CHARACTERIZATION OF CETYLTRIMETHYL AMMONIUM BROMIDE AND SILVER SUPPORTED NaY ZEOLITES FOR ANTIBACTERIAL APPLICATION
Sutianingsih et al. A Review: antibacterial activity of metal impregnated zeolite in water treatment process
JPH06277673A (en) Silica containing apatite hydroxide bactericide and bactericidal treatment process
Gogotsi et al. Bactericidal activity of chlorine‐loaded carbide‐derived carbon against Escherichia coli and Bacillus anthracis

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Ref document number: 3572353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term