JP2002090673A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JP2002090673A
JP2002090673A JP2000275864A JP2000275864A JP2002090673A JP 2002090673 A JP2002090673 A JP 2002090673A JP 2000275864 A JP2000275864 A JP 2000275864A JP 2000275864 A JP2000275864 A JP 2000275864A JP 2002090673 A JP2002090673 A JP 2002090673A
Authority
JP
Japan
Prior art keywords
light
scanning device
light beam
disk member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000275864A
Other languages
Japanese (ja)
Inventor
Tomohiro Nakajima
智宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000275864A priority Critical patent/JP2002090673A/en
Publication of JP2002090673A publication Critical patent/JP2002090673A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical scanner, driven with a low torque at high- velocity revolution, of which the power consumption and the noise are suppressed, the productivity is improved, and which accommodates to forming an image of high quality. SOLUTION: The optical scanner is provided with a light source and a deflection means, which deflects and repeatedly scans the light beam emitted from the light source. The deflection means of the optical scanner is provided with a light-transmissive disk member whose outer side face is cylindrical and the inner side face forms reflecting faces of a polygonal column, which is coaxial with the center of the cylinder, and a flat plate-shaped optical transmitting member, having a cylindrical hole in which the disk member is inserted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光走査装置に関し、
特にデジタル複写機、及びレーザプリンタ等の書込系に
用いられる光走査装置に関する。
The present invention relates to an optical scanning device,
In particular, the present invention relates to an optical scanning device used in a writing system such as a digital copying machine and a laser printer.

【0002】[0002]

【従来の技術】従来の光走査装置においては多角柱の各
辺を反射面とした回転多面鏡が用いられる。回転多面鏡
は回転速度が高速になるに従い多角柱の各角における空
気抵抗が増え、騒音や回転速度むらの要因となることが
知られている。この対策として特開平4−62513号
公報に示すように多面鏡の各鏡面を覆うように透明体を
周設した円筒体を設けて空気抵抗を低減するなどの提案
がされている。また、特開平11−174363号公報
には円筒体の中央に多角柱の凹部を形成した構成を樹脂
成形により一体化した例が示されている。
2. Description of the Related Art In a conventional optical scanning apparatus, a rotating polygon mirror having each side of a polygonal prism as a reflecting surface is used. It is known that the rotating polygon mirror increases the air resistance at each corner of the polygonal prism as the rotation speed increases, which causes noise and uneven rotation speed. As a countermeasure for this, as disclosed in Japanese Patent Application Laid-Open No. 4-62513, it has been proposed to provide a cylindrical body having a transparent body provided so as to cover each mirror surface of a polygon mirror to reduce air resistance. Japanese Patent Application Laid-Open No. H11-174363 discloses an example in which a configuration in which a polygonal column concave portion is formed in the center of a cylindrical body is integrated by resin molding.

【0003】[0003]

【発明が解決しようとする課題】一般に回転多面鏡は単
に入射ビームの向きを変えるだけの機能であり、平行光
束を入射すると平行光束のまま射出されるので結像レン
ズに入射するビーム径は均一である。上記したいずれの
従来例のように反射面の表面に円筒状の透明体を備える
ことで空気抵抗を減らすことができるが、透明体自体、
主走査方向にパワーをもったレンズに等しいので平行光
束を入射した場合、射出ビームは集束光束となってしま
う。このため結像レンズに入射するビーム径は走査角度
によって変化してしまい扱いずらいという問題点があ
る。
In general, a rotary polygon mirror merely functions to change the direction of an incident beam. When a parallel light beam is incident, it is emitted as a parallel light beam, so that the beam diameter incident on the imaging lens is uniform. It is. The air resistance can be reduced by providing a cylindrical transparent body on the surface of the reflecting surface as in any of the conventional examples described above, but the transparent body itself,
Since a parallel light beam is incident on the lens because it is equal to a lens having power in the main scanning direction, the emitted beam becomes a focused light beam. For this reason, there is a problem that the diameter of the beam incident on the imaging lens varies depending on the scanning angle and is difficult to handle.

【0004】本発明はこの問題点を解決するためのもの
であり、高速回転によっても低トルクで駆動でき、消費
電力や騒音の発生を抑えることができると共に生産効率
を向上でき、高品位な画像形成に対応可能な光走査装置
を提供することを目的とする。
The present invention has been made to solve this problem, and can be driven with low torque even by high-speed rotation, can suppress power consumption and noise, can improve production efficiency, and can produce high-quality images. It is an object of the present invention to provide an optical scanning device capable of coping with the formation.

【0005】[0005]

【課題を解決するための手段】前記問題点を解決するた
めに、発光源と、該発光源からの光ビームを偏向し繰り
返し走査する偏向手段とを有する、本発明に係る光走査
装置における偏向手段は、外側面を円筒面で形成し、内
側面を円筒面の中心と同心の多角柱の反射面で形成して
なる光透過性の円盤部材と、この円盤部材を挿入する円
筒穴を有する平板状の光伝送部材とを有することに特徴
がある。よって、発光源からの光ビームが円盤部材の円
筒面を通過する際にも同一媒体中を伝搬するのと同様で
あるので、光ビームが集束してしまうこともなく、偏向
の前後で状態を維持でき、良好な結像性能を有する光走
査装置を提供できる。また、円盤部材が露出しないので
回転時の空気抵抗も少なく消費電力や騒音の発生を抑え
ることができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a deflection device in an optical scanning device according to the present invention has a light source and a deflection means for deflecting and repeatedly scanning a light beam from the light source. The means has a light-transmitting disk member formed by forming an outer surface with a cylindrical surface and an inner surface with a reflecting surface of a polygonal prism concentric with the center of the cylindrical surface, and a cylindrical hole into which the disk member is inserted. It is characterized by having a flat optical transmission member. Therefore, since the light beam from the light emitting source propagates in the same medium when passing through the cylindrical surface of the disk member, the light beam does not converge and the state before and after the deflection is changed. An optical scanning device which can be maintained and has good image forming performance can be provided. In addition, since the disk member is not exposed, the air resistance during rotation is small, and power consumption and generation of noise can be suppressed.

【0006】また、偏向手段を複数層の積層構造とする
ことにより、複数ラインを同時に走査する光走査装置が
提供でき、円盤部材の回転速度を上げずに高速記録が可
能となり消費電力や騒音の発生を抑えることができる。
Further, by providing the deflecting means with a laminated structure of a plurality of layers, it is possible to provide an optical scanning device for simultaneously scanning a plurality of lines, enabling high-speed recording without increasing the rotation speed of the disk member, and reducing power consumption and noise. Occurrence can be suppressed.

【0007】更に、円盤部材の多角柱の反射面は金属被
膜を形成してなることにより、中実の多面鏡の外側に円
筒部を設けるのに比べ軽量化が図れ、回転時の負荷を軽
減して消費電力を抑えることができる。
Further, since the reflecting surface of the polygonal column of the disk member is formed of a metal coating, the weight can be reduced as compared with the case where a cylindrical portion is provided outside the solid polygon mirror, and the load during rotation is reduced. Power consumption can be reduced.

【0008】また、円盤部材の少なくとも一方の底面に
は周方向に渦巻き放射状の凹凸を形成したことにより、
円盤部材の外側面とそれを挿入する円筒穴内側面との間
で空気軸受を構成することができるので、別途軸受手段
を用いる必要がなく、部品点数も少なくて済む上、軽量
化が図れる。
Also, at least one of the bottom surfaces of the disk member is formed with spiral radial irregularities in the circumferential direction, so that
Since the air bearing can be formed between the outer surface of the disk member and the inner surface of the cylindrical hole into which the disk member is inserted, there is no need to use a separate bearing means, the number of parts can be reduced, and the weight can be reduced.

【0009】更に、凹凸は反射面と同一の金属被膜によ
り形成してなることにより、同時に被膜の形成が行うこ
とができるので製造プロセスが簡略化でき、生産効率を
向上することができる。
Furthermore, since the unevenness is formed by the same metal film as the reflection surface, the film can be formed at the same time, so that the manufacturing process can be simplified and the production efficiency can be improved.

【0010】また、発光源からの光ビームを光伝送部材
の表面から入射させるビーム入射手段を具備することに
より、偏向部だけを独立して構成でき半導体レーザの選
択範囲が広がるので汎用性が高まり生産効率を向上する
ことができる。また、光導波板を積層した場合には各層
に対応した入射ビームを同軸上に入射できる。
Further, by providing a beam incident means for causing a light beam from a light emitting source to enter from the surface of the optical transmission member, only the deflecting section can be configured independently, and the selection range of the semiconductor laser is expanded, so that versatility is enhanced. Production efficiency can be improved. When optical waveguide plates are stacked, incident beams corresponding to the respective layers can be coaxially incident.

【0011】更に、光伝送部材は偏向手段により偏向さ
れた光ビームの光伝送部材からの射出端を主走査方向に
非直線状に形成し、射出位置を被走査面と走査レンズの
倍率とに合わせて設定したので、いずれの走査角におい
ても光学的に共役な関係が保たれ結像性能が向上し高品
位な画像形成が行うことができる。
Further, the light transmitting member forms an exit end of the light beam deflected by the deflecting means from the light transmitting member in a non-linear manner in the main scanning direction, and sets the exit position to the scanning surface and the magnification of the scanning lens. Since they are set in accordance with each other, the optically conjugate relationship is maintained at any of the scanning angles, the imaging performance is improved, and high-quality image formation can be performed.

【0012】また、光伝送部材は偏向手段により偏向さ
れた光ビームを光伝送部材の表面から射出するビーム射
出手段を具備することにより、端面から射出するのが副
走査方向に偏平な光束であるのに比べ、所定の光束径を
確保できるので被走査面でのビームスポットをより細く
絞り込め、高品位な画像形成が行うことができる。
Further, the light transmitting member is provided with beam emitting means for emitting the light beam deflected by the deflecting means from the surface of the light transmitting member, so that the light beam emitted from the end face is flat in the sub-scanning direction. In comparison with the above, since a predetermined light beam diameter can be secured, a beam spot on the surface to be scanned can be narrowed down more, and high-quality image formation can be performed.

【0013】[0013]

【発明の実施の形態】本発明の光走査装置は、発光源
と、該発光源からの光ビームを偏向し繰り返し走査する
偏向手段とを有する。そして、偏向手段は、外側面を円
筒面で形成し、内側面を円筒面の中心と同心の多角柱の
反射面で形成してなる光透過性の円盤部材と、この円盤
部材を挿入する円筒穴を有する平板状の光伝送部材とを
有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical scanning device according to the present invention has a light emitting source and a deflecting means for deflecting a light beam from the light emitting source to repeatedly scan the light beam. The deflecting means includes a light-transmitting disk member having an outer surface formed by a cylindrical surface and an inner surface formed by a reflecting surface of a polygonal column concentric with the center of the cylindrical surface, and a cylinder into which the disk member is inserted. And a flat optical transmission member having a hole.

【0014】[0014]

【実施例】図1は本発明の第1の実施例に係る光走査装
置の構成を示す斜視図であり、図2は本実施例の光走査
装置の構成を示す概略断面図である。また、図3は図1
の円盤部材106における光ビームの伝搬の様子を示す
図である。更に、図4は図1の円盤部材106の構成を
示す図である。図1及び図2において、リードフレーム
103が形成されたセラミック基板102上には厚さ数
百μm程度のLiNbO3等の誘電体からなる光導波板
101が実装される。光導波板101の端面101−1
には光導波板101の内部に光ビームを放射する半導体
レーザチップ104が配備されている。分布屈折率レン
ズ105は半導体レーザチップ104からの光ビームを
平行光束となすレンズである。光導波板101内では主
走査方向に平行光束のまま伝搬するが、副走査方向には
光導波板境界において全反射を繰り返しながら伝搬す
る。光導波板101に形成した円筒穴101−2には外
周を円筒形、その中央に中心を一致させて形成した四角
形の穴を有する光導波板101と同一材料からなる円盤
部材106が回動自在の状態で挿入されている。円筒穴
101−2の内径と円盤部材106の円筒部外径のクリ
アランス125は数μm程度であり、半導体レーザチッ
プ104からの光ビームは光導波板101からクリアラ
ンス125を経て円盤部材106の内部に伝搬し、四角
形穴の内面で反射され偏向されて再度クリアランス12
5を経て光導波板101の内部に伝搬される。伝搬され
た光ビームは光導波板101の表面に円弧状溝を形成し
た回折格子107により副走査方向に発散性の光束とし
て射出される。射出された光ビームは走査レンズ108
により被走査面上Sに結像され走査されて画像記録を行
う。
FIG. 1 is a perspective view showing the configuration of an optical scanning device according to a first embodiment of the present invention, and FIG. 2 is a schematic sectional view showing the configuration of the optical scanning device of the present embodiment. FIG. 3 shows FIG.
FIG. 4 is a diagram showing a state of propagation of a light beam in a disk member 106 of FIG. FIG. 4 is a view showing the configuration of the disk member 106 shown in FIG. 1 and 2, an optical waveguide plate 101 made of a dielectric such as LiNbO 3 having a thickness of about several hundred μm is mounted on a ceramic substrate 102 on which a lead frame 103 is formed. End face 101-1 of optical waveguide plate 101
Is provided with a semiconductor laser chip 104 for emitting a light beam inside the optical waveguide plate 101. The distributed index lens 105 is a lens that converts the light beam from the semiconductor laser chip 104 into a parallel light beam. In the optical waveguide plate 101, the light beam propagates as a parallel light beam in the main scanning direction, but propagates in the sub-scanning direction while repeating total reflection at the optical waveguide plate boundary. A disk member 106 made of the same material as the optical waveguide plate 101 having a cylindrical hole at the outer periphery of the cylindrical hole 101-2 formed in the optical waveguide plate 101 and having a square hole formed at the center thereof at the center thereof is rotatable. Is inserted in the state of. The clearance 125 between the inner diameter of the cylindrical hole 101-2 and the outer diameter of the cylindrical portion of the disk member 106 is about several μm, and the light beam from the semiconductor laser chip 104 passes through the clearance 125 from the optical waveguide plate 101 and enters the disk member 106. Propagation, and is reflected and deflected by the inner surface of the square hole, and the clearance 12
The light is propagated through the optical waveguide plate 101 through the optical waveguide 5. The propagated light beam is emitted as a divergent light beam in the sub-scanning direction by the diffraction grating 107 having an arc-shaped groove formed on the surface of the optical waveguide plate 101. The emitted light beam is scanned by the scanning lens 108.
Thus, an image is formed on the surface S to be scanned and scanned, thereby performing image recording.

【0015】ここで、回折格子107よりの発散角の見
かけ上の中心Oと被走査面とを光学的に共役とすること
で光ビームの射出方向が副走査方向に振れても同一線を
走査するようにしている。尚、光ビームを光導波板より
射出する手段としては上記した回折格子による方法の
他、プリズムを上面に配備するなどによっても可能であ
る。
Here, the apparent center O of the divergence angle from the diffraction grating 107 is optically conjugate to the surface to be scanned, so that the same line is scanned even if the emission direction of the light beam fluctuates in the sub-scanning direction. I am trying to do it. As a means for emitting a light beam from the optical waveguide plate, in addition to the above-described method using a diffraction grating, a prism may be provided on the upper surface, or the like.

【0016】また、円盤部材106は図4に示すように
Si基板114上に積層されたローター部が構成され
る。そして、Si基板114には図1に示すような電極
パターン115を下面に、渦巻き放射状の凹凸パターン
116を上面に各々Ni薄膜を積層して形成される。ま
た、円盤部材106の下面にも渦巻き放射状の凹凸パタ
ーン120が形成され、同時に図3に示すように四角形
穴の内側面にNi被膜121を形成することで円盤部材
106の内側を反射面となす。本実施例では渦巻き放射
状の凹凸パターン116及び120以外の部分にNi被
膜を形成して凸部となっている。光導波板101上面に
は図1に示すように複数の対向電極109が実装され、
電極パターン115とで静電モータを構成し、対向電極
109への電圧印加を順次切り換えることによって円盤
部材106は回転する。図2に示すように、ローター部
は上述したセラミック基板102と同じくセラミック製
のカバー110で封止され、回転によって渦巻き放射状
のパターンにより中心部から外周面へのポンピング作用
により外周面の隙間部および外側面の気圧が高められ、
非接触状態で姿勢を保つことができる。
The disk member 106 has a rotor portion laminated on the Si substrate 114 as shown in FIG. The Ni substrate is formed by laminating an Ni thin film on the Si substrate 114 with the electrode pattern 115 as shown in FIG. 1 on the lower surface and the spiral radial uneven pattern 116 on the upper surface. Also, a spiral radial uneven pattern 120 is formed on the lower surface of the disk member 106, and at the same time, as shown in FIG. 3, a Ni coating 121 is formed on the inner side surface of the square hole to make the inside of the disk member 106 a reflection surface. . In the present embodiment, a Ni coating is formed on portions other than the spiral radial uneven patterns 116 and 120 to form convex portions. A plurality of opposing electrodes 109 are mounted on the upper surface of the optical waveguide plate 101 as shown in FIG.
An electrostatic motor is configured with the electrode pattern 115, and the disk member 106 is rotated by sequentially switching the voltage application to the counter electrode 109. As shown in FIG. 2, the rotor portion is sealed with a ceramic cover 110 similarly to the above-described ceramic substrate 102, and has a spiral radial pattern formed by rotation and a pumping action from the center portion to the outer peripheral surface. The outside air pressure is increased,
The posture can be maintained in a non-contact state.

【0017】更に、図1に示すように、ベアチップ11
7には半導体レーザ104を変調する駆動回路が形成さ
れ、ベアチップ118には電極パターンへの電圧切り換
え制御を行う駆動回路が実装されている。図2に示すよ
うに、光導波板101と同様にセラミック基板102上
に実装され、カバー110で封止され、光ビームの射出
口にはガラス窓119が設けられてハイブリッドICと
同様な要領にてパッケージングがなされる。走査ビーム
はその走査開始側でミラー111,112により光検出
センサ113で検出されて画像書出しを開始するタイミ
ングがとられる。また、走査終端側でミラー122,1
23により光検出センサ124で検出され、光検出セン
サ113からの走査時間を計測し、走査時間が一定にな
るように駆動回路118にて切り換え速度を制御する。
Further, as shown in FIG.
7, a drive circuit for modulating the semiconductor laser 104 is formed, and a drive circuit for controlling voltage switching to an electrode pattern is mounted on the bare chip 118. As shown in FIG. 2, it is mounted on a ceramic substrate 102 in the same manner as the optical waveguide plate 101, sealed with a cover 110, and provided with a glass window 119 at the light beam emission port, in the same manner as the hybrid IC. Packaging. The scanning beam is detected by the light detection sensor 113 by the mirrors 111 and 112 on the scanning start side, and timing for starting image writing is set. Further, the mirrors 122 and 1 on the scanning end side
The scanning time from the light detection sensor 113 is detected by the light detection sensor 124 and the switching speed is controlled by the drive circuit 118 so that the scanning time is constant.

【0018】図5は本発明の第2の実施例に係る光走査
装置の構成を示す斜視図である。同図において、本実施
例の光走査装置では光導波板201〜203を3層に積
層している。各層毎に配備された半導体レーザチップ2
04〜206及びカップリングレンズ207〜209は
パッケージの外部より光導波板と屈折率がほぼ等しいプ
リズム210〜212を介して所定の角度θc、光導波
板の臨界角より小さい角度で各々入射される。各半導体
レーザは偏向器に向って同軸上に配備されており各反射
面への入射角度、反射点は同一である。円盤部材213
〜215も光導波板201〜203の各層に対向して積
層されてなり、各半導体レーザチップ204〜206か
らの光ビームは第1の実施例と同様に伝搬され、偏向、
走査される。当然、各層の間には臨界角以下の光ビーム
が境界から射出されないよう薄膜形成がなされている。
FIG. 5 is a perspective view showing the configuration of an optical scanning device according to a second embodiment of the present invention. In the same figure, in the optical scanning device of this embodiment, three optical waveguide plates 201 to 203 are laminated. Semiconductor laser chip 2 provided for each layer
The coupling lenses 04 to 206 and the coupling lenses 207 to 209 are incident from the outside of the package through the prisms 210 to 212 having substantially the same refractive index as the optical waveguide plate at a predetermined angle θc and an angle smaller than the critical angle of the optical waveguide plate. . Each semiconductor laser is arranged coaxially toward the deflector, and the angle of incidence on each reflection surface and the reflection point are the same. Disc member 213
215 are also laminated so as to face the respective layers of the optical waveguide plates 201 to 203, and the light beams from the respective semiconductor laser chips 204 to 206 are propagated in the same manner as in the first embodiment,
Scanned. Naturally, a thin film is formed between the layers so that a light beam having a critical angle or less is not emitted from the boundary.

【0019】図6は第2の実施例の光走査装置の構成を
示す概略断面図である。円盤部材213〜215はSi
基板216上に積層されローター部が構成され、その上
面および最下層の円盤部材215の下面には同様に渦巻
き放射状の凹凸パターンが形成されている。積層された
円盤部材213〜215はSi基板216側を上側とし
て光導波板201〜203の各層を貫通する穴201−
1に挿入され各層が対向するように配備される。Si基
板216には中央部に穴が形成され、周方向に交互にS
極、N極が着磁され、四角形穴に外接する管状のマグネ
ット217が接合されている。光導波板201〜203
が実装されるセラミック基板218には穴201−1の
外縁に沿って複数の薄膜コイル219が埋め込まれてお
り、このコイルに複数位相の電流を流すことにより生じ
る電磁力とマグネット217の磁極とで円盤部材213
〜215が回転する。図5に示すように、ベアチップ2
21には各コイルの電流を制御する駆動回路が形成され
て、セラミック基板218上に実装される。ローター部
は第1の実施例と同様にセラミック製のカバー220で
封止され、回転によって渦巻き放射状のパターンにより
外周面へのポンピング作用により、非接触状態で姿勢を
保つことができる。円盤部材213〜215で走査され
た光ビームは各光導波板201〜203の端面より副走
査方向に放射状に射出され、走査レンズ221により被
走査面上に各々Pの間隔をもって結像される。本実施例
ではこの放射中心と被走査面とを光学的に共役とするこ
とにより副走査方向の結像位置のずれを低減している。
また、光導波板201〜203の射出端面は上述した共
役関係が走査レンズのどの通過位置でも保たれるように
射出位置を合わせるため、主走査方向に曲線状に形成さ
れている。ここで、間隔Pは記録密度に相当する隣接ラ
イン間隔に等しく設計され3ライン同時に画像記録する
ことができる。光検出センサ222,223は走査開始
側および走査終端側における走査ビームを検出する。
FIG. 6 is a schematic sectional view showing the structure of the optical scanning device according to the second embodiment. The disk members 213 to 215 are made of Si
A rotor portion is formed by being laminated on the substrate 216, and a spiral radial concavo-convex pattern is similarly formed on the upper surface and the lower surface of the lowermost disk member 215. The laminated disk members 213 to 215 have holes 201-penetrating through the respective layers of the optical waveguide plates 201 to 203 with the Si substrate 216 side facing upward.
1 and each layer is arranged so as to face each other. A hole is formed in the center of the Si substrate 216, and S
The pole and the N pole are magnetized, and a tubular magnet 217 circumscribing the square hole is joined. Optical waveguide plates 201 to 203
A plurality of thin-film coils 219 are buried along the outer edge of the hole 201-1 in the ceramic substrate 218 on which is mounted. Disc member 213
215 rotate. As shown in FIG.
A drive circuit for controlling the current of each coil is formed on the coil 21 and mounted on the ceramic substrate 218. The rotor portion is sealed with a ceramic cover 220 as in the first embodiment, and can maintain a posture in a non-contact state by a pumping action on an outer peripheral surface by a spiral radial pattern by rotation. The light beams scanned by the disk members 213 to 215 are emitted radially in the sub-scanning direction from the end faces of the optical waveguide plates 201 to 203, and are imaged on the surface to be scanned by the scanning lens 221 at intervals of P. In this embodiment, the deviation of the imaging position in the sub-scanning direction is reduced by making the radiation center and the surface to be scanned optically conjugate.
The exit end faces of the optical waveguide plates 201 to 203 are formed in a curved shape in the main scanning direction in order to adjust the exit position so that the above-mentioned conjugate relationship is maintained at any passing position of the scanning lens. Here, the interval P is designed to be equal to the interval between adjacent lines corresponding to the recording density, and three lines can be recorded simultaneously. The light detection sensors 222 and 223 detect the scanning beams on the scanning start side and the scanning end side.

【0020】なお、本実施例ではローター部を動圧によ
る空気軸受により保持したが、他の軸受方式を用いても
効果は同様である。また、円盤部材中央の反射面を四角
形としたがいずれの多角形でも同様である上、中空形状
である必要もなく中実の多角柱の外周を透明部材による
円筒面としても良い。
In this embodiment, the rotor is held by an air bearing by dynamic pressure, but the same effect can be obtained by using another bearing system. In addition, the reflection surface at the center of the disk member is a quadrangle, but the same applies to any polygon. In addition, the outer surface of a solid polygonal pillar may be a cylindrical surface made of a transparent member without having to be hollow.

【0021】また、本発明は上記実施例に限定されるも
のではなく、特許請求の範囲内の記載であれば多種の変
形や置換可能であることは言うまでもない。
Further, the present invention is not limited to the above embodiment, and needless to say, various modifications and substitutions can be made within the scope of the claims.

【0022】[0022]

【発明の効果】以上説明したように、発光源と、該発光
源からの光ビームを偏向し繰り返し走査する偏向手段と
を有する、本発明に係る光走査装置における偏向手段
は、外側面を円筒面で形成し、内側面を円筒面の中心と
同心の多角柱の反射面で形成してなる光透過性の円盤部
材と、この円盤部材を挿入する円筒穴を有する平板状の
光伝送部材とを有することに特徴がある。よって、発光
源からの光ビームが円盤部材の円筒面を通過する際にも
同一媒体中を伝搬するのと同様であるので、光ビームが
集束してしまうこともなく、偏向の前後で状態を維持で
き、良好な結像性能を有する光走査装置を提供できる。
また、円盤部材が露出しないので回転時の空気抵抗も少
なく消費電力や騒音の発生を抑えることができる。
As described above, the deflecting means in the optical scanning device according to the present invention, which has the light emitting source and the deflecting means for deflecting the light beam from the light emitting source and repeatedly scanning, has a cylindrical outer surface. A light-transmissive disk member formed by a surface and an inner surface formed by a reflection surface of a polygonal column concentric with the center of the cylindrical surface, and a flat optical transmission member having a cylindrical hole into which the disk member is inserted. It is characterized by having. Therefore, since the light beam from the light emitting source propagates in the same medium when passing through the cylindrical surface of the disk member, the light beam does not converge and the state before and after the deflection is changed. An optical scanning device which can be maintained and has good image forming performance can be provided.
In addition, since the disk member is not exposed, the air resistance during rotation is small, and power consumption and generation of noise can be suppressed.

【0023】また、偏向手段を複数層の積層構造とする
ことにより、複数ラインを同時に走査する光走査装置が
提供でき、円盤部材の回転速度を上げずに高速記録が可
能となり消費電力や騒音の発生を抑えることができる。
In addition, since the deflecting means has a laminated structure of a plurality of layers, an optical scanning device for simultaneously scanning a plurality of lines can be provided, and high-speed recording can be performed without increasing the rotation speed of the disk member, thereby reducing power consumption and noise. Occurrence can be suppressed.

【0024】更に、円盤部材の多角柱の反射面は金属被
膜を形成してなることにより、中実の多面鏡の外側に円
筒部を設けるのに比べ軽量化が図れ、回転時の負荷を軽
減して消費電力を抑えることができる。
Further, since the reflecting surface of the polygonal prism of the disk member is formed of a metal coating, the weight can be reduced as compared with the case where a cylindrical portion is provided outside the solid polygon mirror, and the load during rotation is reduced. Power consumption can be reduced.

【0025】また、円盤部材の少なくとも一方の底面に
は周方向に渦巻き放射状の凹凸を形成したことにより、
円盤部材の外側面とそれを挿入する円筒穴内側面との間
で空気軸受を構成することができるので、別途軸受手段
を用いる必要がなく、部品点数も少なくて済む上、軽量
化が図れる。
Also, at least one of the bottom surfaces of the disk member is formed with spiral radial irregularities in the circumferential direction, so that
Since the air bearing can be formed between the outer surface of the disk member and the inner surface of the cylindrical hole into which the disk member is inserted, there is no need to use a separate bearing means, the number of parts can be reduced, and the weight can be reduced.

【0026】更に、凹凸は反射面と同一の金属被膜によ
り形成してなることにより、同時に被膜の形成が行うこ
とができるので製造プロセスが簡略化でき、生産効率を
向上することができる。
Further, since the unevenness is formed by the same metal film as the reflection surface, the film can be formed at the same time, so that the manufacturing process can be simplified and the production efficiency can be improved.

【0027】また、発光源からの光ビームを光伝送部材
の表面から入射させるビーム入射手段を具備することに
より、偏向部だけを独立して構成でき半導体レーザの選
択範囲が広がるので汎用性が高まり生産効率を向上する
ことができる。また、光導波板を積層した場合には各層
に対応した入射ビームを同軸上に入射できる。
Also, by providing a beam incident means for causing a light beam from a light emitting source to enter from the surface of the optical transmission member, only the deflection section can be configured independently, and the selection range of the semiconductor laser is expanded, so that versatility is enhanced. Production efficiency can be improved. When optical waveguide plates are stacked, incident beams corresponding to the respective layers can be coaxially incident.

【0028】更に、光伝送部材は偏向手段により偏向さ
れた光ビームの光伝送部材からの射出端を主走査方向に
非直線状に形成し、射出位置を被走査面と走査レンズの
倍率とに合わせて設定したので、いずれの走査角におい
ても光学的に共役な関係が保たれ結像性能が向上し高品
位な画像形成が行うことができる。
Further, the light transmitting member forms the exit end of the light beam deflected by the deflecting means from the light transmitting member in a non-linear manner in the main scanning direction, and sets the exit position to the scanning surface and the magnification of the scanning lens. Since they are set in accordance with each other, the optically conjugate relationship is maintained at any of the scanning angles, the imaging performance is improved, and high-quality image formation can be performed.

【0029】また、光伝送部材は偏向手段により偏向さ
れた光ビームを光伝送部材の表面から射出するビーム射
出手段を具備することにより、端面から射出するのが副
走査方向に偏平な光束であるのに比べ、所定の光束径を
確保できるので被走査面でのビームスポットをより細く
絞り込め、高品位な画像形成が行うことができる。
Further, the light transmitting member is provided with beam emitting means for emitting the light beam deflected by the deflecting means from the surface of the light transmitting member, so that the light beam emitted from the end face is flat in the sub-scanning direction. In comparison with the above, since a predetermined light beam diameter can be secured, a beam spot on the surface to be scanned can be narrowed down more, and high-quality image formation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る光走査装置の構成
を示す斜視図である。
FIG. 1 is a perspective view illustrating a configuration of an optical scanning device according to a first embodiment of the present invention.

【図2】第1の実施例の光走査装置の構成を示す概略断
面図である。
FIG. 2 is a schematic cross-sectional view illustrating a configuration of the optical scanning device according to the first embodiment.

【図3】図1の円盤部材における光ビームの伝搬の様子
を示す図である。
FIG. 3 is a diagram showing a state of propagation of a light beam in a disk member of FIG. 1;

【図4】図1の円盤部材の構成を示す図である。FIG. 4 is a view showing a configuration of a disk member of FIG. 1;

【図5】本発明の第2の実施例に係る光走査装置の構成
を示す斜視図である。
FIG. 5 is a perspective view illustrating a configuration of an optical scanning device according to a second embodiment of the present invention.

【図6】第2の実施例の光走査装置の構成を示す概略断
面図である。
FIG. 6 is a schematic sectional view illustrating a configuration of an optical scanning device according to a second embodiment.

【符号の説明】[Explanation of symbols]

101;光導波板、101−1;端面、101−2;円
筒穴、102;セラミック基板、103;リードフレー
ム、104;半導体レーザチップ、105;分布屈折率
レンズ、106;円盤部材、107;回折格子、10
8;走査レンズ、109;対向電極、110;カバー、
111,112;ミラー、113,124;光検出セン
サ、114;Si基板、115;電極パターン、11
6,120;凹凸パターン、117,118;ベアチッ
プ、119;ガラス窓、121;Ni被膜、122,1
23;ミラー、125;クリアランス。
101; optical waveguide plate, 101-1, end face, 101-2; cylindrical hole, 102; ceramic substrate, 103; lead frame, 104; semiconductor laser chip, 105; distributed refractive index lens, 106; Lattice, 10
8; scanning lens; 109; counter electrode; 110; cover;
111, 112; mirror, 113, 124; light detection sensor, 114; Si substrate, 115; electrode pattern, 11
6, 120; uneven pattern, 117, 118; bare chip, 119; glass window, 121; Ni coating, 122, 1
23; mirror, 125; clearance.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 発光源と、該発光源からの光ビームを偏
向し繰り返し走査する偏向手段とを有する光走査装置に
おいて、 前記偏向手段は、外側面を円筒面で形成し、内側面を前
記円筒面の中心と同心の多角柱の反射面で形成してなる
光透過性の円盤部材と、該円盤部材を挿入する円筒穴を
有する平板状の光伝送部材とを有することを特徴とする
光走査装置。
1. An optical scanning device comprising: a light emitting source; and a deflecting unit that deflects a light beam from the light emitting source and repeatedly scans the light beam. Light having a light-transmitting disk member formed by a polygonal reflecting surface concentric with the center of a cylindrical surface, and a flat optical transmission member having a cylindrical hole into which the disk member is inserted. Scanning device.
【請求項2】前記偏向手段を複数層の積層構造とする請
求項1記載の光走査装置。
2. The optical scanning device according to claim 1, wherein said deflecting means has a laminated structure of a plurality of layers.
【請求項3】 前記円盤部材の前記多角柱の反射面は金
属被膜を形成してなる請求項1又は2に光走査装置。
3. The optical scanning device according to claim 1, wherein a reflecting surface of the polygonal pillar of the disk member is formed with a metal coating.
【請求項4】 前記円盤部材の少なくとも一方の底面に
は周方向に渦巻き放射状の凹凸を形成した請求項1〜3
のいずれかに記載の光走査装置。
4. A spiral radial irregularity is formed in a circumferential direction on at least one bottom surface of said disk member.
The optical scanning device according to any one of the above.
【請求項5】 前記凹凸は前記反射面と同一の金属被膜
により形成してなる請求項4記載の光走査装置。
5. The optical scanning device according to claim 4, wherein the unevenness is formed by the same metal film as the reflection surface.
【請求項6】 前記発光源からの光ビームを前記光伝送
部材の表面から入射させるビーム入射手段を具備する請
求項1〜5のいずれかに記載の光走査装置。
6. The optical scanning device according to claim 1, further comprising a beam incident unit that causes a light beam from the light emitting source to enter from a surface of the optical transmission member.
【請求項7】 前記光伝送部材は前記偏向手段により偏
向された光ビームの前記光伝送部材からの射出端を主走
査方向に非直線状に形成する請求項1〜6のいずれかに
記載の光走査装置。
7. The optical transmission member according to claim 1, wherein an exit end of the light beam deflected by the deflecting means from the optical transmission member is formed in a non-linear manner in the main scanning direction. Optical scanning device.
【請求項8】 前記光伝送部材は前記偏向手段により偏
向された光ビームを前記光伝送部材の表面から射出する
ビーム射出手段を具備する請求項1〜7のいずれかに記
載の光走査装置。
8. The optical scanning device according to claim 1, wherein the light transmission member includes a beam emitting unit that emits a light beam deflected by the deflecting unit from a surface of the light transmission member.
JP2000275864A 2000-09-12 2000-09-12 Optical scanner Pending JP2002090673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275864A JP2002090673A (en) 2000-09-12 2000-09-12 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275864A JP2002090673A (en) 2000-09-12 2000-09-12 Optical scanner

Publications (1)

Publication Number Publication Date
JP2002090673A true JP2002090673A (en) 2002-03-27

Family

ID=18761417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275864A Pending JP2002090673A (en) 2000-09-12 2000-09-12 Optical scanner

Country Status (1)

Country Link
JP (1) JP2002090673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286438B2 (en) 2016-04-04 2022-03-29 Arq Ip Limited Fuel oil / particulate material slurry compositions and processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286438B2 (en) 2016-04-04 2022-03-29 Arq Ip Limited Fuel oil / particulate material slurry compositions and processes

Similar Documents

Publication Publication Date Title
KR100277450B1 (en) Beam steering device and manufacturing method
KR100385066B1 (en) Laser scanning unit
US8593701B2 (en) Optical scanning device and image forming apparatus
JP2584224B2 (en) Optical beam recording device
KR100593119B1 (en) Scanning device, laser projector and optical device
JP2002090673A (en) Optical scanner
JP3242238B2 (en) Recording device
JP4226222B2 (en) Optical scanning apparatus and image forming apparatus
JP2016177075A (en) Optical deflector, optical scanner, image formation device, image projection device and image reader
JP2005338730A (en) Rotary polygon mirror and optical scanner
JP2979754B2 (en) Optical scanning device
WO2023053840A1 (en) Optical scanning device
JP2000180769A (en) Polygon mirror
US20220326512A1 (en) Movable apparatus
JP2743858B2 (en) Optical printer
JPH06148558A (en) Light deflector device
JP2001154132A (en) Optical scanner
JP2022164462A (en) Polygon mirror, deflector, optical scanner, and image forming apparatus
KR20050116233A (en) Scanning apparatus for sequentially scanning light according to a switching signal
JPH0943524A (en) Light beam scanning optical system
KR19980067363A (en) Multi beam laser scanner
JP3093877B2 (en) Disk for light beam recording device and light beam recording device
JP2002082295A (en) Method for optical scanning, optical scanning device, optical scanning module, and image forming device
JP2001215436A (en) Optical scanner
JP2009162806A (en) Optical deflector and optical apparatus using optical deflector