JP2002097961A - Method of forming combustion chamber of diesel engine and combustion chamber of diesel engine formed by using the method - Google Patents

Method of forming combustion chamber of diesel engine and combustion chamber of diesel engine formed by using the method

Info

Publication number
JP2002097961A
JP2002097961A JP2000289300A JP2000289300A JP2002097961A JP 2002097961 A JP2002097961 A JP 2002097961A JP 2000289300 A JP2000289300 A JP 2000289300A JP 2000289300 A JP2000289300 A JP 2000289300A JP 2002097961 A JP2002097961 A JP 2002097961A
Authority
JP
Japan
Prior art keywords
combustion chamber
piston
diesel engine
angle
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000289300A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
崇 山本
Masanao Daigo
将直 醍醐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2000289300A priority Critical patent/JP2002097961A/en
Publication of JP2002097961A publication Critical patent/JP2002097961A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To easily determine the data as the components of a combustion chamber capable of easily specifying an ideal shape of the combustion chamber. SOLUTION: In this diesel engine, fuel is directly injected from an injection nozzle into the combustion chamber 1 formed of the lower surface 6 of a cylinder head 5 and a recess 10 formed in a piston head 8 at the end of a compression stroke for moving a piston 3 to a top dead center, and the wall surface of the recess 10 is formed on a convex surface 18a projected to the outside of the piston continuously around the centerline L of the piston. Based on an angle θ2 formed by a virtual centerline 22 of the injected fuel injected from the injection nozzle and moving to the convex surface 18a and the lower surface 6 of the cylinder head, the intersection 24 of the virtual centerline 22 with the wall surface of the combustion chamber and the ratio of a combustion chamber depth H1 to a distance L1 between piston head top faces 9 are obtained to specify the shape of the recess.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ンの燃焼室に関する。
The present invention relates to a combustion chamber of a diesel engine.

【0002】[0002]

【従来の技術】ディーゼルエンジンではピストンが上死
点にある時のシリンダヘッドとピストンヘッドとによっ
て燃焼室が形成され、当該燃焼室に向けて噴射ノズルか
ら燃料が直接噴射される。また、燃焼室で燃料を空気と
よく混ぜ合わせるためにピストンヘッドには窪みを形成
し、内燃機関の作動行程のうち圧縮行程中に前記窪み内
で空気の乱流を生じさせるとともに前記窪みに向けて噴
射ノズルから燃料噴射する。したがってディーゼルエン
ジンの燃焼室の形状は、噴射燃料と空気とが十分に混合
される構造であることが第一条件となる。
2. Description of the Related Art In a diesel engine, a combustion chamber is formed by a cylinder head and a piston head when a piston is at a top dead center, and fuel is directly injected from an injection nozzle toward the combustion chamber. Further, a depression is formed in the piston head in order to mix the fuel with air well in the combustion chamber, and turbulence of air is generated in the depression during the compression stroke during the operation stroke of the internal combustion engine, and the air is directed toward the depression. To inject fuel from the injection nozzle. Therefore, the first condition of the shape of the combustion chamber of the diesel engine is that the structure is such that the injected fuel and the air are sufficiently mixed.

【0003】また燃焼性を高めるために、前記噴射され
た燃料(以下「噴射燃料」という。)の微粒子(以下
「噴射微粒子」という。)の大きさや噴射状態を噴射ノ
ズルに工夫を施すことで対処している。
In order to enhance the combustibility, the size and injection state of fine particles (hereinafter referred to as “injected particles”) of the injected fuel (hereinafter referred to as “injected fuel”) are improved by injecting the injection nozzles. We are dealing.

【0004】しかし、ディーゼルエンジンの性能を最大
限向上できるように前記窪み部の形状を特定したり、噴
射ノズルの燃料噴射角や突出量等の諸元を決定するのは
容易ではなく、これまでの技術では種々の実験を繰り返
すことで漸く定まるというものであった。
[0004] However, it is not easy to specify the shape of the recess and to determine the parameters such as the fuel injection angle and the amount of protrusion of the injection nozzle so as to maximize the performance of the diesel engine. In this technique, it was determined gradually by repeating various experiments.

【0005】[0005]

【発明が解決しようとする課題】機関性能を最大限向上
できるようにするためにこれまでも種々の技術が提案さ
れている(例えば特開平7−150944号,8−28
4667号,10−159566号公報参照)。
Various techniques have been proposed to maximize the performance of the engine (for example, Japanese Patent Application Laid-Open Nos. 7-150944 and 8-28).
4667, 10-159566).

【0006】しかし、ディーゼルエンジンの性能を向上
させる要望は止まることがなく、さらに一層の効果を期
待できる技術の提案が望まれている。
However, there is no end to the demand for improving the performance of diesel engines, and there is a need for a proposal of a technology that can be expected to achieve further effects.

【0007】そして、当該要望を満足するためには、燃
焼室の前記窪みの形状の特定が容易に行えるようにする
ことが重要であり、特に噴射ノズルの噴孔から噴射され
て前記窪みに向かう噴射燃料の仮想中心線が前記燃焼室
壁面と交叉する交点と、前記ピストンヘッド頂面との間
の距離L1、および燃焼室深さH1の寸法を決めること
が重要な要因として挙げられる。
In order to satisfy the demand, it is important that the shape of the dent in the combustion chamber can be easily specified. In particular, the blast is injected from the injection hole of the injection nozzle toward the dent. It is important factors to determine the distance L1 between the intersection of the virtual center line of the injected fuel and the combustion chamber wall surface and the top surface of the piston head, and the dimensions of the combustion chamber depth H1.

【0008】本発明は、以上の点に鑑みてなされたもの
で、その解決しようとする課題は、理想とする燃焼室形
状の特定を容易に決定できるように前記距離L1および
燃焼室深さH1の寸法を簡単に決めることができるディ
ーゼルエンジンの燃焼室形成方法および当該方法を用い
て形成したディーゼルエンジンの燃焼室を提供すること
にある。
The present invention has been made in view of the above points, and the problem to be solved is to solve the above-mentioned distance L1 and combustion chamber depth H1 so that the ideal shape of the combustion chamber can be easily determined. It is an object of the present invention to provide a method for forming a combustion chamber of a diesel engine, which can easily determine the dimensions of the combustion chamber, and a combustion chamber for a diesel engine formed by using the method.

【0009】[0009]

【課題を解決するための手段】上記課題を達成するため
に本発明ディーゼルエンジンの燃焼室は、次の手段を採
用した。
To achieve the above object, the combustion chamber of the diesel engine of the present invention employs the following means.

【0010】(1)ピストンが上死点に向かう圧縮行程
の終わりにシリンダヘッドの下面とピストンヘッドに形
成した窪みとによって形成される燃焼室に噴射ノズルか
ら燃料を直接噴射し、前記窪みの壁面がピストン中心線
周りで連続しかつピストン外方へ突出する凸曲面に形成
されたディーゼルエンジンにおいて、前記噴射ノズルの
噴孔から噴射されて前記凸曲面に向かう噴射燃料の仮想
中心線が前記シリンダヘッド下面となす角度(θ2)に
基づいて、前記仮想中心線の前記燃焼室壁面との交点お
よび前記ピストンヘッド頂面間の距離L1に対する燃焼
室深さ(H1)の比率を求めることで前記窪みの形状を
特定する。
(1) At the end of the compression stroke of the piston toward the top dead center, fuel is directly injected from the injection nozzle into the combustion chamber formed by the lower surface of the cylinder head and the depression formed in the piston head, and the wall surface of the depression is formed. Is formed around a piston center line and has a convex curved surface protruding outward from the piston. In the diesel engine, the virtual center line of the fuel injected from the injection hole of the injection nozzle toward the convex curved surface is the cylinder head. The ratio of the depth of the combustion chamber (H1) to the distance L1 between the intersection of the imaginary center line and the wall surface of the combustion chamber and the top surface of the piston head is determined based on the angle (θ2) formed with the lower surface. Specify the shape.

【0011】ここで、噴射燃料の仮想中心線がシリンダ
ヘッド下面となす角度θ2は、同一のディーゼルエンジ
ンであれば一定である。これは圧縮着火式内燃機関であ
るディーゼルエンジンにおいては圧縮行程において圧力
が規定の圧力に達した時点で燃料噴射されるからであ
る。よって異種類のディーゼルエンジンごとに角度θ2
は定まる。
Here, the angle θ2 between the virtual center line of the injected fuel and the lower surface of the cylinder head is constant in the same diesel engine. This is because, in a diesel engine which is a compression ignition type internal combustion engine, fuel is injected when the pressure reaches a specified pressure in a compression stroke. Therefore, the angle θ2 for each type of diesel engine
Is determined.

【0012】本発明では、噴射燃料の仮想中心線がシリ
ンダヘッド下面となす角度θ2に基づいて、前記仮想中
心線の前記燃焼室壁面との交点および前記ピストンヘッ
ド頂面間の距離L1に対する燃焼室深さH1の比率を求
めることを特徴とする。
In the present invention, based on the angle θ2 formed by the virtual center line of the injected fuel with the lower surface of the cylinder head, the combustion chamber with respect to the intersection of the virtual center line with the wall surface of the combustion chamber and the distance L1 between the piston head top surface. It is characterized in that the ratio of the depth H1 is obtained.

【0013】前記の通り、噴射燃料の仮想中心線がシリ
ンダヘッド下面となす角度θ2は一定であるから、この
角度が求まれば前記仮想中心線の前記燃焼室壁面との交
点および前記ピストンヘッド頂面間の距離L1に対する
燃焼室深さH1の比率L1/H1を一元的に求めること
ができる手段として、例えば、縦軸に当該比率をとり、
横軸に角度θ2をとってなる二次元マップを用意してお
き、角度θ2が求まったらこの二次元マップから比率L
1/H1を求める。
As described above, since the angle θ2 formed by the virtual center line of the injected fuel and the lower surface of the cylinder head is constant, if this angle is determined, the intersection of the virtual center line with the wall surface of the combustion chamber and the top of the piston head are determined. As means for unifying the ratio L1 / H1 of the combustion chamber depth H1 to the distance L1 between the surfaces, for example, the ratio is taken on the vertical axis,
A two-dimensional map having an angle θ2 on the horizontal axis is prepared, and when the angle θ2 is determined, the ratio L is calculated from the two-dimensional map.
Find 1 / H1.

【0014】比率L1/H1が求められると、燃焼室壁
面との交点および前記ピストンヘッド頂面間の距離L1
と燃焼室深さH1を決め易くなる。なぜならば比率L1
/H1の関係になるようにL1とH1の寸法を求めれば
よいからである。
When the ratio L1 / H1 is obtained, the distance L1 between the intersection with the combustion chamber wall surface and the top surface of the piston head is determined.
And it becomes easy to determine the combustion chamber depth H1. Because the ratio L1
This is because the dimensions of L1 and H1 may be determined so as to satisfy the relationship of / H1.

【0015】また、角度θ2を求めるには、噴射ノズル
の噴孔から仮想中心線の燃焼室壁面との交点までの距離
(噴射燃料の飛距離)L3を求める。距離L3は行程容
積(排気量)や圧縮比をどれくらいにするかによって燃
焼室容積を定め、さらに燃料の最大噴射圧力をどれ位に
し、またどれ位の期間で吹き終わるかを決めて噴射ノズ
ルの噴孔径が決まることで得られる値である。
To determine the angle θ2, a distance (flying distance of the injected fuel) L3 from the injection hole of the injection nozzle to the intersection of the virtual center line with the combustion chamber wall surface is determined. The distance L3 determines the volume of the combustion chamber depending on the stroke volume (displacement amount) and the compression ratio, and determines the maximum injection pressure of the fuel, the duration of the injection, and the injection nozzle. This is a value obtained by determining the injection hole diameter.

【0016】飛距離L3が決まったら噴射ノズルの噴孔
から仮想中心線の燃焼室壁面との交点までの距離寸法が
前記L3になる箇所を求め、当該箇所を前記交点とす
る。当該交点が求まればればこの交点および前記ピスト
ンヘッド頂面間の距離L1と角度θ2とが自ずと決ま
る。
When the flight distance L3 is determined, a point at which the distance dimension from the injection hole of the injection nozzle to the intersection of the virtual center line with the combustion chamber wall surface is determined to be L3 is defined as the intersection. Once the intersection is obtained, the distance L1 between the intersection and the top surface of the piston head and the angle θ2 are determined naturally.

【0017】そして、角度θ2が決まれば前記マップよ
り比率L1/H1が決まる。L1はすでに求まっている
ので比率L1/H1とL1とからH1が求められる。
When the angle θ2 is determined, the ratio L1 / H1 is determined from the map. Since L1 has already been obtained, H1 is obtained from the ratios L1 / H1 and L1.

【0018】よって、噴射ノズルの噴孔から噴射されて
前記窪みに向かう噴射燃料の仮想中心線が前記燃焼室壁
面と交叉する交点と、前記ピストンヘッド頂面との間の
距離L1、および燃焼室深さH1の寸法を決めることが
容易となるので、理想とする燃焼室形状の特定を容易に
決定できる。 (2)前記(1)において、前記比率は、特定の算式を
用いて求めると好適である。
Accordingly, the distance L1 between the intersection point where the virtual center line of the injected fuel injected from the injection hole of the injection nozzle toward the depression intersects the combustion chamber wall surface and the top surface of the piston head, and the combustion chamber Since it becomes easy to determine the dimension of the depth H1, it is possible to easily determine the ideal shape of the combustion chamber. (2) In the above (1), the ratio is preferably obtained by using a specific formula.

【0019】本発明では、算式を用いることで比率L1
/H1を精密に求めることができる。 (3)前記(2)において、前記算式として例えば次の
二次方程式を挙げられる。
In the present invention, the ratio L1 is calculated by using an equation.
/ H1 can be determined precisely. (3) In the above (2), for example, the following quadratic equation can be mentioned as the above formula.

【0020】 y=−0.0073x2+0.184x−0.76 ここで、y:比率L1/H1 x:角度θ2 これまでの技術では、角度θ2に対して前記距離L1と
燃焼室深さH1とがどういう関係になるのかということ
は考慮の対象になく、ある燃焼室を作ってその中で角度
θ2をいくらにするかということを経験から見い出して
いたが、この経験を数値化するための手段として今回こ
の算式を確立した。当該算式は実験によって求められた
ものである。この数式上の関係を守って距離L1や燃焼
室深さH1等を決められれば、どんなシリンダサイズ
(ボアサイズ)であろうと遜色ない燃焼室ができる。 (4)前記(1)から(3)いずれか記載のディーゼル
エンジンの燃焼室形成方法を用いてディーゼルエンジン
の燃焼室を形成してもよい。 (5)前記(4)において、前記窪みの凸曲面は、前記
仮想中心線が前記交点における接線となす特定の角度θ
iを有し、この特定角度θiは前記ピストンの動きに応
じて可変し、前記ピストンが機関上死点にある時を起点
に一旦減少後増加することを特徴としてもよい。
Y = −0.0073x 2 + 0.184x−0.76 Here, y: ratio L1 / H1 x: angle θ2 In the conventional techniques, the distance L1 and the combustion chamber depth H1 are determined with respect to the angle θ2. It was not considered what kind of relationship would be, and I had found from experience how to make a certain combustion chamber and how much the angle θ2 should be in it. This formula was established this time as a means. This formula was obtained by experiment. If the distance L1 and the depth of the combustion chamber H1 can be determined while observing the relationship in this mathematical expression, a combustion chamber comparable to any cylinder size (bore size) can be obtained. (4) The combustion chamber of a diesel engine may be formed by using the method for forming a combustion chamber of a diesel engine according to any one of (1) to (3). (5) In the above (4), the convex curved surface of the depression is formed at a specific angle θ at which the virtual center line forms a tangent at the intersection.
The specific angle θi may be varied according to the movement of the piston, and may decrease and increase once when the piston is at the top dead center of the engine.

【0021】このような設定にすることで、噴射燃料が
窪みの内壁面にあたってそれが反射しても窪み内の一定
箇所に溜まってしまうことがない。
With this setting, even if the injected fuel hits the inner wall surface of the dent and is reflected, it does not accumulate at a certain location in the dent.

【0022】このような効果を得るにあたり、前記特定
角度θiを前記ピストンの動きに応じて可変するように
し、前記ピストンが機関上死点にある時を起点としてそ
こから一旦減少後増加することが機関軸トルクを向上さ
せる上で効果的であることを本願発明者が実験によって
見出した。すなわち特定角度θiを減少および増加する
ことは、窪み内表面に噴射燃料が衝突してある特定の反
射角をもって拡散することになるので当該反射角が変化
すれば噴射燃料の窪み内表面における拡散性が向上す
る。その結果、混合気の拡散性の向上につながる。 (6)前記(5)において、特定角度θiの最小角を2
8°〜36°とすることで、良好な混合気ができるとと
もに噴射燃料が燃焼室の壁面に付着する範囲の拡大を抑
制できるので炭化水素の排出量が減少する。また当該最
小角に至るまでの変化量を5°前後、すなわち、4〜6
°にすることで、噴射燃料の飛距離L3の急激な変化を
抑制できる。噴射燃料の飛距離L3の急激な変化を抑制
できれば、混合気の拡散性の向上につながるので好まし
い。 (7)前記(4)から(6)のいずれかにおいて、前記
窪みを横断面で見た場合、前記凸曲面は曲率半径の異な
る2つの連続した曲線部を有し、曲率半径の大きな部位
および小さな部位はそれぞれ前記ピストン中心線から近
い箇所および離れた箇所に位置するようにしてもよい。
In order to obtain such an effect, the specific angle θi is made variable in accordance with the movement of the piston, and when the piston is at the top dead center of the engine, the specific angle θi is temporarily reduced and then increased. The present inventor has found through experiments that the present invention is effective in improving the engine shaft torque. In other words, decreasing and increasing the specific angle θi implies that the injected fuel collides with the inner surface of the depression and diffuses at a specific reflection angle. Therefore, if the reflection angle changes, the diffusivity of the injected fuel on the inner surface of the depression will increase. Is improved. As a result, the diffusion of the air-fuel mixture is improved. (6) In the above (5), the minimum angle of the specific angle θi is 2
By setting the angle to 8 ° to 36 °, a good air-fuel mixture can be formed, and the expansion of the range in which the injected fuel adheres to the wall surface of the combustion chamber can be suppressed. In addition, the amount of change up to the minimum angle is about 5 °, that is, 4 to 6
By setting the angle in degrees, a rapid change in the flight distance L3 of the injected fuel can be suppressed. If it is possible to suppress a rapid change in the flight distance L3 of the injected fuel, it is preferable since the diffusion of the air-fuel mixture is improved. (7) In any one of the above (4) to (6), when the depression is viewed in a cross section, the convex curved surface has two continuous curved portions having different radii of curvature, and a portion having a large radius of curvature. The small portions may be located at locations near and away from the piston center line, respectively.

【0023】このようにすることで前記窪み内で混合気
の流れる経路が緩やかに傾斜するようになる。すなわ
ち、前記窪みの凸曲面のうち曲率半径の小さな部位がピ
ストン中心線から近い箇所にあり、大きな部位が遠くに
あると前記小さな部位での空気密度が高まって混合気が
廻らない。しかし本発明ではピストン中心線から近い箇
所に曲率半径の大きな部位をおき曲率半径の小さな部位
をピストン中心線から遠い箇所においたので、混合気が
燃焼室の隅々にまで行き渡るようになる。このため機関
性能が向上する。 (8)前記曲率半径の大きな部位および小さな部位の比
率は、1.15:1であることが好ましい。
By doing so, the flow path of the air-fuel mixture in the depression becomes gently inclined. That is, in the convex curved surface of the depression, a portion having a small radius of curvature is located near the piston center line, and if a large portion is located far away, the air density in the small portion increases and the air-fuel mixture does not turn. However, in the present invention, since a portion having a large radius of curvature is placed near the piston center line and a portion having a small radius of curvature is located far from the piston center line, the air-fuel mixture spreads to every corner of the combustion chamber. For this reason, engine performance is improved. (8) It is preferable that the ratio between the portion having a large radius of curvature and the portion having a small radius of curvature is 1.15: 1.

【0024】本願発明者の実験によれば両者の比率が上
記の関係にあるときが混合気の流れがスムーズになるこ
とが判明している。
According to an experiment conducted by the inventor of the present invention, it has been found that the flow of the air-fuel mixture becomes smooth when the ratio of the two is in the above relationship.

【0025】[0025]

【発明の実施の形態】以下、本発明ディーゼルエンジン
の燃焼室形成方法および当該方法を用いて形成した燃焼
室の実施形態を添付した図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a combustion chamber forming method for a diesel engine according to the present invention and a combustion chamber formed by using the method will be described with reference to the accompanying drawings.

【0026】図1は本実施形態に係るディーゼルエンジ
ンのピストン3が上死点に向かう圧縮行程の終わりにあ
る時の状態をシリンダの長手方向に対して平行な縦断面
で示しており、シリンダヘッド5の下面6とピストンヘ
ッド8に形成した窪み10とによって本発明ディーゼル
エンジンの燃焼室1がシリンダ(図示せず)内に画成さ
れた状態を示している。ただし、この実施形態では、シ
リンダを省略してある関係から、燃焼室が、シリンダヘ
ッド5の下面6と、ピストンヘッド8に形成した窪み1
0とによって画成された旨記載したが、正確には、ピス
トン3が上死点に向かう圧縮行程の終わりにおいて、窪
み10を含み、ピストンヘッド8の頂面9と、シリンダ
ボア(図示せず)と、シリンダヘッド5の下面6とで囲
まれる空間を燃焼室という。
FIG. 1 shows a state in which the piston 3 of the diesel engine according to the present embodiment is at the end of the compression stroke toward the top dead center in a vertical section parallel to the longitudinal direction of the cylinder. 5 shows a state in which the combustion chamber 1 of the diesel engine of the present invention is defined in a cylinder (not shown) by the lower surface 6 of the piston 5 and the depression 10 formed in the piston head 8. However, in this embodiment, since the cylinder is omitted, the combustion chamber is formed by the depression 1 formed in the lower surface 6 of the cylinder head 5 and the piston head 8.
0, but to be precise, at the end of the compression stroke in which the piston 3 goes to the top dead center, it includes a depression 10 and the top surface 9 of the piston head 8 and the cylinder bore (not shown) And a space surrounded by the lower surface 6 of the cylinder head 5 is called a combustion chamber.

【0027】また、ピストン3は図示しないクランクシ
ャフトとコンロッドの動きに連動して筒内を往復動する
ので、その動きに伴って燃焼室1の容積は、拡大・縮小
を繰り返して変化する。
Since the piston 3 reciprocates in the cylinder in conjunction with the movement of a crankshaft and a connecting rod (not shown), the volume of the combustion chamber 1 changes repeatedly with the movement.

【0028】図中符合12で示すものは図示しない高圧
噴射型の噴射ノズルの噴孔であり、燃焼室1に臨んだ状
態になるように噴射ノズルをシリンダヘッド5に取り付
けてある。そしてディーゼルエンジンが圧縮行程に入る
と圧縮作用が始まって燃焼室内(筒内)の圧力が次第に
高まり、規定の圧力に達すると噴孔12から窪み10の
内周面に向けて燃料が霧状に直接噴射されるようになっ
ている。
Reference numeral 12 in the figure denotes an injection hole of a high-pressure injection type injection nozzle (not shown). The injection nozzle is attached to the cylinder head 5 so as to face the combustion chamber 1. When the diesel engine enters the compression stroke, the compression action starts, and the pressure in the combustion chamber (in the cylinder) gradually increases. When the pressure reaches a specified pressure, the fuel is sprayed from the injection hole 12 toward the inner peripheral surface of the depression 10. It is designed to be injected directly.

【0029】また、シリンダヘッド5には図示しない吸
気ポートおよび排気ポートを形成してあり、これらのポ
ートにはそれぞれ吸気バルブおよび排気バルブを取り付
けてある。そして、吸気ポートから燃焼室1に流入する
空気に旋回流であるスワールを形成するために、吸気ポ
ートには例えばヘリカルタイプのポートを採用してあ
る。
An intake port and an exhaust port (not shown) are formed in the cylinder head 5, and an intake valve and an exhaust valve are attached to these ports, respectively. In order to form a swirl as a swirling flow in the air flowing into the combustion chamber 1 from the intake port, for example, a helical type port is adopted as the intake port.

【0030】圧縮行程中に燃焼室1の窪み10で空気の
乱流が起こるとともに噴射ノズルの噴孔12から窪み1
0に向けて燃料が噴射されることにより、窪み10内で
空気と燃料である例えば軽油とが適度に混合されて混合
気となる。そしてディーゼルエンジンは圧縮着火式内燃
機関であるから混合気は自己着火し、燃料が爆発・燃焼
してディーゼルエンジンが爆発燃焼行程に移行する。
During the compression stroke, turbulence of air occurs in the depression 10 of the combustion chamber 1 and the depression 1
By injecting the fuel toward zero, the air and the fuel, for example, light oil, are appropriately mixed in the depression 10 to form an air-fuel mixture. Since the diesel engine is a compression ignition type internal combustion engine, the air-fuel mixture self-ignites, the fuel explodes and burns, and the diesel engine shifts to an explosion combustion process.

【0031】次に窪み10について図1および図2を参
照して説明する。なお、図2は図1の一部を拡大して示
す図である。
Next, the depression 10 will be described with reference to FIGS. FIG. 2 is an enlarged view of a part of FIG.

【0032】窪み10の開口14の径D2は、窪み10
の最大径D1に比べて小さくされた狭窄形状をしてい
る。また窪み10の底部16は、ピストン中心線L周り
で連続しかつピストン3の外方へ突出する凸曲面(燃焼
室内壁面)18aからなる、底部周囲溝18を有する。
また、底部16の中央には山形の凸部20を有する。ま
た図2において符合22で示すものは、噴射ノズルの噴
孔12から噴射されて底部周囲溝18の前記凸曲面18
aに向かう噴射燃料の仮想中心線であり、仮想中心線2
2がシリンダヘッド下面6となす角度θ2に基づいて、
前記仮想中心線22の前記凸曲面18aとの交点24と
ピストンヘッド頂面9との間の距離L1に対する燃焼室
深さH1の比率L1/H1を求めることで前記窪み10
の形状を特定する。
The diameter D2 of the opening 14 of the depression 10 is
Is smaller than the maximum diameter D1. Further, the bottom 16 of the depression 10 has a bottom peripheral groove 18 formed of a convex curved surface (a wall surface of the combustion chamber) 18 a that is continuous around the piston center line L and protrudes outward from the piston 3.
The bottom 16 has a mountain-shaped convex portion 20 at the center. In FIG. 2, what is indicated by reference numeral 22 is the jetted surface 12 of the injection nozzle 12 and the convex surface 18 of the bottom peripheral groove 18.
a virtual center line of the injected fuel toward
2 based on the angle θ2 formed by the cylinder head lower surface 6,
The ratio L1 / H1 of the depth H1 of the combustion chamber to the distance L1 between the intersection 24 of the virtual center line 22 and the convex curved surface 18a and the top surface 9 of the piston head determines the ratio L1 / H1.
Specify the shape of

【0033】詳述すると、前記比率は、特定の算式を用
いて求めるようになっており、具体的には次の二次方程
式で求める。
More specifically, the ratio is determined by using a specific formula, and specifically, is determined by the following quadratic equation.

【0034】 y=−0.0073x2+0.184x−0.76・・・(1) ここで、y:比率L1/H1 x:角度θ2 噴射燃料の仮想中心線22がシリンダヘッド下面6とな
す角度θ2は、同一のディーゼルエンジンであれば一定
である。これは圧縮着火式内燃機関であるディーゼルエ
ンジンにおいては圧縮行程において圧力が規定の圧力に
達した時点で燃料噴射されるからである。よって異種類
のディーゼルエンジンごとに角度θ2は定まる。
Y = −0.0073x 2 + 0.184x−0.76 (1) Here, y: ratio L1 / H1 x: angle θ2 The virtual center line 22 of the injected fuel forms the lower surface 6 of the cylinder head. The angle θ2 is constant for the same diesel engine. This is because, in a diesel engine which is a compression ignition type internal combustion engine, fuel is injected when the pressure reaches a specified pressure in a compression stroke. Therefore, the angle θ2 is determined for each type of diesel engine.

【0035】前記の通り、噴射燃料の仮想中心線22が
シリンダヘッド下面6となす角度θ2は一定であるか
ら、この角度θ2が求まれば仮想中心線22の燃焼室壁
面との交点24とピストンヘッド頂面9との間の距離L
1に対する燃焼室深さH1の比率L1/H1を一元的に
求めることができる手段として、例えば、縦軸に当該比
率L1/H1をとり、横軸に角度θ2をとってなる図3
に示すような二次元マップMを用意しておき、角度θ2
が求まったらこの二次元マップMから比率L1/H1を
求める。例えばθ2が15degの時の比率L1/H1
はおよそ0.36となる。
As described above, since the angle θ2 formed by the virtual center line 22 of the injected fuel and the cylinder head lower surface 6 is constant, if this angle θ2 is determined, the intersection 24 of the virtual center line 22 with the combustion chamber wall surface and the piston Distance L between head top surface 9
As means for unifying the ratio L1 / H1 of the combustion chamber depth H1 to 1 as one unit, for example, the ratio L1 / H1 is plotted on the vertical axis and the angle θ2 is plotted on the horizontal axis in FIG.
A two-dimensional map M as shown in FIG.
Is determined, the ratio L1 / H1 is determined from the two-dimensional map M. For example, the ratio L1 / H1 when θ2 is 15 deg
Is about 0.36.

【0036】比率L1/H1が求められると、燃焼室壁
面との交点24とピストンヘッド頂面9との間の距離L
1と燃焼室深さH1を決め易くなる。なぜならば比率L
1/H1の関係になるようにL1とH1の寸法を求めれ
ばよいからである。
When the ratio L1 / H1 is determined, the distance L between the intersection point 24 with the combustion chamber wall surface and the piston head top surface 9 is determined.
1 and the combustion chamber depth H1 can be easily determined. Because the ratio L
This is because the dimensions of L1 and H1 may be determined so as to satisfy the relationship of 1 / H1.

【0037】また、角度θ2を求めるには、噴射ノズル
の噴孔12から仮想中心線22の燃焼室壁面との交点2
4までの距離である噴射燃料の飛距離L3を求める。
In order to determine the angle θ2, the intersection point 2 between the injection hole 12 of the injection nozzle and the virtual center line 22 and the combustion chamber wall surface is determined.
A flying distance L3 of the injected fuel, which is a distance up to 4, is obtained.

【0038】この距離L3は、行程容積(排気量)や圧
縮比をどれ位にするかによって燃焼室容積を定め、さら
に燃料の最大噴射圧力をどれ位にし、またどれ位の期間
で吹き終わるかを決めて噴射ノズルの噴孔径(図示せ
ず)が決まることで得られる値である。
The distance L3 determines the volume of the combustion chamber depending on the stroke volume (displacement amount) and the compression ratio, and determines the maximum injection pressure of the fuel and the duration of the fuel injection. Is determined, and the injection hole diameter (not shown) of the injection nozzle is determined.

【0039】飛距離L3が決まったら噴射ノズルの噴孔
12から仮想中心線22の燃焼室壁面との交点24まで
の距離寸法が前記L3になる箇所を求め、当該箇所を前
記交点24とする。当該交点24が求まればこの交点2
4と前記ピストンヘッド頂面9との間の距離L1と角度
θ2とが自ずと決まる。
When the flight distance L3 is determined, a point where the distance dimension from the injection hole 12 of the injection nozzle to the intersection 24 of the virtual center line 22 with the wall surface of the combustion chamber becomes L3 is determined. If this intersection 24 is found, this intersection 2
The distance L1 between the piston head 4 and the piston head top surface 9 and the angle θ2 are naturally determined.

【0040】そして、角度θ2が決まれば前記二次元マ
ップより前記比率L1/H1が決まる。飛距離L1はす
でに求まっているので、比率L1/H1と、距離L1と
から、燃焼室深さH1が求められる。
When the angle θ2 is determined, the ratio L1 / H1 is determined from the two-dimensional map. Since the flight distance L1 has already been determined, the combustion chamber depth H1 is determined from the ratio L1 / H1 and the distance L1.

【0041】よって、噴射ノズルの噴孔12から噴射さ
れて前記窪み10に向かう噴射燃料の仮想中心線22が
前記燃焼室壁面と交叉する交点24と、前記ピストンヘ
ッド頂面9との間の距離L1、および燃焼室深さH1の
寸法を決めることが容易となるので、理想とする燃焼室
形状の特定を容易に決定することができる。また前記比
率L1/H1は、前記算式(1)を用いることで精密に
求めることができる。
Accordingly, the distance between the intersection point 24 where the virtual center line 22 of the injected fuel which is injected from the injection hole 12 of the injection nozzle toward the depression 10 crosses the combustion chamber wall surface and the piston head top surface 9. Since it is easy to determine the dimensions of L1 and the depth H1 of the combustion chamber, it is possible to easily determine the ideal shape of the combustion chamber. Further, the ratio L1 / H1 can be accurately obtained by using the above formula (1).

【0042】これまでの技術では、角度θ2に対して前
記距離L1と燃焼室深さH1とがどういう関係になるの
かということは考慮の対象になく、ある燃焼室を作って
その中で角度θ2をいくらにするかということを経験か
ら見い出していたが、この経験を数値化するための手段
として今回この算式を確立した。当該算式は実験によっ
て求められたものであり、ディーゼルエンジンの性能を
最大限に引き出すことが可能になるように設定してあ
る。この数式上の関係を守って距離L1や燃焼室深さH
1等を決められれば、どんなシリンダサイズ(ボアサイ
ズ)であろうと遜色ない燃焼室を形成することができ
る。
In the prior art, the relationship between the distance L1 and the depth H1 of the combustion chamber with respect to the angle θ2 is not considered, and a certain combustion chamber is formed and the angle θ2 is set in the combustion chamber. I had found from my experience how much to use, but I have now established this formula as a means to quantify this experience. The formula has been obtained by experiments, and is set so as to maximize the performance of the diesel engine. By observing the relationship in this formula, the distance L1 and the combustion chamber depth H
If 1 or the like is determined, a combustion chamber comparable to any cylinder size (bore size) can be formed.

【0043】以上述べたものが本発明ディーゼルエンジ
ンの燃焼室形成方法である。
What has been described above is the method for forming a combustion chamber of a diesel engine according to the present invention.

【0044】そして当該ディーゼルエンジンの燃焼室形
成方法を用いて形成した燃焼室が本発明に係るディーゼ
ルエンジンの燃焼室1である。
The combustion chamber formed by the method for forming a combustion chamber of a diesel engine is the combustion chamber 1 of the diesel engine according to the present invention.

【0045】このような燃焼室1を適用した内燃機関に
よれば、図4に示すような機関軸トルクを得られる。
According to the internal combustion engine using such a combustion chamber 1, an engine shaft torque as shown in FIG. 4 can be obtained.

【0046】図4は縦軸に機関軸トルクをとり、横軸に
機関回転数をとってなる機関軸トルク−機関回転数線図
である。また、図中符合L1/H1大,L1/H1適お
よびL1/H1小が意味するものは、それぞれ比率L1
/H1が大きい場合のグラフ,本実施形態の燃焼室1を
適用した場合の比率L1/H1に基づくグラフおよび比
率L1/H1が小さい場合のグラフである。
FIG. 4 is an engine shaft torque-engine speed diagram in which the vertical axis indicates engine shaft torque and the horizontal axis indicates engine speed. In the figure, the symbols L1 / H1 large, L1 / H1 suitable and L1 / H1 small mean the ratio L1 respectively.
3 is a graph when / H1 is large, a graph based on the ratio L1 / H1 when the combustion chamber 1 of the present embodiment is applied, and a graph when the ratio L1 / H1 is small.

【0047】図4の機関軸トルク−機関回転数線図から
次のことがわかる。
The following can be understood from the engine shaft torque-engine speed diagram of FIG.

【0048】比率L1/H1大のグラフでは機関回転数
が低い場合は、機関軸トルクが他のグラフに比べて高い
けれども機関回転数が高くなるとある機関回転数を境に
他のグラフよりも機関軸トルクが低下してしまうことが
わかる。反対に、比率L1/H1小のグラフでは機関回
転数が高い場合は、機関軸トルクが比率L1/H1大の
グラフに比べて高いけれども機関回転数が低い場合はあ
る機関回転数を境に他の2つのグラフよりも機関軸トル
クが低下してしまうことがわかる。
In the graph having a large ratio L1 / H1, when the engine speed is low, the engine shaft torque is higher than the other graphs, but the engine speed is higher than the other graphs when the engine speed is higher. It can be seen that the shaft torque decreases. Conversely, in the graph with the ratio L1 / H1 small, when the engine speed is high, the engine shaft torque is higher than that in the graph with the ratio L1 / H1 large, but when the engine speed is low, the other engine speeds are taken as boundaries. It can be seen that the engine shaft torque is lower than the two graphs.

【0049】これに対して本実施形態に係る比率L1/
H1適のグラフは、機関回転数が高めの場合、ある機関
回転数を境にして比率L1/H1大および比率L1/H
1小の場合よりも機関軸トルクが向上していることがわ
かる。また、機関回転数が低めの場合でも比率L1/H
1小に比べて機関軸トルクが高い状態にあることがわか
る。よって、本実施形態に係る燃焼室1を適用したディ
ーゼルエンジンによればその機関性能を最大限引き出す
ことができるものといえる。
On the other hand, the ratio L1 /
The graph suitable for H1 shows that when the engine speed is high, the ratio L1 / H1 is large and the ratio L1 / H starts at a certain engine speed.
It can be seen that the engine shaft torque is improved as compared with the case of one small. Even when the engine speed is low, the ratio L1 / H
It can be seen that the engine shaft torque is higher than one. Therefore, according to the diesel engine to which the combustion chamber 1 according to the present embodiment is applied, it can be said that the engine performance can be maximized.

【0050】本実施形態に係る燃焼室1ではさらに次の
特徴がある。図5〜図8を参照して説明する。
The combustion chamber 1 according to this embodiment has the following features. This will be described with reference to FIGS.

【0051】図5は燃焼室1の要部拡大図である。FIG. 5 is an enlarged view of a main part of the combustion chamber 1.

【0052】図6は上下に二分されたグラフを組み合わ
せてなるもので、上半分のグラフの縦軸に噴射ノズルの
噴孔12から仮想中心線22の燃焼室壁面との交点24
までの距離L3をとり、下半分のグラフの縦軸に仮想中
心線22が、交点24における接線26となす特定角度
θiをとり、両グラフの横軸にはともにクランク角をと
ってなる線図である。
FIG. 6 is a combination of upper and lower divided graphs. The vertical axis of the upper half graph shows the point of intersection 24 between the injection hole 12 of the injection nozzle and the virtual center line 22 with the wall surface of the combustion chamber.
, The vertical axis of the lower half of the graph represents a specific angle θi that forms the imaginary center line 22 with the tangent 26 at the intersection 24, and the horizontal axis of both graphs represents the crank angle. It is.

【0053】なお、図6上半分のグラフ中、破線で示す
グラフが本実施形態の燃焼室1を適用したディーゼルエ
ンジンの場合であり、実線で示すグラフは従来のディー
ゼルエンジンの場合を示す。また、縦軸の長・短の文字
は飛距離L3が長いことおよび短いことを意味する。
In the upper half of FIG. 6, the graph shown by the broken line is the case of the diesel engine to which the combustion chamber 1 of this embodiment is applied, and the graph shown by the solid line is the case of the conventional diesel engine. In addition, characters on the vertical axis that are long and short mean that the flight distance L3 is long and short.

【0054】図6下半分のグラフ中、符合Bで示す上下
に延びる線はクランク角の増減の境を示す境界線であ
る。
In the lower half of the graph of FIG. 6, a line extending up and down as indicated by reference numeral B is a boundary line indicating a boundary between increase and decrease of the crank angle.

【0055】図7は縦軸に機関軸トルクをとり、横軸に
機関回転数をとってなる機関軸トルク−機関回転数線図
である。また、図7中、符合θi小,θi大および発明
の文字を伴って示す各矢印が示すグラフは機関軸トルク
の変化を示すグラフであり、θi小のグラフはθiが小
さい場合を、θi大のグラフはθiが大きい場合を、お
よび発明のグラフは本実施形態の燃焼室1をディーゼル
エンジンに適用した場合をそれぞれ示す。
FIG. 7 is an engine shaft torque-engine speed diagram in which the vertical axis indicates engine shaft torque and the horizontal axis indicates engine speed. Also, in FIG. 7, the graphs indicated by the arrows accompanied by the signs θi small and θi large and the characters of the invention are graphs showing changes in the engine shaft torque, and the graphs with small θi indicate the case where θi is small and large θi. The graph shows the case where θi is large, and the graph of the invention shows the case where the combustion chamber 1 of the present embodiment is applied to a diesel engine.

【0056】また図8は、縦軸にHC排出量をとり、横
軸にθiをとってなる炭化水素排出量(HC排出量)−
θi線図である。
FIG. 8 is a graph showing a hydrocarbon emission amount (HC emission amount) obtained by plotting HC emission amount on the vertical axis and θi on the horizontal axis.
It is a θi diagram.

【0057】窪み10における底部周囲溝18の凸曲面
18aは、仮想中心線22が前記交点24における接線
26となす特定の角度θiを有し、この特定角度θiは
ピストン3の動きに応じて可変し、ピストン3が機関上
死点にある時を起点として一旦減少後増加するようにし
てある(図6参照)。
The convex curved surface 18 a of the bottom peripheral groove 18 in the depression 10 has a specific angle θi between the imaginary center line 22 and the tangent 26 at the intersection 24, and the specific angle θi is variable according to the movement of the piston 3. When the piston 3 is at the top dead center of the engine, it starts decreasing and then increases (see FIG. 6).

【0058】前記特定角度θiの最小角を概ね28〜3
6°とすることで、良好な混合気ができるとともに噴射
燃料が燃焼室の壁面に付着する範囲の拡大を抑制でき
る。よって炭化水素HCの排出量が減少する(図8参
照)。ただし特定角度θiの最小角が28°よりも小さ
いと急激にHCが増加するので最低でも28°は確保す
ることが望ましい。
The minimum angle of the specific angle θi is approximately 28 to 3
By setting the angle to 6 °, a favorable mixture can be obtained, and the expansion of the range in which the injected fuel adheres to the wall surface of the combustion chamber can be suppressed. Therefore, the amount of hydrocarbon HC emission decreases (see FIG. 8). However, if the minimum angle of the specific angle θi is smaller than 28 °, HC rapidly increases, so it is desirable to secure at least 28 °.

【0059】また当該最小角に至るまでの変化量を5°
前後、すなわち、4〜6°にすることで、噴射燃料の飛
距離L3の急激な変化を抑制できる(図6参照)。噴射
燃料の飛距離L3の急激な変化を抑制できれば、混合気
の拡散性の向上につながるので好ましい。
The change amount up to the minimum angle is 5 °.
By setting the front and rear directions, that is, 4 to 6 degrees, it is possible to suppress a rapid change in the flight distance L3 of the injected fuel (see FIG. 6). If it is possible to suppress a rapid change in the flight distance L3 of the injected fuel, it is preferable since the diffusion of the air-fuel mixture is improved.

【0060】このような設定にすることで、噴射燃料が
窪み10の内壁面である凸曲面18aにあたってそれが
反射しても窪み10内の一定箇所に溜まってしまうこと
がない。
With such a setting, even if the injected fuel strikes the convex curved surface 18a, which is the inner wall surface of the depression 10, and is reflected, it does not accumulate at a certain location in the depression 10.

【0061】このような効果を得るにあたり、前記特定
角度θiをピストン3の動きに応じて可変するように
し、ピストン3が機関上死点にある時を起点としてそこ
から一旦減少後増加することが機関軸トルクを向上させ
る上で効果的であることを本願発明者が実験によって見
出した。すなわち特定角度θiを減少および増加するこ
とは、窪み内壁面に噴射燃料が衝突してある特定の反射
角(図示せず)をもって拡散することになるので、当該
反射角が変化すれば噴射燃料の窪み内表面における拡散
性が向上する。
In order to obtain such an effect, the specific angle θi is made variable in accordance with the movement of the piston 3, and when the piston 3 is at the top dead center of the engine, the specific angle θi once decreases and then increases. The present inventor has found through experiments that the present invention is effective in improving the engine shaft torque. That is, decreasing and increasing the specific angle θi implies that the injected fuel collides with the inner wall surface of the depression and diffuses with a specific reflection angle (not shown). The diffusivity on the inner surface of the depression is improved.

【0062】その結果、混合気の拡散性の向上につなが
るので機関軸トルクを高めることができる(図7参
照)。すなわち図7の発明に係るグラフでは、機関回転
数の大小に拘わらず他のθ大やθ小のグラフに比して安
定的な機関軸トルクが得られるものといえる。よって、
本実施形態に係る燃焼室1を適用したディーゼルエンジ
ンによれば、その機関性能を最大限引き出すことができ
るものといえる。
As a result, the diffusion of the air-fuel mixture is improved, so that the engine shaft torque can be increased (see FIG. 7). In other words, in the graph according to the invention of FIG. 7, it can be said that a stable engine shaft torque can be obtained irrespective of the magnitude of the engine speed, as compared to other large θ and small θ graphs. Therefore,
According to the diesel engine to which the combustion chamber 1 according to the present embodiment is applied, it can be said that the engine performance can be maximized.

【0063】なお、図7においてグラフの頂を境に左側
半分ではθi大とθi小のグラフが重なった状態にあ
る。
In FIG. 7, in the left half with respect to the top of the graph, the large θi and small θi graphs overlap each other.

【0064】本実施形態に係る燃焼室1ではさらに次の
特徴がある。図9および図10を参照して説明する。
The combustion chamber 1 according to the present embodiment further has the following features. This will be described with reference to FIGS.

【0065】図9に示すように、窪み10を横断面で見
た場合、前記底部周囲溝18の凸曲面18aは曲率半径
の異なる2つの連続した曲線部を有し、曲率半径の大き
な部位(すなわち曲率半径がRb2である部位)および
小さな部位(すなわち曲率半径がRb1である部位)は
それぞれ前記ピストン中心線Lから近い箇所および離れ
た箇所に位置するようにしてある。前記曲率半径の大き
な部位および小さな部位の比率は、1.15:1であ
る。
As shown in FIG. 9, when the depression 10 is viewed in a cross section, the convex curved surface 18a of the bottom peripheral groove 18 has two continuous curved portions having different radii of curvature, and a portion having a large radius of curvature ( That is, the portion having a curvature radius of Rb2 and the small portion (that is, a portion having a curvature radius of Rb1) are located at positions near and away from the piston center line L, respectively. The ratio between the portion having a large radius of curvature and the portion having a small radius of curvature is 1.15: 1.

【0066】このようにすることで前記窪み10の内で
混合気の流れる経路が緩やかに傾斜するようになる。す
なわち、前記窪み10の底部周囲溝18の凸曲面18a
のうち曲率半径の小さな部位がピストン中心線から近い
箇所にあり、大きな部位が遠くにあると前記小さな部位
での空気密度が高まって混合気が廻らない。しかし本実
施形態の燃焼室1ではピストン中心線Lから近い箇所に
曲率半径の大きな部位(すなわち曲率半径がRb2であ
る部位)をおき曲率半径の小さな部位(すなわち曲率半
径がRb1である部位)をピストン中心線Lから遠い箇
所においたので、混合気が燃焼室の隅々にまで行き渡る
ようになる。このため機関性能が向上する(図10参
照)。
By doing so, the flow path of the air-fuel mixture in the depression 10 is gently inclined. That is, the convex curved surface 18a of the bottom peripheral groove 18 of the depression 10
Of these, if a portion having a small radius of curvature is located near the center line of the piston, and if a large portion is located far away, the air density at the small portion increases and the air-fuel mixture does not turn. However, in the combustion chamber 1 of the present embodiment, a portion having a large radius of curvature (that is, a portion having a radius of curvature Rb2) is provided at a location near the piston center line L, and a portion having a small radius of curvature (ie, a portion having a radius of curvature Rb1) is provided. Since the air-fuel mixture is located far from the piston center line L, the air-fuel mixture spreads to every corner of the combustion chamber. Therefore, engine performance is improved (see FIG. 10).

【0067】図10は縦軸に機関軸トルクをとり、横軸
に機関回転数をとってなる機関軸トルク−機関回転数線
図である。また、破線グラフが本実施形態に係る燃焼室
1を適用したディーゼルエンジンであり実線グラフが比
較例として示す従来のディーゼルエンジンである。この
図から明らかなように本発明の適用されたディーゼルエ
ンジンの方が機関軸トルクが良好になっていることがわ
かる。
FIG. 10 is an engine shaft torque-engine speed diagram showing the engine shaft torque on the vertical axis and the engine speed on the horizontal axis. A broken line graph is a diesel engine to which the combustion chamber 1 according to the present embodiment is applied, and a solid line graph is a conventional diesel engine shown as a comparative example. As is apparent from this figure, the engine shaft torque is better in the diesel engine to which the present invention is applied.

【0068】また、前記曲率半径の大きな部位および小
さな部位の比率が、1.15:1であるときが、燃焼室
1内での混合気の流れがスムーズであることが本発明者
の実験によって判明している。
When the ratio of the portion having a large radius of curvature to the portion having a small radius of curvature is 1.15: 1, it has been confirmed by the present inventor that the flow of the air-fuel mixture in the combustion chamber 1 is smooth. It is known.

【0069】[0069]

【発明の効果】本発明では、理想とする燃焼室形状の特
定を容易に決定できるとともに機関軸トルクの向上を期
待できる。またHCの排出量を抑制できる。
According to the present invention, the specification of the ideal combustion chamber shape can be easily determined, and the improvement of the engine shaft torque can be expected. Further, the amount of HC emission can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るディーゼルエンジンの燃焼室を適
用した内燃機関の要部断面図
FIG. 1 is a sectional view of a main part of an internal combustion engine to which a combustion chamber of a diesel engine according to the present invention is applied.

【図2】図1の一部拡大断面図であって、本発明の特徴
の一つを説明する図
FIG. 2 is a partially enlarged sectional view of FIG. 1, illustrating one of the features of the present invention.

【図3】縦軸に比率L1/H1をとり、横軸に角度θ2
をとってなる図3に示すような二次元マップ
FIG. 3 shows the ratio L1 / H1 on the vertical axis and the angle θ2 on the horizontal axis.
2D map as shown in Fig. 3

【図4】本発明の効果を説明するための機関軸トルク−
機関回転数線図
FIG. 4 shows an engine shaft torque for explaining the effect of the present invention.
Engine speed diagram

【図5】図2に相当し、本発明の別の特徴の一つを説明
する図
FIG. 5 corresponds to FIG. 2 and illustrates one of the other features of the present invention.

【図6】上下に二分されたグラフを組み合わせてなるも
ので、上半分のグラフの縦軸に噴射ノズルの噴孔から仮
想中心線の燃焼室壁面との交点までの距離L3をとり、
下半分のグラフの縦軸に仮想中心線が、交点における接
線となす特定角度θiをとり、両グラフの横軸にはとも
にクランク角をとってなる線図
FIG. 6 is a combination of upper and lower divided graphs, and the vertical axis of the upper half graph is the distance L3 from the injection hole of the injection nozzle to the intersection of the virtual center line with the combustion chamber wall surface;
The vertical axis of the lower half graph is a specific angle θi at which the virtual center line is a tangent at the intersection, and the horizontal axis of both graphs is the crank angle.

【図7】本発明の効果を説明するための機関軸トルク−
機関回転数線図
FIG. 7 shows an engine shaft torque for explaining the effect of the present invention.
Engine speed diagram

【図8】HC排出量−θi線図FIG. 8 is a diagram showing HC emissions-θi diagram.

【図9】図2に相当し、本発明のさらに別の特徴の一つ
を説明する図
FIG. 9 is a diagram corresponding to FIG. 2 and illustrating one of further features of the present invention.

【図10】本発明の効果を説明するための機関軸トルク
−機関回転数線図
FIG. 10 is an engine shaft torque-engine speed diagram for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 燃焼室 3 ピストン 5 シリンダヘッド 6 シリンダヘッド下面 8 ピストンヘッド 9 ピストンヘッドの頂面 10 ピストンヘッドに形成した窪み 12 噴射ノズルの噴孔 14 窪みの開口 16 窪みの底部 18 底部周囲溝 18a 凸曲面(燃焼室内壁面) 20 山形の凸部 22 噴射燃料の仮想中心線 θ2 仮想中心線がシリンダヘッド下面とな
す角度 24 仮想中心線が燃焼室壁面と交叉する交
点 26 交点における接線 B クランク角の増減の境を示す境界線 D1 窪みの最大径 D2 開口径 L ピストン中心線 L1 交点とピストンヘッド頂面との間の距
離 L3 噴射ノズルの噴孔から仮想中心線の燃
焼室壁面との交点までの距離 H1 燃焼室深さ Rb2 大きい方の曲率半径 Rb1 小さい方の曲率半径 θi 仮想中心線が交点における接線となす
特定角度
DESCRIPTION OF SYMBOLS 1 Combustion chamber 3 Piston 5 Cylinder head 6 Cylinder head lower surface 8 Piston head 9 Piston head top surface 10 Depression formed in piston head 12 Injection hole of injection nozzle 14 Depression opening 16 Depression bottom 18 Bottom peripheral groove 18a Convex surface ( 20 Wall shape of combustion chamber 20 Convex portion of chevron 22 Virtual center line of injected fuel θ2 Angle between virtual center line and lower surface of cylinder head 24 Intersection point where virtual center line intersects with combustion chamber wall surface 26 Tangent line at intersection B Boundary of increase / decrease in crank angle D1 Maximum diameter of the depression D2 Opening diameter L Piston center line L1 Distance between the intersection and the top surface of the piston head L3 Distance from the injection hole of the injection nozzle to the intersection of the virtual center line with the combustion chamber wall surface H1 Combustion Room depth Rb2 Larger radius of curvature Rb1 Smaller radius of curvature θi The virtual center line is tangent to the tangent at the intersection. Be specific angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 醍醐 将直 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 3G023 AA02 AA07 AA19 AB05 AC04 AD02 AD08 AD09 AD14 AD29 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masanao Daigo 2-1-1 Toyota-cho, Kariya-shi, Aichi F-term in Toyota Industries Corporation (reference) 3G023 AA02 AA07 AA19 AB05 AC04 AD02 AD08 AD09 AD14 AD29

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ピストンが上死点に向かう圧縮行程の終
わりにシリンダヘッドの下面とピストンヘッドに形成し
た窪みとによって形成される燃焼室に噴射ノズルから燃
料を直接噴射し、 前記窪みの壁面がピストン中心線周りで連続しかつピス
トン外方へ突出する凸曲面に形成されたディーゼルエン
ジンにおいて、 前記噴射ノズルの噴孔から噴射されて前記凸曲面に向か
う噴射燃料の仮想中心線が前記シリンダヘッド下面とな
す角度(θ2)に基づいて、前記仮想中心線の前記燃焼
室壁面との交点および前記ピストンヘッド頂面間の距離
L1に対する燃焼室深さ(H1)の比率を求めることで
前記窪みの形状を特定することを特徴とするディーゼル
エンジンの燃焼室形成方法。
At the end of a compression stroke in which a piston goes to a top dead center, fuel is directly injected from an injection nozzle into a combustion chamber formed by a lower surface of a cylinder head and a depression formed in the piston head, and the wall surface of the depression is In a diesel engine formed on a convex curved surface that is continuous around a piston center line and protrudes outward from the piston, an imaginary center line of injected fuel that is injected from an injection hole of the injection nozzle toward the convex curved surface is a lower surface of the cylinder head. By calculating the ratio of the depth of the combustion chamber (H1) to the distance L1 between the intersection of the virtual center line with the wall surface of the combustion chamber and the top surface of the piston head based on the angle (θ2) And a method for forming a combustion chamber of a diesel engine.
【請求項2】 前記比率は、特定の算式を用いて求める
ことを特徴とする請求項1記載のディーゼルエンジンの
燃焼室形成方法。
2. The method according to claim 1, wherein the ratio is determined using a specific formula.
【請求項3】 前記算式は次の二次方程式であることを
特徴とする請求項2記載のディーゼルエンジンの燃焼室
形成方法。 y=−0.0073x2+0.184x−0.76 ここで、y:比率L1/H1 x:角度θ2
3. The method according to claim 2, wherein the equation is a quadratic equation: y = −0.0073x 2 + 0.184x−0.76 where y: ratio L1 / H1 x: angle θ2
【請求項4】請求項1から3いずれか記載のディーゼル
エンジンの燃焼室形成方法を用いて形成したディーゼル
エンジンの燃焼室。
4. A diesel engine combustion chamber formed by using the diesel engine combustion chamber forming method according to claim 1.
【請求項5】 前記窪みの凸曲面は、前記仮想中心線が
前記交点における接線となす特定の角度(θi)を有
し、 この特定角度(θi)は前記ピストンの動きに応じて可
変し、前記ピストンが機関上死点にある時を起点に一旦
減少後増加することを特徴とする請求項4記載のディー
ゼルエンジンの燃焼室。
5. The convex curved surface of the depression has a specific angle (θi) formed by the virtual center line and a tangent at the intersection, and the specific angle (θi) varies according to the movement of the piston. 5. The combustion chamber for a diesel engine according to claim 4, wherein the piston once increases and then increases when the piston is at a top dead center of the engine.
【請求項6】 前記特定角度(θi)の最小角は28°
〜36°であり、当該最小角に至るまでの変化量は5°
前後であることを特徴とする請求項5記載のディーゼル
エンジンの燃焼室。
6. A minimum angle of the specific angle (θi) is 28 °.
~ 36 °, and the amount of change up to the minimum angle is 5 °
The combustion chamber of a diesel engine according to claim 5, wherein the combustion chamber is located before and after.
【請求項7】 前記窪みを横断面で見た場合、前記凸曲
面は曲率半径の異なる2つの連続した曲線部を有し、曲
率半径の大きな部位および小さな部位はそれぞれ前記ピ
ストン中心線から近い箇所および離れた箇所に位置する
ことを特徴とする請求項4〜6いずれか記載のディーゼ
ルエンジンの燃焼室。
7. When the depression is viewed in a transverse cross section, the convex curved surface has two continuous curved portions having different radii of curvature, and a portion having a large radius of curvature and a portion having a small radius of curvature are respectively located near the center line of the piston. The combustion chamber of a diesel engine according to any one of claims 4 to 6, wherein the combustion chamber is located at a distant location.
【請求項8】 前記曲率半径の大きな部位および小さな
部位の比率は、1.15:1であることを特徴とする請
求項7記載のディーゼルエンジンの燃焼室。
8. The combustion chamber of a diesel engine according to claim 7, wherein the ratio between the portion having a large radius of curvature and the portion having a small radius of curvature is 1.15: 1.
JP2000289300A 2000-09-22 2000-09-22 Method of forming combustion chamber of diesel engine and combustion chamber of diesel engine formed by using the method Pending JP2002097961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000289300A JP2002097961A (en) 2000-09-22 2000-09-22 Method of forming combustion chamber of diesel engine and combustion chamber of diesel engine formed by using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000289300A JP2002097961A (en) 2000-09-22 2000-09-22 Method of forming combustion chamber of diesel engine and combustion chamber of diesel engine formed by using the method

Publications (1)

Publication Number Publication Date
JP2002097961A true JP2002097961A (en) 2002-04-05

Family

ID=18772728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000289300A Pending JP2002097961A (en) 2000-09-22 2000-09-22 Method of forming combustion chamber of diesel engine and combustion chamber of diesel engine formed by using the method

Country Status (1)

Country Link
JP (1) JP2002097961A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068354A (en) * 2007-09-11 2009-04-02 Kubota Corp Direct injection combustion chamber of engine
EP2063081A1 (en) * 2007-11-26 2009-05-27 Perkins Engines Company Limited Piston crown with double re-entrant piston bowl
JP2009150361A (en) * 2007-12-21 2009-07-09 Mitsubishi Motors Corp Piston for direct injection type diesel engine
JP2010121483A (en) * 2008-11-18 2010-06-03 Mazda Motor Corp Combustion chamber structure of diesel engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068354A (en) * 2007-09-11 2009-04-02 Kubota Corp Direct injection combustion chamber of engine
EP2063081A1 (en) * 2007-11-26 2009-05-27 Perkins Engines Company Limited Piston crown with double re-entrant piston bowl
WO2009068582A1 (en) * 2007-11-26 2009-06-04 Perkins Engines Company Limited Piston crown with double re-entrant piston bowl
JP2009150361A (en) * 2007-12-21 2009-07-09 Mitsubishi Motors Corp Piston for direct injection type diesel engine
JP2010121483A (en) * 2008-11-18 2010-06-03 Mazda Motor Corp Combustion chamber structure of diesel engine

Similar Documents

Publication Publication Date Title
US7104255B2 (en) Method and apparatus for controlling operation of internal combustion engine, and the internal combustion engine
US6732706B2 (en) Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
US5979399A (en) Internal combustion engine with spark ignition
US6047592A (en) Four-stroke internal combustion engine with spark ignition
US5727520A (en) Four-stroke internal combustion engine with spark ignition
JP2003269247A (en) Combustion chamber for spark ignition engine of reverse tumbling direct injection type
JPS591329B2 (en) internal combustion engine
JP3030415B2 (en) In-cylinder injection engine piston
US6286477B1 (en) Combustion chamber for direct-injected spark-ignited engines with swirl airflows
JP2002097961A (en) Method of forming combustion chamber of diesel engine and combustion chamber of diesel engine formed by using the method
KR20030017405A (en) In-cylinder injection type spark-ignitioninternal combustion engine
JPH11148355A (en) In-cylinder injection type spark ignition engine
JP2000248945A (en) Cylinder direct injection engine
JP2009047070A (en) Cylinder injection type spark ignition internal combustion engine
JP3781536B2 (en) Combustion chamber structure of in-cylinder injection engine
JP2000130171A (en) Direct injection spark ignition type internal combustion engine
JPH11200867A (en) Cylinder fuel injection engine
Pontoppidan et al. Study of the impact of variations in the diesel-nozzle geometry parameters on the layout of multiple injection strategy
JP2007170206A (en) Cylinder fuel injection type internal combustion engine
JPS6032929A (en) Combustion chamber of direct-injection type internal- combustion engine
JP2017061901A (en) piston
JP4075471B2 (en) In-cylinder direct injection internal combustion engine
JP3268341B2 (en) Secondary combustion chamber diesel engine
JPH09144543A (en) Direct injection spark ignition type internal combustion engine
JP2003214169A (en) Intake device of engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205