JP2002090323A - Method for examining charge behavior in concrete - Google Patents

Method for examining charge behavior in concrete

Info

Publication number
JP2002090323A
JP2002090323A JP2000320049A JP2000320049A JP2002090323A JP 2002090323 A JP2002090323 A JP 2002090323A JP 2000320049 A JP2000320049 A JP 2000320049A JP 2000320049 A JP2000320049 A JP 2000320049A JP 2002090323 A JP2002090323 A JP 2002090323A
Authority
JP
Japan
Prior art keywords
concrete
voltage
current
power supply
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000320049A
Other languages
Japanese (ja)
Inventor
Ryuichi Takada
龍一 高田
Masumi Fukuma
眞澄 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marui Co Ltd
Original Assignee
Marui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marui Co Ltd filed Critical Marui Co Ltd
Priority to JP2000320049A priority Critical patent/JP2002090323A/en
Publication of JP2002090323A publication Critical patent/JP2002090323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine properties including the degradation of a concrete, in a non-destructive state. SOLUTION: Primary voltage V1 is applied to a concrete lump 1 through an insulating polymeric sheet 3 to determine the charge behavior in the concrete lump 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発名はコンクリートの劣化
予測、劣化性状、物理的性状をコンクリート中の電荷
挙動によって的確に把握する調査方法に関する。
This onset name BACKGROUND OF THE INVENTION The deterioration prediction of concrete, degradation properties, related to research methods to accurately grasp by <br/> behavior of the charge of the physical properties in the concrete.

【0002】[0002]

【従来の技術】従来、コンクリートの劣化予測、劣化性
状、物理的性状の変化を調査する手段として電気的手法
を利用した非破壊検査方法がある。これは先ず電気抵抗
値を印加電圧/定常流として求め、これよりコンクリー
トの抵抗率(抵抗値×電極面積/試料厚さ)を算出する
方法であり、こうして求めた抵抗率はコンクリートの組
成、含水率、塩類含有量等に大きく依存していると云わ
れ、コンクリートの性状を調べるのに有効且つ簡便な手
段として用いられていた。
2. Description of the Related Art Conventionally, there is a non-destructive inspection method using an electric method as a means for predicting deterioration of concrete and examining changes in deterioration properties and physical properties. This is a method in which the electrical resistance value is first determined as an applied voltage / steady flow, and the resistivity of the concrete (resistance value × electrode area / sample thickness) is calculated from the electrical resistance value. It is said that it is largely dependent on the rate, salt content, and the like, and has been used as an effective and simple means for examining the properties of concrete.

【0003】そこで従来例の追認として図7のように縦
・横・厚みが各々30cm角の市販コンクリート塊1の
上下対向面に導電性ゴム電極2、2を対設し、該電極
2、2間に電源Eを接続して、10から100mVの一
次電圧V(ステップ電圧)を印加し、該コンクリート
塊1に流れる電流の関係を調べた。
Therefore, as a confirmation of the conventional example, as shown in FIG. 7, conductive rubber electrodes 2 and 2 are provided on the upper and lower opposing surfaces of a commercial concrete lump 1 each having a length, width and thickness of 30 cm square. A power supply E was connected in between, a primary voltage V 1 (step voltage) of 10 to 100 mV was applied, and the relationship of the current flowing through the concrete lump 1 was examined.

【0004】その結果、図8のように一次電圧Vを印
加した直後の電流iは図9のように一時稍々減少する
が、その後定常状態を維持することが判明した。このよ
うにコンクリート塊1に一定の電圧が作用している間定
常流iを生じており、これは単にコンクリート塊1の抵
抗値を示したもので、この値に電極2の面積と厚さの逆
数を乗ずることにより前記抵抗率が算出される。
[0004] As a result, the current i immediately after applying the primary voltages V 1 as shown in FIG. 8 will be momentarily somewhat s decreases as shown in FIG. 9, it was found that thereafter maintaining a steady state. As described above, a steady flow i is generated while a constant voltage is applied to the concrete lump 1, which simply indicates the resistance value of the concrete lump 1, and this value corresponds to the area and thickness of the electrode 2. The resistivity is calculated by multiplying the reciprocal.

【0005】また、コンクリートに塩化ナトリウム水溶
液を用いて直流電源を印加することにより塩素イオンの
透過性について調べる測定方法もある。しかし、この場
合の抵抗値は塩化ナトリウム水溶液による化学変化の影
響を受けやすく測定結果の信頼性に疑問がある。
There is also a measuring method for examining the permeability of chloride ions by applying a DC power supply to a concrete using an aqueous solution of sodium chloride. However, the resistance value in this case is easily affected by a chemical change due to the aqueous sodium chloride solution, and there is a question about the reliability of the measurement result.

【0006】[0006]

【発明が解決しようとする課題】しかし乍ら上記従来の
方法では外部からの印加電圧によりコンクリート中を流
れる電流の大小を単に測定しているに過ぎず、コンクリ
ート中の電荷即ちイオンだけについての移動(挙動)は
測定できず、従って正確なコンクリートの性状の調査或
いは劣化予測を立てることが容易ではなかった。本発明
は斯かる上記従来技術が抱える問題点の解決を図る。
However, in the above-mentioned conventional method, the magnitude of the current flowing in the concrete is simply measured by an externally applied voltage. (Behavior) could not be measured, and therefore it was not easy to accurately investigate the properties of concrete or predict deterioration. The present invention aims to solve the above-mentioned problems of the prior art.

【0007】[0007]

【課題を解決するための手段】コンクリートと電源との
間に絶縁物を介在させて印加電源からの電流がコンクリ
ート内へ流入しいないようにし、コンクリートへ電圧を
印加することにより内部電荷のみの移動を促し、その時
の電圧と電流の関係からコンクリートの性状を示す電荷
の挙動を捉える。
Means for Solving the Problems An insulator is interposed between concrete and a power supply to prevent a current from an applied power supply from flowing into the concrete, and a voltage is applied to the concrete to move only internal charges. The behavior of electric charge indicating the properties of concrete is grasped from the relationship between voltage and current at that time.

【0008】[0008]

【発明の実施の形態】以下本発明を図面に示す実施例に
より詳細に説明すると、従来からコンクリートの劣化の
進行度は電気抵抗と関連しているとの見解があるが、そ
れだけでは十分とは言えなかった。そこで本発明はコン
クリートに空間的に電圧を印加することによって電源か
らの電荷注入を伴うことなく内部電荷のみが移動(挙
動)する様子を把握できる手段について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to embodiments shown in the drawings. It has been conventionally thought that the degree of deterioration of concrete is related to electric resistance, but it is not sufficient by itself. I could not say. Therefore, the present invention describes a means that can grasp a state in which only internal charges move (behave) without applying charge injection from a power supply by spatially applying a voltage to concrete.

【0009】図1に示すように前記従来例と同じく縦・
横・厚みが各々30cm角の市販コンクリート塊1の上
下対向面に導電性ゴム電極2、2を対設し、更に該導電
性ゴム電極2、2上にコンクリート塊1の抵抗より大き
く、厚さ0.1mmの絶縁性高分子シート3、3(ポリ
エチレン製)を介してその外側に前記同様の導電性ゴム
電極2、2と同じ導電性ゴム電極4、4を布設する。
[0009] As shown in FIG.
Conductive rubber electrodes 2 and 2 are provided on the upper and lower opposing surfaces of a commercial concrete lump having a width and a thickness of 30 cm each, and the resistance of the concrete lump is larger than the resistance of the concrete lump on the conductive rubber electrodes 2 and 2. The same conductive rubber electrodes 4 and 4 as the above-described conductive rubber electrodes 2 and 2 are laid outside the insulating polymer sheets 3 and 3 (made of polyethylene) with a thickness of 0.1 mm.

【0010】上記のようにして外側の導電性ゴム電極
4、4には電源Eを接続して図2に示すように1.5k
Vの高い一次電圧V(ステップ電圧)を印加すること
により、コンクリート塊1には高分子シート3、3を介
して図3に示すような二次電圧Vが作用し、該電圧V
は最初数10mVであるが、その後電圧は零に向かっ
て漸減する。
As described above, the power supply E is connected to the outer conductive rubber electrodes 4 and 4 so that
By applying a primary voltage V 1 (step voltage) having a high V, a secondary voltage V 2 as shown in FIG. 3 acts on the concrete lump 1 through the polymer sheets 3, 3.
2 is initially a few tens of mV, after which the voltage gradually decreases towards zero.

【0011】この時コンクリート塊1に流れる電流iは
図4のように該コンクリート塊1に電圧Vが作用して
いる初期の間t〜tでは急激に減少して零の状態と
なり、更にその後残存電圧が作用している間t〜t
では負の電流が流れ、残存電圧が零になるのと略同時に
逆流がなくなっている。
[0011] In this case the current i flowing through the concrete mass 1 becomes the concrete mass 1 to the voltage V 2 decreases sharply in between t 1 ~t 2 and early that acts zero state as in FIG. 4, After that, while the remaining voltage is applied, t 2 to t 3
In this case, a negative current flows, and the backflow disappears almost at the same time when the residual voltage becomes zero.

【0012】このことはコンクリート塊1と印加電源E
との間に高分子シート3、3を介在して高い絶縁状態を
保っているので、この状態で一次電圧Vを印加して
も、電源Eからの電荷はコンクリート塊1へ注入される
ことなく、コンクリート塊1を構成している素材中の電
荷のみが移動を促され、図4のような電流iを生じたも
のと考えられる。
This means that the concrete mass 1 and the applied power source E
Since maintaining high insulating state by interposing a polymer sheet 3,3, be applied to the primary voltages V 1 in this state, it charges from the power source E is injected into the concrete mass 1 between the In other words, it is considered that only the electric charges in the material constituting the concrete block 1 were promoted to move, and the current i as shown in FIG. 4 was generated.

【0013】つまり、二次電圧Vの初期の間t〜t
はコンクリート内部の正電荷eが図5のように二次電
圧Vによって正常に負電極の方向(順方向)へ移動す
るが、残存電圧が微弱になった場合、t〜tでは移
動中の正電荷eは反射的に拡散現象を起こして大半の正
電荷eは図6のように正電極の方向へ逆流を生じたもの
と考えられる。
[0013] In other words, between the secondary voltage V 2 Initial t 1 ~t
If 2 is moved positive charge e of the inner concrete in the direction of normal negative electrode (forward) by the secondary voltage V 2 as shown in FIG. 5, the residual voltage becomes weak, the t 2 ~t 3 It is considered that the positive charge e during the movement caused a diffusion phenomenon in a reflective manner, and most of the positive charge e caused a backflow in the direction of the positive electrode as shown in FIG.

【0014】上述のようにコンクリート塊1と電源Eと
の間を電気的に遮断した状態で該コンクリート塊1に電
圧Vを印加することにより電源Eからの電荷注入を伴
うことなくコンクリート塊1内の電荷の挙動による電流
(逆流)を生じる。
[0014] concrete mass 1 and concrete mass without charge injection from the power source E by in a state between the electrically cut off the power supply E to apply the voltages V 1 to the concrete mass 1 as described above 1 A current (backflow) occurs due to the behavior of the electric charge in the inside.

【0015】このようにマイナス電流(逆流)の絶対値
の時間積分値(マイナス部分の電流波形の積分)がコン
クリート中の遷移帯の性状を表す指標となり、電流の時
間積分値が大きい程、可動イオンの量が多くなり、劣化
し易いとの予測或いは劣化が進行していることを示すも
のと考えられる。
As described above, the time integral value of the absolute value of the negative current (backflow) (integration of the current waveform in the negative portion) is an index indicating the property of the transition zone in the concrete. This is considered to indicate that the amount of ions increases and that the ion is likely to be deteriorated or that the deterioration is progressing.

【0016】即ちコンクリート中の電荷の移動は遷移帯
の発達に関係していて遷移帯が発達したコンクリートで
は電荷の移動が起き易くなり、また、劣化はコンクリー
ト中のイオンの移動がもたらすと考えられ、遷移帯が発
達すると劣化が起こり易くなると考えられている。
That is, the movement of the electric charge in the concrete is related to the development of the transition zone. In the concrete in which the transition zone is developed, the electric charge is likely to move, and the deterioration is considered to be caused by the movement of the ions in the concrete. It is considered that the deterioration is likely to occur when the transition zone develops.

【0017】一般的に言ってコンクリートの物性は水分
や塩類含有率など組成によって異なるので一様とは言え
ないが、この電流(逆流)こそがコンクリート中の遷移
帯の性状を特徴付ける基本的パターンであってコンクリ
ートの劣化予測、劣化性状、物理的性状を表す一つの目
安となり、コンクリート製の建造物をサンプリングテス
ト、或いは非破壊のもとでその劣化も含めたコンクリー
トの性状を判断するのに大きな手掛かりとなる。
Generally speaking, the physical properties of concrete are not uniform because they vary depending on the composition such as moisture and salt content, but this current (backflow) is the basic pattern that characterizes the properties of the transition zone in concrete. It is a guide to concrete deterioration prediction, deterioration properties and physical properties. It is a clue.

【0018】本発明では一次電圧Vをステップ電圧と
して印加したが、直流或いは交流電圧であっても上記の
ような負電流の特性が得られる。しかし、交流電源を使
用した場合、周波数が低い電源では移動速度の遅いイオ
ン(元素の種類)が負電流となり、また、周波数の高い
電源では移動速度の早いイオンが負電流となるものと考
えられ、その結果、腐食性に関係するイオン(元素の種
類)の分類等に役立つと思われ、上記ステップ電圧を印
加した場合に比べて遷移帯の性状について更に詳細に解
析できる。
[0018] While the application of the primary voltages V 1 as step voltage in the present invention, the characteristics of the negative current as described above can be obtained even DC or AC voltage. However, when an AC power supply is used, it is considered that ions having a low moving speed (kind of element) have a negative current in a power supply having a low frequency, and ions having a fast moving speed have a negative current in a power supply having a high frequency. As a result, it is thought to be useful for classification of ions (kinds of elements) related to corrosivity, and the properties of the transition zone can be analyzed in more detail as compared with the case where the step voltage is applied.

【0019】[0019]

【発明の効果】電源とコンクリートの間を電気的に遮断
し、外部から電圧を印加する事により電源からの電荷注
入が伴わず、コンクリート中の電荷のみの移動が検出で
き、コンクリート中の遷移帯の性状を示す電荷の挙動か
ら劣化も含めたコンクリートの性状の判定が可能であ
る。
According to the present invention, by electrically interrupting the connection between the power supply and the concrete and applying a voltage from the outside, the movement of only the electric charge in the concrete can be detected without charge injection from the power supply, and the transition zone in the concrete can be detected. It is possible to judge the properties of concrete including the deterioration from the behavior of the electric charge indicating the properties of the concrete.

【0020】また、上記従来例では銅−硫酸銅を電極と
しているので電解液がコンクリート層内部へ浸透して正
確な抵抗測定ができないが、本発明では電極に導電性ゴ
ムを用いたことにより電極付設によるコンクリート自体
の抵抗値に全く影響を与えず、その上導電性ゴムを電極
としているのでコンクリートとの電気的接触状態が安定
し、測定結果の信頼性を著しく高めることができ、ま
た、取り扱いも至って容易である。
In the above-mentioned conventional example, since the electrode is made of copper-copper sulfate, the electrolytic solution permeates into the concrete layer and the resistance cannot be measured accurately. However, in the present invention, the electrode is formed by using a conductive rubber for the electrode. The addition does not affect the resistance value of the concrete itself at all, and since it uses conductive rubber as an electrode, the electrical contact state with the concrete is stable, and the reliability of the measurement results can be significantly increased. It is very easy.

【0021】特に大規模の装置を用いずして数値解析に
より容易に判定が可能である。
In particular, determination can be easily made by numerical analysis without using a large-scale device.

【0022】現場の状況に応じて印加電圧を制御する事
により非破壊状態でコンクリートの物性を容易に観察で
きる。
By controlling the applied voltage according to the situation at the site, the physical properties of the concrete can be easily observed in a non-destructive state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施方法を示す模式図FIG. 1 is a schematic view showing a method for implementing the present invention.

【図2】本発明実施方法で絶縁性の高分子シートに印加
した一次電圧図
FIG. 2 is a diagram illustrating a primary voltage applied to an insulating polymer sheet according to the method of the present invention.

【図3】本発明実施方法でコンクリートに作用する二次
電圧特性図
FIG. 3 is a diagram of a secondary voltage characteristic acting on concrete by the method of the present invention.

【図4】本発明実施方法でコンクリート内を流れる電流
特性図
FIG. 4 is a characteristic diagram of a current flowing in concrete by the method of the present invention.

【図5】コンクリートに作用した二次電圧により生じる
電流説明図
FIG. 5 is an explanatory diagram of a current generated by a secondary voltage acting on concrete.

【図6】コンクリートに作用した二次電圧の後期に生じ
る電流説明図
FIG. 6 is an explanatory diagram of a current generated at a later stage of a secondary voltage acting on concrete.

【図7】従来例の実施方法を示す模式図FIG. 7 is a schematic view showing a method of implementing a conventional example.

【図8】図7で電極に印加したステップ電圧図FIG. 8 is a step voltage diagram applied to the electrodes in FIG. 7;

【図9】図7でコンクリート内を流れる電流特性図FIG. 9 is a characteristic diagram of the current flowing in the concrete in FIG.

【符号の説明】[Explanation of symbols]

1 コンクリート塊 2、4 導電性ゴム電極 3 高分子シート A 電流計 E 電源 V 電圧計 i 電源Eによって流れる電流 V 高分子シートに印加した一次電圧 V コンクリート塊に作用する二次電圧DESCRIPTION OF SYMBOLS 1 Concrete mass 2, 4 Conductive rubber electrode 3 Polymer sheet A Ammeter E Power supply V Voltmeter i Current flowing by power supply E V 1 Primary voltage applied to polymer sheet V 2 Secondary voltage acting on concrete mass

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コンクリートに絶縁物を介して電圧を印
加することを特徴とするコンクリート中の電荷挙動調査
方法
1. A method for investigating a charge behavior in concrete, wherein a voltage is applied to the concrete via an insulator.
【請求項2】 印加電圧をステップ電圧としたことを特
徴とする請求項1記載のコンクリート中の電荷挙動調査
方法
2. The method according to claim 1, wherein the applied voltage is a step voltage.
【請求項3】 印加電圧を直流電圧としたことを特徴と
する請求項1記載のコンクリート中の電荷挙動調査方法
3. The method according to claim 1, wherein the applied voltage is a DC voltage.
【請求項4】 印加電圧を交流電圧としたことを特徴と
する請求項1記載のコンクリート中の電荷挙動調査方法
4. The method according to claim 1, wherein the applied voltage is an AC voltage.
JP2000320049A 2000-09-13 2000-09-13 Method for examining charge behavior in concrete Pending JP2002090323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320049A JP2002090323A (en) 2000-09-13 2000-09-13 Method for examining charge behavior in concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320049A JP2002090323A (en) 2000-09-13 2000-09-13 Method for examining charge behavior in concrete

Publications (1)

Publication Number Publication Date
JP2002090323A true JP2002090323A (en) 2002-03-27

Family

ID=18798393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320049A Pending JP2002090323A (en) 2000-09-13 2000-09-13 Method for examining charge behavior in concrete

Country Status (1)

Country Link
JP (1) JP2002090323A (en)

Similar Documents

Publication Publication Date Title
Streicher et al. A chloride conduction test for concrete
US9829452B2 (en) Corrosion detection in structural tendons
Layssi et al. Electrical resistivity of concrete
Evans et al. Electrochemical measurement of transference numbers in polymer electrolytes
EP2505998B1 (en) Measuring method for degree of degradation of lubricating oil, and measuring device therefor, as well as lubricating oil monitoring system in machine and device
US8063644B2 (en) Impedance measurement of a pH electrode
MY126044A (en) Sample detection to initiate timing of an electrochemical assay
Omura et al. Environmental factors affecting hydrogen entry into high strength steel due to atmospheric corrosion
WO2001031311A3 (en) Methods and devices for evaluating fatigue damage
KR20050101676A (en) Sensor for monitoring the corrosion damage of steel embedded in concrete structure and sensor system
US8664966B2 (en) Device for evaluating degree of degradation of lubricating oil
JP2002090323A (en) Method for examining charge behavior in concrete
Zhong Electrochemical technique for investigating temporarily protective oil coatings
Tamme et al. Experimental study of resistance type wood moisture sensors for monitoring wood drying process above fibre saturation point/Takistus-tüüpi puidu niiskuse andurite eksperimentaalne uurimine puidu kuivatamise monitooringul niiskussisaldustel üle kiu küllastuspunkti
Cella et al. Electrical resistance changes as an alternate method for monitoring the corrosion of steel in concrete and mortar
Tenno et al. Battery impedance and its relationship to battery characteristics
Chovelon et al. Monitoring of ISFET encapsulation aging by impedance measurements
Islam et al. Moisture measurement of transformer oil using thin film capacitive sensor
JP3678406B2 (en) In-situ measurement method for corrosion rate of steel structures.
Plecis et al. Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices
Compañ et al. Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan
Hardy et al. Flexible probe for measuring local conductivity variations in Li-ion electrode films
Díaz et al. Two-and four-electrode configurations for contactless reinforced concrete corrosion monitoring
SU1572170A1 (en) Method of inspection of dielectric film thickness on electrically conducting substrate
JPS60100751A (en) Evaluating device for steel material protection of rust layer