JP2002092828A - Magnetoresistive effect type thin film magnetic head - Google Patents
Magnetoresistive effect type thin film magnetic headInfo
- Publication number
- JP2002092828A JP2002092828A JP2000282177A JP2000282177A JP2002092828A JP 2002092828 A JP2002092828 A JP 2002092828A JP 2000282177 A JP2000282177 A JP 2000282177A JP 2000282177 A JP2000282177 A JP 2000282177A JP 2002092828 A JP2002092828 A JP 2002092828A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- sensor
- layer
- magnetic head
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 104
- 239000010409 thin film Substances 0.000 title claims abstract description 23
- 230000000694 effects Effects 0.000 title claims abstract description 12
- 230000005381 magnetic domain Effects 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 31
- 239000000956 alloy Substances 0.000 claims description 31
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 10
- 229910001120 nichrome Inorganic materials 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 101100442776 Mus musculus Decr2 gene Proteins 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 230000005330 Barkhausen effect Effects 0.000 abstract description 20
- 230000000087 stabilizing effect Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 53
- 230000005415 magnetization Effects 0.000 description 24
- 229910000889 permalloy Inorganic materials 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 11
- 239000012535 impurity Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910019222 CoCrPt Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910018979 CoPt Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気ディスク装置
等に用いる記録再生複合型薄膜磁気ヘッドに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined read / write type thin film magnetic head used in a magnetic disk drive or the like.
【0002】[0002]
【従来の技術】近年、磁気ディスク装置等の記録密度の
高密度化に伴い記録再生兼用のインダクティブ型磁気ヘ
ッドに代えて、記録動作を従来のインダクティブ型磁気
ヘッド、記録の読み出しを磁気抵抗効果(MR)センサ
を用いて行う記録再生複合型薄膜磁気ヘッド(以下、M
Rヘッドと略す)が用いられる様になってきた。最近で
は特に、外部信号磁界に応じて磁化回転する強磁性層
(自由層)と、電流を流す為の非磁性導電層と、強磁性
体と反強磁性層を積層してその界面でのカップリングに
より強磁性体の磁化が一方向に固定されている強磁性層
(固定層)と、を順に積層した多層膜からなるスピンバ
ルブ膜に代表される巨大磁気抵抗効果(GMR)膜を利
用したGMRヘッド、さらには非磁性導電層の代りにア
ルミナなどに代表される絶縁層を使用しそのトンネル効
果によってさらに大きな磁気抵抗変化を選られるTMR
膜ヘッドが次世代のヘッドとして有望視されている。2. Description of the Related Art In recent years, with the increase in recording density of magnetic disk devices and the like, instead of an inductive magnetic head for both recording and reproduction, a conventional inductive magnetic head for recording has been used, and a read / write operation of a recording has a magnetoresistance effect. MR) sensor using a read / write combined thin film magnetic head (hereinafter referred to as M
R head). In recent years, in particular, a ferromagnetic layer (free layer) that rotates in accordance with an external signal magnetic field, a nonmagnetic conductive layer for passing a current, a ferromagnetic material and an antiferromagnetic layer are stacked, and a cup is formed at an interface between them. A giant magnetoresistive (GMR) film typified by a spin valve film composed of a multilayer film in which a ferromagnetic layer (fixed layer) in which the magnetization of a ferromagnetic material is fixed in one direction by a ring and a multilayer film in which layers are sequentially stacked is used. A GMR head, and a TMR in which an insulating layer typified by alumina or the like is used in place of the nonmagnetic conductive layer, and a greater magnetoresistance change can be selected by the tunnel effect.
Membrane heads are promising as next-generation heads.
【0003】スピンバルブ膜に代表されるGMRヘッド
において、しばしば出力変動、非対称性変動やバルクハ
ウゼンノイズといった再生波形の乱れが観測されるが、
これは自由層の磁区構造が不安定な為に起こると考えら
れている。これを防止する為に自由層の両端部に永久磁
石を配置しその発生する磁界によって自由層の磁化を一
方向に揃えることで安定な磁区構造を実現し、出力変動
やバルクハウゼンノイズを抑制することができる。In a GMR head typified by a spin valve film, a reproduced waveform disorder such as output fluctuation, asymmetry fluctuation and Barkhausen noise is often observed.
This is considered to occur because the magnetic domain structure of the free layer is unstable. In order to prevent this, permanent magnets are arranged at both ends of the free layer, and the magnetization of the free layer is aligned in one direction by the generated magnetic field, thereby realizing a stable magnetic domain structure and suppressing output fluctuation and Barkhausen noise. be able to.
【0004】また、自由層の読み出しトラック幅の外側
に反強磁性層を積層し、その界面での交換結合によって
自由層の磁化を一方向に安定化させ、出力変動、非対称
性変動やバルクハウゼンノイズを抑制することができる
と考えられてきた。一般的に前者はハードバイアス型と
呼ばれ、後者は交換結合バイアス型(Exchange
bias型)と呼ばれている。Further, an antiferromagnetic layer is stacked outside the read track width of the free layer, and the magnetization of the free layer is stabilized in one direction by exchange coupling at the interface, thereby causing output fluctuation, asymmetry fluctuation, Barkhausen fluctuation and the like. It has been thought that noise can be suppressed. Generally, the former is called a hard bias type, and the latter is an exchange coupling bias type (Exchange).
Bias type).
【0005】しかしながら、ハードバイアス型の磁気ヘ
ッドでは、自由層の両端部に配置している永久磁石の磁
界による自由層の磁化状態の安定化のみでは出力変動、
非対称性変動やバルクハウゼンノイズを抑制できないこ
とが分かってきた。However, in the hard bias type magnetic head, output fluctuations occur only by stabilizing the magnetization state of the free layer by the magnetic field of the permanent magnets disposed at both ends of the free layer.
It has been found that asymmetry fluctuation and Barkhausen noise cannot be suppressed.
【0006】出力変動、非対称性変動やバルクハウゼン
ノイズを抑制する為には、自由層の磁気特性を制御する
必要がある。実際の磁気ヘッドではスライダーチップに
加工する祭にGMRセンサー部分に異方的な応力がかか
る為、自由層の磁歪定数をある適正な値に制御すること
が必要である。本発明者らの調査・研究によると、出力
変動、非対称性変動やバルクハウゼンノイズを抑制する
為には磁歪定数を0〜−10(×10− 7)程度に制御
する必要があることが分かっており、逆に磁歪定数を正
にするとヘッドの出力は増大するが、それに伴い出力変
動やバルクハウゼンノイズが増大し、さらには出力波形
の非対称性が大きくばらつく結果が得られている。In order to suppress output fluctuation, asymmetry fluctuation and Barkhausen noise, it is necessary to control the magnetic characteristics of the free layer. In an actual magnetic head, anisotropic stress is applied to the GMR sensor portion at the time of processing into a slider chip, so it is necessary to control the magnetostriction constant of the free layer to an appropriate value. According to a study and research of the present inventors, the output fluctuation, in order to suppress the asymmetry variation and Barkhausen noise of the magnetostriction constant 0-10 - found that it is necessary to control the degree (× 10 7) Conversely, when the magnetostriction constant is made positive, the output of the head increases, but the output fluctuation and Barkhausen noise increase, and the result is that the asymmetry of the output waveform greatly varies.
【0007】自由層の磁歪定数をかえた時に、出力変
動、非対称性変動やバルクハウゼンノイズの発生の頻度
が変わる理由としては自由層の磁区構造、特に自由層端
部での磁化状態と密接な関係が有る。本発明者らの調査
・研究によれば、磁歪定数を正にしたときにはヘッド素
子構造の残留応力との関係で、自由層端部の磁化方向が
不安定となり本来トラック幅方向に向いてほしい磁化が
ヘッドの深さ方向に向きやすくなり、そこを起点として
自由層全体の磁化状態が一方向にならず、不安定状態と
なり、出力変動、非対称性変動やバルクハウゼンノイズ
の原因となっている。[0007] When the magnetostriction constant of the free layer is changed, the frequency of occurrence of output fluctuation, asymmetry fluctuation and Barkhausen noise changes because the magnetic domain structure of the free layer, particularly the magnetization state at the free layer end, is closely related. There is a relationship. According to the investigations and researches of the present inventors, when the magnetostriction constant is made positive, the magnetization direction at the end of the free layer becomes unstable due to the residual stress of the head element structure, and the magnetization that should originally be directed to the track width direction is obtained. Are easily oriented in the depth direction of the head, and the magnetization state of the entire free layer does not become one direction from the starting point and becomes unstable, which causes output fluctuation, asymmetry fluctuation and Barkhausen noise.
【0008】磁歪定数を負にしたときには自由層の磁化
がトラック幅方向に向きやすくなり、磁化状態は安定と
なり、理想的には単磁区状態となることによって出力変
動、非対称性変動やバルクハウゼンノイズを抑制するこ
とができると考えられる。しかし、磁歪定数を負に大き
くした時にはトラック幅方向の磁気異方性が大きくな
り、自由層の磁化回転が起こりにくくなりヘッド再生出
力低下の原因となる。When the magnetostriction constant is negative, the magnetization of the free layer tends to be oriented in the track width direction, and the magnetization state becomes stable. Ideally, the magnetization state becomes a single magnetic domain state, thereby causing output fluctuation, asymmetry fluctuation and Barkhausen noise. Is considered to be able to be suppressed. However, when the magnetostriction constant is increased to a negative value, the magnetic anisotropy in the track width direction increases, and the rotation of the magnetization of the free layer hardly occurs, which causes a reduction in the read output of the head.
【0009】このように、出力変動、非対称性変動やバ
ルクハウゼンノイズを抑制し、出力波形の非対称性のば
らつきを小さくする為には自由層の磁歪定数を負に制御
する必要があるが、そのためヘッドの出力を大きくする
ことができなかった。As described above, it is necessary to control the magnetostriction constant of the free layer to a negative value in order to suppress output fluctuations, asymmetry fluctuations and Barkhausen noise, and to reduce asymmetry fluctuations in output waveforms. The output of the head could not be increased.
【0010】[0010]
【発明が解決しようとする課題】本発明は、上述した問
題点を解決するためのもので、ヘッドの再生出力を下げ
ることなく、出力変動、非対称性変動やバルクハウゼン
ノイズを抑制することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to suppress output fluctuation, asymmetry fluctuation and Barkhausen noise without lowering the reproduction output of the head. .
【0011】[0011]
【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。In order to solve the above problems, the present invention mainly employs the following configuration.
【0012】下部磁気シールドと、再生用磁気抵抗効果
センサーと、前記センサーの両端部に対向して配置され
て前記センサーの磁区構造を安定化させる硬質磁性層
と、上部磁気シールドと、記録用上部磁気コアと、記録
動作用励磁コイルと、を備えた磁気抵抗効果型薄膜磁気
ヘッドにおいて、再生用磁気抵抗効果(MR)センサー
は、前記センサーの中央部分から両端部分に亘って磁歪
定数について負側に偏倚した勾配を有する磁気抵抗効果
型薄膜磁気ヘッド。A lower magnetic shield, a magnetoresistive sensor for reproduction, a hard magnetic layer disposed opposite to both ends of the sensor to stabilize a magnetic domain structure of the sensor, an upper magnetic shield, and an upper magnetic recording layer; In a magneto-resistance effect type thin-film magnetic head including a magnetic core and a recording operation exciting coil, a magneto-resistance effect (MR) sensor for reproduction has a negative magnetostriction constant from a central portion to both end portions of the sensor. A magnetoresistive thin-film magnetic head having a gradient deviated to
【0013】また、下部磁気シールドと、再生用磁気抵
抗効果センサーと、前記センサーの両端部に対向して配
置されて前記センサーの磁区構造を安定化させる硬質磁
性層と、上部磁気シールドと、記録用上部磁気コアと、
記録動作用励磁コイルと、を備えた磁気抵抗効果型薄膜
磁気ヘッドにおいて、前記センサーと前記硬質磁性層と
の間に、前記センサーの磁歪定数を制御する磁歪制御層
と前記硬質磁性層の磁気特性を制御する下地層とを有す
る磁気抵抗効果型薄膜磁気ヘッド。A lower magnetic shield; a magnetoresistive sensor for reproduction; a hard magnetic layer disposed opposite to both ends of the sensor to stabilize a magnetic domain structure of the sensor; An upper magnetic core for
And a magnetic characteristic of the hard magnetic layer, between the sensor and the hard magnetic layer, for controlling a magnetostriction constant of the sensor. Magnetoresistive thin-film magnetic head having an underlayer for controlling the magnetic field.
【0014】[0014]
【発明の実施の形態】本発明の実施形態に係る磁気抵抗
効果型薄膜磁気ヘッドについて、図1〜図11を用いて
以下説明する。図1は本実施形態に係る記録再生複合型
薄膜磁気ヘッドの概略構成を示す斜視図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetoresistive thin-film magnetic head according to an embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view showing a schematic configuration of a combined read / write thin film magnetic head according to this embodiment.
【0015】図1において、磁気抵抗効果型薄膜磁気ヘ
ッドは、例えば基板10、ベース膜層11、下部磁気シ
ールド層12、絶縁層13、MRセンサー部14、ハー
ドバイアス層及び電極層15、上部磁気シールド層1
6、有機絶縁膜層17、励磁用コイル18、書込用上部
磁気コア19等から構成される。図1にて従来と異なる
点はハードバイアス層15の下地膜を多層構造にしてい
ることである。In FIG. 1, a magnetoresistive thin-film magnetic head includes, for example, a substrate 10, a base film layer 11, a lower magnetic shield layer 12, an insulating layer 13, an MR sensor section 14, a hard bias layer and an electrode layer 15, an upper magnetic layer. Shield layer 1
6, an organic insulating film layer 17, an exciting coil 18, an upper magnetic core 19 for writing, and the like. FIG. 1 differs from the prior art in that the underlying film of the hard bias layer 15 has a multilayer structure.
【0016】従来から自由層には、軟磁性材料であるパ
ーマロイ(NiFe)合金が多く使われている。自由層
の磁歪定数を制御する為にはこのパーマロイ合金の組成
を変更することが一般的であり、自由層材料としてはF
e20Wt%くらいまでのものが使われることが多い。Conventionally, a permalloy (NiFe) alloy, which is a soft magnetic material, is often used for the free layer. In order to control the magnetostriction constant of the free layer, it is common to change the composition of this permalloy.
e Up to about 20 Wt% is often used.
【0017】一方、磁歪定数を制御するために不純物を
添加する方法がある。パーマロイ合金に金属不純物を添
加すると、その磁歪定数は正となることが多いが、例え
ば50at%以上のNi系合金や稀金属類のPd等は磁
歪定数を負にする効果がある。On the other hand, there is a method of adding an impurity to control the magnetostriction constant. When a metal impurity is added to a permalloy alloy, the magnetostriction constant is often positive. For example, Ni-based alloys of 50 at% or more and Pd of rare metals have an effect of making the magnetostriction constant negative.
【0018】本発明ではパーマロイ合金に不純物を添加
してしまうと膜全体の磁歪定数が変わってしまうので所
望の効果を得ることができない。そこで不純物となる材
料を膜としてパーマロイ膜に積層し、それに熱処理を加
えることによって界面で相互拡散を起こし、自由層であ
るパーマロイ膜の磁歪定数を制御することができる。ま
た、フォトリソグラフィ等の技術を使用し、所望の形に
パターニングすれば任意の場所の磁歪定数を制御するこ
とができる。In the present invention, if an impurity is added to the permalloy, the magnetostriction constant of the entire film changes, so that a desired effect cannot be obtained. Then, a material serving as an impurity is laminated on the permalloy film as a film, and heat treatment is applied thereto to cause interdiffusion at the interface, thereby controlling the magnetostriction constant of the permalloy film as the free layer. Also, if a desired shape is patterned by using a technique such as photolithography, the magnetostriction constant at an arbitrary position can be controlled.
【0019】次に、自由層であるパーマロイ膜に各種不
純物を積層して熱処理したときの磁歪定数の変化状況を
説明する。Next, a description will be given of how the magnetostriction constant changes when various impurities are stacked on the permalloy film as the free layer and heat-treated.
【0020】まず、図2にパーマロイ膜にCr膜を積層
し熱処理を加えた時の磁歪定数の変化を示す。この例で
は、熱処理を加えることによってパーマロイ膜の磁歪定
数は正の方に変化することが解る。ここでは熱処理温度
は230〜250℃としているが、界面での相互拡散を
起こさせるためには150℃以上の温度で熱処理するこ
とが望ましい。図2に示す例では、自由層のトラック幅
方向の端部における磁歪定数を負方向側に設定するとい
う本発明の観点からは適切なものとは云えない。なお、
図2で横軸は、基板に自由層(NiFe)を成膜(デポ
ジション)した時点、前記自由層にCrを成膜した時
点、230℃で3時間(3h)熱処理した時点、同様に
6時間、9時間熱処理した時点をそれぞれ表す。First, FIG. 2 shows a change in magnetostriction constant when a Cr film is laminated on a permalloy film and heat treatment is applied. In this example, it can be seen that the magnetostriction constant of the permalloy film changes to the positive side by the heat treatment. Here, the heat treatment temperature is 230 to 250 ° C., but it is desirable to perform the heat treatment at a temperature of 150 ° C. or more in order to cause interdiffusion at the interface. In the example shown in FIG. 2, it is not appropriate from the viewpoint of the present invention that the magnetostriction constant at the end of the free layer in the track width direction is set on the negative side. In addition,
In FIG. 2, the horizontal axis represents the time when a free layer (NiFe) was formed (deposition) on the substrate, the time when Cr was formed on the free layer, the time when heat treatment was performed at 230 ° C. for 3 hours (3 h), and And the time point of the heat treatment for 9 hours.
【0021】図3にパーマロイ膜にNiCr膜を積層し
熱処理を加えた時の磁歪定数の変化を示す。この例で
は、熱処理を加えることによってパーマロイ膜の磁歪定
数は負の方に変化することが解る。ここではCr組成を
20at%としているが、磁歪定数を負にするためには
Cr組成は50at%以下であることが望ましい。熱処
理温度は230〜250℃としているが、界面での相互
拡散を起こさせるためには150℃以上の温度で熱処理
することが望ましい。図3に示す例では、自由層のトラ
ック幅方向の端部における磁歪定数を負方向側に設定す
るという本発明の観点から適切なものと云える。FIG. 3 shows a change in magnetostriction constant when a NiCr film is laminated on a permalloy film and heat treatment is applied. In this example, it can be seen that the magnetostriction constant of the permalloy film changes to the negative side by applying the heat treatment. Although the Cr composition is set to 20 at% here, the Cr composition is desirably 50 at% or less in order to make the magnetostriction constant negative. Although the heat treatment temperature is 230 to 250 ° C., it is desirable to perform the heat treatment at a temperature of 150 ° C. or more in order to cause interdiffusion at the interface. In the example shown in FIG. 3, it is appropriate from the viewpoint of the present invention that the magnetostriction constant at the end of the free layer in the track width direction is set on the negative side.
【0022】図4にパーマロイ膜にPd膜を積層し熱処
理を加えたときの磁歪定数の変化を示す。この例では熱
処理を加えることによってパーマロイ膜の磁歪定数は負
の方に変化することが解る。ここでは熱処理温度は23
0〜250℃としているが、界面での相互拡散を起こさ
せるためには150℃以上の温度で熱処理することが望
ましい。図4に示す例では、自由層のトラック幅方向の
端部における磁歪定数を負方向側に設定するという本発
明の観点から適切なものと云える。FIG. 4 shows a change in magnetostriction constant when a Pd film is laminated on a permalloy film and heat treatment is applied. In this example, it can be seen that the magnetostriction constant of the permalloy film changes to the negative side by applying the heat treatment. Here, the heat treatment temperature is 23
Although the temperature is set to 0 to 250 ° C., it is desirable to perform the heat treatment at a temperature of 150 ° C. or more in order to cause interdiffusion at the interface. In the example shown in FIG. 4, it can be said that the magnetostriction constant at the end of the free layer in the track width direction is set to the negative side, which is appropriate from the viewpoint of the present invention.
【0023】図3と図4に示す例のように、自由層であ
るパーマロイ膜に、NiCr合金や、Pd膜を積層し熱
処理を加えることによってパーマロイ膜の磁歪定数を適
宜に設定することができる。積層膜の膜厚と熱処理時間
を変化させることで磁歪定数の数値を制御することがで
きる。As shown in FIGS. 3 and 4, the magnetostriction constant of the permalloy film can be appropriately set by laminating a NiCr alloy or a Pd film on the permalloy film as a free layer and applying heat treatment. . The value of the magnetostriction constant can be controlled by changing the thickness of the laminated film and the heat treatment time.
【0024】図5に従来構造の磁気ヘッドの例を示す。
51はMRセンサ部、52は自由層、53は下地膜、5
4は硬質磁性層(永久磁石)をそれぞれ表す。従来のハ
ードバイアス構造ではCo系の永久磁石、例えばCoC
r、CoPt、CoCrPt、CoCrTa等のいずれ
かの材料が一般的に使われるが、その結晶磁気異方性を
膜面内に向け、保磁力を十分に大きくする為にCr、C
rTi、CrW等の下地材料が使用されて、MRセンサ
の磁区を安定させる硬質磁性層を構成している。しか
し、このようなハードバイアス構造では、自由層のトラ
ック幅方向の端部をイオンミリング等のドライエッチン
グにてエッチングしたあとに下地材料をスパッタリング
等の真空蒸着を用いて成膜する為、自由層の端部では、
自由層であるパーマロイ合金と下地材料が接触した状態
となる。FIG. 5 shows an example of a magnetic head having a conventional structure.
51 is an MR sensor unit, 52 is a free layer, 53 is a base film, 5
Reference numeral 4 denotes a hard magnetic layer (permanent magnet). In a conventional hard bias structure, a Co-based permanent magnet, for example, CoC
Any material such as r, CoPt, CoCrPt, or CoCrTa is generally used. However, in order to direct its crystal magnetic anisotropy into the film plane and sufficiently increase the coercive force, Cr, C
Underlayer materials such as rTi and CrW are used to form a hard magnetic layer that stabilizes the magnetic domain of the MR sensor. However, in such a hard bias structure, the free layer is formed by vacuum deposition such as sputtering after the end of the free layer in the track width direction is etched by dry etching such as ion milling. At the end of
The permalloy alloy, which is the free layer, comes into contact with the underlying material.
【0025】この状態でプロセス中の熱処理が加わると
自由層端部のパーマロイ合金とハードバイアスの下地膜
(Cr)の間で相互拡散が起こり自由層端部でパーマロ
イ合金の磁歪定数は正方向に動き(図2に示す磁歪定数
の変化を参照)、結果として自由層端部の磁化状態が不
安定となり、出力変動、非対称性変動やバルクハウゼン
ノイズの原因となる。In this state, if heat treatment is applied during the process, mutual diffusion occurs between the permalloy alloy at the end of the free layer and the hard bias underlayer (Cr), and the magnetostriction constant of the permalloy at the end of the free layer becomes positive. The movement (see the change in the magnetostriction constant shown in FIG. 2) results in an unstable magnetization state at the end of the free layer, which causes output fluctuation, asymmetry fluctuation and Barkhausen noise.
【0026】図6に本発明の実施形態の多層膜を磁気ヘ
ッドに適用した例を示す。図6において、61は自由
層、62は磁歪制御層(下地膜1)、63は下地膜2、
64は下地膜3、65は硬質磁性層(永久磁石)をそれ
ぞれ表す。従来のCr下地(図6では下地膜3)の下に
さらに、2層の金属膜、即ち、下地膜63と下地膜62
を配置し、自由層のパーマロイ合金と接触する第1層目
の膜にNi、Pd、又はNiCr合金、NiPd合金、
PdCr合金のいずれかを使用することを特徴とする。FIG. 6 shows an example in which the multilayer film according to the embodiment of the present invention is applied to a magnetic head. 6, reference numeral 61 denotes a free layer, 62 denotes a magnetostriction control layer (base film 1), 63 denotes a base film 2,
Numeral 64 denotes the base film 3 and numeral 65 denotes a hard magnetic layer (permanent magnet). Under the conventional Cr underlayer (underlayer 3 in FIG. 6), two metal films, that is, underlayer 63 and underlayer 62 are further provided.
Is arranged, and Ni, Pd, or a NiCr alloy, a NiPd alloy,
It is characterized in that one of PdCr alloys is used.
【0027】この状態でプロセス中の熱処理が加わると
自由層端部のパーマロイ合金とハードバイアスのNi、
Pd、又はNiCr合金、NiPd合金、PdCr合金
のいずれかの下地膜62の間で相互拡散が起こり、自由
層端部でパーマロイ合金の磁歪定数は負方向に動き(図
3と図4のグラフ参照)、結果として自由層端部の磁化
状態が安定となり、出力変動、非対称性変動やバルクハ
ウゼンノイズを抑制することができる(下地膜63の機
能乃至作用は後述する)。ここで、Cr合金を使用する
ときには磁歪定数の変化の関係からCrを50at%以
下とすることが望ましい。以下、この第1の下地層を磁
歪制御層と称する。In this state, when a heat treatment during the process is applied, the permalloy alloy at the end of the free layer and Ni of the hard bias,
Interdiffusion occurs between the underlayers 62 of Pd or NiCr alloy, NiPd alloy, or PdCr alloy, and the magnetostriction constant of the permalloy moves in the negative direction at the end of the free layer (see the graphs of FIGS. 3 and 4). As a result, the magnetization state at the end of the free layer becomes stable, and output fluctuation, asymmetry fluctuation and Barkhausen noise can be suppressed (the function and operation of the underlayer 63 will be described later). Here, when a Cr alloy is used, it is desirable that the content of Cr be 50 at% or less in view of a change in magnetostriction constant. Hereinafter, this first underlayer is referred to as a magnetostriction control layer.
【0028】一方、この磁歪制御層の上に従来より使用
されているCr下地のCo系永久磁石膜を積層した時の
磁気特性(保磁力)の結果を図7に示す。図7では硬質
磁性層はCr下地膜とCoCrPt永久磁石からなって
いて、この硬質磁性層がNiCr磁歪制御層に積層され
ている例を示している。このように磁歪制御層に直接C
r下地のCo系永久磁石膜を積層しても十分に大きな保
磁力が得られないことがわかる。Cr膜厚を厚くしても
精々1000Oe程度しか得られない。On the other hand, FIG. 7 shows the results of the magnetic characteristics (coercive force) when a conventionally used Cr-based Co-based permanent magnet film is conventionally laminated on the magnetostriction control layer. FIG. 7 shows an example in which the hard magnetic layer is composed of a Cr underlayer and a CoCrPt permanent magnet, and this hard magnetic layer is laminated on the NiCr magnetostriction control layer. Thus, C is directly applied to the magnetostriction control layer.
It can be seen that a sufficiently large coercive force cannot be obtained even if a Co-based permanent magnet film as an underlayer is laminated. Even if the Cr film thickness is increased, only about 1000 Oe can be obtained at most.
【0029】これを解決する為に、磁歪制御層の上に第
2の下地層(図6に示す下地膜63に相当するもの)を
用いる。この第2の下地層には、TaW合金、TiW合
金を用いるのが望ましい。またこれらの膜組成としては
20〜40at%のW組成であることが望ましい。In order to solve this, a second underlayer (corresponding to the underlayer 63 shown in FIG. 6) is used on the magnetostriction control layer. It is desirable to use a TaW alloy or a TiW alloy for the second underlayer. The composition of these films is preferably a W composition of 20 to 40 at%.
【0030】図8に磁歪制御層にNiCr合金、第2の
下地層にTaW合金を使用し、更にその上に従来より使
用されているCr下地のCo系永久磁石膜を積層した時
の磁気特性(保磁力)の結果を示す。この結果より、永
久磁石に十分な保磁力を得る為にはTaW合金からなる
第2の下地膜を設けると共に、その下地膜の膜厚は6n
m以上必要である。FIG. 8 shows the magnetic properties when a NiCr alloy is used for the magnetostriction control layer, a TaW alloy is used for the second underlayer, and a conventionally used Cr-based Co-based permanent magnet film is further laminated thereon. The result of (coercive force) is shown. From this result, in order to obtain a sufficient coercive force for the permanent magnet, a second underlayer made of a TaW alloy was provided, and the thickness of the underlayer was 6n.
m or more is required.
【0031】図9に自由層の応力分布状態と磁歪定数の
違いによる磁化状態の違いをシミュレーションにて計算
した例を示す。また、端部の磁化状態が乱れている模式
図を図10に示す。図9より、磁歪定数が負であれば、
自由層面内の磁化状態は安定しており、このような磁区
構造では、出力変動、非対称性変動やバルクハウゼンノ
イズが発生しにくいが、面内の磁気異方性が大きい為、
同じ外部信号磁界に対する磁化回転角が小さくなり、ヘ
ッドの再生出力としては小さくなる。FIG. 9 shows an example in which the difference in the magnetization state due to the difference in the stress distribution state of the free layer and the magnetostriction constant is calculated by simulation. FIG. 10 is a schematic diagram in which the magnetization state at the end is disturbed. From FIG. 9, if the magnetostriction constant is negative,
The magnetization state in the plane of the free layer is stable, and in such a magnetic domain structure, output fluctuation, asymmetry fluctuation and Barkhausen noise are unlikely to occur, but since the in-plane magnetic anisotropy is large,
The magnetization rotation angle with respect to the same external signal magnetic field becomes smaller, and the read output of the head becomes smaller.
【0032】磁歪定数が正になると自由層面内の磁化状
態に乱れが生じている。これは膜応力と磁歪定数の関係
から面内の磁気異方性が弱くなっていることを示してい
る。よってこのような磁区構造では、出力変動、非対称
性変動やバルクハウゼンノイズが発生し易いが、面内の
磁気異方性が小さい為、同じ外部信号磁界に対する磁化
回転角が大きくなり、ヘッドの再生出力としては大きく
なる。When the magnetostriction constant becomes positive, the magnetization state in the plane of the free layer is disturbed. This indicates that the in-plane magnetic anisotropy is weak from the relationship between the film stress and the magnetostriction constant. Therefore, in such a magnetic domain structure, output fluctuation, asymmetry fluctuation and Barkhausen noise are liable to occur, but since the in-plane magnetic anisotropy is small, the magnetization rotation angle with respect to the same external signal magnetic field becomes large, and the reproduction of the head is performed. The output will be large.
【0033】また、図10のように磁歪定数が正になる
と自由層端部での磁化状態の乱れが発生し、そこを起点
として出力変動、非対称性変動やバルクハウゼンノイズ
が発生し易くなる。When the magnetostriction constant is positive as shown in FIG. 10, the magnetization state is disturbed at the end of the free layer, and output fluctuations, asymmetry fluctuations and Barkhausen noises are liable to occur starting therefrom.
【0034】そこで、本発明は、自由層における中央部
での磁歪定数よりもその端部での磁歪定数を負側に勾配
を持たせることによって、ヘッドの再生出力を大に保持
すると共に自由層端部での磁化状態の乱れを無くすると
いうのがその基本的思想である。そして、本発明の具体
的な構成例としては、自由層中央部の磁歪定数を正の値
又は零の値又は零近傍の負の値として、その端部の磁歪
定数を負の値とするものを挙げることができる。なお、
図3と図4において、基板に自由層を成膜したときの磁
歪定数が負の値であるが、この値は自由層の膜厚によっ
ても変わり得て略零の値にもなるし、また、適宜の不純
物の添加により磁歪定数を負から正に変えることもでき
得る。このように、本発明では、自由層の磁歪定数につ
いて、磁歪制御層によって自由層端部の磁歪定数を負側
に勾配を持たせ、自由層端部での磁化状態の乱れをなく
し、出力変動、非対称性変動やバルクハウゼンノイズの
発生無しに、ヘッドの再生出力を大きくすることができ
る。Accordingly, the present invention provides a head having a large magneto-striction constant at the end portion of the free layer with respect to the magnetostriction constant at the end portion of the free layer, thereby maintaining a large reproduction output of the head and providing a free layer. The basic idea is to eliminate disturbance of the magnetization state at the end. As a specific configuration example of the present invention, the magnetostriction constant at the center of the free layer is a positive value or a value of zero or a negative value near zero, and the magnetostriction constant at the end is a negative value. Can be mentioned. In addition,
In FIGS. 3 and 4, the magnetostriction constant when a free layer is formed on a substrate is a negative value, and this value can be changed depending on the thickness of the free layer and becomes almost zero. The magnetostriction constant can be changed from negative to positive by adding an appropriate impurity. As described above, in the present invention, the magnetostriction constant of the free layer end is given a negative gradient by the magnetostriction control layer with respect to the magnetostriction constant of the free layer. In addition, the reproduction output of the head can be increased without the occurrence of asymmetry fluctuation or Barkhausen noise.
【0035】図11に本発明の磁歪制御層を使用しない
ヘッド(図5に示す磁気ヘッド)と、使用した磁気ヘッ
ド(図6に示す磁気ヘッド)の記録、再生特性結果を示
す。図11の横軸は出力変動率を表し、縦軸は発生個数
の累積の度数を示す累積度数を表す。他の構造等を同一
にしたヘッドで比較すると、磁歪制御層を使用したヘッ
ドでは、出力変動、非対称性変動といったヘッドの安定
性に関する評価項目で明らかに優位性が見られている。FIG. 11 shows the recording / reproducing characteristics of the head (magnetic head shown in FIG. 5) without using the magnetostriction control layer of the present invention and the magnetic head used (magnetic head shown in FIG. 6). The horizontal axis in FIG. 11 represents the output fluctuation rate, and the vertical axis represents the cumulative frequency indicating the cumulative frequency of the number of occurrences. Comparing heads using other structures and the like with the same structure, the head using the magnetostriction control layer clearly shows superiority in head stability evaluation items such as output fluctuation and asymmetry fluctuation.
【0036】以上説明したように、本発明の実施形態に
よれば、MRセンサーの自由層両端部に配置される、自
由層の磁区制御の為の硬質磁性層を成膜する際に、磁歪
制御層、中間金属層、硬質磁性層(硬質磁性層の下地膜
を含む)を成膜し、素子プロセス中の熱履歴等によっ
て、磁歪制御層の材料を自由層に相互拡散させることに
よって、自由層端部の磁歪定数を自由層中央部の磁歪定
数とは違った値に制御して磁歪勾配を持った自由層を実
現するものである。これによって、自由層の端部の磁区
構造を安定化し、出力変動、非対称性変動やバルクハウ
ゼンノイズを抑制する。As described above, according to the embodiment of the present invention, when forming the hard magnetic layer for controlling the magnetic domain of the free layer, which is disposed at both ends of the free layer of the MR sensor, the magnetostriction control is performed. Layer, an intermediate metal layer, and a hard magnetic layer (including a base film of the hard magnetic layer), and the material of the magnetostriction control layer is interdiffused into the free layer due to heat history during the device process. By controlling the magnetostriction constant at the end to a value different from the magnetostriction constant at the center of the free layer, a free layer having a magnetostriction gradient is realized. This stabilizes the magnetic domain structure at the end of the free layer and suppresses output fluctuation, asymmetry fluctuation, and Barkhausen noise.
【0037】[0037]
【発明の効果】本発明によれば、再生出力の低下を招く
ことなく、出力変動、非対称性変動、バルクハウゼンノ
イズといった不安定性を低減した磁気ヘッドを提供でき
る。According to the present invention, it is possible to provide a magnetic head with reduced instability such as output fluctuation, asymmetry fluctuation and Barkhausen noise without reducing the reproduction output.
【図1】本発明の実施形態に係る記録再生複合型薄膜磁
気ヘッドの概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a combined read / write thin film magnetic head according to an embodiment of the present invention.
【図2】自由層のパーマロイ膜にCr膜を積層し熱処理
を加えたときの磁歪定数の変化を示す図である。FIG. 2 is a diagram showing a change in magnetostriction constant when a Cr film is laminated on a permalloy film as a free layer and heat treatment is applied.
【図3】本実施形態に係る、自由層のパーマロイ膜にN
iCr膜を積層し熱処理を加えたときの磁歪定数の変化
を示す図である。FIG. 3 shows a permalloy film as a free layer according to the embodiment;
FIG. 9 is a diagram showing a change in magnetostriction constant when an iCr film is laminated and heat treatment is applied.
【図4】本実施形態に係る、自由層のパーマロイ膜にP
d膜を積層し熱処理を加えたときの磁歪定数の変化を示
す図である。FIG. 4 is a view showing a Pm-free film of a free layer according to the present embodiment;
It is a figure which shows the change of the magnetostriction constant when a d film | membrane is laminated | stacked and the heat processing is applied.
【図5】従来構造の磁気ヘッドの例を示す図である。FIG. 5 is a diagram showing an example of a magnetic head having a conventional structure.
【図6】本実施形態に係る、自由層端部に硬質磁性層を
含む多層膜を積層した複合型磁気ヘッドの構造を示す図
である。FIG. 6 is a diagram showing a structure of a composite magnetic head according to the embodiment, in which a multilayer film including a hard magnetic layer is laminated at an end of a free layer.
【図7】磁歪制御層にNiCr合金、その上に従来構造
のCr下地のCo系永久磁石膜を積層した時の磁気特性
(保磁力)の結果を示す図である。FIG. 7 is a diagram showing the results of magnetic properties (coercive force) when a NiCr alloy is laminated on a magnetostriction control layer and a Co-based permanent magnet film of a Cr underlayer of a conventional structure is laminated thereon.
【図8】本実施形態に係る、磁歪制御層にNiCr合
金、第2の下地層にTaW合金を使用し、さらにその上
に従来構造のCr下地のCo系永久磁石膜を積層した時
の磁気特性(保磁力)の結果を示す図である。FIG. 8 shows the magnetic properties when a NiCr alloy is used for a magnetostriction control layer and a TaW alloy is used for a second underlayer according to the present embodiment, and a Co-based permanent magnet film with a Cr underlayer of a conventional structure is further laminated thereon. It is a figure showing a result of a characteristic (coercive force).
【図9】自由層の応力分布状態と磁歪定数の違いによる
磁化状態の違いをシミュレーションにて計算した例を示
す図である。FIG. 9 is a diagram showing an example in which a difference in magnetization state due to a difference between a stress distribution state of a free layer and a magnetostriction constant is calculated by simulation.
【図10】自由層端部の磁化状態が乱れている模式図を
示す図である。FIG. 10 is a diagram showing a schematic diagram in which the magnetization state of the free layer end is disturbed.
【図11】本発明の実施形態に係る磁歪制御層及び下地
膜を使用したヘッドと、従来構造の磁気ヘッドの記録、
再生特性結果を示す図である。FIG. 11 is a diagram showing the recording and reproducing of a head using a magnetostriction control layer and a base film according to an embodiment of the present invention and a magnetic head having a conventional structure;
FIG. 9 is a diagram showing a reproduction characteristic result.
10 基板 11 ベース膜層 12 下部磁気シールド層 13 絶縁層 14 MRセンサー部 15 ハードバイアス層及び電極層 16 上部磁気シールド層 17 有機絶縁膜層 18 励磁用コイル 19 書込用上部磁気コア 51 MRセンサー部 52 自由層 53 下地膜 54 硬質磁性層(永久磁石) 55 電極膜 61 自由層 62 磁歪制御層(下地膜1) 63 下地膜2 64 下地膜3 65 硬質磁性層(永久磁石) DESCRIPTION OF SYMBOLS 10 Substrate 11 Base film layer 12 Lower magnetic shield layer 13 Insulating layer 14 MR sensor part 15 Hard bias layer and electrode layer 16 Upper magnetic shield layer 17 Organic insulating film layer 18 Excitation coil 19 Upper magnetic core for writing 51 MR sensor part 52 Free layer 53 Underlayer 54 Hard magnetic layer (permanent magnet) 55 Electrode film 61 Free layer 62 Magnetostriction control layer (underlayer 1) 63 Underlayer 2 64 Underlayer 3 65 Hard magnetic layer (permanent magnet)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 直樹 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 宮本 詔文 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 石掛 賢治 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 Fターム(参考) 2G017 AA10 AB00 AC01 AD55 CB28 5D034 BA03 BA05 BA12 BA21 BB09 BB12 CA04 DA07 5E049 AA07 BA00 BA12 BA16 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoki Koyama 2880 Kozu, Kozuhara-shi, Kanagawa Prefecture Within Hitachi, Ltd.Storage Systems Division (72) Inventor Shobun Miyamoto 2880 Kozu, Kozu, Odawara-shi, Kanagawa Hitachi, Ltd. Within Storage System Division (72) Inventor Kenji Ishikake 2880 Kozu, Odawara City, Kanagawa Prefecture F-term within Storage Systems Division, Hitachi, Ltd. 2G017 AA10 AB00 AC01 AD55 CB28 5D034 BA03 BA05 BA12 BA21 BB09 BB12 CA04 DA07 5E049 AA07 BA00 BA12 BA16
Claims (6)
果センサーと、前記センサーの両端部に対向して配置さ
れて前記センサーの磁区構造を安定化させる硬質磁性層
と、上部磁気シールドと、記録用上部磁気コアと、記録
動作用励磁コイルと、を備えた磁気抵抗効果型薄膜磁気
ヘッドにおいて、 再生用磁気抵抗効果センサーは、前記センサーの中央部
分から両端部分に亘って磁歪定数について勾配を有する
ことを特徴とする磁気抵抗効果型薄膜磁気ヘッド。1. A lower magnetic shield, a reproducing magnetoresistive sensor, a hard magnetic layer disposed opposite to both ends of the sensor to stabilize a magnetic domain structure of the sensor, an upper magnetic shield, and a recording medium. A magnetoresistive effect type thin-film magnetic head comprising an upper magnetic core for recording and an exciting coil for recording operation, wherein the magnetoresistive sensor for reproduction has a gradient in magnetostriction constant from the center to both ends of the sensor. A magnetoresistive thin-film magnetic head, characterized in that:
気ヘッドにおいて、 前記センサーの両端部分の磁歪定数がその中央部分のそ
れよりも負側に設定さることを特徴とする磁気抵抗効果
型薄膜磁気ヘッド。2. The magnetoresistive thin-film magnetic head according to claim 1, wherein magnetostriction constants at both end portions of the sensor are set to be more negative than those at a central portion thereof. Thin film magnetic head.
果センサーと、前記センサーの両端部に対向して配置さ
れて前記センサーの磁区構造を安定化させる硬質磁性層
と、上部磁気シールドと、記録用上部磁気コアと、記録
動作用励磁コイルと、を備えた磁気抵抗効果型薄膜磁気
ヘッドにおいて、 前記センサーと前記硬質磁性層との間に、前記センサー
の磁歪定数を制御する磁歪制御層と前記硬質磁性層の磁
気特性を制御する下地層とを有することを特徴とする磁
気抵抗効果型薄膜磁気ヘッド。3. A lower magnetic shield, a magnetoresistive sensor for reproduction, a hard magnetic layer disposed opposite to both ends of the sensor to stabilize a magnetic domain structure of the sensor, an upper magnetic shield, and a recording medium. A magnetoresistive thin-film magnetic head comprising: an upper magnetic core for recording; and an exciting coil for recording operation, wherein a magnetostriction control layer for controlling a magnetostriction constant of the sensor is provided between the sensor and the hard magnetic layer. A magnetoresistive thin-film magnetic head comprising a base layer for controlling magnetic properties of a hard magnetic layer.
気ヘッドにおいて、 前記磁歪制御層は、Ni、Pd、NiCr合金、NiP
d合金、PdCr合金のいずれかからなることを特徴と
する磁気抵抗効果型薄膜磁気ヘッド。4. The magnetoresistive thin-film magnetic head according to claim 3, wherein the magnetostriction control layer is made of Ni, Pd, NiCr alloy, NiP.
A magnetoresistive thin-film magnetic head comprising one of a d alloy and a PdCr alloy.
気ヘッドにおいて、 前記下地層は、TaW合金又はTiW合金からなること
を特徴とする磁気抵抗効果型薄膜磁気ヘッド。5. The magnetoresistive thin-film magnetic head according to claim 3, wherein said underlayer is made of a TaW alloy or a TiW alloy.
気ヘッドにおいて、 前記磁歪制御層は、Ni、Pd、NiCr合金、NiP
d合金、PdCr合金のいずれかからなり、 前記下地層は、TaW合金又はTiW合金からなり、 前記硬質磁性層は、Co系永久磁石とCr、CrTi合
金又はCrW合金のいずれかの下地材料とからなること
を特徴とする磁気抵抗効果型薄膜磁気ヘッド。6. The magnetoresistive thin-film magnetic head according to claim 3, wherein the magnetostriction control layer is made of Ni, Pd, NiCr alloy, NiP.
The underlayer is made of a TaW alloy or a TiW alloy, and the hard magnetic layer is made of a Co-based permanent magnet and an underlayer material of Cr, CrTi alloy or CrW alloy. A magnetoresistive thin-film magnetic head characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000282177A JP2002092828A (en) | 2000-09-18 | 2000-09-18 | Magnetoresistive effect type thin film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000282177A JP2002092828A (en) | 2000-09-18 | 2000-09-18 | Magnetoresistive effect type thin film magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002092828A true JP2002092828A (en) | 2002-03-29 |
Family
ID=18766730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000282177A Pending JP2002092828A (en) | 2000-09-18 | 2000-09-18 | Magnetoresistive effect type thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002092828A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311686A (en) * | 2003-04-07 | 2004-11-04 | Alps Electric Co Ltd | Magnetically sensitive element and its manufacturing method |
JP2020060446A (en) * | 2018-10-10 | 2020-04-16 | 昭和電工株式会社 | Magnetic sensor and method for manufacturing magnetic sensor |
JP2020085766A (en) * | 2018-11-29 | 2020-06-04 | 昭和電工株式会社 | Magnetic sensor and method for manufacturing magnetic sensor |
-
2000
- 2000-09-18 JP JP2000282177A patent/JP2002092828A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311686A (en) * | 2003-04-07 | 2004-11-04 | Alps Electric Co Ltd | Magnetically sensitive element and its manufacturing method |
JP2020060446A (en) * | 2018-10-10 | 2020-04-16 | 昭和電工株式会社 | Magnetic sensor and method for manufacturing magnetic sensor |
JP7259255B2 (en) | 2018-10-10 | 2023-04-18 | 株式会社レゾナック | Magnetic sensor and method for manufacturing magnetic sensor |
JP2020085766A (en) * | 2018-11-29 | 2020-06-04 | 昭和電工株式会社 | Magnetic sensor and method for manufacturing magnetic sensor |
CN112930483A (en) * | 2018-11-29 | 2021-06-08 | 昭和电工株式会社 | Magnetic sensor and method for manufacturing magnetic sensor |
US11525871B2 (en) | 2018-11-29 | 2022-12-13 | Showa Denko K. K. | Magnetic sensor and magnetic sensor manufacturing method |
JP7259293B2 (en) | 2018-11-29 | 2023-04-18 | 株式会社レゾナック | Magnetic sensor and method for manufacturing magnetic sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3990751B2 (en) | Magnetoresistive magnetic head and magnetic recording / reproducing apparatus | |
US6818330B2 (en) | Perpendicular recording medium with antiferromagnetic exchange coupling in soft magnetic underlayers | |
KR100319035B1 (en) | Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them | |
US6144534A (en) | Laminated hard magnet in MR sensor | |
JP2004103204A (en) | Perpendicular writer with magnetically soft and stable high magnetic moment main pole | |
JPH0916920A (en) | Spin valve magnetoresistance sensor and magnetic recording system using said sensor | |
JPH10312512A (en) | Magnetoresitive head | |
JP2001134907A (en) | Magnetic head, method of its manufacture and magnetic recording and reproducing device utilizing the same | |
JP2000113418A (en) | Magneto-resistive head based on spin valve effect and magnetic recording and reproducing device using the same | |
JPH10233016A (en) | Intra-surface magnetic recording medium and magnetic memory device formed by using the same | |
US20030133233A1 (en) | Anti-parallel coupled free layer for a GMR sensor for a magnetic head | |
JP2013004166A (en) | Magnetic sensor having hard bias seed structure | |
US20140177101A1 (en) | Magnetic head and magnetic recording/reproduction apparatus | |
JP2001068760A (en) | Ferromagnetic tunnel junction element | |
JP2004296000A (en) | Magneto-resistance effect type head and manufacturing method therefor | |
JP3699714B2 (en) | Thin film magnetic head, head gimbal assembly, and hard disk drive | |
JP2001256619A (en) | Magnetoresistive head and magnetic recording and reproducing device using the same | |
JP2002092828A (en) | Magnetoresistive effect type thin film magnetic head | |
JPH10241125A (en) | Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same | |
JP3730976B2 (en) | Thin film magnetic head, head gimbal assembly, and hard disk drive | |
JP2001195706A (en) | Recording head, method for manufacturing recording head and composite head as well as magnetic recording and reproducing device | |
JP2001110008A (en) | Magnetic head and its production, and magnetic recording and reproducing device | |
JPH11161920A (en) | Recording/reproducing head, head disk assembly using it and magnetic disk device | |
JPH05250642A (en) | Magnetoresist effect sensor | |
JP3864637B2 (en) | Magnetic recording medium |