JP2002092984A - Stamper, producing method thereof and plastic substrate - Google Patents

Stamper, producing method thereof and plastic substrate

Info

Publication number
JP2002092984A
JP2002092984A JP2000281678A JP2000281678A JP2002092984A JP 2002092984 A JP2002092984 A JP 2002092984A JP 2000281678 A JP2000281678 A JP 2000281678A JP 2000281678 A JP2000281678 A JP 2000281678A JP 2002092984 A JP2002092984 A JP 2002092984A
Authority
JP
Japan
Prior art keywords
stamper
plastic substrate
current density
dm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000281678A
Other languages
Japanese (ja)
Inventor
Hideo Daimon
英夫 大門
Original Assignee
Hitachi Maxell Ltd
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd, 日立マクセル株式会社 filed Critical Hitachi Maxell Ltd
Priority to JP2000281678A priority Critical patent/JP2002092984A/en
Publication of JP2002092984A publication Critical patent/JP2002092984A/en
Application status is Withdrawn legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the variation of recording/reproducing output due to fine ruggedness existing on a plastic substrate used in a film surface incidence type optical recording medium. SOLUTION: In this stamper which is made by electroplating method and is used for injection molding of the plastic substrate for optical disk, the center line average roughness Ra of stamper back surface after the completion of electroplating is less than 1.5 μm.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、スタンパを用いて作製された光ディスク用プラスティク基板及び、光ディスク用プラスティク基板の射出成形用に使用されるスタンパに関する。 The present invention relates to the plus Thich substrate and a fabricated optical disk using a stamper relates stamper used for injection molding of the plus Thich optical disk substrate.

【0002】 [0002]

【従来の技術】マルチメディア時代の到来により、音楽や動画像、コンピュータのデータなどの大量の情報を記録再生することが可能な媒体として光記録媒体が広く利用されている。 With the advent of the Related Art Multimedia Age, music and moving images, the optical recording medium is widely used as a medium capable of recording and reproducing a large amount of information such as computer data. 光記録媒体は、CDやレーザーディスク(登録商標)のように情報の再生だけが可能な再生専用光記録媒体、CD-Rのように1度だけ記録が可能な追記型光記録媒体、何度でもデータの書き換え消去が可能な書換型光記録媒体に分類される。 Optical recording medium, CD or laser disc (registered trademark) information in the reproduction only possible read-only optical recording medium as, once recording is possible write-once type optical recording medium as CD-R, again But it is classified into rewritable erasable rewritable optical recording medium of the data.

【0003】また近年、取り扱う情報量の増加に伴い光記録媒体においてもその記録容量を一層増大することが要望されている。 [0003] Recently, to further increase its recording capacity in optical recording medium with an increase in the amount of information handled is desired. この要望に応えるための一手段として、ソリッドイマージョンレンズ(SIL)を搭載した浮上方ヘッドを用いて記録再生を行う方法が提案されている。 As a means to meet this demand, a method for recording and reproducing by using a floating lateral head mounted a solid immersion lens (SIL) is proposed. この方法によれば従来よりも小さな光スポット径で記録再生することが可能となるため、従来の光磁気記録媒体に比べて単位面積あたりの記録密度を約1桁高めることができる。 Since according to this method than before becomes possible to record and reproduce with a small light spot diameter can be increased by about one order of magnitude the recording density per unit area as compared with the conventional magneto-optical recording medium.

【0004】SILを用いて記録再生する場合には、SILから滲み出る近接場光を記録再生光に用いることができる。 [0004] When the recording and reproducing using the SIL, it is possible to use near-field light oozes from SIL to the recording and reproducing light. 近接場光は、光の波長の1/4程度の距離で減衰してしまうため、SILと記録層との間隔を記録再生光の波長の1/4以下にする必要がある。 Near-field light, since decays at a distance of about 1/4 of the wavelength of light, it is necessary to set the distance between the SIL and the recording layer to 1/4 or less of the wavelength of the recording and reproducing light. このため近接場光を用いる場合には、基板と反対側の薄膜積層面からレーザー光を入射する方法が採用されている。 Therefore in the case of using the near-field light, a method of incident is employed a laser beam from the thin film laminating surface of the substrate opposite. 薄層積層面からレーザー光を入射するため、近接場光を用いる光磁気記録媒体の積層順序も従来の媒体と異なり、通常は、透明基板上に、反射層、熱拡散層、記録層、誘電体層を順次積層した構造を有している。 Since the incident laser light from a thin layer lamination plane, stacking sequence of the magneto-optical recording medium using near-field light also differs from the conventional media, typically, on a transparent substrate, the reflective layer, thermal diffusion layer, a recording layer, a dielectric and a stacked sequentially body layer. またレーザー光のスポットをより小さく絞って記録密度を高めるため、高NAのレンズが使用される。 Also for increasing the recording density squeezed smaller spot of the laser beam, a high NA lens is used. 高NAのレンズを使用すると、基板の傾き Using lens having a high NA, the inclination of the substrate
(チルト)によるコマ収差や非点収差が増大する。 Coma and astigmatism by (tilt) increases. コマ収差と非点収差は基板の厚みに比例するため、高NAのレンズを使用する場合にはこれらの収差を抑えるため、使用する基板の厚さを薄くしたり、或いは近接場記録の様にレーザー光を膜面から入射させて記録再生を行う。 Since coma and astigmatism is proportional to the thickness of the substrate, since when using a lens of high NA suppressing these aberrations, or the thickness of the substrate used, or as near field recording for recording and reproducing by the incidence of the laser light from the film surface. 膜面入射方式では、基板厚みが限りなくゼロに近いため、上述した基板の傾きによるコマ収差や非点収差が抑えられる。 The film surface incident type, since the substrate thickness is close to zero as possible, coma and astigmatism can be suppressed due to inclination of the substrates described above. 従って、近接場記録を含めた膜面入射型の光記録は将来の高密度光記録に適した記録方式と言える。 Accordingly, the optical recording of near-field recording, including a film surface incident type can be said recording method suitable for high density optical recording in the future.

【0005】上述した様に近接場記録を含めた膜面入射方式は高密度光記録に適した記録方式である。 [0005] film surface incident type, including near-field recording as described above is a recording method suitable for high-density optical recording. しかしこの方式では、光ヘッドとディスク面との距離が従来の光ディスクに比較して狭い空隙で膜面上を浮上して記録再生を行うため、プラスチック基板上に存在する微少な凹凸によってハードディスクと同様に記録再生出力が変動する問題があった。 However, in this method, since the distance between the optical head and the disk surface for recording and reproducing a narrow gap in comparison flying over the film surface in a conventional optical disc, similar to the hard disk by fine irregularities present on the plastic substrate the recording and reproducing output there has been a problem that varies.

【0006】 [0006]

【発明が解決しようとする課題】本発明は、かかる問題を解決するためになされたものであり、膜面入射型光記録方式に使用されるプラスチック基板上に存在する微少な凹凸を低減する事を目的とし、更に詳しくはその様なプラスチック基板を作製するためのスタンパに関する。 [0008] The present invention, this problem has been made to solve the, possible to reduce the fine irregularities present on the plastic substrate used in the film-surface-incidence type optical recording system the purposes, more particularly to a stamper for producing such a plastic substrate.

【0007】 [0007]

【課題を解決するための手段】先ず、プラスチック基板上に存在する微少な凹凸について定義する。 Means for Solving the Problems First, define the fine irregularities present on the plastic substrate. 米国KLATen US KLATen
cor社のDISK PROFILER TENCOR-P12を用い、ダイヤモンド製、先端曲率半径2μmのスタイラスにより、荷重5m With cor's DISK PROFILER TENCOR-P12, diamond, by a stylus tip radius of curvature 2 [mu] m, the load 5m
g、走査速度400μm/s、走査幅20mmの条件でプラスチック基板上に存在する微少なうねりを測定する。 g, scan speed 400 [mu] m / s, a minute undulation present on the plastic substrate at the conditions of the scanning width 20mm measured. この測定条件下、20mmの走査幅の中で波長が45μm〜4.5mmの微小うねりを抽出し、それらのうねりの最大振幅をプラスチック基板上に存在する微少な凹凸と定義する。 The measurement conditions, the wavelength in the scan width of 20mm extracts the micro-waviness of 45Myuemu~4.5Mm, the maximum amplitude of their undulation is defined as the fine irregularities present on the plastic substrate.

【0008】本発明によれば、電解メッキ法で作製したスタンパ裏面の中心線平均粗さRaを1.5μm未満にする事により、プラスチック基板上に存在する微少な凹凸を低減させる事が出来る。 According to the present invention, the center line average roughness Ra of the stamper backside manufactured by the electrolytic plating method by which less than 1.5 [mu] m, it is possible to reduce the fine irregularities present on the plastic substrate.

【0009】射出成形されたプラスチック基板上に存在する微少な凹凸は、以下のメカニズムによって形成されると考えられる。 [0009] fine irregularities present in the injection molded plastic substrate is believed to be formed by the following mechanism. メッキ終了後のスタンパの裏面は通常研磨装置によって研磨される。 The rear surface of the stamper after plating termination is polished by conventional polishing apparatus. しかし、メッキ後のスタンパ裏面の中心線平均粗さRaが1.5μmより大きい場合、 However, when the center line average roughness Ra of the stamper backside after plating is greater than 1.5 [mu] m,
スタンパの裏面研磨によっても十分な平滑性が得られない。 Sufficient smoothness can not be obtained by the polishing of the back surface of the stamper. この様なスタンパを使用してプラスチック基板を射出成型すると、成型中の高い圧力により、裏面の表面粗さが弾性的に信号面に伝播し、微小な凹凸がプラスチック基板に転写され、これがプラスチック基板上に存在する微少な凹凸になると考えられる。 When a plastic substrate is injection molded using such a stamper, a high pressure during molding, the surface roughness of the back side is propagated to the elastically signal surface, fine irregularities are transferred onto the plastic substrate, which plastic substrates It is considered to be a very small irregularities present in the above. 従って、プラスチック基板上に存在する微少な凹凸を低減させるためには、 Therefore, in order to reduce the fine irregularities present on the plastic substrate,
メッキが終了したスタンパ裏面の表面粗さを一定値未満に抑える必要がある。 It is necessary to suppress the surface roughness of the stamper backside plating is completed below a certain value. 発明者が鋭意検討を行った結果、 A result of inventors have conducted extensive studies,
メッキ終了後のスタンパ裏面の中心線平均粗さRaを1.5 The center line average roughness Ra of the stamper backside after plating ends 1.5
μm未満に抑える事により、射出成形されたプラスチック基板上に存在する微少な凹凸を35nm pp未満にする事が出来る事を見出した。 By kept below [mu] m, the fine irregularities present on the plastic substrate which is injection molded has found that it is possible to less than 35 nm pp. メッキ終了後のスタンパ裏面の Of the stamper back after plating the end
Raは0.5μm未満である事がより好ましく、この場合にはプラスチック基板上に存在する微少な凹凸を25nm pp以下に抑えることが出来る。 Ra is more preferably less than 0.5 [mu] m, in this case, it is possible to suppress the fine irregularities present on the plastic substrate below 25 nm pp.

【0010】メッキ終了後のスタンパ裏面の中心線平均粗さRaを1.5μm未満に抑えるためには、スタンパメッキ中の電流密度を7.5A/dm 2以下にする必要がある。 [0010] The center line average roughness Ra of the stamper backside after plating ends in order to reduce to less than 1.5μm, it is necessary to set the current density in the stamper plating below 7.5A / dm 2. スタンパのメッキには、通常スルファミン酸ニッケル浴が使用される。 The plating of the stamper, usually a nickel sulfamate bath is used. スルファミン酸ニッケル浴に1,3,6-ナフタレントリスルフォン酸ソーダ、サッカリン、p-トルエンスルフォン酸及びベンゼンスルフォン酸等の光沢剤を添加しない場合、7.5A/dm 2以下の電流密度でスタンパをメッキすると、結晶粒が膜面垂直方向にそろって成長する。 Nickel sulfamate bath 1,3,6 naphthalene tris sulfone sodium, saccharin, p- toluenesulfonic acid, and without the addition of brightener such as benzenesulfonic acid, plating a stamper in the following current density 7.5A / dm 2 Then, the crystal grains grow aligned in a direction perpendicular to the film surface. このため、メッキ終了後のスタンパ裏面の中心線平均粗さ Therefore, the center line average roughness of the stamper backside after plating ends
Raが1.5μm未満に抑えられると考えられる。 Ra is considered to be suppressed to less than 1.5μm. また、スルファミン酸ニッケル浴に1,3,6-ナフタレントリスルフォン酸ソーダ、サッカリン、p-トルエンスルフォン酸及びベンゼンスルフォン酸等の光沢剤を添加した場合、スタンパを電流密度7.5A/dm 2以下でメッキすると、スタンパ材質の結晶粒が微細化し、その結果スタンパ裏面の中心線平均粗さRaが1.5μm未満に抑えられると考えられる。 Further, the nickel sulfamate bath 1,3,6 naphthalene tris sulfone sodium, saccharin, p- toluenesulfonic acid and the case of adding gloss agent such as benzenesulfonic acid, a stamper current density 7.5A / dm 2 or less When plating, crystal grains become finer stamper material, resulting centerline average roughness Ra of the stamper backside is considered to be suppressed to less than 1.5 [mu] m.

【0011】メッキ浴中に光沢剤を添加すると、光沢剤分子が結晶成長点に吸着して、その結晶成長を抑える効果がある。 [0011] The addition of brightener in the plating bath, brighteners molecules are adsorbed on crystal growth point, the effect of suppressing the crystal growth. 従って、光沢剤をメッキ浴中に添加してメッキを行うと、結晶粒が微細化し、スタンパ裏面の粗さを抑えることができる。 Therefore, when the plating by adding a brightener in the plating bath, can be crystal grains finer and suppress the roughness of the stamper backside.

【0012】上記の条件でメッキしたスタンパを用いてプラスチック基板を射出成型すると、プラスチック基板上に存在する微少な凹凸は35nm pp未満に抑えられる。 [0012] The plastic substrate is injection molded using a stamper which is plated with the above conditions, fine irregularities present on the plastic substrate can be suppressed to less than 35 nm pp.
電解メッキの電流密度を5A/dm 2以下で行うことが好ましい。 It is preferable to perform the current density of the electrolytic plating 5A / dm 2 or less. 電流密度を5A/dm 2以下にすれば、スタンパ裏面の中心線平均粗さRaは0.5μm以下となり、このスタンパを用いて射出成型したプラスチック基板上に存在する微少な凹凸は25nm pp以下に抑えられる。 If the current density of 5A / dm 2 below, the center line average roughness Ra of the stamper backside becomes 0.5μm or less, fine irregularities present in the injection molded plastic substrate using this stamper kept below 25 nm pp It is.

【0013】一方、スタンパメッキ中の電流密度を7.5A [0013] On the other hand, 7.5A current density in the stamper plating
/dm 2より大きくすると、スルファミン酸ニッケル浴に1, When greater than / dm 2, 1 to nickel sulfamate bath,
3,6-ナフタレントリスルフォン酸ソーダ、サッカリン、 3,6 naphthalene tris sulfone sodium, saccharin,
p-トルエンスルフォン酸及びベンゼンスルフォン酸等の光沢剤を添加しない場合、スタンパ材質の結晶粒は樹枝状となり、その結晶粒は膜中いたる方向に成長する。 Without the addition of p- toluenesulfonic acid and brighteners, such as benzenesulfonic acid, the crystal grains of the stamper material becomes dendritic, the crystal grains grow in the direction throughout the film. その結果、スタンパ裏面のRaは1.5μm以上の大きな値となる。 As a result, Ra stamper backside becomes a large value of more than 1.5 [mu] m. また、スルファミン酸ニッケル浴に1,3,6-ナフタレントリスルフォン酸ソーダ、サッカリン、p-トルエンスルフォン酸及びベンゼンスルフォン酸等の光沢剤を添加した場合、スタンパを7.5A/dm 2より大きな電流密度でメッキすると結晶粒が粗大化し、その結果スタンパ裏面の Further, 1,3,6-naphthalene tris sulfone sodium nickel sulfamate bath, saccharin, p- toluenesulfonic acid and the case of adding gloss agent such as benzenesulfonic acid, higher current density than 7.5A / dm 2 stampers in that the plating coarse grains, resulting in the stamper backside
Raが1.5μm以上の大きな値となる。 Ra is a large value of more than 1.5μm. これらの条件でメッキしたスタンパを用いてプラスチック基板を射出成型すると、プラスチック基板上に存在する微少な凹凸は35nm When a plastic substrate is injection molded using a plated stamper in these conditions, fine irregularities present on the plastic substrate 35nm
pp以上の大きな値になる。 a large value of more than pp.

【0014】上述した様に、7.5A/dm 2以下の電流密度でメッキされ、その裏面の中心線平均粗さRaが1.5μm未満のスタンパを用いてプラスチック基板を射出成型すると、プラスチック基板上に存在する微少な凹凸を35nm [0014] As described above, are plated at a current density of 7.5A / dm 2 or less, the center line average roughness Ra of the back surface of the plastic substrate to injection molding using a stamper of less than 1.5 [mu] m, on a plastic substrate 35nm a minute irregularities present
pp未満に抑えることが出来る。 It can be suppressed to less than pp. しかし、一般に7.5A/dm However, in general, 7.5A / dm
2以下の低電流密度でスタンパをメッキすると、スタンパに圧縮応力が発生する。 When plating the stamper at a low current density of 2 or less, compressive stress is generated in the stamper. 圧縮応力が大きいと、成型機の金型にスタンパを装着する事が出来なくなる問題を引き起こす。 When the compressive stress is large, cause it is a problem that can not be mounted a stamper in the mold of the molding machine. このため、実際にはスタンパ全膜厚の90%〜9 For this reason, in fact 90% of the stamper total film thickness is to 9
5%を7.5A/dm 2以下の低電流密度でメッキし、残部を7.5A 5% were plated at a low current density of 7.5A / dm 2 or less, 7.5A the remainder
/dm 2より大きい高電流密度でメッキする事が好ましい。 It is preferably plated with a larger high current density / dm 2.
7.5A/dm 2より大きい高電流密度でメッキを行うと、スタンパに引っ張り応力を発生させる事が出来るため、7.5A Doing plated at 7.5A / dm 2 larger high current densities, since it is able to generate a tensile stress on the stamper, 7.5A
/dm 2以下の低電流密度でメッキにより発生した圧縮応力をキャンセルさせる事が出来る。 / dm 2 or less of low current density compression stress generated by plating in can be canceled. この時、電流密度の上昇によってスタンパ裏面の中心線平均粗さRaは増大するが、スタンパの90~95%を7.5A/dm 2以下の低電流密度でメッキしているため、最終的なスタンパ裏面の中心線平均粗さRaを1.5μm未満にする事が出来る。 At this time, the center line average roughness Ra of the stamper backside by increasing the current density increases, since the plating of 90-95% of the stamper at a low current density of 7.5A / dm 2 or less, the final stamper the center line average roughness Ra of the back surface can be less than 1.5 [mu] m.

【0015】スタンパの電解メッキする材料としては、 [0015] As a material for electrolytic plating of the stamper,
Ni,NiCo,NiP,NiB,CoAg等の材料が挙げられるがその中でもNiを用いることがより好ましい。 Ni, NiCo, NiP, NiB, there may be mentioned materials such CoAg it is more preferable to use a Ni among them.

【0016】スタンパ材料としてNiを使用した例を以下に示す。 [0016] An example of using Ni as a stamper material below. ガラス原盤上にNiを電解メッキするためには、 In order to electrolytic plating Ni on the glass master disk,
導電性の薄膜がガラス原盤上に形成される。 Conductive thin film is formed on the glass master. 一般的には、スパッタ法や無電解Niメッキ法により、30〜100nm In general, by a sputtering method, a non-electrolytic Ni plating method, 30~100nm
のNi或いはNiP薄膜がガラス原盤上に設けられる。 Ni or NiP films are provided on the glass master. これらの導電性薄膜は厚さが30〜100nmと薄いため、10分未満の短時間で電流密度を上昇させると発生するジュール熱によって膜切れが生じ電解メッキが行えなくなる。 Because these conductive thin film thickness is as thin as 30 to 100 nm, film breakage by Joule heat generated with increases the current density electrolytic plating can not be performed occurs in a short time of less than 10 minutes. このため、Niメッキ時の電流密度を10分以上かけて7.5A/d Therefore, the current density during Ni plating over 10 minutes 7.5A / d
m 2以下の所定の電流密度に上昇させる。 m 2 is raised to the following predetermined current density. より好ましくは More preferably
35分以上かけて7.5A/dm 2以下の所定の電流密度に上昇させる。 Over 35 minutes or more it is increased to a predetermined current density of 7.5A / dm 2 or less. この方法により、導電性Ni或いはNiP薄膜上に数ミクロンのNiが成長するため、この後7.5A/dm 2以下の所定の電流密度に上昇させても膜切れは起こらず、安定した電解メッキが行える。 By this method, the growing number microns Ni on a conductive Ni or the NiP film, film breakage does not occur even when raised to a predetermined current density of the rear 7.5A / dm 2 or less, a stable electrolytic plating It can be carried out.

【0017】スタンパのメッキ浴には、通常スルファミン酸ニッケル浴を使用する。 [0017] The plating bath of the stamper, use the normal nickel sulfamate bath. スルファミン酸ニッケル浴はスルファミン酸ニッケル、塩化ニッケル及び硼酸で構成されるが、場合によって1,3,6-ナフタレントリスルフォン酸ソーダ、サッカリン、p-トルエンスルフォン酸及びベンゼンスルフォン酸等の光沢剤を添加しても良い。 Added nickel sulfamate bath is nickel sulfamate, and nickel chloride, and boric acid, optionally 1,3,6 naphthalene tris sulfone sodium, saccharin, a p- toluenesulfonic acid, and brighteners, such as benzenesulfonic acid it may be.
添加濃度は例えば全Ni濃度に対して1/2,500前後である。 Addition concentration of 1 / 2,500 forth relative total Ni concentration, for example.

【0018】 [0018]

【発明の実施の形態】以下、本発明の実施例について具体的に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, concrete examples of the present invention will be described.

【0019】(実施例1)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0019] (Example 1) electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Then with sulfamic acid bath, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を2.5 A/dm Current density 2.5 A / dm 2まで35分かけて上昇させ、次に電流密度を2.5 A/dm 2で275μmの厚さ迄メッキし、残部の25μmを22.3 A/dm 2の高電流密度でメッキした。 2 to raised over 35 minutes, then plated with a current density of 2.5 A / dm 2 until a thickness of 275 .mu.m, were plated the remainder of 25μm at a high current density of 22.3 A / dm 2.

【0020】(実施例2)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0020] (Example 2) electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Then with sulfamic acid bath, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を5 A/dm 2まで35分かけて上昇させ、次に電流密度5 A/dm 2で275μmの厚さ迄メッキし、残部の25μmを22.3 A/dm 2の高電流密度でメッキした。 The current density is raised over a period of 35 minutes to 5 A / dm 2 and then plated at a current density of 5 A / dm 2 until a thickness of 275 .mu.m, were plated the remainder of 25μm at a high current density of 22.3 A / dm 2 .

【0021】(実施例3)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0021] (Example 3) Electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Then with sulfamic acid bath, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を7.5 A/dm Current density 7.5 A / dm 2まで35分かけて上昇させ、次に電流密度7.5 A/dm 2で275μmの厚さ迄メッキし、残部の25μmを22.3 A/dm 2の高電流密度でメッキした。 Over 35 minutes to 2 raised to and then plated at a current density of 7.5 A / dm 2 until a thickness of 275 .mu.m, were plated the remainder of 25μm at a high current density of 22.3 A / dm 2.

【0022】(実施例4)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0022] (Example 4) electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、光沢剤として1,3,6-ナフタレントリスルフォン酸ソーダを Then with sulfamic acid bath, as brightener 1,3,6-naphthalene tris sulfone sodium
Ni全濃度1.9mol/Lに対して7.3×10 -4 mol/Lの濃度で添加し、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Ni was added at a concentration of 7.3 × 10 -4 mol / L relative to the total concentration 1.9 mol / L, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を5 A/dm 2まで35 The current density up to 5 A / dm 2 35
分かけて上昇させ、次に電流密度5 A/dm 2で275μmの厚さ迄メッキし、残部の25μmを22.3 A/dm 2の高電流密度でメッキした。 Min over raised, then plated at a current density of 5 A / dm 2 until a thickness of 275 .mu.m, were plated the remainder of 25μm at a high current density of 22.3 A / dm 2.

【0023】(実施例5)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0023] (Example 5) electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、光沢剤として1,3,6-ナフタレントリスルフォン酸ソーダを Then with sulfamic acid bath, as brightener 1,3,6-naphthalene tris sulfone sodium
Ni全濃度1.9mol/Lに対して7.3×10 -4 mol/Lの濃度で添加し、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Ni was added at a concentration of 7.3 × 10 -4 mol / L relative to the total concentration 1.9 mol / L, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を7.5 A/dm 2まで3 Current density up to 7.5 A / dm 2 3
5分かけて上昇させ、次に電流密度7.5 A/dm 2で275μmの厚さ迄メッキし、残部の25μmを22.3 A/dm 2の高電流密度でメッキした。 Over 5 minutes is raised, then plated at a current density of 7.5 A / dm 2 until a thickness of 275 .mu.m, were plated the remainder of 25μm at a high current density of 22.3 A / dm 2.

【0024】(比較例1)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0024] The Comparative Example 1 Electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Then with sulfamic acid bath, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を10 A/dm 2まで35分かけて上昇させ、次に電流密度の10 A/dm 2で300μm迄メッキした。 Current density is raised over a period of 35 minutes to 10 A / dm 2, it was plated with 10 A / dm 2 until 300μm of then current density.

【0025】(比較例2)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0025] The Comparative Example 2 Electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Then with sulfamic acid bath, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を15 A/dm 2まで35分かけて上昇させ、次に電流密度の15 A/dm 2で300μm迄メッキした。 Current density is raised over a period of 35 minutes to 15 A / dm 2, and plating in 15 A / dm 2 until 300μm of then current density.

【0026】(比較例3)無電解Niメッキ法により、直径200mm、厚さ6mmのガラス原盤上に導電膜として70nmの [0026] The (Comparative Example 3) Electroless Ni plating, diameter 200 mm, a thickness of 6mm on the glass master disc 70nm as a conductive film
NiP薄膜を設けた。 The NiP thin film is provided. その後スルファミン酸浴を用い、以下の電流密度プロファイルに従って厚さ300μmのスタンパを電解メッキした。 Then with sulfamic acid bath, and electroplating the stamper thickness 300μm according to the following current density profile. 電流密度を22.3 A/dm 2まで35分かけて上昇させ、次に電流密度の22.3 A/dm 2で300μm迄メッキした。 Current density is raised over 35 minutes to 22.3 A / dm 2, and plating with 22.3 A / dm 2 until 300μm of then current density.

【0027】実施例1〜5及び比較例1〜3で得られたスタンパの裏面の中心線平均粗さRaをMitutoyo社の接触式表面粗さ計SJ-201を用いて測定した。 [0027] was measured with reference to Examples 1 to 5 and contacting the center line average roughness Ra of the back surface of the obtained stamper in Comparative Examples 1 to 3 of Mitutoyo Corporation type surface roughness meter SJ-201. スタイラスは先端曲率半径2μmのダイヤモンドで、スタンパ半径60〜65mmの位置で4点測定した。 Stylus with diamond tip curvature radius of 2 [mu] m, measured 4-point at the position of the stamper radius 60~65Mm. その後、実施例1〜5及び比較例1〜 Then, Examples 1 to 5 and Comparative Examples 1 to
3でメッキしたスタンパをガラス原盤から剥離しない状態で裏面研磨し、その後スタンパをガラス原盤から剥離し、所定のサイズに打ち抜いた。 The plated stamper 3 polishing the back surface with no peeled from the glass master disk, then a stamper is peeled off from the glass master and punched into a predetermined size. これらのスタンパを射出成形機の金型に装填し、ポリカーボネイト樹脂材料を金型内に射出成形することによりポリカーボネイト基板を作製した。 These stamper was loaded into a mold of an injection molding machine, the polycarbonate substrate was prepared by injection molding a polycarbonate resin material into the mold. 得られたプラスチック基板上に存在する微少な凹凸を米国KLA Tencor社のDISK PROFILER TENCOR-P The fine irregularities present in the resultant plastic substrate US KLA Tencor Corporation DISK PROFILER TENCOR-P
12を用いて測定した。 12 was measured using a. 結果を表1にまとめて示す。 The results are summarized in Table 1.

【0028】 [0028]

【表1】 [Table 1]

【0029】表から明らかな様に、スタンパを7.5A/dm 2 [0029] As is apparent from the table, a stamper 7.5A / dm 2
以下の電流密度でメッキした場合、スタンパ裏面のRaは When plated in the following current densities, Ra according stamper backside
1.5μm未満の値となり、これらのスタンパを用いて成形したプラスチック基板上に存在する微少な凹凸は35 nm Becomes a value less than 1.5 [mu] m, fine irregularities are 35 nm present on the plastic substrate obtained by molding using these stampers
pp未満に抑えられる。 It is reduced to less than pp. また、スタンパを5A/dm 2の電流密度でメッキした場合、スタンパ裏面のRaは0.5μm未満の値となり、これらのスタンパを用いて成形したプラスチック基板上に存在する微少な凹凸は25 nm pp未満に抑えられる。 Also, when the plated stamper at a current density of 5A / dm 2, Ra of the stamper backside becomes a value of less than 0.5 [mu] m, fine irregularities present on the molded plastic substrate using these stampers less than 25 nm pp It is reduced to. 実施例のスタンパを用いてプラスチック基板を射出成形すれば、プラスチック基板上に存在する微少な凹凸が35 nm pp未満に抑えられ、その結果記録再生時の出力変動を最小限に抑える事が出来る。 If injection molding a plastic substrate using a stamper embodiment, fine irregularities present on the plastic substrate is suppressed to less than 35 nm pp, resulting recording reproduction of the output fluctuation of can be minimized.

【0030】以上、本発明について具体的に説明してきたが、本発明によるスタンパは光磁気記録媒体に限定されず、相変化型の光記録媒体や有機色素を記録層に有する追記型の光記録媒体、再生専用光記録媒体などの任意の光記録媒体に適用することができる。 [0030] While we have specifically described the present invention, a stamper according to the present invention is not limited to the magneto-optical recording medium, optical recording of write-once with a phase change type optical recording medium and an organic dye in the recording layer medium, can be applied to any optical recording medium such as a read-only optical recording medium.

【0031】 [0031]

【発明の効果】本発明のスタンパでは、スタンパメッキ時の電流密度を7.5A/dm 2以下とし、メッキ後のスタンパ裏面の中心線平均粗さRaを1.5μm未満とする事ができる。 The stamper of the present invention, the current density during stamper plating and 7.5A / dm 2 or less, the center line average roughness Ra of the stamper backside after plating can be less than 1.5 [mu] m. その結果、本発明のスタンパを用いて射出成形したプラスチック基板上に存在する微少な凹凸を35 nm pp未満にする事が可能となり、記録再生時の出力変動を抑える事が出来る。 As a result, it becomes possible to less than 35 nm pp a minute irregularities present in the injection molded plastic substrate using a stamper of the present invention, it is possible to suppress the output variation during recording and reproduction.

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 電解メッキ法で作製され、光ディスク用プラスチック基板の射出成形用に使用されるスタンパにおいて、電解メッキ終了後のスタンパ裏面の中心線平均粗さRaが1.5μm未満である事を特徴とするスタンパ。 1. A manufactured by the electrolytic plating method, characterized in stamper which is used for injection molding of the plastic substrate for an optical disc, it centerline average roughness Ra of the stamper backside after the electrolytic plating termination is less than 1.5μm stamper to be.
  2. 【請求項2】 スタンパの材質がNiであることを特徴とする請求項1記載のスタンパ。 2. A stamper according to claim 1, wherein the material of the stamper is characterized in that the Ni.
  3. 【請求項3】 電解メッキ法で作製され、電解メッキ終了後のスタンパ裏面の中心線平均粗さRa1.5μm未満になるように構成されたスタンパの製造方法において、スタンパを電解メッキする際の電流密度が7.5A/dm 2以下である事を特徴とするスタンパの製造方法。 3. manufactured by the electrolytic plating method, in the configuration process for the preparation of the stamper so that the center line average roughness less than Ra1.5μm stamper backside after the electrolytic plating completion, the current at the time of electrolytic plating the stamper method of manufacturing a stamper having a density and wherein the at 7.5A / dm 2 or less.
  4. 【請求項4】 請求項3記載のスタンパの製造方法において、電解メッキ時の電流密度を10分以上かけて7.5A/d 4. The method for producing a stamper according to claim 3, the current density during electroplating over 10 minutes 7.5A / d
    m 2以下の所定の電流密度に上昇させ、この後7.5A/dm 2以下の所定の電流密度で全スタンパ厚みの90%〜95%を電解メッキし、その後スタンパの残部を7.5A/dm 2より大きい電流密度でメッキする事を特徴とするスタンパの製造方法。 m 2 raised to the following predetermined current density, 90% to 95% of the rear 7.5A / dm 2 or less for a given current density in all the stamper thickness and electroplating, after which the remainder of the stamper 7.5A / dm 2 method of manufacturing a stamper, characterized in that plated with higher current density.
  5. 【請求項5】 請求項1記載のスタンパを用いて射出成形されたプラスチック基板であって、プラスチック表面に存在する微少な凹凸が35nm pp未満である事を特徴とするプラスチック基板。 5. A plastic substrate which is injection molded using a stamper according to claim 1, a plastic substrate, characterized in that fine irregularities present on the plastic surface is less than 35 nm pp.
JP2000281678A 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate Withdrawn JP2002092984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281678A JP2002092984A (en) 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281678A JP2002092984A (en) 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate

Publications (1)

Publication Number Publication Date
JP2002092984A true JP2002092984A (en) 2002-03-29

Family

ID=18766297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281678A Withdrawn JP2002092984A (en) 2000-09-18 2000-09-18 Stamper, producing method thereof and plastic substrate

Country Status (1)

Country Link
JP (1) JP2002092984A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195733B2 (en) 2004-04-27 2007-03-27 The Board Of Trustees Of The University Of Illinois Composite patterning devices for soft lithography
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7557367B2 (en) 2004-06-04 2009-07-07 The Board Of Trustees Of The University Of Illinois Stretchable semiconductor elements and stretchable electrical circuits
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7824584B2 (en) 2008-05-14 2010-11-02 Tdk Corporation Method of manufacturing stamper, method of manufacturing resin molded article, and stamper
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US8367035B2 (en) 2006-03-03 2013-02-05 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US8552299B2 (en) 2008-03-05 2013-10-08 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US8722458B2 (en) 2007-01-17 2014-05-13 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US8865489B2 (en) 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US8946683B2 (en) 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195733B2 (en) 2004-04-27 2007-03-27 The Board Of Trustees Of The University Of Illinois Composite patterning devices for soft lithography
US8754396B2 (en) 2004-06-04 2014-06-17 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7557367B2 (en) 2004-06-04 2009-07-07 The Board Of Trustees Of The University Of Illinois Stretchable semiconductor elements and stretchable electrical circuits
US7622367B1 (en) 2004-06-04 2009-11-24 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US10204864B2 (en) 2004-06-04 2019-02-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7982296B2 (en) 2004-06-04 2011-07-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8039847B2 (en) 2004-06-04 2011-10-18 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US9768086B2 (en) 2004-06-04 2017-09-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8198621B2 (en) 2004-06-04 2012-06-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
US9761444B2 (en) 2004-06-04 2017-09-12 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9515025B2 (en) 2004-06-04 2016-12-06 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8394706B2 (en) 2004-06-04 2013-03-12 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US8440546B2 (en) 2004-06-04 2013-05-14 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9450043B2 (en) 2004-06-04 2016-09-20 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9324733B2 (en) 2004-06-04 2016-04-26 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US8729524B2 (en) 2004-06-04 2014-05-20 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US8664699B2 (en) 2004-06-04 2014-03-04 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9105555B2 (en) 2004-06-04 2015-08-11 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8367035B2 (en) 2006-03-03 2013-02-05 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
US8722458B2 (en) 2007-01-17 2014-05-13 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US9117940B2 (en) 2007-01-17 2015-08-25 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US9601671B2 (en) 2007-01-17 2017-03-21 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US8905772B2 (en) 2008-03-05 2014-12-09 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US10292261B2 (en) 2008-03-05 2019-05-14 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US10064269B2 (en) 2008-03-05 2018-08-28 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US8552299B2 (en) 2008-03-05 2013-10-08 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US7824584B2 (en) 2008-05-14 2010-11-02 Tdk Corporation Method of manufacturing stamper, method of manufacturing resin molded article, and stamper
US8946683B2 (en) 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8536667B2 (en) 2008-10-07 2013-09-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US9647171B2 (en) 2009-05-12 2017-05-09 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US8865489B2 (en) 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US9986924B2 (en) 2010-03-17 2018-06-05 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US10052066B2 (en) 2012-03-30 2018-08-21 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer

Similar Documents

Publication Publication Date Title
US6366541B1 (en) Optical recording medium with solid protective layer having self-lubricating property
US5846626A (en) Optical recording medium and method of producing same
KR950007299B1 (en) Optical disk productionn method for lavel layer inserting
EP0549237A2 (en) Optical disk storage system and head apparatus therefor
EP0584707A2 (en) Laminate and wear-resistant thin-film magnetic head assembly formed thereon
US20030219630A1 (en) Perpendicular magnetic recording medium
US6821653B2 (en) Magnetic recording medium, process for producing the same, and magnetic recording and reproducing apparatus
US9601135B2 (en) Interlayer for device including NFT and cladding layers
US7724470B2 (en) Thermally assisted recording of magnetic media using an optical resonant cavity and nano-pin power delivery device
KR100647152B1 (en) Nanoholes and production thereof, magnetic recording media and production thereof, and magnetic recording apparatus and method
US5768075A (en) Disk medium w/magnetically filled features aligned in rows and columns
US7629021B2 (en) Method for producing a stamper
US6020060A (en) Magnetic recording medium, process for producing the same and magnetic disk device
CN1340187A (en) Data storage media
US6333089B1 (en) Substrate for information recording disk, mold and stamper for injection molding substrate, and method for making stamper, and information recording disk
KR920001983B1 (en) Thin film media for high density longitudinal magnetic recording
JP2002050031A (en) Multiple textured layer
CN87106610A (en) Polymere substrate for making lasser disc records and lasser disc records thereby
US20080117727A1 (en) Head, head gimbal assembly and information recording apparatus
JP2004178794A (en) Vertical magnetic discrete track recording disk
JP2004247010A (en) Magnetic disk
US20020187368A1 (en) Magnetic recording medium and a method of manufacture thereof
JP2680591B2 (en) Method for manufacturing an optical memory element
JP2984443B2 (en) Master holder and electroforming method of the stamper electroforming apparatus
EP0643385A2 (en) Magnetic recording medium, magnetic head and magnetic recording apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070427