JP2002090658A - Real image type finder optical system - Google Patents

Real image type finder optical system

Info

Publication number
JP2002090658A
JP2002090658A JP2000284976A JP2000284976A JP2002090658A JP 2002090658 A JP2002090658 A JP 2002090658A JP 2000284976 A JP2000284976 A JP 2000284976A JP 2000284976 A JP2000284976 A JP 2000284976A JP 2002090658 A JP2002090658 A JP 2002090658A
Authority
JP
Japan
Prior art keywords
optical system
lens
lens group
objective optical
real image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000284976A
Other languages
Japanese (ja)
Inventor
Yasushi Yamamoto
康 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2000284976A priority Critical patent/JP2002090658A/en
Publication of JP2002090658A publication Critical patent/JP2002090658A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Viewfinders (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized, high-magnification real image type finder optical system, which can have its magnification area switched by replacing the least number of components. SOLUTION: This optical system comprises a positive objective optical system (TA), a mirror (MR), a roof prism (PD), and a positive ocular optical system (SE) in order from an object side. The objective optical system (TA) comprises 1st to 3rd lens groups (Gr1 to Gr3) and a 4-th lens group (Gr4A or Gr4B), and is zoomed by moving the 2nd and 3rd lens groups (Gr2, Gr3). One of the two 4-th lens groups (Gr4A, Gr4B) is switched and arranged in the optical path as the closest to image-side lens group of the objective optical system (TA), so as to optionally vary the focal length of the objective optical system (TA).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は実像式ファインダー
光学系に関するものであり、更に詳しくは変倍機能を有
するケプラー型の実像式ファインダー光学系に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a real image type finder optical system, and more particularly to a Keplerian real image type finder optical system having a zooming function.

【0002】[0002]

【従来の技術】カメラには被写体像を確認するためのフ
ァインダーが必要であり、例えば銀塩フィルムを使用す
るレンズシャッターカメラには、撮影光学系とは別体の
ファインダー光学系が搭載される。近年、撮像素子をC
CD(Charge Coupled Device)等の電荷素子で構成し
た、いわゆるデジタルカメラが普及してきており、それ
にも別体のファインダー光学系が搭載されることが多
い。
2. Description of the Related Art A camera requires a finder for confirming a subject image. For example, a lens shutter camera using a silver halide film is equipped with a finder optical system separate from a photographing optical system. In recent years, C
A so-called digital camera configured by a charge element such as a CD (Charge Coupled Device) has become widespread, and a separate finder optical system is often mounted thereon.

【0003】撮影光学系とは別体のファインダー光学系
を備えたカメラに、撮影光学系としてズームレンズを搭
載する場合には、ファインダー光学系を撮影光学系の変
倍領域や変倍比に対応させる必要がある。特開平6−3
24266号公報では、焦点距離の異なる複数の対物光
学系を備え、そのうちのいずれか1つを光路中に切替配
置することによってズーミングの変倍領域を切り替える
ファインダー光学系が提案されている。また特開平11
−242262号公報では、テレコンバータとワイドコ
ンバータを備え、そのいずれか一方を対物光学系の物体
側に取り付けることによって変倍領域を切り替えるファ
インダー光学系が提案されている。
When a camera equipped with a finder optical system separate from the photographing optical system is equipped with a zoom lens as the photographing optical system, the finder optical system corresponds to the magnification range and the magnification ratio of the photographing optical system. Need to be done. JP-A-6-3
Japanese Patent No. 24266 proposes a finder optical system that includes a plurality of objective optical systems having different focal lengths, and switches one of them in an optical path to switch a zooming magnification range. Also, JP-A-11
Japanese Patent Application Laid-Open No. 242262 proposes a finder optical system that includes a teleconverter and a wide converter, and switches one of the magnification ranges by attaching one of them to the object side of the objective optical system.

【0004】[0004]

【発明が解決しようとする課題】しかし、特開平6−3
24266号公報や特開平11−242262号公報で
提案されているように変倍領域を切替可能に構成しよう
とすると、ファインダー光学系の構成部材が大きくなっ
てしまうため、カメラの大型化を招くことになる。また
変倍領域を切替可能にする構成に限らず、撮影光学系と
は別体のファインダー光学系をカメラに搭載する場合に
は、そのカメラの様々な仕様(変倍領域,変倍比,大き
さ等)に対応した専用のファインダー光学系を個別に用
意する必要がある。それには専用の金型が必要となるた
め、仕様が異なっても部品を共通使用できるファインダ
ー光学系が望まれている。
However, Japanese Patent Laid-Open No. 6-3 / 1994
If the variable magnification area is configured to be switchable as proposed in Japanese Patent Application Laid-Open No. 24266 and Japanese Patent Application Laid-Open No. H11-242262, the components of the finder optical system become large, which leads to an increase in the size of the camera. become. When the camera is equipped with a finder optical system that is separate from the photographing optical system, it is not limited to the configuration in which the zooming area can be switched, and various specifications (zooming area, zooming ratio, It is necessary to separately prepare a dedicated finder optical system corresponding to the above. Since a special mold is required for this, a finder optical system that can use parts in common even if the specifications are different is desired.

【0005】本発明はこのような状況に鑑みてなされた
ものであって、最少の部品点数の変更で変倍領域を切り
替えることが可能な小型・高変倍の実像式ファインダー
光学系を提供することを目的とする。
The present invention has been made in view of such a situation, and provides a small-size, high-magnification real-image type finder optical system capable of switching a magnification area by changing the minimum number of parts. The purpose is to:

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の実像式ファインダー光学系は、物体側
より順に、正のパワーを有する対物光学系と、正立光学
系と、正のパワーを有する接眼光学系とを有し、前記対
物光学系が複数のレンズ群から成り、そのうちの少なく
とも1つのレンズ群の移動により変倍を行う実像式変倍
ファインダー光学系において、前記対物光学系を構成す
るレンズ群のなかで最も像側のレンズ群のみを変更する
ことによって、前記対物光学系の焦点距離を任意に変更
しうるように構成したことを特徴とする。
In order to achieve the above object, a real image type finder optical system according to the first invention comprises, in order from the object side, an objective optical system having a positive power, an erecting optical system, An eyepiece optical system having a positive power, wherein the objective optical system comprises a plurality of lens groups, and a real image type variable magnification finder optical system which performs magnification by moving at least one of the lens groups; The focal length of the objective optical system can be arbitrarily changed by changing only the lens group closest to the image among the lens groups constituting the optical system.

【0007】第2の発明の実像式ファインダー光学系
は、上記第1の発明の構成において、前記対物光学系の
最も像側のレンズ群が負のパワーを有することを特徴と
する。
According to a second aspect of the present invention, there is provided a real image type finder optical system according to the first aspect, wherein a lens group closest to the image side of the objective optical system has a negative power.

【0008】第3の発明の実像式ファインダー光学系
は、上記第1の発明の構成において、前記対物光学系の
最も像側のレンズ群が正のパワーを有することを特徴と
する。
According to a third aspect of the present invention, in the real image type viewfinder optical system according to the first aspect of the present invention, the most image side lens group of the objective optical system has a positive power.

【0009】第4の発明の実像式ファインダー光学系
は、上記第1,第2又は第3の発明の構成において、前
記対物光学系の最も像側のレンズ群が変倍中固定である
ことを特徴とする。
According to a fourth aspect of the present invention, in the real image type viewfinder optical system according to the first, second or third aspect of the present invention, the most image-side lens unit of the objective optical system is fixed during zooming. Features.

【0010】第5の発明の実像式ファインダー光学系
は、上記第1,第2,第3又は第4の発明の構成におい
て、前記対物光学系の最も像側の面が平面であることを
特徴とする。
According to a fifth aspect of the present invention, in the real image type finder optical system according to the first, second, third or fourth aspect of the present invention, the most image side surface of the objective optical system is a flat surface. And

【0011】第6の発明の実像式ファインダー光学系
は、上記第1,第2,第3,第4又は第5の発明の構成
において、前記対物光学系の最も像側のレンズ群として
焦点距離の異なる複数のレンズ群を備え、そのうちのい
ずれか1つを光路中に切替配置するように構成したこと
を特徴とする。
A real image type finder optical system according to a sixth aspect of the present invention is the real image type finder optical system according to the first, second, third, fourth or fifth aspect of the invention, wherein a focal length is set as a lens group closest to the image side of the objective optical system. A plurality of different lens groups, and any one of them is switched and arranged in the optical path.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施した実像式フ
ァインダー光学系を、図面を参照しつつ説明する。図1
に、第4レンズ群(Gr4A,Gr4B)の切替構造を有するファ
インダー光学系の一実施の形態を示す。このファインダ
ー光学系は、撮影光学系(不図示)とは別体の実像式変倍
ファインダー光学系であって、物体側より順に、正のパ
ワーを有する対物光学系(TA)と、ミラー(MR)と、ダハプ
リズム(PD)と、正のパワーを有する接眼光学系(SE)とで
構成されており(EP:瞳)、ミラー(MR)とダハプリズム(P
D)とで正立光学系を構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A real image finder optical system embodying the present invention will be described below with reference to the drawings. FIG.
Next, an embodiment of a finder optical system having a switching structure of the fourth lens group (Gr4A, Gr4B) will be described. This finder optical system is a real image type variable magnification finder optical system separate from a photographing optical system (not shown), and includes, in order from the object side, an objective optical system (TA) having positive power and a mirror (MR). ), A roof prism (PD), and an eyepiece optical system (SE) having positive power (EP: pupil), a mirror (MR) and a roof prism (P
D) constitutes an erecting optical system.

【0013】対物光学系(TA)は、各レンズ群がレンズ1
枚から成る正・負・正・負の4つのレンズ群で構成され
ており、第2,第3レンズ群(Gr2,Gr3)が光軸(AX)に沿
って移動することによりズーミングを行う構成になって
いる。また、対物光学系(TA)の最も像側のレンズ群とし
て、焦点距離の異なる2つの第4レンズ群(Gr4A,Gr4B)
を備えており、第4レンズ群(Gr4A,Gr4B)を保持してい
るレンズホルダー(LH)の移動(回転,平行移動等)によ
り、2つの第4レンズ群(Gr4A,Gr4B)のうちのいずれか
1つが光路中に切替配置される構成になっている。な
お、レンズホルダー(LH)は撮影光学系(不図示)のズーミ
ングに連動するように構成されているが、切り替え手段
はこれに限るものではない。
In the objective optical system (TA), each lens group has a lens 1
It is composed of four positive / negative / positive / negative lens groups, and performs zooming by moving the second and third lens groups (Gr2, Gr3) along the optical axis (AX). It has become. Further, as a lens group closest to the image side of the objective optical system (TA), two fourth lens groups (Gr4A, Gr4B) having different focal lengths
And the movement (rotation, translation, etc.) of the lens holder (LH) holding the fourth lens group (Gr4A, Gr4B) causes any one of the two fourth lens groups (Gr4A, Gr4B) to move. One is switched and arranged in the optical path. Note that the lens holder (LH) is configured to interlock with zooming of a photographing optical system (not shown), but the switching means is not limited to this.

【0014】図1のファインダー光学系では、光路中に
配置される第4レンズ群(Gr4A,Gr4B)の焦点距離に応じ
て対物光学系(TA)の焦点距離が変化するため、焦点距離
の異なる複数のレンズ群をレンズホルダー(LH)に固定し
ておくことにより、対物光学系(TA)の焦点距離を任意に
変更することが可能となる。対物光学系(TA)の焦点距離
が変化すればファインダー倍率も変化するため、ファイ
ンダー光学系の変倍領域を簡単に広げることが可能とな
る。
In the finder optical system shown in FIG. 1, the focal length of the objective optical system (TA) changes according to the focal length of the fourth lens group (Gr4A, Gr4B) disposed in the optical path, so that the focal length differs. By fixing a plurality of lens groups to the lens holder (LH), the focal length of the objective optical system (TA) can be arbitrarily changed. If the focal length of the objective optical system (TA) changes, the finder magnification also changes, so that the magnification range of the finder optical system can be easily expanded.

【0015】例えば、第4レンズ群(Gr4A)を光路中に配
置したときのファインダー倍率ΓAを0.37〜2.12とし、
第4レンズ群(Gr4B)を光路中に配置したときのファイン
ダー倍率ΓBを0.32〜1.83とする。光路中に第4レンズ
群(Gr4A)が配置された状態でワイド側にズーミングを行
ってΓA=0.37になると、第4レンズ群(Gr4B)が光路中
に切替配置されてΓB=0.32になる。そして、光路中に
第4レンズ群(Gr4B)が配置された状態でテレ側にズーミ
ングを行ってΓB=1.83になると、第4レンズ群(Gr4A)
が光路中に切替配置されてΓA=2.12になる。ただし、
光路中に配置される第4レンズ群(Gr4A,Gr4B)に応じて
変化する像面位置は、第2レンズ群(Gr2)又は第3レン
ズ群(Gr3)の移動により補正される。
For example, when the fourth lens group (Gr4A) is disposed in the optical path, the finder magnification ΓA is set to 0.37 to 2.12.
The finder magnification ΓB when the fourth lens group (Gr4B) is arranged in the optical path is 0.32 to 1.83. If zooming to the wide side is performed with 第 A = 0.37 when the fourth lens group (Gr4A) is arranged in the optical path, the fourth lens group (Gr4B) is switched and arranged in the optical path and ΓB = 0.32. When the zooming is performed on the telephoto side with the fourth lens group (Gr4B) arranged in the optical path and ΓB = 1.83, the fourth lens group (Gr4A)
Are switched and arranged in the optical path, so that ΓA = 2.12. However,
The image plane position that changes according to the fourth lens group (Gr4A, Gr4B) arranged in the optical path is corrected by moving the second lens group (Gr2) or the third lens group (Gr3).

【0016】上記のように図1のファインダー光学系
は、対物光学系(TA)を構成するレンズ群のなかで最も像
側のレンズ群のみを変更する構成になっているため、小
型・高変倍でありながら最少の部品点数の変更で変倍領
域を切り替えることができる。前述した特開平11−2
42262号公報記載のファインダー光学系では、対物
光学系の物体側に取り付けたコンバータにより対物光学
系の焦点距離を変更している。しかし、使用するコンバ
ータがアフォーカル系を構成しなければならないため、
ファインダー光学系の全長が大きくなり、コンバータ部
のレンズ外径も大きくなってしまう。結果として、コン
パクト化を達成することが困難になる。図1に示すよう
に、対物光学系(TA)を構成するレンズ群のなかで最も像
側のレンズ群のみを変更することによって、対物光学系
(TA)の焦点距離を切り替える構成にすれば、ファインダ
ー光学系の全長やレンズ外径の大型化を抑えることがで
きる。
As described above, the finder optical system shown in FIG. 1 has a configuration in which only the lens unit closest to the image among the lens units constituting the objective optical system (TA) is changed. Although it is twice as large, it is possible to switch the magnification range by changing the minimum number of parts. Japanese Unexamined Patent Application Publication No. 11-2
In the finder optical system described in Japanese Patent No. 42262, the focal length of the objective optical system is changed by a converter attached to the object side of the objective optical system. However, since the converter used must constitute an afocal system,
The overall length of the finder optical system increases, and the lens outer diameter of the converter section also increases. As a result, it is difficult to achieve compactness. As shown in FIG. 1, by changing only the lens group closest to the image among the lens groups constituting the objective optical system (TA), the objective optical system (TA) is changed.
If the configuration is such that the focal length of (TA) is switched, the overall length of the finder optical system and the enlargement of the lens outer diameter can be suppressed.

【0017】撮影光学系とは別体のファインダー光学系
をカメラに搭載する場合には、前述したようにカメラの
様々な仕様(変倍領域,変倍比,大きさ等)に対応した専
用のファインダー光学系を個別に用意する必要がある。
しかし、対物光学系(TA)を構成するレンズ群のなかで最
も像側のレンズ群のみを変更する、上述の構成を利用す
れば、仕様が異なっても部品を共通使用することが可能
である。図2(A)〜(C)に、部品の共通使用が可能なファ
インダー光学系の一実施の形態を示す。
When a finder optical system separate from the photographing optical system is mounted on the camera, as described above, a dedicated finder optical system corresponding to various specifications (magnification area, magnification ratio, size, etc.) of the camera is used. It is necessary to prepare a finder optical system individually.
However, among the lens groups constituting the objective optical system (TA), only the lens group closest to the image is changed.If the above-described configuration is used, it is possible to commonly use parts even if the specifications are different. . 2 (A) to 2 (C) show an embodiment of a finder optical system in which parts can be commonly used.

【0018】図2(A)のファインダー光学系は、図1と
同様、撮影光学系(不図示)とは別体の実像式変倍ファイ
ンダー光学系であって、物体側より順に、正のパワーを
有する対物光学系(TA)と、ミラー(MR)と、ダハプリズム
(PD)と、正のパワーを有する接眼光学系(SE)とで構成さ
れており(EP:瞳)、ミラー(MR)とダハプリズム(PD)とで
正立光学系を構成している。また、対物光学系(TA)とミ
ラー(MR)は第1ホルダー(H1)内に設けられており、ダハ
プリズム(PD)と接眼光学系(SE)は第2ホルダー(H2)内に
設けられている。対物光学系(TA)は、各レンズ群がレン
ズ1枚から成る正・負・正・負の4つのレンズ群(Gr1〜
Gr3,Gr4A)で構成されており、第2,第3レンズ群(Gr2,
Gr3)が光軸(AX)に沿って移動することによりズーミング
を行う構成になっている。
The finder optical system shown in FIG. 2A is a real image type variable magnification finder optical system separate from the photographing optical system (not shown), similarly to FIG. 1, and has a positive power in order from the object side. Objective (TA), mirror (MR), and roof prism
(PD) and an eyepiece optical system (SE) having positive power (EP: pupil), and a mirror (MR) and a roof prism (PD) constitute an erecting optical system. The objective optical system (TA) and the mirror (MR) are provided in the first holder (H1), and the roof prism (PD) and the eyepiece optical system (SE) are provided in the second holder (H2). I have. The objective optical system (TA) has four positive, negative, positive and negative lens groups (Gr1 to
Gr3, Gr4A), and the second and third lens groups (Gr2, Gr4,
Gr3) moves along the optical axis (AX) to perform zooming.

【0019】図2(A)のファインダー光学系を広画角化
したものが、図2(B)のファインダー光学系である。こ
こで用いる第4レンズ群(Gr4B)は、図2(A)中の第4レ
ンズ群(Gr4A)とは焦点距離が異なる。したがって、第4
レンズ群(Gr4B)に交換すると、対物光学系(TA)の焦点距
離が変化するためファインダー倍率も変化する。例えば
ファインダー倍率は、0.37〜2.12{図2(A)}から0.32〜
1.83{図2(B)}に変化することになる。このように変倍
領域を変化させると光路長が長くなるので、像面位置を
合わせるために第2ホルダー(H2)を第2ホルダー(H2')
に交換する。第2ホルダー(H2')への変更によってミラ
ー(MR)とダハプリズム(PD)との間隔が広くなり、像面位
置が補正される。変更部分が第4レンズ群(Gr4A,Gr4B)
と第2ホルダー(H2,H2')だけなので、ファインダー光学
系の変倍領域を簡単に変更することが可能である。例え
ば、望遠ズーム用から広角ズーム用にファインダー光学
系の仕様を簡単に変更することができる。なお、第2ホ
ルダー(H2')と交換する代わりに、第1,第2ホルダー
(H1,H2)間にスペーサーを配置してもよい。
The viewfinder optical system shown in FIG. 2A is obtained by widening the angle of view of the viewfinder optical system shown in FIG. 2B. The fourth lens group (Gr4B) used here has a different focal length from the fourth lens group (Gr4A) in FIG. Therefore, the fourth
When the lens group (Gr4B) is replaced, the finder magnification changes because the focal length of the objective optical system (TA) changes. For example, the viewfinder magnification ranges from 0.37 to 2.12 {Fig.
1.83 {FIG. 2 (B)}. Since the optical path length increases when the variable magnification area is changed in this manner, the second holder (H2) is replaced with the second holder (H2 ') in order to adjust the image plane position.
Replace with By changing to the second holder (H2 '), the distance between the mirror (MR) and the roof prism (PD) is increased, and the image plane position is corrected. The changed part is the fourth lens group (Gr4A, Gr4B)
And the second holder (H2, H2 ') alone, it is possible to easily change the magnification range of the finder optical system. For example, the specifications of the finder optical system can be easily changed from telephoto zoom to wide-angle zoom. In addition, instead of replacing with the second holder (H2 '), the first and second holders
A spacer may be arranged between (H1, H2).

【0020】図2(A)のファインダー光学系の全長を伸
ばしたものが、図2(C)のファインダー光学系である。
第4レンズ群(Gr4A)及びミラー(MR)の代わりに、物体側
面が曲面で構成されたプリズムから成る第4レンズ群(G
r4C)が用いられている。また、第1ホルダー(H1)の代わ
りに、全長が伸びた対物光学系(TA)に合う大きさの第1
ホルダー(H1')が用いられている。第4レンズ群(Gr4A)
は対物光学系(TA)の最も像側に位置するレンズであるた
め、これとミラー(MR)とを一体化した構成のプリズムを
第4レンズ群(Gr4C)として用いれば、ファインダー倍率
を変化させることなく、カメラの大きさに合わせてファ
インダー全長を長くすることができる。
The viewfinder optical system of FIG. 2A is obtained by extending the entire length of the viewfinder optical system of FIG. 2A.
Instead of the fourth lens group (Gr4A) and the mirror (MR), the fourth lens group (G
r4C) is used. Also, instead of the first holder (H1), the first holder (H1) having a length suitable for the objective optical system (TA) having a longer overall length is used.
A holder (H1 ') is used. 4th lens group (Gr4A)
Is the lens located closest to the image side of the objective optical system (TA), and if a prism configured to integrate this with the mirror (MR) is used as the fourth lens group (Gr4C), the finder magnification is changed. Without the need for a camera, the overall length of the viewfinder can be increased to fit the size of the camera.

【0021】図3(A),(B)に、ファインダー全長(L1,L2)
の変化を示す。ただし、図3(A)は図2(A)に対応し、図
3(B)は図2(C)に対応する。図3(A)に示すように、ミ
ラー(MR)で構成された反射面の前後の光路が空気で満た
されている場合、ファインダー全長(L1)は短いものとな
る。図3(B)に示すように、第4レンズ群(Gr4C)で構成
された反射面の前後の光路中に、プリズムを構成する媒
質(ガラスやプラスチック等)が存在する場合、媒質(プ
リズム)が占める空気換算光路長は短くなる。したがっ
て、実際の光路の長さは伸びることになるため、少ない
部品点数でファインダー全長(L2)は長いものとなる。
FIGS. 3A and 3B show the total viewfinder lengths (L1, L2).
Shows the change in Note that FIG. 3A corresponds to FIG. 2A, and FIG. 3B corresponds to FIG. 2C. As shown in FIG. 3A, when the optical path before and after the reflecting surface formed by the mirror (MR) is filled with air, the entire length of the finder (L1) is short. As shown in FIG. 3B, when a medium (glass, plastic, or the like) forming the prism exists in the optical path before and after the reflection surface formed by the fourth lens group (Gr4C), the medium (prism) Occupied by the air becomes shorter. Therefore, since the actual length of the optical path is increased, the total length of the finder (L2) is increased with a small number of components.

【0022】次に、対物光学系(TA)を構成するレンズ群
のなかで最も像側のレンズ群のみを変更する上で、好ま
しい特徴を有するファインダー光学系を説明する。図4
〜図7は、第1〜第4の実施の形態の実像式ファインダ
ー光学系にそれぞれ対応するレンズ構成図であり、ワイ
ド端[W]でのレンズ配置及び光路を標準状態(A)と切替状
態(B)のそれぞれについて示している。標準状態(A)は変
倍領域を高倍率側(テレ側)に有し、切替状態(B)は変倍
領域を低倍率側(ワイド側)に有する。
Next, a finder optical system having preferable characteristics for changing only the lens group closest to the image among the lens groups constituting the objective optical system (TA) will be described. FIG.
7 are lens configuration diagrams respectively corresponding to the real image type viewfinder optical systems of the first to fourth embodiments, and the lens arrangement and the optical path at the wide end [W] are switched from the standard state (A) to the standard state (A). (B) is shown. The standard state (A) has a variable magnification area on the high magnification side (tele side), and the switching state (B) has a variable magnification area on the low magnification side (wide side).

【0023】第1〜第4の実施の形態(図4〜図7)は、
撮影光学系(不図示)とは別体の実像式変倍ファインダー
光学系であって、物体側より順に、正のパワーを有する
対物光学系(TA)と、正立光学系を構成する正立プリズム
(PR)と、正のパワーを有する接眼光学系(SE)とを有して
いる(EP:瞳)。対物光学系(TA)は複数のレンズ群から成
り、そのうちの少なくとも1つのレンズ群の移動により
ズーミングが行われる。各レンズ構成図中の矢印mj(j=
1,2,3,4)は、ワイド端[W]からテレ端[T]へのズーミング
における第jレンズ群(Grj)の光軸(AX)に沿った移動をそ
れぞれ模式的に示している。
The first to fourth embodiments (FIGS. 4 to 7)
A real image type variable magnification finder optical system separate from a photographing optical system (not shown), and an objective optical system (TA) having positive power and an erecting optical system constituting an erecting optical system in order from the object side. prism
(EP) and an eyepiece optical system (SE) having positive power (EP: pupil). The objective optical system (TA) includes a plurality of lens groups, and zooming is performed by moving at least one of the lens groups. Arrows mj (j =
1, 2, 3, 4) schematically show the movement of the j-th lens unit (Grj) along the optical axis (AX) during zooming from the wide-angle end [W] to the telephoto end [T]. .

【0024】第1の実施の形態(図4)では、対物光学系
(TA)が、物体側より順に、正のパワーを有する第1レン
ズ群(Gr1)と、負のパワーを有する第2レンズ群(Gr2)
と、正のパワーを有する第3レンズ群(Gr3)と、負のパ
ワーを有する第4レンズ群(Gr4A又はGr4B)とで構成さ
れ、第2,第3レンズ群(Gr2,Gr3)がズーム移動する構
成になっている。各レンズ群(Gr1〜Gr3,Gr4A,Gr4B)は各
々レンズ1枚から成っており、正立プリズム(PR)の物体
側面はコンデンサーレンズ面になっている。また、第4
レンズ群(Gr4A又はGr4B)を構成する第4レンズ(G4A又は
G4B)は、像側の面が平面になっている。
In the first embodiment (FIG. 4), the objective optical system
(TA) includes, in order from the object side, a first lens group (Gr1) having positive power and a second lens group (Gr2) having negative power.
And a third lens group (Gr3) having a positive power and a fourth lens group (Gr4A or Gr4B) having a negative power, and the second and third lens groups (Gr2, Gr3) are zoomed. Configuration. Each lens group (Gr1 to Gr3, Gr4A, Gr4B) is composed of one lens, and the object side surface of the erecting prism (PR) is a condenser lens surface. Also, the fourth
The fourth lens (G4A or Gr4A) constituting the lens group (Gr4A or Gr4B)
G4B) has a flat surface on the image side.

【0025】第2の実施の形態(図5)では、対物光学系
(TA)が、物体側より順に、正のパワーを有する第1レン
ズ群(Gr1)と、負のパワーを有する第2レンズ群(Gr2)
と、正のパワーを有する第3レンズ群(Gr3)と、負のパ
ワーを有する第4レンズ群(Gr4)と、負のパワーを有す
る第5レンズ(G5A)から成る第5レンズ群(Gr5A)又は平
行平面板(G5B)から成る第5レンズ群(Gr5B)とで構成さ
れ、第2〜第4レンズ群(Gr2〜Gr4)がズーム移動する構
成になっている。各レンズ群(Gr1〜Gr4,Gr5A,Gr5B)は各
々レンズ1枚から成っており、正立プリズム(PR)の物体
側面はコンデンサーレンズ面になっている。また、第5
レンズ群(Gr5A又はGr5B)を構成する第5レンズ(G5A又は
G5B)は、像側の面が平面になっている。
In the second embodiment (FIG. 5), the objective optical system
(TA) includes, in order from the object side, a first lens group (Gr1) having positive power and a second lens group (Gr2) having negative power.
A fifth lens group (Gr5A) including a third lens group (Gr3) having positive power, a fourth lens group (Gr4) having negative power, and a fifth lens (G5A) having negative power. Alternatively, a fifth lens group (Gr5B) composed of a plane-parallel plate (G5B) is provided, and the second to fourth lens groups (Gr2 to Gr4) are zoomed. Each lens group (Gr1 to Gr4, Gr5A, Gr5B) is composed of one lens, and the object side surface of the erecting prism (PR) is a condenser lens surface. In addition, the fifth
Fifth lens (G5A or Gr5A) constituting the lens group (Gr5A or Gr5B)
G5B) has a flat surface on the image side.

【0026】第3の実施の形態(図6)では、対物光学系
(TA)が、物体側より順に、正のパワーを有する第1レン
ズ群(Gr1)と、負のパワーを有する第2レンズ群(Gr2)
と、負のパワーを有する第3レンズ群(Gr3)と、正のパ
ワーを有する第4レンズ群(Gr4A又はGr4B)とで構成さ
れ、第2,第3レンズ群(Gr2,Gr3)がズーム移動する構
成になっている。第1〜第3レンズ群(Gr1〜Gr3)は各々
レンズ1枚から成っており、第4レンズ群(Gr4A,Gr4B)
は、両凸レンズ(G4A,G4B)と、瞳(EP)側面にコンデンサ
ーレンズ面が形成されたプリズム(G5A,G5B)と、から成
っている。
In the third embodiment (FIG. 6), the objective optical system
(TA) includes, in order from the object side, a first lens group (Gr1) having positive power and a second lens group (Gr2) having negative power.
And a third lens group (Gr3) having a negative power and a fourth lens group (Gr4A or Gr4B) having a positive power, and the second and third lens groups (Gr2, Gr3) are zoomed. Configuration. The first to third lens groups (Gr1 to Gr3) each include one lens, and the fourth lens group (Gr4A, Gr4B)
Consists of a biconvex lens (G4A, G4B) and a prism (G5A, G5B) having a condenser lens surface formed on the side surface of the pupil (EP).

【0027】第4の実施の形態(図7)では、対物光学系
(TA)が、物体側より順に、負のパワーを有する第1レン
ズ群(Gr1)と、正のパワーを有する第2レンズ群(Gr2)
と、負のパワーを有する第3レンズ群(Gr3)と、正のパ
ワーを有する第4レンズ群(Gr4A又はGr4B)とで構成さ
れ、第1〜第3レンズ群(Gr1〜Gr3)がズーム移動する構
成になっている。第1〜第3レンズ群(Gr1〜Gr3)は各々
レンズ1枚から成っており、第4レンズ群(Gr4A,Gr4B)
は両凸レンズ(G4A,G4B)とプリズム(G5A,G5B)とから成っ
ており、正立プリズム(PR)の物体側面はコンデンサーレ
ンズ面になっている。また、第4レンズ群(Gr4A又はGr4
B)を構成する第5レンズ(G5A又はG5B)は、像側の面が平
面になっている。
In the fourth embodiment (FIG. 7), the objective optical system
(TA) includes, in order from the object side, a first lens group (Gr1) having negative power and a second lens group (Gr2) having positive power.
And a third lens group (Gr3) having a negative power and a fourth lens group (Gr4A or Gr4B) having a positive power. The first to third lens groups (Gr1 to Gr3) are zoomed. Configuration. The first to third lens groups (Gr1 to Gr3) each include one lens, and the fourth lens group (Gr4A, Gr4B)
Is composed of biconvex lenses (G4A, G4B) and prisms (G5A, G5B), and the object side surface of the erect prism (PR) is a condenser lens surface. Further, the fourth lens group (Gr4A or Gr4
The fifth lens (G5A or G5B) constituting B) has a flat surface on the image side.

【0028】第1の実施の形態のように、対物光学系(T
A)の最も像側のレンズ群が負のパワーを有することが望
ましい。最も像側のレンズ群に負のパワーを持たせるこ
とにより、対物光学系(TA)のレンズバックを長くとるこ
とが可能となり、確保されたレンズバックの部分に反射
面で構成された正立光学系(ダハプリズム,ダハミラー
等)を配置することが可能となる。
As in the first embodiment, the objective optical system (T
It is desirable that the lens unit closest to the image in A) has negative power. By giving negative power to the lens group closest to the image side, it is possible to lengthen the lens back of the objective optical system (TA), and the erecting optics composed of a reflective surface in the secured lens back part A system (a roof prism, a roof mirror, etc.) can be arranged.

【0029】第3,第4の実施の形態のように、対物光
学系(TA)の最も像側のレンズ群が正のパワーを有するこ
とが望ましい。実像式のファインダー光学系では、対物
光学系(TA)から接眼光学系(SE)への入射光線がケラレな
いようにするために、対物光学系(TA)の結像面へ入射す
る光線は、ある程度テレセントリック性が確保されてい
ることが望ましい。対物光学系(TA)の最も像側のレンズ
群に正のパワーを持たせることにより、結像面へ入射す
る光線の瞳位置をより物体側に持っていくことができる
ため、射出光線のテレセントリック性を確保することが
できる。
As in the third and fourth embodiments, it is desirable that the lens group closest to the image in the objective optical system (TA) has a positive power. In the real image type viewfinder optical system, in order to prevent the incident light from the objective optical system (TA) to the eyepiece optical system (SE) from being vignetted, the light incident on the imaging surface of the objective optical system (TA) is It is desirable that telecentricity is secured to some extent. By giving the positive lens power to the lens group closest to the image side of the objective optical system (TA), the pupil position of the light beam incident on the image plane can be brought closer to the object side, so the telecentricity of the exit light beam Nature can be secured.

【0030】第1〜第4の実施の形態のように、対物光
学系(TA)の最も像側のレンズ群が変倍中固定であること
が望ましい。固定のレンズ群を変更することは、他の可
動レンズ群を変更することよりもズーム機構の構成上容
易である。ズーミング中に移動するレンズ群を変更する
ことにより対物光学系(TA)の焦点距離を変えようとする
と、ズーミングによる像点移動が生じてしまうが、最も
像側の固定レンズ群を変更してもズーミングによる像点
移動は発生しない。単にそのレンズ群のパワーが変化す
ることによって、対物光学系(TA)全系の焦点距離を縮小
又は拡大することになる。したがって、最も像側のレン
ズ群を変倍中固定にすれば、より簡単な構成で対物光学
系(TA)の焦点距離を変更することができる。
As in the first to fourth embodiments, it is desirable that the lens group closest to the image in the objective optical system (TA) be fixed during zooming. Changing the fixed lens group is easier in terms of the configuration of the zoom mechanism than changing the other movable lens groups. If you try to change the focal length of the objective optical system (TA) by changing the lens group that moves during zooming, the image point moves due to zooming, but even if you change the fixed lens group closest to the image side No image point movement due to zooming occurs. Simply changing the power of the lens group will reduce or enlarge the focal length of the entire objective optical system (TA). Therefore, if the lens group closest to the image is fixed during zooming, the focal length of the objective optical system (TA) can be changed with a simpler configuration.

【0031】第1の実施の形態等のように、対物光学系
(TA)の最も像側の面が平面であることが望ましい。対物
光学系(TA)と接眼光学系(SE)との間での像反転により被
写体像を正立させるファインダー構成では、図3(A)に
示すように対物光学系(TA)の後ろの反射面をミラー(MR)
で構成するよりも、図3(B)に示すように対物光学系(T
A)の後ろの反射面をプリズムで構成する方が、部品点数
を減らすとともにファインダー全長を長くすることがで
きる。つまり、必要に応じた光路長のプリズムを用いる
ことにより、部品点数を増やさなくてもファインダー全
長を調整することが可能となる。対物光学系(TA)の最も
像側の面を平面にすれば、最も像側のレンズ群をプリズ
ムで構成してもパワーが変化しないので、その適用は容
易である。
As in the first embodiment, the objective optical system
It is desirable that the most image-side surface of (TA) be a flat surface. In the finder configuration in which the subject image is erected by image inversion between the objective optical system (TA) and the eyepiece optical system (SE), as shown in FIG. Mirror surface (MR)
Rather than the objective optical system (T) as shown in FIG.
If the reflecting surface behind A) is formed of a prism, the number of parts can be reduced and the entire length of the finder can be increased. That is, by using a prism having an optical path length as needed, it is possible to adjust the entire length of the finder without increasing the number of components. If the surface closest to the image side of the objective optical system (TA) is made flat, even if the lens unit closest to the image side is formed of a prism, the power does not change, so that the application is easy.

【0032】また、第1〜第4の実施の形態(図4〜図
7)のように、対物光学系(TA)を構成するレンズ群のな
かで最も像側のレンズ群のみを変更することによって、
対物光学系(TA)の焦点距離を任意に変更しうるように構
成する場合には、以下の条件式(1)を満足することが望
ましい。 5<|ΓAW/(φA−φB)|<60 …(1) ただし、 ΓAW:標準状態(A)でワイド端[W]でのファインダー倍
率、 φA:標準状態(A)での対物光学系(TA)の最も像側のレン
ズ群のパワー、 φB:切替状態(B)での対物光学系(TA)の最も像側のレン
ズ群のパワー、 である。
As in the first to fourth embodiments (FIGS. 4 to 7), only the most image-side lens group among the lens groups constituting the objective optical system (TA) is changed. By
In a case where the focal length of the objective optical system (TA) can be arbitrarily changed, it is desirable to satisfy the following conditional expression (1). 5 <| ΓAW / (φA−φB) | <60… (1) where ΓAW: finder magnification at wide end [W] in standard condition (A), φA: objective optical system in standard condition (A) ( TA), the power of the lens group closest to the image, φB: the power of the lens group closest to the image of the objective optical system (TA) in the switching state (B).

【0033】条件式(1)は、各状態(A),(B)における対物
光学系(TA)の最も像側のレンズ群の好ましいパワー比を
規定している。条件式(1)の下限を超えると、標準状態
(A)と切替状態(B)とのパワー比が大きくなりすぎるた
め、切り替え時の光束確保や収差補正が困難になる。逆
に、条件式(1)の上限を超えると、パワー比が小さくな
りすぎて、標準状態(A)と切替状態(B)との対物光学系(T
A)の焦点距離の差が小さくなり、本発明の目的を達成す
ることができなくなる。
Conditional expression (1) defines a preferable power ratio of the lens group closest to the image in the objective optical system (TA) in each of the states (A) and (B). When the lower limit of conditional expression (1) is exceeded, the standard condition
Since the power ratio between (A) and the switching state (B) becomes too large, it becomes difficult to secure the luminous flux and correct the aberration at the time of switching. Conversely, if the upper limit of conditional expression (1) is exceeded, the power ratio becomes too small and the objective optical system (T
The difference in the focal lengths in (A) becomes small, and the object of the present invention cannot be achieved.

【0034】なお、各実施の形態に用いられているレン
ズは、入射光線を屈折により偏向させる屈折型レンズ
(つまり、異なる屈折率を有する媒質同士の界面で偏向
が行われるタイプのレンズ)であるが、使用するレンズ
はこれに限らない。例えば、回折により入射光線を偏向
させる回折型レンズ,回折作用と屈折作用との組み合わ
せで入射光線を偏向させる屈折・回折ハイブリッド型レ
ンズ,入射光線を媒質内の屈折率分布により偏向させる
屈折率分布型レンズ等を用いてもよい。
The lens used in each embodiment is a refraction type lens which deflects an incident light beam by refraction.
(That is, a lens of a type in which deflection is performed at the interface between media having different refractive indices), but the lens used is not limited to this. For example, a diffractive lens that deflects an incident light beam by diffraction, a hybrid refraction / diffraction lens that deflects an incident light beam by a combination of diffraction and refraction, and a refractive index distribution type that deflects an incident light beam according to a refractive index distribution in a medium. A lens or the like may be used.

【0035】[0035]

【実施例】以下、本発明を実施した実像式ファインダー
光学系の構成等を、コンストラクションデータ,収差図
等を挙げて、更に具体的に説明する。ここで例として挙
げる実施例1〜4は、前述した第1〜第4の実施の形態
にそれぞれ対応しており、第1〜第4の実施の形態を表
すレンズ構成図(図4〜図7)は、対応する実施例1〜4
のレンズ構成をそれぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of a real image type finder optical system embodying the present invention will be described more specifically with reference to construction data, aberration diagrams and the like. Examples 1 to 4 given here as examples correspond to the above-described first to fourth embodiments, respectively, and are lens configuration diagrams showing the first to fourth embodiments (FIGS. 4 to 7). ) Correspond to corresponding Examples 1-4
Are shown, respectively.

【0036】各実施例の標準状態(A),切替状態(B)での
コンストラクションデータにおいて、si(i=1,2,3,...)
は物体(つまり被写体)側から数えてi番目の面であり、r
i(i=1,2,3,...)は面siの曲率半径(mm)、di(i=1,2,
3,...)は物体側から数えてi番目の軸上面間隔(mm)を示
しており、Ni(i=1,2,3,...)は物体側から数えてi番目の
光学要素(Gi,GiA,GiB)のe線に対する屈折率(Ne)、ν
i(i=1,2,3,...)は物体側から数えてi番目の光学要素(G
i,GiA,GiB)のアッベ数(νd)を示している。ただし、切
替状態(B)でのコンストラクションデータについては、
切り替え時の変更部分のみを示す。また、*が付された
面siは非球面で構成された面であることを示し、非球面
の面形状を表す以下の式(AS)で定義されるものとする。
In the construction data in the standard state (A) and the switching state (B) of each embodiment, si (i = 1, 2, 3,...)
Is the i-th surface counted from the object (i.e., subject) side, and r
i (i = 1,2,3, ...) is the radius of curvature (mm) of surface si, di (i = 1,2,
(3, ...) indicates the i-th axial distance (mm) counted from the object side, and Ni (i = 1,2,3, ...) indicates the i-th optical axis counted from the object side. Refractive index (Ne) of element (Gi, GiA, GiB) for e-line, ν
i (i = 1,2,3, ...) is the i-th optical element (G
i, GiA, GiB) are shown. However, for the construction data in the switching state (B),
Only the changed part at the time of switching is shown. Also, the surface si marked with * indicates that it is a surface composed of an aspheric surface, and is defined by the following equation (AS) representing the surface shape of the aspheric surface.

【0037】 Y={C0・X2}/{1+√(1-ε・C02・X2)}+ΣAi・Xi …(AS) ただし、式(AS)中、 Y:高さXの位置での基準面からの光軸(AX)方向の変位
量、 X:光軸(AX)に対して垂直な方向の高さ、 C0:近軸曲率、 ε:2次曲面パラメータ、 Ai:i次式の非球面係数(ΣAi・Xi=A4・X4+A6・X6+A8・X8+A1
0・X10)、 である。
Y = {C0 · X 2 } / {1 + √ (1-ε · C0 2 · X 2 )} + ΣAi · X i (AS) where, in the formula (AS), Y: height X , The displacement in the direction of the optical axis (AX) from the reference plane at the position of X, X: the height in the direction perpendicular to the optical axis (AX), C0: paraxial curvature, ε: quadratic surface parameter, Ai: Aspherical coefficient of the following equation (ΣAi ・ X i = A4 ・ X 4 + A6 ・ X 6 + A8 ・ X 8 + A1
0 · X 10 ).

【0038】また、コンストラクションデータ中、ズー
ミングにおいて変化する軸上面間隔(di)は、ワイド端
[W]〜ミドル[M]〜テレ端[T]での可変空気間隔である。
各倍率状態[W],[M],[T]に対応する標準状態(A),切替状
態(B)でのファインダー倍率(ΓA,ΓB)及び対物光学系(T
A)の焦点距離(fA,fB;mm)、並びに非球面データを他の
データと併せて示し、また条件式(1)の対応値を表1に
示す。
In the construction data, the distance (di) between the top surfaces of the axes, which changes during zooming, is set at the wide end.
[W]-middle [M]-variable air spacing at tele end [T].
The viewfinder magnification (ΓA, ΓB) and the objective optical system (T) in the standard state (A) and the switching state (B) corresponding to each magnification state [W], [M], [T]
The focal length (fA, fB; mm) of A) and the aspherical data are shown together with other data, and the corresponding values of the conditional expression (1) are shown in Table 1.

【0039】図8と図9,図10と図11,図12と図
13,図14と図15は、標準状態(A)と切替状態(B)の
実施例1〜4(図4〜図7)にそれぞれ対応する収差図で
ある。図8〜図15において、(A)〜(C)は各実施例のワ
イド端[W]での収差、(D)〜(F)は各実施例のミドル[M]で
の収差、(G)〜(I)は各実施例のテレ端[T]での収差を示
しており、(A),(D),(G)は非点収差(Diopt.:テ゛ィオフ゜ター)、
(B),(E),(H)は歪曲収差(%)、(C),(F),(I)は倍率色収差
(Rad.:ラシ゛アン)を示している。各収差図において、太い実
線はタンジェンシャル面でのe線に対する収差、細い実
線はサジタル面でのe線に対する収差、短い破線はタン
ジェンシャル面でのC線に対する収差、二点鎖線はサジ
タル面でのC線に対する収差、長い破線はタンジェンシ
ャル面でのg線に対する収差、一点鎖線はサジタル面で
のg線に対する収差を、半画角(Rad.)に対してそれぞれ
表している。
8 and 9, FIGS. 10 and 11, FIGS. 12 and 13, FIGS. 14 and 15 show the first to fourth embodiments (FIGS. 4 to 5) in the standard state (A) and the switching state (B). It is an aberration figure respectively corresponding to 7). 8 to 15, (A) to (C) show aberrations at the wide end [W] of each embodiment, (D) to (F) show aberrations at the middle [M] of each embodiment, and (G) ) To (I) show aberrations at the telephoto end [T] in each embodiment, and (A), (D), and (G) show astigmatism (Diopt .: diopter),
(B), (E), (H) are distortion (%), (C), (F), (I) are chromatic aberration of magnification
(Rad .: Rashidian). In each aberration diagram, the thick solid line is the aberration for the e-line on the tangential surface, the thin solid line is the aberration for the e-line on the sagittal surface, the short dashed line is the aberration for the C line on the tangential surface, and the two-dot chain line is the sagittal surface. , The long dashed line represents the aberration with respect to the g-line on the tangential surface, and the dashed line represents the aberration with respect to the g-line on the sagittal surface, with respect to the half angle of view (Rad.).

【0040】 《実施例1…標準状態(A)》 ΓA=0.37[W]〜0.89[M]〜2.12[T],fA(mm)=6.21[W]〜14.93[M]〜34.96[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s1 r1= 23.228 d1= 1.908 N1= 1.4933 ν1= 57.82 …G1(Gr1) s2* r2= -11.601 d2= 0.620〜4.245〜6.532 s3* r3= -7.475 d3= 0.800 N2= 1.538 ν2= 39.70 …G2(Gr2) s4* r4= 4.514 d4= 11.648〜5.788〜0.350 s5* r5= 7.367 d5= 1.725 N3= 1.524 ν3= 52.20 …G3(Gr3) s6* r6= -7.906 d6= 0.300〜2.535〜5.686 s7A* r7A= -37.459 d7A= 0.800 N4A=1.588 ν4A=30.36 …G4A(Gr4A) s8A r8A= ∞ d8A=13.042 s9 r9= 10.753 d9= 21.323 N5= 1.493 ν5= 57.82 …G5(PR) s10 r10= ∞ d10= 1.000 s11* r11= 24.421 d11= 0.800 N6= 1.626 ν6= 24.01 …G6(SE) s12 r12= 8.753 d12= 0.300 s13* r13= 6.948 d13= 2.190 N7= 1.493 ν7= 57.82 …G7(SE) s14* r14= -14.852<< Example 1 ... Standard condition (A) >> A = 0.37 [W] to 0.89 [M] to 2.12 [T], fA (mm) = 6.21 [W] to 14.93 [M] to 34.96 [T] [Surface] [Radius of curvature] [Shaft upper surface interval] [Refractive index] [Abbe number] s1 r1 = 23.228 d1 = 1.908 N1 = 1.4933 ν1 = 57.82… G1 (Gr1) s2 * r2 = -11.601 d2 = 0.620 ~ 4.245 ~ 6.532 s3 * r3 = -7.475 d3 = 0.800 N2 = 1.538 ν2 = 39.70… G2 (Gr2) s4 * r4 = 4.514 d4 = 11.648 to 5.788 to 0.350 s5 * r5 = 7.367 d5 = 1.725 N3 = 1.524 ν3 = 52.20… G3 ( Gr3) s6 * r6 = -7.906 d6 = 0.300-2.535-5.686 s7A * r7A = -37.459 d7A = 0.800 N4A = 1.588 ν4A = 30.36… G4A (Gr4A) s8A r8A = ∞ d8A = 13.042 s9 r9 = 10.753 d9 = 21. = 1.493 ν5 = 57.82… G5 (PR) s10 r10 = ∞ d10 = 1.000 s11 * r11 = 24.421 d11 = 0.800 N6 = 1.626 ν6 = 24.01… G6 (SE) s12 r12 = 8.753 d12 = 0.300 s13 * r13 = 6.948 d13 = 2.190 N7 = 1.493 ν7 = 57.82… G7 (SE) s14 * r14 = -14.852

【0041】 [非球面データ] s2 :ε=-11.972 ,A4=-5.334×10-4,A6= 2.124×10-5,A8=-3.781×10-7 s3 :ε= 1 ,A4=-4.223×10-4,A6= 5.237×10-5,A8= 5.193×10-7 s4 :ε= -6.032 ,A4= 3.507×10-3,A6=-4.304×10-4,A8= 2.335×10-5 s5 :ε= 2.317 ,A4=-4.383×10-4,A6=-1.474×10-5,A8= 2.122×10-5 s6 :ε= -3.198 ,A4= 5.957×10-4,A6=-1.180×10-4,A8= 3.604×10-5 s7A:ε= -9.223×102,A4=-1.670×10-3,A6= 1.974×10-4,A8=-1.075×10-5 s11:ε= 19.568 ,A4= 4.073×10-4,A6=-1.842×10-5 s13:ε= -0.859 s14:ε= 1 ,A4= 3.649×10-4,A6=-1.433×10-5,A8=-5.496×10-8 [Aspherical surface data] s2: ε = -11.972, A4 = -5.334 × 10 -4 , A6 = 2.124 × 10 -5 , A8 = -3.781 × 10 -7 s3: ε = 1, A4 = -4.223 × 10 -4, A6 = 5.237 × 10 -5, A8 = 5.193 × 10 -7 s4: ε = -6.032, A4 = 3.507 × 10 -3, A6 = -4.304 × 10 -4, A8 = 2.335 × 10 - 5 s5: ε = 2.317, A4 = -4.383 × 10 -4 , A6 = -1.474 × 10 -5 , A8 = 2.122 × 10 -5 s6: ε = -3.198, A4 = 5.957 × 10 -4 , A6 =- 1.180 × 10 -4 , A8 = 3.604 × 10 -5 s7A: ε = -9.223 × 10 2 , A4 = -1.670 × 10 -3 , A6 = 1.974 × 10 -4 , A8 = -1.075 × 10 -5 s11: ε = 19.568, A4 = 4.073 × 10 -4 , A6 = -1.842 × 10 -5 s13: ε = -0.859 s14: ε = 1, A4 = 3.649 × 10 -4 , A6 = -1.433 × 10 -5 , A8 = -5.496 × 10 -8

【0042】 《実施例1…切替状態(B)への切り替え時の変更部分》 ΓB=0.32[W]〜0.77[M]〜1.83[T],fB(mm)=5.37[W]〜12.91[M]〜30.24[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s7B* r7B=-139.859 d7B= 0.800 N4B=1.583 ν4B=30.36 …G4B(Gr4B) s8B r8B= ∞ d8B=11.219<< Embodiment 1 ... Changes in Switching to Switching State (B) >> ΓB = 0.32 [W] to 0.77 [M] to 1.83 [T], fB (mm) = 5.37 [W] to 12.91 [ M] ~ 30.24 [T] [Surface] [Radius of curvature] [Shaft upper surface interval] [Refractive index] [Abbe number] s7B * r7B = -139.859 d7B = 0.800 N4B = 1.583 ν4B = 30.36… G4B (Gr4B) s8B r8B = ∞ d8B = 11.219

【0043】 [非球面データ] s7B:ε= -1.201×104,A4=-3.412×10-4,A6= 2.156×10-5,A8=-7.350×10-7 [Aspherical surface data] s7B: ε = -1.201 × 10 4 , A4 = -3.412 × 10 -4 , A6 = 2.156 × 10 -5 , A8 = -7.350 × 10 -7

【0044】 《実施例2…標準状態(A)》 ΓA=0.37[W]〜0.89[M]〜2.12[T],fA(mm)=6.21[W]〜14.93[M]〜34.96[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s1* r1= 51.652 d1= 1.737 N1= 1.493 ν1= 57.82 …G1(Gr1) s2* r2= -8.642 d2= 0.660〜4.514〜6.000 s3* r3= -6.258 d3= 0.800 N2= 1.538 ν2= 39.70 …G2(Gr2) s4* r4= 4.177 d4= 10.335〜5.182〜0.300 s5* r5= 6.126 d5= 2.668 N3= 1.524 ν3= 52.20 …G3(Gr3) s6* r6= -5.551 d6= 0.300〜1.600〜4.595 s7* r7= -46.903 d7= 0.800 N4= 1.626 ν4= 24.01 …G4(Gr4) s8 r8= 20.000 d8= 0.400〜0.400〜0.800 s9A r9A= -46.548 d9A= 0.800 N5A=1.588 ν5A=30.36 …G5A(Gr5A) s10A r10A= ∞ d10A=11.826 s11 r11= 10.753 d11=21.323 N6= 1.493 ν6= 57.82 …G6(PR) s12 r12= ∞ d12= 1.000 s13* r13= 24.421 d13= 0.800 N7= 1.626 ν7= 24.01 …G7(SE) s14 r14= 8.753 d14= 0.300 s15* r15= 6.948 d15= 2.190 N8= 1.493 ν8= 57.82 …G8(SE) s16* r16= -14.852<< Embodiment 2—Standard Condition (A) >> A = 0.37 [W] to 0.89 [M] to 2.12 [T], fA (mm) = 6.21 [W] to 14.93 [M] to 34.96 [T] [Surface] [Curvature radius] [Shaft upper surface interval] [Refractive index] [Abbe number] s1 * r1 = 51.652 d1 = 1.737 N1 = 1.493 ν1 = 57.82… G1 (Gr1) s2 * r2 = -8.642 d2 = 0.660 to 4.514 Up to 6.000 s3 * r3 = -6.258 d3 = 0.800 N2 = 1.538 ν2 = 39.70… G2 (Gr2) s4 * r4 = 4.177 d4 = 10.335 to 5.182 to 0.300 s5 * r5 = 6.126 d5 = 2.668 N3 = 1.524 ν3 = 52.20… G3 (Gr3) s6 * r6 = -5.551 d6 = 0.300 to 1.600 to 4.595 s7 * r7 = -46.903 d7 = 0.800 N4 = 1.626 ν4 = 24.01… G4 (Gr4) s8 r8 = 20.000 d8 = 0.400 to 0.400 to 0.800 s9A r9A = -46.548 d9A = 0.800 N5A = 1.588 ν5A = 30.36… G5A (Gr5A) s10A r10A = ∞ d10A = 11.826 s11 r11 = 10.753 d11 = 21.323 N6 = 1.493 ν6 = 57.82… G6 (PR) s12 r12 = ∞d12 = 1.000 r13 = 24.421 d13 = 0.800 N7 = 1.626 ν7 = 24.01… G7 (SE) s14 r14 = 8.753 d14 = 0.300 s15 * r15 = 6.948 d15 = 2.190 N8 = 1.493 ν8 = 57.82… G8 (SE) s16 * r16 = -14.852

【0045】 [非球面データ] s1 :ε= 1 ,A4= 6.090×10-4,A6=-3.206×10-5,A8= 1.799×10-6 s2 :ε= -5.186,A4= 1.877×10-4,A6=-2.142×10-5,A8= 1.788×10-6 s3 :ε= 2.019,A4=-2.090×10-3,A6= 3.472×10-4,A8=-3.038×10-6 s4 :ε= -3.899,A4=-1.254×10-3,A6= 1.536×10-4,A8=-1.675×10-6 s5 :ε= -1.799,A4= 2.690×10-4,A6= 2.150×10-5,A8= 4.485×10-6 s6 :ε= -2.626,A4=-7.908×10-4,A6= 3.000×10-5,A8= 6.845×10-6 s7 :ε=236.369,A4= 5.392×10-4,A6=-4.015×10-5,A8= 7.347×10-6 s13:ε= 19.568,A4= 4.073×10-4,A6=-1.842×10-5 s15:ε= -0.859 s16:ε= 1 ,A4= 3.649×10-4,A6=-1.433×10-5,A8=-5.496×10-8 [Aspherical surface data] s1: ε = 1, A4 = 6.090 × 10 -4 , A6 = -3.206 × 10 -5 , A8 = 1.799 × 10 -6 s2: ε = -5.186, A4 = 1.877 × 10 -4 , A6 = -2.142 × 10 -5 , A8 = 1.788 × 10 -6 s3: ε = 2.019, A4 = -2.090 × 10 -3 , A6 = 3.472 × 10 -4 , A8 = -3.038 × 10 -6 s4: ε = -3.899, A4 = -1.254 × 10 -3 , A6 = 1.536 × 10 -4 , A8 = -1.675 × 10 -6 s5: ε = -1.799, A4 = 2.690 × 10 -4 , A6 = 2.150 × 10 -5 , A8 = 4.485 × 10 -6 s6: ε = -2.626, A4 = -7.908 × 10 -4 , A6 = 3.000 × 10 -5 , A8 = 6.845 × 10 -6 s7: ε = 236.369, A4 = 5.392 × 10 -4 , A6 = -4.015 × 10 -5 , A8 = 7.347 × 10 -6 s13: ε = 19.568, A4 = 4.073 × 10 -4 , A6 = -1.842 × 10 -5 s15: ε =- 0.859 s16: ε = 1, A4 = 3.649 × 10 -4 , A6 = -1.433 × 10 -5 , A8 = -5.496 × 10 -8

【0046】 《実施例2…切替状態(B)への切り替え時の変更部分》 ΓB=0.32[W]〜0.77[M]〜1.83[T],fB(mm)=5.37[W]〜12.91[M]〜30.24[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s9B r9B= ∞ d9B= 0.800 N5B=1.583 ν5B=30.36 …G5B(Gr5B) s10B r10B= ∞ d10B=10.165<< Embodiment 2 ... Changes in Switching to Switching State (B) >> ΓB = 0.32 [W] to 0.77 [M] to 1.83 [T], fB (mm) = 5.37 [W] to 12.91 [ M] ~ 30.24 [T] [Surface] [Radius of curvature] [Spacing of shaft upper surface] [Refractive index] [Abbe number] s9B r9B = ∞ d9B = 0.800 N5B = 1.583 ν5B = 30.36 ... = 10.165

【0047】 《実施例3…標準状態(A)》 ΓA=0.40[W]〜0.72[M]〜1.32[T],fA(mm)=7.64[W]〜13.78[M]〜25.29[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s1 r1= 13.762 d1= 2.690 N1= 1.493 ν1= 57.82 …G1(Gr1) s2* r2= -46.384 d2= 0.636〜5.565〜8.941 s3 r3= -27.283 d3= 1.000 N2= 1.493 ν2= 57.82 …G2(Gr2) s4* r4= 6.733 d4= 7.580〜3.937〜4.171 s5 r5= -7.073 d5= 1.000 N3= 1.588 ν3= 30.36 …G3(Gr3) s6 r6= -29.437 d6= 5.034〜3.747〜0.138 s7A* r7A= 9.698 d7A= 3.130 N4A=1.493 ν4A=57.82 …G4A(Gr4A) s8A* r8A= -6.860 d8A= 1.570 s9A r9A= ∞ d9A=16.956 N5A=1.579 ν5A=33.00 …G5A(Gr4A) s10A r10A=-13.856 d10A=3.150 s11 r11= ∞ d11=28.496 N6= 1.588 ν6= 30.36 …G6(PR) s12 r12= ∞ d12= 0.500 s13 r13= 22.136 d13= 1.896 N7= 1.493 ν7= 57.82 …G7(SE) s14* r14= -16.631<< Embodiment 3—Standard Condition (A) >> A = 0.40 [W] to 0.72 [M] to 1.32 [T], fA (mm) = 7.64 [W] to 13.78 [M] to 25.29 [T] [Surface] [Curvature radius] [Shaft upper surface interval] [Refractive index] [Abbe number] s1 r1 = 13.762 d1 = 2.690 N1 = 1.493 ν1 = 57.82… G1 (Gr1) s2 * r2 = -46.384 d2 = 0.636 ~ 5.565 ~ 8.941 s3 r3 = -27.283 d3 = 1.000 N2 = 1.493 ν2 = 57.82… G2 (Gr2) s4 * r4 = 6.733 d4 = 7.580〜3.937〜4.171 s5 r5 = -7.073 d5 = 1.000 N3 = 1.588 ν3 = 30.36 ・ ・ ・ G3 (Gr3 ) s6 r6 = -29.437 d6 = 5.034 ~ 3.747 ~ 0.138 s7A * r7A = 9.698 d7A = 3.130 N4A = 1.493 ν4A = 57.82… G4A (Gr4A) s8A * r8A = -6.860 d8A = 1.570 s9A r9A = ∞ d9A = 16.9 1.579 ν5A = 33.00… G5A (Gr4A) s10A r10A = -13.856 d10A = 3.150 s11 r11 = ∞ d11 = 28.496 N6 = 1.588 ν6 = 30.36… G6 (PR) s12 r12 = ∞ d12 = 0.500 s13 r13 = 22.136 d13 = 1.896 = 1.493 ν7 = 57.82… G7 (SE) s14 * r14 = -16.631

【0048】 [非球面データ] s2 :ε=-18.968,A4= 3.447×10-5,A6= 7.776×10-8 s4 :ε= -0.304 s7A:ε= -3.494,A4=-9.015×10-5,A6= 6.597×10-7 s8A:ε= -0.130 s14:ε= -1.749[Aspherical surface data] s2: ε = -18.968, A4 = 3.447 × 10 -5 , A6 = 7.776 × 10 -8 s4: ε = -0.304 s7A: ε = -3.494, A4 = -9.015 × 10 − 5 , A6 = 6.597 × 10 -7 s8A: ε = -0.130 s14: ε = -1.749

【0049】 《実施例3…切替状態(B)への切り替え時の変更部分》 ΓB=0.32[W]〜0.58[M]〜1.06[T],fB(mm)=6.15[W]〜11.10[M]〜20.36[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s7B* r7B= 7.143 d7B= 3.130 N4B=1.493 ν4B=57.82 …G4B(Gr4B) s8B* r8B= -6.860 d8B= 1.570 s9B r9B= ∞ d9B=11.304 N5B=1.578 ν5B=33.00 …G5B(Gr4B) s10B r10B=-13.856 d10B=3.150<< Embodiment 3 ... Changed part when switching to switching state (B) >> ΓB = 0.32 [W] to 0.58 [M] to 1.06 [T], fB (mm) = 6.15 [W] to 11.10 [ [M] ~ 20.36 [T] [Surface] [Radius of curvature] [Shaft upper surface interval] [Refractive index] [Abbe number] s7B * r7B = 7.143 d7B = 3.130 N4B = 1.493 ν4B = 57.82… G4B (Gr4B) s8B * r8B = -6.860 d8B = 1.570 s9B r9B = ∞ d9B = 11.304 N5B = 1.578 ν5B = 33.00… G5B (Gr4B) s10B r10B = -13.856 d10B = 3.150

【0050】 [非球面データ] s7B:ε=-1.345,A4= 8.899×10-8,A6=-2.354×10-6 s8B:ε=-1.617[Aspherical surface data] s7B: ε = -1.345, A4 = 8.899 × 10 -8 , A6 = -2.354 × 10 -6 s8B: ε = -1.617

【0051】 《実施例4…標準状態(A)》 ΓA=0.40[W]〜0.89[M]〜1.40[T],fA(mm)=7.95[W]〜17.74[M]〜27.62[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s1 r1= -17.416 d1= 1.000 N1= 1.588 ν1= 30.36 …G1(Gr1) s2 r2= 13.365 d2= 14.228〜5.250〜1.818 s3* r3= 7.103 d3= 3.771 N2= 1.527 ν2= 56.38 …G2(Gr2) s4* r4= -10.769 d4= 2.857〜4.330〜7.442 s5* r5= 10.114 d5= 1.000 N3= 1.588 ν3= 30.36 …G3(Gr3) s6 r6= 4.994 d6= 1.819〜7.825〜9.635 s7A* r7A= 72.932 d7A= 1.252 N4A=1.527 ν4A=56.382…G4A(Gr4A) s8A r8A= -56.343 d8A= 0.300 s9A r9A= ∞ d9A=10.049 N5A=1.527 ν5A=56.382…G5A(Gr4A) s10A r10A= ∞ d10A=1.000 s11 r11= 13.109 d11=27.631 N6= 1.527 ν6= 56.382…G6(PR) s12 r12= ∞ d12= 1.000 s13* r13= 46.311 d13= 1.936 N7= 1.493 ν7= 57.82 …G7(SE) s14 r14= -12.792<< Embodiment 4—Standard Condition (A) >> A = 0.40 [W] to 0.89 [M] to 1.40 [T], fA (mm) = 7.95 [W] to 17.74 [M] to 27.62 [T] [Surface] [Curvature radius] [Shaft upper surface interval] [Refractive index] [Abbe number] s1 r1 = -17.416 d1 = 1.000 N1 = 1.588 ν1 = 30.36… G1 (Gr1) s2 r2 = 13.365 d2 = 14.228 to 5.250 to 1.818 s3 * r3 = 7.103 d3 = 3.771 N2 = 1.527 ν2 = 56.38… G2 (Gr2) s4 * r4 = -10.769 d4 = 2.857 to 4.330 to 7.442 s5 * r5 = 10.114 d5 = 1.000 N3 = 1.588 ν3 = 30.36… G3 (Gr3 ) s6 r6 = 4.994 d6 = 1.819 to 7.825 to 9.635 s7A * r7A = 72.932 d7A = 1.252 N4A = 1.527 ν4A = 56.382 ... G4A (Gr4A) s8A r8A = -56.343 d8A = 0.300 s9A r9A = ∞5A = 15.09 = 56.382… G5A (Gr4A) s10A r10A = ∞ d10A = 1.000 s11 r11 = 13.109 d11 = 27.631 N6 = 1.527 ν6 = 56.382… G6 (PR) s12 r12 = ∞ d12 = 1.000 s13 * r13 = 46.311 d13 = 1.936 N7 = 1.493 ν7 = 57.82… G7 (SE) s14 r14 = -12.792

【0052】 [非球面データ] s3 :ε= 1.015,A4=-4.926×10-4,A6=-1.600×10-5,A8= 4.825×10-7,A10=-1.822 ×10-8 s4 :ε= 1.137,A4= 3.167×10-4,A6=-2.225×10-5,A8= 1.140×10-6,A10=-3.089 ×10-8 s5 :ε= 1.131,A4=-1.997×10-4,A6=-3.713×10-5,A8=-3.231×10-7,A10= 8.868 ×10-8 s7A:ε= 1 ,A4= 8.860×10-4,A6=-8.253×10-5,A8= 6.307×10-6,A10=-1.704 ×10-7 s13:ε= 6.211,A4=-1.307×10-4,A6= 5.659×10-6,A8=-2.604×10-7,A10= 3.916 ×10-9 [Aspherical surface data] s3: ε = 1.015, A4 = -4.926 × 10 -4 , A6 = -1.600 × 10 -5 , A8 = 4.825 × 10 -7 , A10 = -1.822 × 10 -8 s4: ε = 1.137, A4 = 3.167 × 10 -4 , A6 = -2.225 × 10 -5 , A8 = 1.140 × 10 -6 , A10 = -3.089 × 10 -8 s5: ε = 1.131, A4 = -1.997 × 10 − 4 , A6 = -3.713 × 10 -5 , A8 = -3.231 × 10 -7 , A10 = 8.868 × 10 -8 s7A: ε = 1, A4 = 8.860 × 10 -4 , A6 = -8.253 × 10 -5 , A8 = 6.307 × 10 -6 , A10 = -1.704 × 10 -7 s13: ε = 6.211, A4 = -1.307 × 10 -4 , A6 = 5.659 × 10 -6 , A8 = -2.604 × 10 -7 , A10 = 3.916 × 10 -9

【0053】 《実施例4…切替状態(B)への切り替え時の変更部分》 ΓB=0.32[W]〜0.71[M]〜1.12[T],fB(mm)=6.34[W]〜14.18[M]〜22.15[T] [面] [曲率半径] [軸上面間隔] [屈折率] [アッベ数] s7B* r7B= 14.286 d7B= 1.252 N4B=1.527 ν4B=56.382…G4B(Gr4B) s8B r8B= -56.343 d8B= 0.300 s9B r9B= ∞ d9B= 7.340 N5B=1.527 ν5B=56.382…G5B(Gr4B) s10B r10B= ∞ d10B=1.000<< Embodiment 4 ... Changed part when switching to switching state (B) >> ΓB = 0.32 [W] to 0.71 [M] to 1.12 [T], fB (mm) = 6.34 [W] to 14.18 [ [M] ~ 22.15 [T] [Surface] [Radius of curvature] [Shaft upper surface interval] [Refractive index] [Abbe number] s7B * r7B = 14.286 d7B = 1.252 N4B = 1.527 ν4B = 56.382… G4B (Gr4B) s8B r8B =- 56.343 d8B = 0.300 s9B r9B = ∞ d9B = 7.340 N5B = 1.527 ν5B = 56.382… G5B (Gr4B) s10B r10B = ∞ d10B = 1.000

【0054】 [非球面データ] s7B:ε= 1 ,A4= 8.860×10-4,A6=-8.253×10-5,A8= 6.307×10-6,A10=-1.704 ×10-7 [Aspherical surface data] s7B: ε = 1, A4 = 8.860 × 10 −4 , A6 = −8.253 × 10 −5 , A8 = 6.307 × 10 −6 , A10 = −1.704 × 10 −7

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】以上説明したように本発明によれば、対
物光学系を構成するレンズ群のなかで最も像側のレンズ
群のみを変更する構成になっているため、小型・高変倍
でありながら最少の部品点数の変更で変倍領域を切り替
えることができる。
As described above, according to the present invention, only the lens unit closest to the image side among the lens units constituting the objective optical system is changed, so that it is compact and has a high zoom ratio. It is possible to switch the magnification area by changing the minimum number of parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第4レンズ群の切替構造を有するファインダー
光学系を示す光学構成図。
FIG. 1 is an optical configuration diagram showing a finder optical system having a switching structure of a fourth lens group.

【図2】部品の共通使用が可能なファインダー光学系を
示す光学構成図。
FIG. 2 is an optical configuration diagram showing a finder optical system that allows common use of components.

【図3】ファインダー全長の変更を説明するための光学
構成図。
FIG. 3 is an optical configuration diagram for explaining a change in the entire length of a finder.

【図4】第1の実施の形態(実施例1)のレンズ構成図。FIG. 4 is a lens configuration diagram of the first embodiment (Example 1).

【図5】第2の実施の形態(実施例2)のレンズ構成図。FIG. 5 is a lens configuration diagram of a second embodiment (Example 2).

【図6】第3の実施の形態(実施例3)のレンズ構成図。FIG. 6 is a lens configuration diagram of a third embodiment (Example 3).

【図7】第4の実施の形態(実施例4)のレンズ構成図。FIG. 7 is a lens configuration diagram of a fourth embodiment (Example 4).

【図8】実施例1の標準状態での収差図。FIG. 8 is an aberration diagram of the first embodiment in a standard state.

【図9】実施例1の切替状態での収差図。FIG. 9 is an aberration diagram of the first embodiment in a switching state.

【図10】実施例2の標準状態での収差図。FIG. 10 is an aberration diagram of the second embodiment in a standard state.

【図11】実施例2の切替状態での収差図。FIG. 11 is an aberration diagram of the switching state of the second embodiment.

【図12】実施例3の標準状態での収差図。FIG. 12 is an aberration diagram of Example 3 in a standard state.

【図13】実施例3の切替状態での収差図。FIG. 13 is an aberration diagram in a switching state of the third embodiment.

【図14】実施例4の標準状態での収差図。FIG. 14 is an aberration diagram of the fourth embodiment in a standard state.

【図15】実施例4の切替状態での収差図。FIG. 15 is an aberration diagram in a switching state of the fourth embodiment.

【符号の説明】 TA …対物光学系 Gr4A …標準状態での第4レンズ群 Gr4B …切替状態での第4レンズ群 Gr5A …標準状態での第5レンズ群 Gr5B …切替状態での第5レンズ群 MR …ミラー(正立光学系) PD …ダハプリズム(正立光学系) PR …正立プリズム(正立光学系) SE …接眼光学系 LH …レンズホルダー H1,H1' …第1ホルダー H2,H2' …第2ホルダー[Explanation of Symbols] TA: Objective optical system Gr4A: Fourth lens group Gr4B in standard state Gr4A in switched state Gr5A: Fifth lens group Gr5B in standard state: Fifth lens group in switched state MR… Mirror (Erect optical system) PD… Dach prism (Erect optical system) PR… Erect prism (Erect optical system) SE… Eyepiece optical system LH… Lens holder H1, H1 '… First holder H2, H2' … Second holder

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H018 AA02 BA02 2H087 KA14 LA11 PA01 PA02 PA04 PA05 PA07 PA17 PB01 PB02 PB04 PB05 PB06 PB07 QA02 QA03 QA05 QA06 QA07 QA12 QA14 QA18 QA21 QA22 QA25 QA26 QA34 QA38 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA41 RA42 SA23 SA24 SA26 SA27 SA29 SA30 SA32 SA33 SA63 SA64 SA83 SB02 SB12 SB22 SB32 SB33 TA01 TA03 ────────────────────────────────────────────────── ─── Continued on the front page F-term (reference) 2H018 AA02 BA02 2H087 KA14 LA11 PA01 PA02 PA04 PA05 PA07 PA17 PB01 PB02 PB04 PB05 PB06 PB07 QA02 QA03 QA05 QA06 QA07 QA12 QA14 QA18 QA21 QA22 QA25 QA26 QA25 QA25 QA25 QA26 QA26 QA26 QA25 QA26 QA26 QA26 QA26 RA13 RA41 RA42 SA23 SA24 SA26 SA27 SA29 SA30 SA32 SA33 SA63 SA64 SA83 SB02 SB12 SB22 SB32 SB33 TA01 TA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、正のパワーを有する対
物光学系と、正立光学系と、正のパワーを有する接眼光
学系とを有し、前記対物光学系が複数のレンズ群から成
り、そのうちの少なくとも1つのレンズ群の移動により
変倍を行う実像式変倍ファインダー光学系において、 前記対物光学系を構成するレンズ群のなかで最も像側の
レンズ群のみを変更することによって、前記対物光学系
の焦点距離を任意に変更しうるように構成したことを特
徴とする実像式ファインダー光学系。
1. An objective optical system having a positive power, an erecting optical system, and an eyepiece optical system having a positive power are arranged in order from the object side, and the objective optical system includes a plurality of lens groups. In a real image type variable magnification finder optical system that performs magnification by moving at least one of the lens groups, by changing only the most image side lens group among the lens groups constituting the objective optical system, A real image type finder optical system characterized in that the focal length of the objective optical system can be arbitrarily changed.
【請求項2】 前記対物光学系の最も像側のレンズ群が
負のパワーを有することを特徴とする請求項1記載の実
像式ファインダー光学系。
2. The real image type finder optical system according to claim 1, wherein a lens group closest to the image side of said objective optical system has a negative power.
【請求項3】 前記対物光学系の最も像側のレンズ群が
正のパワーを有することを特徴とする請求項1記載の実
像式ファインダー光学系。
3. The real image type viewfinder optical system according to claim 1, wherein a lens group closest to the image side of said objective optical system has a positive power.
【請求項4】 前記対物光学系の最も像側のレンズ群が
変倍中固定であることを特徴とする請求項1,2又は3
記載の実像式ファインダー光学系。
4. The lens group closest to the image side of the objective optical system is fixed during zooming.
The real image type viewfinder optical system described in the above.
【請求項5】 前記対物光学系の最も像側の面が平面で
あることを特徴とする請求項1,2,3又は4記載の実
像式ファインダー光学系。
5. The real image type viewfinder optical system according to claim 1, wherein the most image side surface of said objective optical system is a flat surface.
【請求項6】 前記対物光学系の最も像側のレンズ群と
して焦点距離の異なる複数のレンズ群を備え、そのうち
のいずれか1つを光路中に切替配置するように構成した
ことを特徴とする請求項1,2,3,4又は5記載の実
像式ファインダー光学系。
6. A lens system according to claim 1, wherein a plurality of lens groups having different focal lengths are provided as a lens group closest to the image side of said objective optical system, and one of said lens groups is switched and arranged in an optical path. A real image type viewfinder optical system according to claim 1, 2, 3, 4, or 5.
JP2000284976A 2000-09-20 2000-09-20 Real image type finder optical system Pending JP2002090658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284976A JP2002090658A (en) 2000-09-20 2000-09-20 Real image type finder optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284976A JP2002090658A (en) 2000-09-20 2000-09-20 Real image type finder optical system

Publications (1)

Publication Number Publication Date
JP2002090658A true JP2002090658A (en) 2002-03-27

Family

ID=18769116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284976A Pending JP2002090658A (en) 2000-09-20 2000-09-20 Real image type finder optical system

Country Status (1)

Country Link
JP (1) JP2002090658A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173313A (en) * 2003-12-12 2005-06-30 Olympus Corp Variable power optical system and electronic equipment using the same
JP2006047331A (en) * 2004-07-01 2006-02-16 Ricoh Co Ltd Variable magnification observation optical system, lens barrel unit and camera
CN103842902A (en) * 2011-09-28 2014-06-04 富士胶片株式会社 Imaging device
CN113376825A (en) * 2021-06-15 2021-09-10 河南平原光电有限公司 Variable-focus ocular lens visual field monitoring optical system
CN116500767A (en) * 2023-06-30 2023-07-28 江西联益光学有限公司 Zoom lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173313A (en) * 2003-12-12 2005-06-30 Olympus Corp Variable power optical system and electronic equipment using the same
JP2006047331A (en) * 2004-07-01 2006-02-16 Ricoh Co Ltd Variable magnification observation optical system, lens barrel unit and camera
CN103842902A (en) * 2011-09-28 2014-06-04 富士胶片株式会社 Imaging device
CN113376825A (en) * 2021-06-15 2021-09-10 河南平原光电有限公司 Variable-focus ocular lens visual field monitoring optical system
CN113376825B (en) * 2021-06-15 2022-11-11 河南平原光电有限公司 Variable-focus ocular lens visual field monitoring optical system
CN116500767A (en) * 2023-06-30 2023-07-28 江西联益光学有限公司 Zoom lens
CN116500767B (en) * 2023-06-30 2023-10-03 江西联益光学有限公司 Zoom lens

Similar Documents

Publication Publication Date Title
JP4123683B2 (en) Zoom lens
EP1220002A2 (en) Zoom lens and optical apparatus using the same
JP2001124989A (en) Zoom lens
JP5006514B2 (en) Zoom lens and imaging apparatus having the same
JP3554366B2 (en) High-magnification real-image finder
JPH0667093A (en) High-power zoom lens
JP2001272602A (en) Zoom lens and optical equipment using the same
JP2001296476A (en) Zoom lens and optical equipment using the same
JPH1048524A (en) Variable power optical system 7
US6587280B2 (en) Zoom lens and optical device using the same
JPH04223419A (en) Small-sized 3-group zoom lens
JPH10232354A (en) Real image type variable power finder
JP2002090658A (en) Real image type finder optical system
JP2000275524A (en) Zoom lens
JPH0933813A (en) High variable power three-group zoom lens
US6771431B2 (en) Zoom lens and camera equipped with zoom lens
JP3455201B2 (en) Three-group zoom optical system and camera having the same
JP3352214B2 (en) Small zoom lens
US6519095B1 (en) Zoom lens
JP4444416B2 (en) Zoom lens
JPH0617937B2 (en) Small zoom lens
JP2014048312A (en) Image capturing device
JP2621517B2 (en) Real image type variable magnification finder optical system
JPH11242167A (en) Real image type variable power finder
JP2000347101A (en) Real image type variable power finder