JP2002094012A - Esd protective element for soi integrated circuits - Google Patents

Esd protective element for soi integrated circuits

Info

Publication number
JP2002094012A
JP2002094012A JP2000285325A JP2000285325A JP2002094012A JP 2002094012 A JP2002094012 A JP 2002094012A JP 2000285325 A JP2000285325 A JP 2000285325A JP 2000285325 A JP2000285325 A JP 2000285325A JP 2002094012 A JP2002094012 A JP 2002094012A
Authority
JP
Japan
Prior art keywords
semiconductor region
polycrystalline silicon
region
conductivity type
protection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000285325A
Other languages
Japanese (ja)
Inventor
孝士 ▲高▼村
Takashi Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000285325A priority Critical patent/JP2002094012A/en
Publication of JP2002094012A publication Critical patent/JP2002094012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Thyristors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-leakage ESD protective element for SOI-integrated circuits of which is easy to control the withstanding voltage and which allows a high ESD resistance to be taken. SOLUTION: A protective element is shown which is constituted with a silicon single-crystal film on an insulation film, in order to allow an applied current exceeding a withstanding level to escape to a SOI integrated circuit.. On an optical transferring path of a signal from an input terminal (input pin) IN to an inner logic circuit ILGC via an input buffer, there is a transversal array of a p+ region 11 wired to a p+ polycrystalline silicon member 10, an n- region 12, a p- region 13 and an n+ region 14 connected to an n+ polycrystalline silicon member 15 coupled with a reference potential (ground potential GND). This array of the regions 11-14 forms a thyristor structure to be triggered by punch- through.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路の静電放
電(ESD:Electro Static Discharge)保護に適用さ
れ、特にSOI(Silicon On Insulator)技術により構
成される集積回路のSOI集積回路用ESD保護素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to electrostatic discharge (ESD) protection of electronic circuits, and more particularly to ESD protection for SOI integrated circuits of SOI (Silicon On Insulator) technology. Related to the element.

【0002】[0002]

【従来の技術】SOI(Silicon On Insulator)技術
は、絶縁体層が半導体基板内に埋め込まれ、集積回路の
活性領域下に広がっている構成をとる。素子の寄生容量
が低いため、バルクシリコン基板上へ作製した回路素子
よりも高速動作が期待できる。低電圧電源でも高速で動
作するため、低消費電力LSIの応用が注目されてい
る。そこで、帯電物からの高電圧が印加され集積回路に
致命的なダメージを与えるESD(Electro Static Dis
charge)に対しては十分な保護対策が必要である。
2. Description of the Related Art The SOI (Silicon On Insulator) technology has a configuration in which an insulator layer is embedded in a semiconductor substrate and extends below an active region of an integrated circuit. Since the parasitic capacitance of the element is low, higher-speed operation can be expected than a circuit element manufactured on a bulk silicon substrate. Since it operates at high speed even with a low voltage power supply, application of a low power consumption LSI is drawing attention. Thus, an ESD (Electro Static Discharge) that applies a high voltage from a charged object and causes fatal damage to an integrated circuit.
charge) requires adequate protection.

【0003】SOI技術に適用される従来のESD保護
回路として、例えば特開平10−294430に開示さ
れたものがある。これにはシリコン制御整流器(SC
R)を擬似的に利用した双安定疑似SCRスイッチによ
るESD保護用の回路が構成されている。
As a conventional ESD protection circuit applied to the SOI technology, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. H10-294430. This includes a silicon controlled rectifier (SC
A circuit for ESD protection is configured by a bistable pseudo SCR switch using the pseudo R.

【0004】上記開示技術では、NPNトランジスタ及
びPNPトランジスタの構成を備える。NPNトランジ
スタ及びPNPトランジスタはフィールド酸化膜領域及
び上層埋め込み酸化膜により互いに分離される独立した
活性領域内に形成される。さらに、この2個のNPNト
ランジスタ及びPNPトランジスタを相互接続する、別
の活性領域内で形成される任意の抵抗体を必要とする。
[0004] In the above disclosed technology, the configuration of the NPN transistor and the PNP transistor is provided. The NPN transistor and the PNP transistor are formed in independent active regions separated from each other by a field oxide region and an upper buried oxide film. In addition, it requires an optional resistor formed in another active region that interconnects the two NPN and PNP transistors.

【0005】[0005]

【発明が解決しようとする課題】SOI集積回路では、
寄生容量の低減により、低消費電力による高速動作が期
待されるが、基板浮遊効果による例えばドレイン破壊電
圧の低下などが問題となる。上述した開示技術では、低
い電圧で保護素子を動作させたいとき、耐圧の制御がし
にくく適正な保護素子とし難い。
SUMMARY OF THE INVENTION In an SOI integrated circuit,
High speed operation with low power consumption is expected due to the reduction in parasitic capacitance. However, a problem such as a reduction in drain breakdown voltage due to the substrate floating effect is a problem. In the above-described disclosed technology, when it is desired to operate the protection element at a low voltage, it is difficult to control the withstand voltage, and it is difficult to provide an appropriate protection element.

【0006】また、単なるPN接合のブレークダウン現
象を利用してESD保護回路を構成する場合、接合の耐
圧を考慮した濃度のP+ 、N+ 各々の領域を隣接させ
る。しかしこの構成では、特に低い電圧で保護素子を動
作させたいときにはトンネル電流によるリークが多く発
生するため、LSIの入力電流が不当に増えてしまう。
Further, when an ESD protection circuit is formed by simply utilizing the breakdown phenomenon of a PN junction, regions of P + and N + having a concentration in consideration of the breakdown voltage of the junction are made adjacent to each other. However, in this configuration, particularly when it is desired to operate the protection element at a low voltage, a large amount of leakage occurs due to a tunnel current, so that the input current of the LSI is unduly increased.

【0007】また、SOI集積回路では、バルクシリコ
ン基板と異なり、基板方向にはほとんど熱が逃げないた
め、熱集中による破壊が問題となる。これにより、ES
D耐量が確保し難い傾向にある。
Also, unlike a bulk silicon substrate, heat hardly escapes in the direction of the substrate in an SOI integrated circuit, so that a problem of destruction due to heat concentration occurs. With this, ES
D tends to be difficult to withstand.

【0008】本発明は、上記のような事情を考慮してな
されたもので、耐圧の制御がし易くESD耐量が大きく
とれる低リークのSOI集積回路用ESD保護素子を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a low-leakage ESD protection element for a SOI integrated circuit, which can easily control the withstand voltage and has a large ESD resistance. .

【0009】[0009]

【課題を解決するための手段】本発明に係るSOI集積
回路用ESD保護素子は、SOI集積回路への耐量を超
えた印加電流を逃がすため絶縁膜上のシリコン単結晶膜
に構成された保護素子であって、内部回路への任意の信
号の伝達経路途中に繋がり第1導電型の不純物が所定濃
度で導入された第1の多結晶シリコン部材と、前記第1
の多結晶シリコン部材と接続される前記シリコン単結晶
膜に形成された第1導電型の第1半導体領域と、前記シ
リコン単結晶膜に形成され前記第1半導体領域に隣接し
た前記第1導電型とは逆導電型の第2導電型の第2半導
体領域と、前記シリコン単結晶膜に形成され前記第2半
導体領域に隣接した第1導電型の第3半導体領域と、前
記シリコン単結晶膜に形成され前記第3半導体領域に隣
接した第2導電型の第4半導体領域と、前記第4半導体
領域に接続され、かつ所定の電位に繋がる第2導電型の
不純物が所定濃度で導入された第2の多結晶シリコン部
材とを具備したことを特徴とする。
SUMMARY OF THE INVENTION An ESD protection element for an SOI integrated circuit according to the present invention is a protection element formed of a silicon single crystal film on an insulating film in order to release a current applied to the SOI integrated circuit that exceeds a withstand voltage. A first polycrystalline silicon member connected to an arbitrary signal transmission path to an internal circuit and having a first conductivity type impurity introduced at a predetermined concentration;
A first conductive type first semiconductor region formed in the silicon single crystal film connected to the polycrystalline silicon member, and a first conductive type formed in the silicon single crystal film and adjacent to the first semiconductor region. A second semiconductor region of a second conductivity type of opposite conductivity type, a third semiconductor region of a first conductivity type formed in the silicon single crystal film and adjacent to the second semiconductor region, and a silicon single crystal film. A fourth semiconductor region of a second conductivity type formed and adjacent to the third semiconductor region; and a fourth semiconductor region connected to the fourth semiconductor region and having a predetermined concentration of a second conductivity type impurity connected to a predetermined potential. And 2 polycrystalline silicon members.

【0010】上記本発明に係るSOI集積回路用ESD
保護素子によれば、絶縁膜上に形成された第1半導体領
域から第4半導体領域の並びによってサイリスタ構造を
有する。このサイリスタ構造はパンチスルーによりトリ
ガがかかる構造を持つ。なお、上記第1半導体領域から
第4半導体領域の並びは少なくとも上記耐量を超える事
態にパンチスルーにより導通可能な寸法を有して形成さ
れていることを特徴とする。
The above-mentioned ESD for an SOI integrated circuit according to the present invention.
According to the protection element, a thyristor structure is provided by the arrangement of the first to fourth semiconductor regions formed on the insulating film. This thyristor structure has a structure in which a trigger is applied by punch-through. Note that the arrangement of the first semiconductor region to the fourth semiconductor region is formed so as to have a dimension that can be conducted by punch-through at least in a situation exceeding the withstand capacity.

【0011】また、サイリスタ構造実現のため、上記第
1半導体領域及び第4半導体領域は、上記第2半導体領
域及び第3半導体領域よりも高濃度の不純物が導入され
ていることを特徴とする。さらに、上記第1半導体領域
及び第4半導体領域は、それぞれ上記第1の多結晶シリ
コン部材及び第2の多結晶シリコン部材に含まれる不純
物の拡散によって形成されていることを特徴とする。
In order to realize a thyristor structure, the first semiconductor region and the fourth semiconductor region are characterized in that a higher concentration of impurities is introduced than the second semiconductor region and the third semiconductor region. Further, the first semiconductor region and the fourth semiconductor region are formed by diffusion of impurities contained in the first polycrystalline silicon member and the second polycrystalline silicon member, respectively.

【0012】[0012]

【発明の実施の形態】図1は、本発明の一実施形態に係
るSOI集積回路用ESD保護素子の要部構成を示す断
面図である。SOI集積回路への耐量を超えた印加電流
を別経路で逃がすため絶縁膜(SOI)上のシリコン単
結晶膜に構成された保護素子を示している。
FIG. 1 is a cross-sectional view showing a configuration of a main part of an ESD protection element for an SOI integrated circuit according to an embodiment of the present invention. FIG. 2 shows a protection element formed of a silicon single crystal film on an insulating film (SOI) in order to release an applied current exceeding a withstand amount to an SOI integrated circuit through another path.

【0013】この実施形態における保護素子は、例えば
入力端子(入力ピン)INから入力バッファを介する内
部ロジック回路ILGCへの任意の信号の伝達経路途中
に配線接続されるものであり、次のような構成を有す
る。
The protection element in this embodiment is connected in the middle of a transmission path of an arbitrary signal from an input terminal (input pin) IN to an internal logic circuit ILGC via an input buffer, for example. Having a configuration.

【0014】例えば上記信号の伝達経路に繋がる多結晶
シリコン部材10は、P型の不純物が高濃度(1020
1021cm-3)に導入されたP+ 型である。この多結晶
シリコン部材10は、上記シリコン単結晶膜に形成され
たP+ 型領域11に接続されている。上記シリコン単結
晶膜にはP+ 型領域11に隣接してN型不純物が低濃度
(1015〜1016cm-3)で導入されたN- 型領域12
が形成されている。さらに、上記シリコン単結晶膜に
は、N- 型領域12に隣接してP- 型領域13が形成さ
れている。このP- 型領域13は、P型不純物が低濃度
(1015〜1016cm-3)で導入されている。さらに並
ぶN+ 型領域14は、N型不純物が高濃度(1020〜1
21cm-3)で導入され、基準電位(ここでは接地電位
GND)に繋がる多結晶シリコン部材15に接続されて
いる。多結晶シリコン部材15はN型の不純物が高濃度
(1020〜1021cm-3)に導入されたN+ 型である。
For example, the polycrystalline silicon member 10 connected to the signal transmission path has a high concentration of P-type impurities (10 20 to 10 20 ).
P + type introduced at 10 21 cm -3 ). The polycrystalline silicon member 10 is connected to a P + type region 11 formed in the silicon single crystal film. In the silicon single crystal film, an N -type region 12 in which an N-type impurity is introduced at a low concentration (10 15 to 10 16 cm −3 ) is adjacent to the P + -type region 11.
Are formed. Further, a P type region 13 is formed adjacent to the N type region 12 in the silicon single crystal film. This P -type region 13 is doped with a P-type impurity at a low concentration (10 15 to 10 16 cm −3 ). Further arranged N + -type region 14, N-type impurity high concentration (10 20-1
0 21 cm -3 ) and is connected to a polycrystalline silicon member 15 that is connected to a reference potential (here, a ground potential GND). The polycrystalline silicon member 15 is an N + type in which N type impurities are introduced at a high concentration (10 20 to 10 21 cm −3 ).

【0015】上記実施形態の構成によれば、絶縁膜(S
OI)上に形成されたP+ 型領域11〜N+ 型領域14
の横方向の並びによってサイリスタ構造を有する。この
サイリスタ構造は、ブレークダウンではなくパンチスル
ーによりトリガがかかる構造を持つ。上記P+ 型領域1
1〜N+ 型領域14の横方向並びは、少なくともESD
の入力によって内部回路へ影響を与えるような耐量を超
える事態にパンチスルーにより導通可能な寸法を有して
形成されればよい。例えば、上記N- 型領域12及びP
- 型領域13を合わせた寸法は0.5μm程度にする。
According to the configuration of the above embodiment, the insulating film (S
OI) P + type regions 11 to N + type regions 14 formed on
Have a thyristor structure. This thyristor structure has a structure in which a trigger is applied by punch-through instead of breakdown. The above P + type region 1
The lateral arrangement of the 1-N + -type regions 14 is at least ESD
It may be formed to have a dimension that can be conducted by punch-through in a situation where the amount exceeding the tolerance that may affect the internal circuit due to the input of. For example, the N− type region 12 and P
- dimensions of the combined type region 13 is set to about 0.5 [mu] m.

【0016】上記構成によれば、ESDなどの過剰電圧
が印加されるような、パンチスルー発生の事態に至るま
ではジャンクションリークがほとんど発生しない。これ
により、低リークのESD保護素子が実現できる。
According to the above configuration, almost no junction leak occurs until a punch-through occurs, such as when an excessive voltage such as ESD is applied. Thereby, a low-leakage ESD protection element can be realized.

【0017】また、上記P+ 型領域11〜N+ 型領域1
4の横方向並びは、マスク寸法、ドーズ量を制御するこ
とでスナップオフ電圧を定められる。また、マスク形状
を変更することで保持電流を変更、調整することも可能
である。これにより、耐圧の制御がし易い。
Further, the P + type region 11 to the N + type region 1
In the horizontal arrangement of 4, the snap-off voltage is determined by controlling the mask size and the dose. Further, the holding current can be changed and adjusted by changing the mask shape. This makes it easy to control the breakdown voltage.

【0018】また、上記P+ 型領域11〜N+ 型領域1
4の横方向並びは、絶縁膜上に素子が構成され、接合容
量が不当に増えることはないため、低寄生容量で動作す
る。さらに、このようなサイリスタ構造では、デバイス
全体で電力を消費するため、ホットスポットが発生し難
く、ESD耐量が大きく取れる利点もある。
The above P + type region 11 to N + type region 1
In the lateral arrangement of 4, the elements are formed on the insulating film, and the junction capacitance does not increase unduly, so that the device operates with low parasitic capacitance. Further, such a thyristor structure consumes power in the entire device, so that there is an advantage that a hot spot is hardly generated and a large ESD resistance can be obtained.

【0019】また、多結晶シリコン部材(10,15)
は、融点が高く金属(金属配線)になじみ、熱を逃がし
やすい。すなわち、多結晶シリコン部材10,15これ
らそのものが放熱電極となるため温度上昇が抑えられ
る。従って、自己発熱による破壊に至り難いESD保護
素子が実現できる。
Also, polycrystalline silicon members (10, 15)
Has a high melting point and is compatible with metal (metal wiring), and is easy to release heat. That is, since the polycrystalline silicon members 10 and 15 themselves serve as heat radiation electrodes, a rise in temperature is suppressed. Therefore, an ESD protection element that is hardly damaged by self-heating can be realized.

【0020】さらに、上記P+ 型領域11〜N+ 型領域
14のサイリスタ構造及び多結晶シリコン部材10,1
5は、特に製造プロセス上特別なマスクを必要とせずに
形成できる利点がある。例えばCMOSプロセスを利用
して構成可能である。以下、説明する。
Further, the thyristor structure of the P + -type regions 11 to N + -type regions 14 and the polycrystalline silicon members 10, 1
5 has an advantage that it can be formed without requiring a special mask in the manufacturing process. For example, it can be configured using a CMOS process. This will be described below.

【0021】図2〜図4それぞれは、図1のようなES
D保護素子の形成方法を工程順に示す断面図である。図
2に示すように、絶縁膜(SOI)上のシリコン単結晶
膜において、PMOSチャネルドープ、NMOSチャネ
ルドープのプロセスと同時にN- 型領域12、P- 型領
域13を形成する。
FIGS. 2 to 4 each show the ES shown in FIG.
It is sectional drawing which shows the formation method of a D protection element in order of a process. As shown in FIG. 2, in the silicon single crystal film on the insulating film (SOI), an N type region 12 and a P type region 13 are formed simultaneously with the process of PMOS channel doping and NMOS channel doping.

【0022】次に、図3に示すように、ゲート酸化膜形
成工程を利用して所定領域に酸化膜マスク31を形成す
る。その後、ゲート電極形成工程における多結晶シリコ
ン32の堆積が行われる。
Next, as shown in FIG. 3, an oxide film mask 31 is formed in a predetermined region using a gate oxide film forming step. Thereafter, polycrystalline silicon 32 is deposited in a gate electrode forming step.

【0023】次に、図4に示すように、ゲート電極のパ
ターニング工程と同時に多結晶シリコン部材10,15
の形状を整える。その後、PMOS、NMOSのソース
/ドレインを形成する各イオン注入工程を利用して、多
結晶シリコン部材10,15を各々所定のP+ 型、N+
型にする。その後、アニール拡散を経ることによって多
結晶シリコン部材10の下にはP+ 型領域11が形成さ
れ、多結晶シリコン部材15の下にはN+ 型領域14が
形成される。このようなCMOSプロセスを経て図1の
ようなESD保護素子が形成できる。
Next, as shown in FIG. 4, simultaneously with the step of patterning the gate electrode, the polycrystalline silicon members 10 and 15 are formed.
Adjust the shape of. Thereafter, the polycrystalline silicon members 10 and 15 are respectively set to a predetermined P + type and N + by using respective ion implantation processes for forming the source / drain of the PMOS and NMOS.
Type. Thereafter, a P + type region 11 is formed below the polycrystalline silicon member 10 by annealing diffusion, and an N + type region 14 is formed below the polycrystalline silicon member 15. Through such a CMOS process, an ESD protection element as shown in FIG. 1 can be formed.

【0024】図5は、図1の変形例としてのSOI集積
回路用ESD保護素子の要部構成を示す断面図である。
図1の構成と導電型が逆の構成であり、N+ 型の多結晶
シリコン部材20、N+ 型領域21、P- 型領域22、
- 型領域23、P+ 型領域23、P+ 型の多結晶シリ
コン部材24によりESD保護素子が実現される。その
他の全容は図1の構成と同様であり、図1と同様の効果
が期待できる。また、その構成もCMOSプロセスを利
用して作製可能である。
FIG. 5 is a cross-sectional view showing a main configuration of an ESD protection element for an SOI integrated circuit as a modification of FIG.
The configuration shown in FIG. 1 is opposite in conductivity type to that of the N + type polycrystalline silicon member 20, the N + type region 21, the P type region 22,
The N type region 23, the P + type region 23, and the P + type polycrystalline silicon member 24 realize an ESD protection element. The rest of the configuration is the same as in the configuration of FIG. 1, and the same effects as in FIG. 1 can be expected. Further, the configuration can also be manufactured using a CMOS process.

【0025】なお、上記ESD保護素子の構成は寸法、
ドーズ量は限定されることはなく、使われるSOI集積
回路の適性なESD保護素子として働くように考慮すれ
ばよい。
The configuration of the above ESD protection element has dimensions,
The dose is not limited, and may be considered so as to function as an appropriate ESD protection element of the SOI integrated circuit to be used.

【0026】[0026]

【発明の効果】以上説明したように、本発明に係るSO
I集積回路用ESD保護素子によれば、絶縁膜上に形成
された各半導体領域の横方向並びによってサイリスタ構
造を有する。両端に放熱性のよい多結晶シリコン部材が
形成されるため、自己発熱による破壊は大幅に低減する
ことができる。このサイリスタ構造はパンチスルーによ
りトリガがかかる寸法を有して形成される。この結果、
耐圧の制御がし易くESD耐量が大きくとれる低リーク
のSOI集積回路用ESD保護素子を提供することがで
きる。
As described above, the SO according to the present invention can be used.
According to the I-type integrated circuit ESD protection element, a thyristor structure is formed by laterally arranging the semiconductor regions formed on the insulating film. Since polycrystalline silicon members having good heat dissipation properties are formed at both ends, breakage due to self-heating can be significantly reduced. The thyristor structure is formed to have a dimension that can be triggered by punch-through. As a result,
It is possible to provide a low-leakage ESD protection element for an SOI integrated circuit in which the withstand voltage is easily controlled and the ESD resistance is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るSOI集積回路用E
SD保護素子の要部構成を示す断面図である。
FIG. 1 shows an E for SOI integrated circuit according to an embodiment of the present invention.
It is sectional drawing which shows the principal part structure of an SD protection element.

【図2】図1のようなESD保護素子の形成方法を工程
順に示す第1の断面図である。
FIG. 2 is a first cross-sectional view showing a method of forming the ESD protection element as shown in FIG. 1 in a process order.

【図3】図1のようなESD保護素子の形成方法を工程
順に示す第2の断面図である。
FIG. 3 is a second cross-sectional view showing a method of forming the ESD protection element as shown in FIG. 1 in the order of steps;

【図4】図1のようなESD保護素子の形成方法を工程
順に示す第3の断面図である。
FIG. 4 is a third sectional view showing a method of forming the ESD protection element as shown in FIG. 1 in the order of steps;

【図5】図1の変形例としてのSOI集積回路用ESD
保護素子の要部構成を示す断面図である。
FIG. 5 shows an ESD for an SOI integrated circuit as a modification of FIG.
It is sectional drawing which shows the principal part structure of a protection element.

【符号の説明】[Explanation of symbols]

10,24…P+ 型の多結晶シリコン部材 11…P+ 型領域 12,23…N- 型領域 13,22…P- 型領域 14,21…N+ 型領域 15,20…N+ 型の多結晶シリコン部材 31…酸化膜マスク 32…多結晶シリコン IN…入力端子(入力ピン) ILGC…内部ロジック回路10, 24 ... P + -type polycrystalline silicon member 11 ... P + -type regions 12 and 23 ... N - -type region 13 and 22 ... P - -type region 14, 21 ... N + -type region 15, 20 ... N + -type Polycrystalline silicon member 31 ... Oxide mask 32 ... Polycrystalline silicon IN ... Input terminal (input pin) ILGC ... Internal logic circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 SOI集積回路への耐量を超えた印加電
流を逃がすため絶縁膜上のシリコン単結晶膜に構成され
た保護素子であって、 内部回路への任意の信号の伝達経路途中に繋がり第1導
電型の不純物が所定濃度で導入された第1の多結晶シリ
コン部材と、 前記第1の多結晶シリコン部材と接続される前記シリコ
ン単結晶膜に形成された第1導電型の第1半導体領域
と、 前記シリコン単結晶膜に形成され前記第1半導体領域に
隣接した前記第1導電型とは逆導電型の第2導電型の第
2半導体領域と、 前記シリコン単結晶膜に形成され前記第2半導体領域に
隣接した第1導電型の第3半導体領域と、 前記シリコン単結晶膜に形成され前記第3半導体領域に
隣接した第2導電型の第4半導体領域と、 前記第4半導体領域に接続され、かつ所定の電位に繋が
る第2導電型の不純物が所定濃度で導入された第2の多
結晶シリコン部材と、を具備したことを特徴とするSO
I集積回路用ESD保護素子。
1. A protection element formed of a silicon single crystal film on an insulating film in order to release an applied current exceeding a withstand voltage to an SOI integrated circuit, which is connected to an arbitrary signal transmission path to an internal circuit. A first polycrystalline silicon member into which impurities of a first conductivity type are introduced at a predetermined concentration; and a first polycrystalline silicon member formed on the silicon single crystal film connected to the first polycrystalline silicon member. A semiconductor region, a second semiconductor region formed in the silicon single crystal film and having a second conductivity type opposite to the first conductivity type and adjacent to the first semiconductor region, and formed in the silicon single crystal film A third semiconductor region of a first conductivity type adjacent to the second semiconductor region; a fourth semiconductor region of a second conductivity type formed in the silicon single crystal film and adjacent to the third semiconductor region; Connected to the area and prescribed A second polycrystalline silicon member into which impurities of a second conductivity type leading to the potential of the second conductivity type are introduced at a predetermined concentration.
ESD protection element for I integrated circuits.
【請求項2】 前記第1半導体領域から第4半導体領域
の並びは少なくとも前記耐量を超える事態にパンチスル
ーにより導通可能な寸法を有して形成されていることを
特徴とする請求項1記載のSOI集積回路用ESD保護
素子。
2. The semiconductor device according to claim 1, wherein the arrangement of the first semiconductor region to the fourth semiconductor region is formed to have a dimension that allows conduction by punch-through at least when the amount exceeds the withstand amount. ESD protection element for SOI integrated circuit.
【請求項3】 前記第1半導体領域及び第4半導体領域
は、前記第2半導体領域及び第3半導体領域よりも高濃
度の不純物が導入されていることを特徴とする請求項1
記載のSOI集積回路用ESD保護素子。
3. The semiconductor device according to claim 1, wherein the first semiconductor region and the fourth semiconductor region have a higher impurity concentration than the second semiconductor region and the third semiconductor region.
An ESD protection element for an SOI integrated circuit according to the above.
【請求項4】 前記第1半導体領域及び第4半導体領域
は、それぞれ前記第1の多結晶シリコン部材及び第2の
多結晶シリコン部材に含まれる不純物の拡散によって形
成されていることを特徴とする請求項3記載のSOI集
積回路用ESD保護素子。
4. The semiconductor device according to claim 1, wherein the first semiconductor region and the fourth semiconductor region are formed by diffusion of impurities contained in the first polycrystalline silicon member and the second polycrystalline silicon member, respectively. The ESD protection device for an SOI integrated circuit according to claim 3.
JP2000285325A 2000-09-20 2000-09-20 Esd protective element for soi integrated circuits Pending JP2002094012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285325A JP2002094012A (en) 2000-09-20 2000-09-20 Esd protective element for soi integrated circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285325A JP2002094012A (en) 2000-09-20 2000-09-20 Esd protective element for soi integrated circuits

Publications (1)

Publication Number Publication Date
JP2002094012A true JP2002094012A (en) 2002-03-29

Family

ID=18769418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285325A Pending JP2002094012A (en) 2000-09-20 2000-09-20 Esd protective element for soi integrated circuits

Country Status (1)

Country Link
JP (1) JP2002094012A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064258A (en) * 2003-08-12 2005-03-10 Nec Electronics Corp Electrostatic discharging protective element
US7750439B2 (en) 2005-11-28 2010-07-06 Kabushiki Kaisha Toshiba ESD protection device
WO2014056909A1 (en) * 2012-10-08 2014-04-17 Intel Mobile Communications GmbH Silicon controlled rectifier (scr) device for bulk finfet technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064258A (en) * 2003-08-12 2005-03-10 Nec Electronics Corp Electrostatic discharging protective element
US7750439B2 (en) 2005-11-28 2010-07-06 Kabushiki Kaisha Toshiba ESD protection device
WO2014056909A1 (en) * 2012-10-08 2014-04-17 Intel Mobile Communications GmbH Silicon controlled rectifier (scr) device for bulk finfet technology
US8785968B2 (en) 2012-10-08 2014-07-22 Intel Mobile Communications GmbH Silicon controlled rectifier (SCR) device for bulk FinFET technology

Similar Documents

Publication Publication Date Title
US6573566B2 (en) Low-voltage-triggered SOI-SCR device and associated ESD protection circuit
US6521952B1 (en) Method of forming a silicon controlled rectifier devices in SOI CMOS process for on-chip ESD protection
KR101710599B1 (en) Semiconductor device and fabricating method thereof
US7919816B2 (en) Electrostatic discharge protection element
US8981483B2 (en) ESD protection structure and ESD protection circuit
CN1983605B (en) Semiconductor integrated circuit device
KR101195720B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR20010045580A (en) Silicon on insulator having source-body-substrate contact and method for fabricating the same
TWI557876B (en) Semiconductor device
KR20060050160A (en) Semiconductor integrated circuit device
JP5525736B2 (en) Semiconductor device and manufacturing method thereof
KR20070080841A (en) Semiconductor device
JP2010135755A (en) Electrostatic discharge protection element and method of manufacturing the same
KR20120017667A (en) Esd(electrostatic discharge) protection device, method of fabricating the same device, and electrical and electronic apparatus comprising the same device
JP2002094012A (en) Esd protective element for soi integrated circuits
TW503558B (en) Low-noise silicon controlled rectifier for electrostatic discharge protection
JP3314760B2 (en) Electrostatic protection element, electrostatic protection circuit, and semiconductor device
US6534834B1 (en) Polysilicon bounded snapback device
JP2002093999A (en) Esd protective element for soi integrated circuit
CN112447703A (en) Electrostatic discharge protection element
KR20070058165A (en) Electrostatic discharge protection device of semiconductor device
JPH11297851A (en) Semiconductor device equipped with electrostatic discharge protective circuit
JPH1012746A (en) Semiconductor device
KR100289838B1 (en) Semiconductor device including electrostatic discharge circuit and manufacturing method thereof
US7279753B1 (en) Floating base bipolar ESD devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816