JP2002092984A - Stamper, producing method thereof and plastic substrate - Google Patents

Stamper, producing method thereof and plastic substrate

Info

Publication number
JP2002092984A
JP2002092984A JP2000281678A JP2000281678A JP2002092984A JP 2002092984 A JP2002092984 A JP 2002092984A JP 2000281678 A JP2000281678 A JP 2000281678A JP 2000281678 A JP2000281678 A JP 2000281678A JP 2002092984 A JP2002092984 A JP 2002092984A
Authority
JP
Japan
Prior art keywords
stamper
current density
less
plastic substrate
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000281678A
Other languages
Japanese (ja)
Inventor
Hideo Daimon
英夫 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000281678A priority Critical patent/JP2002092984A/en
Publication of JP2002092984A publication Critical patent/JP2002092984A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the variation of recording/reproducing output due to fine ruggedness existing on a plastic substrate used in a film surface incidence type optical recording medium. SOLUTION: In this stamper which is made by electroplating method and is used for injection molding of the plastic substrate for optical disk, the center line average roughness Ra of stamper back surface after the completion of electroplating is less than 1.5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スタンパを用いて
作製された光ディスク用プラスティク基板及び、光ディ
スク用プラスティク基板の射出成形用に使用されるスタ
ンパに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic substrate for an optical disk manufactured by using a stamper and a stamper used for injection molding of the plastic substrate for an optical disk.

【0002】[0002]

【従来の技術】マルチメディア時代の到来により、音楽
や動画像、コンピュータのデータなどの大量の情報を記
録再生することが可能な媒体として光記録媒体が広く利
用されている。光記録媒体は、CDやレーザーディスク
(登録商標)のように情報の再生だけが可能な再生専用
光記録媒体、CD-Rのように1度だけ記録が可能な追記型
光記録媒体、何度でもデータの書き換え消去が可能な書
換型光記録媒体に分類される。
2. Description of the Related Art With the advent of the multimedia age, optical recording media have been widely used as media capable of recording and reproducing a large amount of information such as music, moving images, and computer data. Optical recording media include read-only optical recording media that can only read information, such as CDs and laser disks (registered trademark), and write-once optical recording media, which can record only once, such as CD-Rs. However, it is classified as a rewritable optical recording medium on which data can be rewritten and erased.

【0003】また近年、取り扱う情報量の増加に伴い光
記録媒体においてもその記録容量を一層増大することが
要望されている。この要望に応えるための一手段とし
て、ソリッドイマージョンレンズ(SIL)を搭載した浮上
方ヘッドを用いて記録再生を行う方法が提案されてい
る。この方法によれば従来よりも小さな光スポット径で
記録再生することが可能となるため、従来の光磁気記録
媒体に比べて単位面積あたりの記録密度を約1桁高める
ことができる。
In recent years, as the amount of information to be handled has increased, it has been demanded that the recording capacity of an optical recording medium be further increased. As a means for responding to this demand, there has been proposed a method of performing recording and reproduction using a flying head equipped with a solid immersion lens (SIL). According to this method, recording and reproduction can be performed with a smaller light spot diameter than in the related art, so that the recording density per unit area can be increased by about one digit as compared with the conventional magneto-optical recording medium.

【0004】SILを用いて記録再生する場合には、SILか
ら滲み出る近接場光を記録再生光に用いることができ
る。近接場光は、光の波長の1/4程度の距離で減衰して
しまうため、SILと記録層との間隔を記録再生光の波長
の1/4以下にする必要がある。このため近接場光を用い
る場合には、基板と反対側の薄膜積層面からレーザー光
を入射する方法が採用されている。薄層積層面からレー
ザー光を入射するため、近接場光を用いる光磁気記録媒
体の積層順序も従来の媒体と異なり、通常は、透明基板
上に、反射層、熱拡散層、記録層、誘電体層を順次積層
した構造を有している。またレーザー光のスポットをよ
り小さく絞って記録密度を高めるため、高NAのレンズが
使用される。高NAのレンズを使用すると、基板の傾き
(チルト)によるコマ収差や非点収差が増大する。コマ収
差と非点収差は基板の厚みに比例するため、高NAのレン
ズを使用する場合にはこれらの収差を抑えるため、使用
する基板の厚さを薄くしたり、或いは近接場記録の様に
レーザー光を膜面から入射させて記録再生を行う。膜面
入射方式では、基板厚みが限りなくゼロに近いため、上
述した基板の傾きによるコマ収差や非点収差が抑えられ
る。従って、近接場記録を含めた膜面入射型の光記録は
将来の高密度光記録に適した記録方式と言える。
When recording and reproducing using SIL, near-field light oozing from SIL can be used as recording and reproducing light. Since the near-field light is attenuated at a distance of about 光 of the wavelength of the light, the distance between the SIL and the recording layer needs to be 1 or less of the wavelength of the recording / reproducing light. For this reason, when near-field light is used, a method is adopted in which laser light is incident from the thin film lamination surface opposite to the substrate. Since the laser beam is incident from the thin layer lamination surface, the lamination order of the magneto-optical recording medium using near-field light is also different from that of the conventional medium, and usually, a reflective layer, a heat diffusion layer, a recording layer, It has a structure in which body layers are sequentially laminated. In order to increase the recording density by narrowing the spot of the laser beam to a smaller size, a lens with a high NA is used. When using a high NA lens, the tilt of the substrate
Coma and astigmatism due to (tilt) increase. Since coma and astigmatism are proportional to the thickness of the substrate, when using a lens with a high NA, to reduce these aberrations, the thickness of the substrate to be used should be reduced, or as in near-field recording. Recording and reproduction are performed by irradiating a laser beam from the film surface. In the film surface incidence method, since the thickness of the substrate is almost zero, the coma aberration and the astigmatism due to the inclination of the substrate are suppressed. Therefore, film-surface incident type optical recording including near-field recording can be said to be a recording method suitable for high-density optical recording in the future.

【0005】上述した様に近接場記録を含めた膜面入射
方式は高密度光記録に適した記録方式である。しかしこ
の方式では、光ヘッドとディスク面との距離が従来の光
ディスクに比較して狭い空隙で膜面上を浮上して記録再
生を行うため、プラスチック基板上に存在する微少な凹
凸によってハードディスクと同様に記録再生出力が変動
する問題があった。
As described above, the film surface incidence method including near-field recording is a recording method suitable for high-density optical recording. However, in this method, the distance between the optical head and the disk surface is higher than that of a conventional optical disk. However, there is a problem that the recording / reproducing output fluctuates.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる問題
を解決するためになされたものであり、膜面入射型光記
録方式に使用されるプラスチック基板上に存在する微少
な凹凸を低減する事を目的とし、更に詳しくはその様な
プラスチック基板を作製するためのスタンパに関する。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is an object of the present invention to reduce minute unevenness present on a plastic substrate used in a film surface incidence type optical recording system. More specifically, the present invention relates to a stamper for producing such a plastic substrate.

【0007】[0007]

【課題を解決するための手段】先ず、プラスチック基板
上に存在する微少な凹凸について定義する。米国KLATen
cor社のDISK PROFILER TENCOR-P12を用い、ダイヤモン
ド製、先端曲率半径2μmのスタイラスにより、荷重5m
g、走査速度400μm/s、走査幅20mmの条件でプラスチッ
ク基板上に存在する微少なうねりを測定する。この測定
条件下、20mmの走査幅の中で波長が45μm〜4.5mmの微小
うねりを抽出し、それらのうねりの最大振幅をプラスチ
ック基板上に存在する微少な凹凸と定義する。
First, fine irregularities existing on a plastic substrate are defined. United States KLATen
Using a cork DISK PROFILER TENCOR-P12, with a stylus made of diamond and having a radius of curvature of 2 μm, load 5m
g, a scanning speed of 400 μm / s and a scanning width of 20 mm are used to measure minute undulations present on the plastic substrate. Under these measurement conditions, minute undulations having a wavelength of 45 μm to 4.5 mm are extracted within a scanning width of 20 mm, and the maximum amplitude of these undulations is defined as minute unevenness existing on the plastic substrate.

【0008】本発明によれば、電解メッキ法で作製した
スタンパ裏面の中心線平均粗さRaを1.5μm未満にする事
により、プラスチック基板上に存在する微少な凹凸を低
減させる事が出来る。
According to the present invention, by setting the center line average roughness Ra of the back surface of the stamper manufactured by the electrolytic plating method to less than 1.5 μm, it is possible to reduce minute unevenness existing on the plastic substrate.

【0009】射出成形されたプラスチック基板上に存在
する微少な凹凸は、以下のメカニズムによって形成され
ると考えられる。メッキ終了後のスタンパの裏面は通常
研磨装置によって研磨される。しかし、メッキ後のスタ
ンパ裏面の中心線平均粗さRaが1.5μmより大きい場合、
スタンパの裏面研磨によっても十分な平滑性が得られな
い。この様なスタンパを使用してプラスチック基板を射
出成型すると、成型中の高い圧力により、裏面の表面粗
さが弾性的に信号面に伝播し、微小な凹凸がプラスチッ
ク基板に転写され、これがプラスチック基板上に存在す
る微少な凹凸になると考えられる。従って、プラスチッ
ク基板上に存在する微少な凹凸を低減させるためには、
メッキが終了したスタンパ裏面の表面粗さを一定値未満
に抑える必要がある。発明者が鋭意検討を行った結果、
メッキ終了後のスタンパ裏面の中心線平均粗さRaを1.5
μm未満に抑える事により、射出成形されたプラスチッ
ク基板上に存在する微少な凹凸を35nmp-p未満にする事
が出来る事を見出した。メッキ終了後のスタンパ裏面の
Raは0.5μm未満である事がより好ましく、この場合には
プラスチック基板上に存在する微少な凹凸を25nmp-p
下に抑えることが出来る。
It is considered that the fine irregularities existing on the injection-molded plastic substrate are formed by the following mechanism. After plating, the back surface of the stamper is usually polished by a polishing apparatus. However, if the center line average roughness Ra of the stamper back surface after plating is larger than 1.5 μm,
Sufficient smoothness cannot be obtained even by polishing the back surface of the stamper. When a plastic substrate is injection-molded using such a stamper, the high surface pressure of the back surface elastically propagates the signal surface due to the high pressure during molding, and minute irregularities are transferred to the plastic substrate. It is considered that there are minute irregularities existing on the upper side. Therefore, in order to reduce minute unevenness existing on the plastic substrate,
It is necessary to suppress the surface roughness of the stamper back surface after plating to less than a certain value. As a result of intensive studies by the inventor,
The center line average roughness Ra of the stamper back surface after plating is 1.5
By suppressing the diameter to less than μm, it has been found that minute unevenness existing on the injection-molded plastic substrate can be reduced to less than 35 nm pp . On the back of the stamper after plating is completed
Ra is more preferably less than 0.5 μm. In this case, fine irregularities existing on the plastic substrate can be suppressed to 25 nm pp or less.

【0010】メッキ終了後のスタンパ裏面の中心線平均
粗さRaを1.5μm未満に抑えるためには、スタンパメッキ
中の電流密度を7.5A/dm2以下にする必要がある。スタン
パのメッキには、通常スルファミン酸ニッケル浴が使用
される。スルファミン酸ニッケル浴に1,3,6-ナフタレン
トリスルフォン酸ソーダ、サッカリン、p-トルエンスル
フォン酸及びベンゼンスルフォン酸等の光沢剤を添加し
ない場合、7.5A/dm2以下の電流密度でスタンパをメッキ
すると、結晶粒が膜面垂直方向にそろって成長する。こ
のため、メッキ終了後のスタンパ裏面の中心線平均粗さ
Raが1.5μm未満に抑えられると考えられる。また、スル
ファミン酸ニッケル浴に1,3,6-ナフタレントリスルフォ
ン酸ソーダ、サッカリン、p-トルエンスルフォン酸及び
ベンゼンスルフォン酸等の光沢剤を添加した場合、スタ
ンパを電流密度7.5A/dm2以下でメッキすると、スタンパ
材質の結晶粒が微細化し、その結果スタンパ裏面の中心
線平均粗さRaが1.5μm未満に抑えられると考えられる。
In order to keep the center line average roughness Ra of the rear surface of the stamper after plating to less than 1.5 μm, the current density during stamper plating needs to be 7.5 A / dm 2 or less. A nickel sulfamate bath is usually used for plating the stamper. Nickel sulfamate bath 1,3,6 naphthalene tris sulfone sodium, saccharin, p- toluenesulfonic acid, and without the addition of brightener such as benzenesulfonic acid, plating a stamper in the following current density 7.5A / dm 2 Then, the crystal grains grow in a direction perpendicular to the film surface. Therefore, the center line average roughness of the stamper back surface after plating is completed
Ra is considered to be suppressed to less than 1.5 μm. When a brightener such as sodium 1,3,6-naphthalene trisulfonate, saccharin, p-toluenesulfonic acid and benzenesulfonic acid is added to the nickel sulfamate bath, the stamper has a current density of 7.5 A / dm 2 or less. It is considered that when plating is performed, the crystal grains of the stamper material are refined, and as a result, the center line average roughness Ra of the back surface of the stamper is suppressed to less than 1.5 μm.

【0011】メッキ浴中に光沢剤を添加すると、光沢剤
分子が結晶成長点に吸着して、その結晶成長を抑える効
果がある。従って、光沢剤をメッキ浴中に添加してメッ
キを行うと、結晶粒が微細化し、スタンパ裏面の粗さを
抑えることができる。
When a brightener is added to the plating bath, the brightener molecules are adsorbed to crystal growth points, and have an effect of suppressing the crystal growth. Therefore, when plating is performed by adding a brightening agent to the plating bath, the crystal grains become finer and the roughness of the back surface of the stamper can be suppressed.

【0012】上記の条件でメッキしたスタンパを用いて
プラスチック基板を射出成型すると、プラスチック基板
上に存在する微少な凹凸は35nmp-p未満に抑えられる。
電解メッキの電流密度を5A/dm2以下で行うことが好まし
い。電流密度を5A/dm2以下にすれば、スタンパ裏面の中
心線平均粗さRaは0.5μm以下となり、このスタンパを用
いて射出成型したプラスチック基板上に存在する微少な
凹凸は25nmp-p以下に抑えられる。
When a plastic substrate is injection-molded using a stamper plated under the above conditions, the fine irregularities existing on the plastic substrate can be suppressed to less than 35 nm pp .
The electroplating is preferably performed at a current density of 5 A / dm 2 or less. If the current density of 5A / dm 2 below, the center line average roughness Ra of the stamper backside becomes 0.5μm or less, fine irregularities present in the injection molded plastic substrate using this stamper kept below 25 nm pp Can be

【0013】一方、スタンパメッキ中の電流密度を7.5A
/dm2より大きくすると、スルファミン酸ニッケル浴に1,
3,6-ナフタレントリスルフォン酸ソーダ、サッカリン、
p-トルエンスルフォン酸及びベンゼンスルフォン酸等の
光沢剤を添加しない場合、スタンパ材質の結晶粒は樹枝
状となり、その結晶粒は膜中いたる方向に成長する。そ
の結果、スタンパ裏面のRaは1.5μm以上の大きな値とな
る。また、スルファミン酸ニッケル浴に1,3,6-ナフタレ
ントリスルフォン酸ソーダ、サッカリン、p-トルエンス
ルフォン酸及びベンゼンスルフォン酸等の光沢剤を添加
した場合、スタンパを7.5A/dm2より大きな電流密度でメ
ッキすると結晶粒が粗大化し、その結果スタンパ裏面の
Raが1.5μm以上の大きな値となる。これらの条件でメッ
キしたスタンパを用いてプラスチック基板を射出成型す
ると、プラスチック基板上に存在する微少な凹凸は35nm
p-p以上の大きな値になる。
On the other hand, the current density during stamper plating is 7.5 A
When greater than / dm 2, 1 to nickel sulfamate bath,
3,6-naphthalene sodium trisulfonate, saccharin,
When a brightener such as p-toluenesulfonic acid or benzenesulfonic acid is not added, the crystal grains of the stamper material become dendritic, and the crystal grains grow throughout the film. As a result, Ra on the back surface of the stamper has a large value of 1.5 μm or more. Further, 1,3,6-naphthalene tris sulfone sodium nickel sulfamate bath, saccharin, p- toluenesulfonic acid and the case of adding gloss agent such as benzenesulfonic acid, higher current density than 7.5A / dm 2 stampers When plating with, the crystal grains become coarse, and as a result
Ra is a large value of 1.5 μm or more. When a plastic substrate is injection molded using a stamper plated under these conditions, the fine irregularities on the plastic substrate are 35 nm
It is a large value of pp or more.

【0014】上述した様に、7.5A/dm2以下の電流密度で
メッキされ、その裏面の中心線平均粗さRaが1.5μm未満
のスタンパを用いてプラスチック基板を射出成型する
と、プラスチック基板上に存在する微少な凹凸を35nm
p-p未満に抑えることが出来る。しかし、一般に7.5A/dm
2以下の低電流密度でスタンパをメッキすると、スタン
パに圧縮応力が発生する。圧縮応力が大きいと、成型機
の金型にスタンパを装着する事が出来なくなる問題を引
き起こす。このため、実際にはスタンパ全膜厚の90%〜9
5%を7.5A/dm2以下の低電流密度でメッキし、残部を7.5A
/dm2より大きい高電流密度でメッキする事が好ましい。
7.5A/dm2より大きい高電流密度でメッキを行うと、スタ
ンパに引っ張り応力を発生させる事が出来るため、7.5A
/dm2以下の低電流密度でメッキにより発生した圧縮応力
をキャンセルさせる事が出来る。この時、電流密度の上
昇によってスタンパ裏面の中心線平均粗さRaは増大する
が、スタンパの90~95%を7.5A/dm2以下の低電流密度でメ
ッキしているため、最終的なスタンパ裏面の中心線平均
粗さRaを1.5μm未満にする事が出来る。
As described above, when a plastic substrate is injection-molded with a stamper having a current density of 7.5 A / dm 2 or less and a center line average roughness Ra of the rear surface thereof is less than 1.5 μm, the plastic substrate is formed on the plastic substrate. 35 nm for existing minute irregularities
It can be suppressed to less than pp . However, generally 7.5A / dm
When a stamper is plated at a low current density of 2 or less, a compressive stress is generated in the stamper. If the compressive stress is large, it causes a problem that the stamper cannot be mounted on the mold of the molding machine. For this reason, actually 90% to 9% of the total thickness of the stamper
5% were plated at a low current density of 7.5A / dm 2 or less, 7.5A the remainder
Plating at a high current density greater than / dm 2 is preferred.
Doing plated at 7.5A / dm 2 larger high current densities, since it is able to generate a tensile stress on the stamper, 7.5A
With a low current density of / dm 2 or less, the compressive stress generated by plating can be canceled. At this time, the center line average roughness Ra of the stamper backside by increasing the current density increases, since the plating of 90-95% of the stamper at a low current density of 7.5A / dm 2 or less, the final stamper The center line average roughness Ra of the back surface can be reduced to less than 1.5 μm.

【0015】スタンパの電解メッキする材料としては、
Ni,NiCo,NiP,NiB,CoAg等の材料が挙げられるがその中で
もNiを用いることがより好ましい。
As a material for electrolytic plating of the stamper,
Materials such as Ni, NiCo, NiP, NiB, and CoAg can be mentioned, and among them, Ni is more preferably used.

【0016】スタンパ材料としてNiを使用した例を以下
に示す。ガラス原盤上にNiを電解メッキするためには、
導電性の薄膜がガラス原盤上に形成される。一般的に
は、スパッタ法や無電解Niメッキ法により、30〜100nm
のNi或いはNiP薄膜がガラス原盤上に設けられる。これ
らの導電性薄膜は厚さが30〜100nmと薄いため、10分未
満の短時間で電流密度を上昇させると発生するジュール
熱によって膜切れが生じ電解メッキが行えなくなる。こ
のため、Niメッキ時の電流密度を10分以上かけて7.5A/d
m2以下の所定の電流密度に上昇させる。より好ましくは
35分以上かけて7.5A/dm2以下の所定の電流密度に上昇さ
せる。この方法により、導電性Ni或いはNiP薄膜上に数
ミクロンのNiが成長するため、この後7.5A/dm2以下の所
定の電流密度に上昇させても膜切れは起こらず、安定し
た電解メッキが行える。
An example in which Ni is used as a stamper material will be described below. In order to electroplate Ni on the glass master,
A conductive thin film is formed on a glass master. Generally, 30 to 100 nm by sputtering or electroless Ni plating.
Ni or NiP thin films are provided on a glass master. Since the thickness of these conductive thin films is as thin as 30 to 100 nm, when the current density is increased in a short time of less than 10 minutes, the generated Joule heat causes the film to be cut, so that electrolytic plating cannot be performed. Therefore, the current density during Ni plating was increased to 7.5 A / d over 10 minutes.
The current density is increased to a predetermined current density of m 2 or less. More preferably
The current is increased to a predetermined current density of 7.5 A / dm 2 or less over 35 minutes or more. According to this method, Ni of several microns grows on the conductive Ni or NiP thin film, so that even after the current is increased to a predetermined current density of 7.5 A / dm 2 or less, the film does not break and stable electrolytic plating is performed. I can do it.

【0017】スタンパのメッキ浴には、通常スルファミ
ン酸ニッケル浴を使用する。スルファミン酸ニッケル浴
はスルファミン酸ニッケル、塩化ニッケル及び硼酸で構
成されるが、場合によって1,3,6-ナフタレントリスルフ
ォン酸ソーダ、サッカリン、p-トルエンスルフォン酸及
びベンゼンスルフォン酸等の光沢剤を添加しても良い。
添加濃度は例えば全Ni濃度に対して1/2,500前後であ
る。
As a plating bath for the stamper, a nickel sulfamate bath is usually used. The nickel sulfamate bath is composed of nickel sulfamate, nickel chloride and boric acid, and may optionally contain brighteners such as 1,3,6-naphthalene sodium trisulfonate, saccharin, p-toluenesulfonic acid and benzenesulfonic acid. You may.
The addition concentration is, for example, about 1/2500 with respect to the total Ni concentration.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例について具
体的に説明する。
Embodiments of the present invention will be specifically described below.

【0019】(実施例1)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、以
下の電流密度プロファイルに従って厚さ300μmのスタン
パを電解メッキした。電流密度を2.5 A/dm 2まで35分か
けて上昇させ、次に電流密度を2.5 A/dm2で275μmの厚
さ迄メッキし、残部の25μmを22.3 A/dm2の高電流密度
でメッキした。
Example 1 Direct electroless Ni plating
70nm as a conductive film on a glass master with a diameter of 200mm and thickness of 6mm
A NiP thin film was provided. Then, using a sulfamic acid bath,
According to the current density profile below, a 300 μm thick
The electrodes were electroplated. 2.5 A / dm current density TwoUntil 35 minutes
And then increase the current density to 2.5 A / dmTwoWith a thickness of 275μm
22.3 A / dmTwoHigh current density
Plated.

【0020】(実施例2)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、以
下の電流密度プロファイルに従って厚さ300μmのスタン
パを電解メッキした。電流密度を5 A/dm2まで35分かけ
て上昇させ、次に電流密度5 A/dm2で275μmの厚さ迄メ
ッキし、残部の25μmを22.3 A/dm2の高電流密度でメッ
キした。
(Example 2) A 70 nm thick conductive film was formed on a glass master having a diameter of 200 mm and a thickness of 6 mm by electroless Ni plating.
A NiP thin film was provided. Thereafter, using a sulfamic acid bath, a stamper having a thickness of 300 μm was electroplated according to the following current density profile. The current density was increased to 5 A / dm 2 over 35 minutes, then plated at a current density of 5 A / dm 2 to a thickness of 275 μm and the remaining 25 μm plated at a high current density of 22.3 A / dm 2 .

【0021】(実施例3)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、以
下の電流密度プロファイルに従って厚さ300μmのスタン
パを電解メッキした。電流密度を7.5 A/dm 2まで35分か
けて上昇させ、次に電流密度7.5 A/dm2で275μmの厚さ
迄メッキし、残部の25μmを22.3 A/dm2の高電流密度で
メッキした。
(Embodiment 3) Direct electroless Ni plating
70nm as a conductive film on a glass master with a diameter of 200mm and thickness of 6mm
A NiP thin film was provided. Then, using a sulfamic acid bath,
According to the current density profile below, a 300 μm thick
The electrodes were electroplated. 7.5 A / dm current density TwoUntil 35 minutes
And then raise the current density to 7.5 A / dmTwoAt 275μm thickness
Until the remaining 25μm is 22.3 A / dmTwoWith high current density
Plated.

【0022】(実施例4)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、光
沢剤として1,3,6-ナフタレントリスルフォン酸ソーダを
Ni全濃度1.9mol/Lに対して7.3×10-4mol/Lの濃度で添加
し、以下の電流密度プロファイルに従って厚さ300μmの
スタンパを電解メッキした。電流密度を5 A/dm2まで35
分かけて上昇させ、次に電流密度5 A/dm2で275μmの厚
さ迄メッキし、残部の25μmを22.3 A/dm2の高電流密度
でメッキした。
Example 4 A 70 nm thick conductive film was formed on a glass master having a diameter of 200 mm and a thickness of 6 mm by electroless Ni plating.
A NiP thin film was provided. Then, using a sulfamic acid bath, sodium 1,3,6-naphthalene trisulfonate was used as a brightener.
Ni was added at a concentration of 7.3 × 10 −4 mol / L to a total concentration of 1.9 mol / L, and a stamper having a thickness of 300 μm was electroplated according to the following current density profile. The current density up to 5 A / dm 2 35
It was then raised over a minute and then plated at a current density of 5 A / dm 2 to a thickness of 275 μm and the remaining 25 μm plated at a high current density of 22.3 A / dm 2 .

【0023】(実施例5)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、光
沢剤として1,3,6-ナフタレントリスルフォン酸ソーダを
Ni全濃度1.9mol/Lに対して7.3×10-4mol/Lの濃度で添加
し、以下の電流密度プロファイルに従って厚さ300μmの
スタンパを電解メッキした。電流密度を7.5 A/dm2まで3
5分かけて上昇させ、次に電流密度7.5 A/dm2で275μmの
厚さ迄メッキし、残部の25μmを22.3 A/dm2の高電流密
度でメッキした。
Example 5 A 70 nm thick conductive film was formed on a glass master having a diameter of 200 mm and a thickness of 6 mm by electroless Ni plating.
A NiP thin film was provided. Then, using a sulfamic acid bath, sodium 1,3,6-naphthalene trisulfonate was used as a brightener.
Ni was added at a concentration of 7.3 × 10 −4 mol / L to a total concentration of 1.9 mol / L, and a stamper having a thickness of 300 μm was electroplated according to the following current density profile. Current density up to 7.5 A / dm 2 3
Raised over 5 minutes, then plated at a current density of 7.5 A / dm 2 to a thickness of 275 μm and the remaining 25 μm plated at a high current density of 22.3 A / dm 2 .

【0024】(比較例1)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、以
下の電流密度プロファイルに従って厚さ300μmのスタン
パを電解メッキした。電流密度を10 A/dm2まで35分かけ
て上昇させ、次に電流密度の10 A/dm2で300μm迄メッキ
した。
Comparative Example 1 A 70 nm thick conductive film was formed on a glass master having a diameter of 200 mm and a thickness of 6 mm by electroless Ni plating.
A NiP thin film was provided. Thereafter, using a sulfamic acid bath, a stamper having a thickness of 300 μm was electroplated according to the following current density profile. The current density was increased to 10 A / dm 2 over 35 minutes and then plated to 300 μm at a current density of 10 A / dm 2 .

【0025】(比較例2)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、以
下の電流密度プロファイルに従って厚さ300μmのスタン
パを電解メッキした。電流密度を15 A/dm2まで35分かけ
て上昇させ、次に電流密度の15 A/dm2で300μm迄メッキ
した。
(Comparative Example 2) A 70 nm thick conductive film was formed on a glass master having a diameter of 200 mm and a thickness of 6 mm by electroless Ni plating.
A NiP thin film was provided. Thereafter, using a sulfamic acid bath, a stamper having a thickness of 300 μm was electroplated according to the following current density profile. The current density was increased to 15 A / dm 2 over 35 minutes and then plated to 300 μm at a current density of 15 A / dm 2 .

【0026】(比較例3)無電解Niメッキ法により、直
径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの
NiP薄膜を設けた。その後スルファミン酸浴を用い、以
下の電流密度プロファイルに従って厚さ300μmのスタン
パを電解メッキした。電流密度を22.3 A/dm2まで35分か
けて上昇させ、次に電流密度の22.3 A/dm2で300μm迄メ
ッキした。
(Comparative Example 3) A 70 nm thick conductive film was formed on a glass master having a diameter of 200 mm and a thickness of 6 mm by electroless Ni plating.
A NiP thin film was provided. Thereafter, using a sulfamic acid bath, a stamper having a thickness of 300 μm was electroplated according to the following current density profile. The current density was raised to 22.3 A / dm 2 over 35 minutes and then plated to a current density of 22.3 A / dm 2 to 300 μm.

【0027】実施例1〜5及び比較例1〜3で得られたスタ
ンパの裏面の中心線平均粗さRaをMitutoyo社の接触式表
面粗さ計SJ-201を用いて測定した。スタイラスは先端曲
率半径2μmのダイヤモンドで、スタンパ半径60〜65mmの
位置で4点測定した。その後、実施例1〜5及び比較例1〜
3でメッキしたスタンパをガラス原盤から剥離しない状
態で裏面研磨し、その後スタンパをガラス原盤から剥離
し、所定のサイズに打ち抜いた。これらのスタンパを射
出成形機の金型に装填し、ポリカーボネイト樹脂材料を
金型内に射出成形することによりポリカーボネイト基板
を作製した。得られたプラスチック基板上に存在する微
少な凹凸を米国KLA Tencor社のDISK PROFILER TENCOR-P
12を用いて測定した。結果を表1にまとめて示す。
The center line average roughness Ra of the back surface of each of the stampers obtained in Examples 1 to 5 and Comparative Examples 1 to 3 was measured using a contact type surface roughness meter SJ-201 manufactured by Mitutoyo. The stylus was a diamond with a radius of curvature of 2 μm at the tip and measured at four points at a stamper radius of 60 to 65 mm. Then, Examples 1 to 5 and Comparative Examples 1 to
The stamper plated in Step 3 was polished on the back surface without peeling from the glass master, and then the stamper was peeled from the glass master and punched into a predetermined size. These stampers were loaded into a mold of an injection molding machine, and a polycarbonate substrate was produced by injection molding a polycarbonate resin material into the mold. KLA Tencor's DISK PROFILER TENCOR-P of the U.S.A.
It measured using 12. The results are summarized in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表から明らかな様に、スタンパを7.5A/dm2
以下の電流密度でメッキした場合、スタンパ裏面のRaは
1.5μm未満の値となり、これらのスタンパを用いて成形
したプラスチック基板上に存在する微少な凹凸は35 nm
p-p未満に抑えられる。また、スタンパを5A/dm2の電流
密度でメッキした場合、スタンパ裏面のRaは0.5μm未満
の値となり、これらのスタンパを用いて成形したプラス
チック基板上に存在する微少な凹凸は25 nmp-p未満に抑
えられる。実施例のスタンパを用いてプラスチック基板
を射出成形すれば、プラスチック基板上に存在する微少
な凹凸が35 nmp-p未満に抑えられ、その結果記録再生時
の出力変動を最小限に抑える事が出来る。
As is clear from the table, the stamper was set to 7.5 A / dm 2
When plating with the following current density, Ra on the back of the stamper is
The value is less than 1.5 μm, and the fine unevenness existing on the plastic substrate molded using these stampers is 35 nm.
less than pp . Also, when the plated stamper at a current density of 5A / dm 2, Ra of the stamper backside becomes a value of less than 0.5 [mu] m, fine irregularities present on the molded plastic substrate using these stampers less than 25 nm pp Can be suppressed. If a plastic substrate is injection-molded using the stamper of the embodiment, minute irregularities existing on the plastic substrate can be suppressed to less than 35 nm pp , and as a result, output fluctuation during recording / reproduction can be minimized.

【0030】以上、本発明について具体的に説明してき
たが、本発明によるスタンパは光磁気記録媒体に限定さ
れず、相変化型の光記録媒体や有機色素を記録層に有す
る追記型の光記録媒体、再生専用光記録媒体などの任意
の光記録媒体に適用することができる。
Although the present invention has been described in detail, the stamper according to the present invention is not limited to a magneto-optical recording medium, but may be a phase-change optical recording medium or a write-once optical recording medium having an organic dye in a recording layer. The present invention can be applied to any optical recording medium such as a medium and a read-only optical recording medium.

【0031】[0031]

【発明の効果】本発明のスタンパでは、スタンパメッキ
時の電流密度を7.5A/dm2以下とし、メッキ後のスタンパ
裏面の中心線平均粗さRaを1.5μm未満とする事ができ
る。その結果、本発明のスタンパを用いて射出成形した
プラスチック基板上に存在する微少な凹凸を35 nmp-p
満にする事が可能となり、記録再生時の出力変動を抑え
る事が出来る。
According to the stamper of the present invention, the current density during stamper plating can be set to 7.5 A / dm 2 or less, and the center line average roughness Ra of the stamper rear surface after plating can be set to less than 1.5 μm. As a result, it is possible to reduce the fine irregularities existing on the plastic substrate injection-molded using the stamper of the present invention to less than 35 nm pp, and to suppress the output fluctuation during recording and reproduction.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解メッキ法で作製され、光ディスク用
プラスチック基板の射出成形用に使用されるスタンパに
おいて、電解メッキ終了後のスタンパ裏面の中心線平均
粗さRaが1.5μm未満である事を特徴とするスタンパ。
1. A stamper manufactured by electrolytic plating and used for injection molding of a plastic substrate for an optical disk, characterized in that the center line average roughness Ra of the back surface of the stamper after the completion of electrolytic plating is less than 1.5 μm. Stamper.
【請求項2】 スタンパの材質がNiであることを特徴と
する請求項1記載のスタンパ。
2. The stamper according to claim 1, wherein the material of the stamper is Ni.
【請求項3】 電解メッキ法で作製され、電解メッキ終
了後のスタンパ裏面の中心線平均粗さRa1.5μm未満に
なるように構成されたスタンパの製造方法において、ス
タンパを電解メッキする際の電流密度が7.5A/dm2以下で
ある事を特徴とするスタンパの製造方法。
3. A method for producing a stamper manufactured by an electrolytic plating method and having a center line average roughness Ra of less than 1.5 μm on the back surface of the stamper after the completion of the electrolytic plating. A method for manufacturing a stamper, wherein the density is 7.5 A / dm 2 or less.
【請求項4】 請求項3記載のスタンパの製造方法にお
いて、電解メッキ時の電流密度を10分以上かけて7.5A/d
m2以下の所定の電流密度に上昇させ、この後7.5A/dm2
下の所定の電流密度で全スタンパ厚みの90%〜95%を電解
メッキし、その後スタンパの残部を7.5A/dm2より大きい
電流密度でメッキする事を特徴とするスタンパの製造方
法。
4. The method of manufacturing a stamper according to claim 3, wherein the current density during electrolytic plating is 7.5 A / d over 10 minutes or more.
m 2 raised to the following predetermined current density, 90% to 95% of the rear 7.5A / dm 2 or less for a given current density in all the stamper thickness and electroplating, after which the remainder of the stamper 7.5A / dm 2 A method for manufacturing a stamper, wherein plating is performed at a higher current density.
【請求項5】 請求項1記載のスタンパを用いて射出成
形されたプラスチック基板であって、プラスチック表面
に存在する微少な凹凸が35nmp-p未満である事を特徴と
するプラスチック基板。
5. A plastic substrate injection-molded by using the stamper according to claim 1, wherein minute irregularities present on the surface of the plastic are less than 35 nm pp .
JP2000281678A 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate Withdrawn JP2002092984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281678A JP2002092984A (en) 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281678A JP2002092984A (en) 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate

Publications (1)

Publication Number Publication Date
JP2002092984A true JP2002092984A (en) 2002-03-29

Family

ID=18766297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281678A Withdrawn JP2002092984A (en) 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate

Country Status (1)

Country Link
JP (1) JP2002092984A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195733B2 (en) 2004-04-27 2007-03-27 The Board Of Trustees Of The University Of Illinois Composite patterning devices for soft lithography
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7557367B2 (en) 2004-06-04 2009-07-07 The Board Of Trustees Of The University Of Illinois Stretchable semiconductor elements and stretchable electrical circuits
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7824584B2 (en) 2008-05-14 2010-11-02 Tdk Corporation Method of manufacturing stamper, method of manufacturing resin molded article, and stamper
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US8367035B2 (en) 2006-03-03 2013-02-05 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US8552299B2 (en) 2008-03-05 2013-10-08 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US8722458B2 (en) 2007-01-17 2014-05-13 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US8865489B2 (en) 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US8946683B2 (en) 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US10918298B2 (en) 2009-12-16 2021-02-16 The Board Of Trustees Of The University Of Illinois High-speed, high-resolution electrophysiology in-vivo using conformal electronics
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195733B2 (en) 2004-04-27 2007-03-27 The Board Of Trustees Of The University Of Illinois Composite patterning devices for soft lithography
US9450043B2 (en) 2004-06-04 2016-09-20 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7622367B1 (en) 2004-06-04 2009-11-24 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9324733B2 (en) 2004-06-04 2016-04-26 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US8394706B2 (en) 2004-06-04 2013-03-12 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US11456258B2 (en) 2004-06-04 2022-09-27 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
US7982296B2 (en) 2004-06-04 2011-07-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8039847B2 (en) 2004-06-04 2011-10-18 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US9515025B2 (en) 2004-06-04 2016-12-06 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8198621B2 (en) 2004-06-04 2012-06-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US11088268B2 (en) 2004-06-04 2021-08-10 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US10355113B2 (en) 2004-06-04 2019-07-16 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7557367B2 (en) 2004-06-04 2009-07-07 The Board Of Trustees Of The University Of Illinois Stretchable semiconductor elements and stretchable electrical circuits
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US8440546B2 (en) 2004-06-04 2013-05-14 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US10204864B2 (en) 2004-06-04 2019-02-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US9761444B2 (en) 2004-06-04 2017-09-12 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8664699B2 (en) 2004-06-04 2014-03-04 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US10374072B2 (en) 2004-06-04 2019-08-06 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9768086B2 (en) 2004-06-04 2017-09-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8729524B2 (en) 2004-06-04 2014-05-20 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US8754396B2 (en) 2004-06-04 2014-06-17 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US9105555B2 (en) 2004-06-04 2015-08-11 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8367035B2 (en) 2006-03-03 2013-02-05 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
US10424572B2 (en) 2007-01-17 2019-09-24 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US10361180B2 (en) 2007-01-17 2019-07-23 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US9117940B2 (en) 2007-01-17 2015-08-25 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US8722458B2 (en) 2007-01-17 2014-05-13 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US9601671B2 (en) 2007-01-17 2017-03-21 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US10504882B2 (en) 2007-01-17 2019-12-10 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US11309305B2 (en) 2007-01-17 2022-04-19 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US10292261B2 (en) 2008-03-05 2019-05-14 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US8905772B2 (en) 2008-03-05 2014-12-09 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US10064269B2 (en) 2008-03-05 2018-08-28 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US8552299B2 (en) 2008-03-05 2013-10-08 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US7824584B2 (en) 2008-05-14 2010-11-02 Tdk Corporation Method of manufacturing stamper, method of manufacturing resin molded article, and stamper
US8946683B2 (en) 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8536667B2 (en) 2008-10-07 2013-09-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US9647171B2 (en) 2009-05-12 2017-05-09 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US8865489B2 (en) 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US10546841B2 (en) 2009-05-12 2020-01-28 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US10918298B2 (en) 2009-12-16 2021-02-16 The Board Of Trustees Of The University Of Illinois High-speed, high-resolution electrophysiology in-vivo using conformal electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US11057991B2 (en) 2009-12-16 2021-07-06 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9986924B2 (en) 2010-03-17 2018-06-05 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US10349860B2 (en) 2011-06-03 2019-07-16 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US10396173B2 (en) 2011-12-01 2019-08-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US10357201B2 (en) 2012-03-30 2019-07-23 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US10052066B2 (en) 2012-03-30 2018-08-21 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants

Similar Documents

Publication Publication Date Title
JP2002092984A (en) Stamper, producing method thereof and plastic substrate
US6333089B1 (en) Substrate for information recording disk, mold and stamper for injection molding substrate, and method for making stamper, and information recording disk
CN1222941C (en) Optical recording medium
JP4147753B2 (en) Optical information recording medium, master for optical information recording medium, and manufacturing method thereof
JP2506375B2 (en) Method of manufacturing optical recording medium
EP0204255A2 (en) Optical recording disc and method of the production thereof
US20040241375A1 (en) Optical recording medium
JPH05200757A (en) Flexible stamper, roll-shaped stamper and production of substrate for optical data recording medium
US7619962B2 (en) Optical disc and method of producing the same
JP2003077184A (en) Optical recording medium and its manufacturing method
CN1768382A (en) Optical recording medium and process for producing the same
US20030185143A1 (en) Multi-layer rewriteable information storage medium
US20060134369A1 (en) Optical disc and method of producing the same
KR20040065474A (en) High stiffness optical disk and method for the same
JPH052779A (en) Production of stamper
JP2003187423A (en) Stamper, manufacturing method therefor, and substrate of information recording medium
JPH11192648A (en) Substrate for information recording disk, and mold and stamper for its injection molding, manufacture of stamper, and information recording disk
CN100385540C (en) Structure of single side double lager writable disposable optic disc and its producing mehtod
JPH05132793A (en) Manufacture of electroforming stamper for molding photorecording medium
KR20020064065A (en) High Density Optical Disk Having Reflecting Layer of Amorphous Materials
JPH0253235A (en) Information recording medium
TWI251829B (en) Optical recording medium and manufacturing method thereof
JPS63263644A (en) Optical recording and reproducing disk
JP2003248970A (en) Optical recording medium
CN100351932C (en) Rewritable disk and producing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070427