JP2002090256A - Evaluation method for soundness degree using dimensionless rigidity ratio of concrete floormboard - Google Patents

Evaluation method for soundness degree using dimensionless rigidity ratio of concrete floormboard

Info

Publication number
JP2002090256A
JP2002090256A JP2000285559A JP2000285559A JP2002090256A JP 2002090256 A JP2002090256 A JP 2002090256A JP 2000285559 A JP2000285559 A JP 2000285559A JP 2000285559 A JP2000285559 A JP 2000285559A JP 2002090256 A JP2002090256 A JP 2002090256A
Authority
JP
Japan
Prior art keywords
slab
ratio
deflection
floorboard
floor slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000285559A
Other languages
Japanese (ja)
Other versions
JP3836310B2 (en
Inventor
Hitoshi Motomura
均 本村
Tatsuya Hamada
達也 濱田
Kenichiro Kaneko
謙一郎 金子
Kimiaki Akai
公昭 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIGASHIKANTO KK
Original Assignee
HIGASHIKANTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIGASHIKANTO KK filed Critical HIGASHIKANTO KK
Priority to JP2000285559A priority Critical patent/JP3836310B2/en
Publication of JP2002090256A publication Critical patent/JP2002090256A/en
Application granted granted Critical
Publication of JP3836310B2 publication Critical patent/JP3836310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the application range of a visual observation method is limited when a floorboard is waterproofed, that a large-scale platform is required for measuring a bending stress because a rigidity method, a flexure method and a stress intensity method are methods in which a constant-load vehicle is loaded statically or dynamically on a bridge, that the reproduction reliability of a calculated value is low because a complicated hypothesis, the calculation of a board theoretical solution or the like is required and because an irregularity in a result is large, that a method in which the modulus of elasticity, the crack depth or the like of the floorboard is investigated so as to find the safety factor on margin of a punching shear is troublesome in the measurement of the crack depth and that its calculation is complicated. SOLUTION: In the evaluation method for the soundness degree of a concrete floorboard the dynamic flexure in the central part in the effective span of the floorboard is frequency- measured, and a dynamic flexure difference is found on the basis of its cumulative percentage curve. On the basis of the ratio of the dynamic flexure difference to the length of the effective span of the floorboard, the degradation degree factor of the floorboard which uses the dynamic flexure difference as a variable is found. On the basis of the degradation degree factor and on the basis of a degradation degree in the final state of the floorboard, a dimensionless rigidity ratio as the ratio of both factors is found. While the dimensionless rigidity ratio is used as a reference, the soundness degree of the floorboard is evaluated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンクリート床版の
無次元剛性比を用いた健全度評価方法にかかり、橋梁工
学の保全技術に関し、橋の弱点部を簡便に計測して、そ
の損傷劣化度を早期発見するための診断技術に関する発
明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soundness evaluation method using a dimensionless rigidity ratio of a concrete slab, and relates to a maintenance technique of bridge engineering. The present invention relates to a diagnostic technique for early detection of sickness.

【0002】[0002]

【従来の技術】一般にコンクリート構造物の健全度評価
法として、次の方法がある。 (1)経験法:コンクリートのひびわれや鉄筋の腐食の
目視調査から経験的に耐荷力を推定する方法。 (2)剛性法:荷重を載荷してたわみや応力度を求め、
版理論を解析して全断面有効、RC断面の計算結果と比
較する方法。 (3)たわみ法:上記と同様のたわみ値と計算値を比較
する方法。 (4)応力度法:鉄筋の断面欠損等を考慮して応力度を
算定し、許容応力度以下であれば耐荷力ありとする方
法。 (5)その他:床版の破壊安全率法等押し抜き剪断破壊
の耐荷力比を求める方法。 図4の右側は、従来の(2)や(3)の計算方法の概念
を示したものである。
2. Description of the Related Art In general, there are the following methods for evaluating the soundness of concrete structures. (1) Empirical method: A method of empirically estimating the load carrying capacity from a visual inspection of cracks in concrete and corrosion of reinforcing steel. (2) Rigidity method: Deflection and stress are determined by applying a load,
A method of analyzing the plate theory and comparing it with the calculation results of all sections effective and RC sections. (3) Deflection method: A method of comparing a deflection value and a calculated value as described above. (4) Stress degree method: A method in which the stress degree is calculated in consideration of the cross-sectional deficiency of a reinforcing bar, and if the stress level is equal to or less than the allowable stress level, it is determined that there is a load bearing capacity. (5) Others: A method for determining the load carrying ratio of the punching shear fracture, such as the fracture safety factor method for floor slabs. The right side of FIG. 4 shows the concept of the conventional calculation methods (2) and (3).

【0003】[0003]

【発明が解決しようとする課題】(1)の方法は目視に
よって広く浅く、かつ効率的な点検を目指したもので、
過去の損傷事例からの目視点検を客観的に判定するため
の経験法であり、ひびわれ密度法、遊離石灰法などがあ
る。しかし、近年の建設及び維持管理において床版防水
工の施工が一般的になってきているため、その適用範囲
が限定されるようになった。(2)、(3)及び(4)
の方法は、橋梁上に定荷重車を静的あるいは動的に載荷
する方法で、床版や桁のたわみや曲げ応力を計測する方
法である。この場合は、大掛かりな作業足場が必要であ
る。この計測結果の解析では、版理論等の計算値と実測
値を対比するが、各部材の桁、対傾構、床版および地覆
・壁高欄の荷重分配係数やその部材剛性を設定する必要
がある。特に、床版補強の中間縦桁や増厚などの補強部
材がある場合は、そのコンクリートと桁の合成効果を設
定する必要がある。このように、計測方法が車線規制を
伴って大規模となり、かつ計算値は煩雑な仮定や版理論
解等の計算が必要な上、結果のバラツキが大きく、その
再現性に対しても信頼性評価は低い。(5)の方法は、
床版のヤング係数及びひびわれ深さなどを調査して、押
し抜きせん断の破壊安全率を求める方法である。ひび割
れ深さの測定が厄介で、計算も面倒である。本発明は、
以上のように補修・補強に必要な情報を簡便な計測によ
り定量的に入手できる調査方法が望まれていた点に着目
し、無次元剛性比による健全度評価方法は、多数の計測
データにより裏付けされた橋梁診断技術として実現した
ものである。従って、本発明は、橋梁床版の維持管理分
野において、床版剛性に着目した、簡便でかつ再現性の
ある評価手法を提供することを目的とする。
The method (1) is intended for wide, shallow, and efficient inspection by visual inspection.
This is an empirical method for objectively determining visual inspection from past damage cases, such as the crack density method and the free lime method. However, in recent years, floor slab waterproofing work has become common in construction and maintenance, and its application range has been limited. (2), (3) and (4)
The method is a method of statically or dynamically loading a constant load vehicle on a bridge, and is a method of measuring deflection and bending stress of a floor slab and a girder. In this case, a large-scale work platform is required. In this analysis of the measurement results, the calculated values of plate theory and the like are compared with the actually measured values.However, it is necessary to set the load distribution coefficient and the member rigidity of the girder of each member, anti-tilt structure, floor slab and ground cover / wall height column. is there. In particular, when there is a reinforcing member such as an intermediate vertical girder or a thickened floor slab, it is necessary to set a composite effect of the concrete and the girder. In this way, the measurement method becomes large-scale due to lane regulation, and the calculated values require complicated assumptions and calculations such as plate theoretical solutions, and the results vary widely. Evaluation is low. Method (5) is
In this method, the Young's modulus and crack depth of the floor slab are investigated to determine the fracture safety factor of punching shear. Measuring crack depth is cumbersome and cumbersome to calculate. The present invention
Focusing on the need for a survey method that can quantitatively obtain the information necessary for repair and reinforcement by simple measurement as described above, the soundness evaluation method based on the dimensionless rigidity ratio is supported by a large number of measurement data. It was realized as a bridge diagnostic technology. Accordingly, an object of the present invention is to provide a simple and reproducible evaluation method focusing on the slab rigidity in the field of bridge slab maintenance.

【0004】[0004]

【課題を解決するための手段】本発明に係るコンクリー
ト床版の無次元剛性比を用いた健全度評価方法は、床版
の支間中央部の動たわみを頻度計測してその累積百分率
曲線から動たわみ差を求める。この動たわみ差と床版支
間長の比から、動たわみ差を変数とする現床版の劣化度
係数を求める。この劣化度係数と基準床版の終局状態に
おける劣化度係数から、両係数の比である無次元剛性比
を求める。そして、この無次元剛性比を基準として床版
の健全度を評価する。
A soundness evaluation method using a non-dimensional stiffness ratio of a concrete slab according to the present invention measures a frequency of a dynamic deflection of a central portion of a slab of a slab and calculates a dynamic deflection from a cumulative percentage curve. Find the deflection difference. From the ratio between the dynamic deflection difference and the floor slab span length, a deterioration degree coefficient of the current floor slab using the dynamic deflection difference as a variable is obtained. From the deterioration degree coefficient and the deterioration degree coefficient in the final state of the reference slab, a dimensionless rigidity ratio, which is a ratio of the two coefficients, is obtained. Then, the soundness of the floor slab is evaluated based on the dimensionless rigidity ratio.

【0005】本発明が成り立つためには、以下の前提条
件が必要である。 (1)鉄筋コンクリート床版は、設計基準に基づき設計
及び施工されたもので、同時期の施工の床版はほぼ一定
の剛性断面の範囲内にある。 (2)走行車両は、レーンマーク間を走行しているた
め、載荷位置及び荷重は、過積載の一部車両を除き、統
計的にほぼ同一の集合体をなすもので、単位時間 (24時間)以上の動たわみ頻度測定から床版及び床版
を支持する部材の剛性比が算定できるものとする。 (3)どの床版も、所定の輪荷重を支持するため、床版
及び床版を支持する部材の剛性比を一定の範囲内で管理
すれば、所定の橋梁の「安全性及び使用性」の耐荷力が
得られるものとする。
In order for the present invention to be established, the following prerequisites are required. (1) Reinforced concrete slabs are designed and constructed based on design standards, and slabs constructed at the same time are within a substantially constant rigid cross section. (2) Since the traveling vehicle is traveling between the lane marks, the loading position and the load are statistically substantially the same aggregate except for some overloaded vehicles. ) The rigidity ratio of the floor slab and the members supporting the floor slab can be calculated from the dynamic deflection frequency measurement described above. (3) Since any slab supports a predetermined wheel load, if the rigidity ratio of the slab and the members supporting the slab is managed within a certain range, the "safety and usability" of the predetermined bridge Is obtained.

【0006】床版の破壊形態は、押し抜き剪断破壊であ
るが、曲げ部材である床版は曲げ剛性が低下して押し抜
き剪断破壊に達することが条件となる。また、鋼橋にお
いて、床版の曲げ剛性が健在の(一定以上ある)場合
は、活荷重が床版の荷重分配によって桁及び対傾構、横
構の各部材断面に発生する応力度を低減しているので、
床版の剛性が健全であれば、一般に鋼部材の疲労破壊が
生じる恐れは少ない。
[0006] The failure mode of the floor slab is punching shear failure. The condition is that the floor slab, which is a bending member, has a reduced bending stiffness and reaches punching shear failure. In addition, when the bending stiffness of the slab is healthy (above a certain level) in the steel bridge, the live load is reduced by reducing the stress generated in the cross sections of the girder, the inclined structure, and the horizontal structure by the load distribution of the slab. So
As long as the rigidity of the floor slab is sound, there is generally little risk of fatigue failure of the steel member.

【0007】該動たわみの頻度計測は24時間にわたっ
てなされていてもよい。この場合、計測度数が多くな
り、測定精度が上がる。勿論24時間以上であれば更に
好ましいが、24時間あれば最低の条件が確保される。
[0007] The frequency measurement of the dynamic deflection may be performed over 24 hours. In this case, the measurement frequency increases, and the measurement accuracy increases. Of course, more than 24 hours is more preferable, but if it is 24 hours, the minimum condition is secured.

【0008】該頻度計測は接触センサーによってなされ
てもよい。この場合、接触センサーは、設備が大型にな
るが、塗装足場等の吊り足場が設置される場合は、同時
に多数のパネルの計測ができる。
[0008] The frequency measurement may be performed by a contact sensor. In this case, the contact sensor is large in size, but when a suspended scaffold such as a painted scaffold is installed, a large number of panels can be measured simultaneously.

【0009】該頻度計測は非接触センサーでなされても
よい。この場合、床版から離れた地点で計測を行える。
[0009] The frequency measurement may be performed by a non-contact sensor. In this case, measurement can be performed at a point away from the floor slab.

【0010】該非接触センサーはレーザードップラー振
動計であってもよい。この場合、床版の下面に直接に光
線を向けても、反射鏡を介して水平方向から照射しても
よく、レーザードップラー振動計の設置位置の自由度が
広がる。
[0010] The non-contact sensor may be a laser Doppler vibrometer. In this case, the light beam may be directed directly to the lower surface of the floor slab, or may be irradiated from the horizontal direction via a reflecting mirror, and the degree of freedom of the installation position of the laser Doppler vibrometer is increased.

【0011】該動たわみ差は10%と50%の間で計測
されてもよい。この場合、非線形性や載荷条件などの要
因の影響をほとんど除去できる。
[0011] The dynamic deflection difference may be measured between 10% and 50%. In this case, the influence of factors such as non-linearity and loading conditions can be almost eliminated.

【0012】該基準床版の終局状態における劣化度係数
は多数の損傷床版パネルの頻度計測データから求められ
た基準床版のときの数値となっていてもよい。実際の床
版の終局状態とは部分的な押し抜き剪断破壊の発生時点
を指している。この場合、数多くの床版の検証の結果か
ら終局状態の劣化度係数を特定できているので、この終
局状態の劣化度係数を採用することにより、床版の劣化
度の判定ができる。
The degradation coefficient in the final state of the reference slab may be a numerical value for the reference slab obtained from frequency measurement data of a large number of damaged slab panels. The actual ultimate state of the floor slab refers to the point at which partial punching shear failure occurs. In this case, since the deterioration degree coefficient in the final state can be specified from the results of verification of many floor slabs, the deterioration degree of the floor slab can be determined by employing the deterioration degree coefficient in the final state.

【0013】該動たわみが15tと20tの定荷重車で
の動載荷によるたわみとなっていてもよい。この場合、
15tと20tの両荷重によるたわみが得られるので、
より実体に近いたわみの測定ができる。
[0013] The dynamic deflection may be caused by a dynamic load of a 15t and 20t constant load vehicle. in this case,
Since deflection by both loads of 15t and 20t is obtained,
Deflection closer to the actual body can be measured.

【0014】[0014]

【発明実施の形態】図1は床版の損傷と補修・補強の関
係を示す概念図、図2は一般走行車による荷重分布と、
接触式と非接触式の各センサーの変位計による床版のた
わみ計測装置の概略図、図3は図2の右側面図、図4は
床版の剛性比による健全度評価方法の解説図で、一点鎖
線の左側は一般車走行による劣化度、右側は定荷重載荷
試験による劣化度を示す。この左側で、(a)は図2と
同様の計測装置の概略図、(b)はたわみδの状態を示
す図、(c)はたわみ−頻度曲線図、(d)は累積百分
率のたわみ頻度曲線C’を示す図、(e)は無次元剛性
比(荷重〜たわみ比)の関係を示す図である。また、右
側で、(a′)は(a)に対応する図、(b′)は同じ
く(b)に対応する図、(e′)は(e)に対応する
図、(f′)は床版のひび割れと中立軸の関係を示す図
である。図5は無次元剛性比法とたわみ法の考え方の比
較図で、(a)は一般走行車、(b)は定荷重車による
各劣化度を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram showing the relationship between floor slab damage and repair / reinforcement, and FIG.
FIG. 3 is a schematic view of a floor slab deflection measuring device using displacement sensors of a contact type and a non-contact type sensor, FIG. 3 is a right side view of FIG. 2, and FIG. 4 is an explanatory diagram of a soundness evaluation method based on a rigidity ratio of the floor slab. The left side of the dashed line indicates the degree of deterioration due to running of a general vehicle, and the right side indicates the degree of deterioration due to a constant load test. On this left side, (a) is a schematic diagram of the same measuring device as in FIG. 2, (b) is a diagram showing the state of deflection δ, (c) is a deflection-frequency curve diagram, and (d) is the deflection frequency of the cumulative percentage. FIG. 7E is a diagram illustrating a curve C ′, and FIG. 7E is a diagram illustrating a relationship between a dimensionless rigidity ratio (load to deflection ratio). On the right side, (a ') is a diagram corresponding to (a), (b') is a diagram corresponding to (b), (e ') is a diagram corresponding to (e), and (f') is a diagram corresponding to (e). It is a figure which shows the relationship between the crack of a floor slab, and a neutral axis | shaft. 5A and 5B are comparison diagrams of the concept of the dimensionless rigidity ratio method and the deflection method. FIG. 5A shows the degree of deterioration of a general traveling vehicle and FIG.

【0015】図1で、横軸に時間tをとり、縦軸に耐荷
力Pをとってある。床版1の剛性に関しては、当初18
cmで、改良型は9cmの増厚である。Aは床版損傷モデル
曲線、Bは5cmの増厚工P1後の曲線、Cは9cm増厚工
2後の曲線、DとEは新旧コンクリートの剥離状態を
示す。また、t1は使用開始、t2は補修補強時点であ
る。d1は許容値、d2は使用限界、d3は供用限界、d4
は最終状態である。L1は+5cmの増厚工による延命、
2は+9cmの増厚工による延命を示す。
In FIG. 1, the horizontal axis represents time t, and the vertical axis represents load carrying capacity P. Regarding the rigidity of the floor slab 1, 18
cm, the improved version is 9 cm thicker. A floor plate injury model curve, B is the curve after increasing Atsuko P 1 of 5 cm, C curve after 9cm ZoAtsuko P 2 is, D and E shows the state of peeling the old and new concrete. Further, t 1 is the start of use, t 2 is the time repair reinforcement. d 1 is the allowable value, d 2 is used limit, d 3 is in service limit, d 4
Is the final state. L 1 is survival by + 5cm increase of Atsuko,
L 2 shows the survival by + 9cm increase of Atsuko.

【0016】評価の手順は次の通りである。 (1)図2、3、4、5及び17に示すように、厚さが
一定である床版1の支間Sの中央部の動たわみδを頻度
計2でPeek−Valley法等による頻度計測を
し、統計上必要な相対たわみ数(単位時間24時間以上
又は大型車交通2、000台以上)をヒストグラムレコ
ーダーに収録し、統計処理をして、床版の相対たわみ差
(δ10−δ50)を累積百分率のたわみ頻度曲線Cから求
める。この動たわみ差と床版支間長Lの比から動たわみ
差を変数とする床版の劣化度係数Asを求める。この劣
化度係数Asと床版1の終局状態における劣化度係数A
sfから両係数の比である無次元剛性比As/Asfを求め
る。そして、この無次元剛性比As/Asfを基準として
コンクリート床版の健全度を評価する。
The evaluation procedure is as follows. (1) As shown in FIGS. 2, 3, 4, 5, and 17,
Frequency of dynamic deflection δ at the center of span S of floor slab 1 is constant
Frequency measurement by Peak-Valley method etc.
And the number of relative deflections required for statistics (24 hours or more per unit time)
Or 2,000 heavy vehicles)
Recorded in a ladder, statistically processed, and the relative deflection difference of the floor slab
Ten−δ50) From the deflection frequency curve C of the cumulative percentage.
Confuse. The dynamic deflection is calculated from the ratio between the dynamic deflection difference and the floor slab length L.
Degradation coefficient A of floor slab with difference as variablesAsk for. This poor
Conversion coefficient AsAnd deterioration factor A in the final state of floor slab 1
science fictionDimensionless stiffness ratio A, which is the ratio of the two coefficientss/ Ascience fictionAsk for
You. And this dimensionless rigidity ratio As/ Ascience fictionBased on
Evaluate the soundness of the concrete slab.

【0017】(2)床版の剛性比による劣化度{A(s/
sf)}を求める式は次の通りである。図4を参照して、
左側の場合、
(2) Degradation degree ΔA ( s /
The formula for calculating sf )} is as follows. Referring to FIG.
On the left,

【数1】 ただし、 δ10−δ50 :一般車の走行時の実測たわみ(mm) δ’10−δ’50 :終局状態の評価値(mm) P10−P50 :一般車の走行時の過重差(t)(Equation 1) However, δ 1050: when a general car running the measured deflection (mm) δ '10 -δ' 50: evaluation value of ultimate state (mm) P 10 -P 50: overweight difference at the time of other vehicles traveling ( t)

【0018】また、右側のたわみ法の場合、In the case of the deflection method on the right side,

【数2】 ただし、 δ1 :全断面の理論たわみ(mm) δ2 :RC断面の理論たわみ(mm) δ :定荷重車の実測たわみ(mm)(Equation 2) Where δ 1 : Theoretical deflection of the entire cross section (mm) δ 2 : Theoretical deflection of the RC cross section (mm) δ: Measured deflection of constant load vehicle (mm)

【0019】床版1の終局状態は次の通りである。 終局状態Asf=35×10-12(mm-2) 床版の劣化度係数Ass=(δ10−δ50)/L3 ……………(3) =(P10−P50)/EI……………(3)’ ただし、 E:部材の弾性係数 I:断面二次モーメントThe final state of the floor slab 1 is as follows. Ultimate state A sf = 35 × 10 -12 ( mm -2) degradation coefficient of deck A s A s = (δ 10 -δ 50) / L 3 ............... (3) = (P 10 -P 50 ) / EI ... (3) 'where E: elastic modulus of member I: second moment of area

【0020】上記において、(1)と(2)式を関連させるた
In the above, to relate equations (1) and (2)

【数3】 (Equation 3)

【0021】なお、具体的な床版の劣化度係数比は次の
ようになる。 A(s/sf)=1.7×1017(δ10−δ50)/(d・L)3 =0〜1……………(1)’ ここに、 As :床版の劣化度係数As=(δ10−δ50)/L3 (mm-2) Asf :基準床版(d)=18cmの終局状態における劣化度係数 Asf=35×10-12 (mm-2) 設計上の使用限界状態の劣化度係数はAsf/2と設定する。 なお、簡便のため、荷重〜たわみ曲線は直線関係とする。 δ10、δ50:たわみ頻度曲線の累計百分率10%、50%たわみ値(mm) L :床版支間長(mm) d :現床版の厚さ(mm)
The specific ratio of the deterioration coefficient of the floor slab is as follows. Here A (s / sf) = 1.7 × 10 17 (δ 10 -δ 50) / (d · L) 3 = 0~1 ............... (1) ', A s: the deck deterioration Degree coefficient A s = (δ 10 −δ 50 ) / L 3 (mm −2 ) A sf : Degradation coefficient A sf = 35 × 10 −12 (mm −2 ) in the final state of the standard slab (d) = 18 cm. ) The deterioration degree coefficient in the design use limit state is set to Asf / 2. For simplicity, the load-deflection curve has a linear relationship. δ 10 , δ 50 : Cumulative percentage of deflection frequency curve 10%, 50% deflection value (mm) L: Slab length (mm) d: Thickness of current floor slab (mm)

【0022】[0022]

【表1】 [表1]は計算例と適用式の説明をするものである。 (注)この表の記号欄の基準床版の補正係数は適用式及
び「単位の説明」(1)式ジメンジョンの下線部である。
また、表の単位欄の太字が「単位の説明」の(2)式ジメ
ンジョンの式中に含まれる太字である。
[Table 1] [Table 1] shows a calculation example and an application formula. (Note) The correction coefficients for the reference slabs in the symbol column of this table are underlined in the applicable formula and in the description of the unit (1).
Also, the bold characters in the unit column of the table are the bold characters included in the expression of the dimension (2) of “Description of Unit”.

【0023】上記の床版の劣化度A(s/sf)=As/Asf
は、理論的には非線形性や載荷条件など種々の要因の影
響を受けるが、床版のたわみ差(δ10−δ50)や剛性比
(A s/Asf)を用いることでほとんどの要因は消去で
き、実用上の床版の耐荷力評価が±10%以下に納まる
前記の式(1)’が得られる。
The deterioration degree A (s/science fiction) = As/ Ascience fiction
Is theoretically influenced by various factors such as nonlinearity and loading conditions.
Is affected, but the deflection difference of the floor slab (δTen−δ50) And rigidity ratio
(A s/ Ascience fiction), Most of the factors are eliminated.
And the load-carrying capacity evaluation of practical floor slabs falls within ± 10%
Equation (1) 'is obtained.

【0024】このため、図1の床版損傷モデル曲線のよ
うに床版の曲げ剛性比が低下(0→1)すれば、いずれ
押し抜き剪断破壊するので、全ての補修・補強を含めて
一元的に管理するため、表2のように一定の曲げ剛性比
による管理値{劣化度A(s/s f)}を定め、それ以下で保
全管理するものとする。
Therefore, if the bending stiffness ratio of the floor slab decreases (0 → 1) as shown in the floor slab damage model curve in FIG. to manage, control value by a constant flexural rigidity ratio as in Table 2 define the {deterioration degree a (s / s f)} , it is assumed that maintenance management at less.

【0025】[0025]

【表2】 [表2]は「鋼橋床版の健全度評価法による判定値」を
示すものである。
[Table 2] [Table 2] shows "Judgment value by soundness evaluation method of steel bridge deck".

【0026】図6は全計測データ劣化度と動たわみとの
関係を示す図で、動たわみδ10と18cm厚基準床版の劣
化度との間に関連性があるのが分る。R2は相関係数で
ある。なお、表2の管理判定値及び測定方法の基準床版
(d)=18cmの使用限界状態(A(s/sf)=0.5)や
終局状態における劣化度係数は、過去の疲労試験及び多
数のたわみ頻度測定データを基に設定したものである。
今後、更に頻度測定データを蓄積することにより、信頼
性の一層の向上がはかれよう。
FIG. 6 is a graph showing the relationship between the degree of deterioration of all the measured data and the dynamic deflection. It can be seen that there is a relationship between the dynamic deflection δ 10 and the degree of deterioration of the 18 cm thick reference slab. R 2 is a correlation coefficient. In addition, the deterioration determination coefficient in the use limit state (A ( s / sf ) = 0.5) of the standard slab (d) = 18 cm of the control judgment value and the measurement method in Table 2 (A ( s / sf ) = 0.5) and the final state were obtained by the past fatigue tests and This is set based on a large number of deflection frequency measurement data.
In the future, by accumulating more frequency measurement data, the reliability will be further improved.

【0027】[0027]

【表3】 [表3]は任意のパネル上の大型車動波形によるたわみ
頻度分布の簡単な計算例を示し、(a)は接触式センサ
ー、(b)は反射式非接触式センサーを用いた場合であ
る。
[Table 3] [Table 3] shows a simple calculation example of a deflection frequency distribution by a large vehicle motion waveform on an arbitrary panel, where (a) shows a case using a contact-type sensor and (b) shows a case using a reflection-type non-contact-type sensor. .

【0028】図7は[表3]の(a)及び(b)を一緒
にグラフにした度数−たわみ図で、接触式と非接触式の
相関性が分る。
FIG. 7 is a frequency-deflection diagram obtained by plotting (a) and (b) in Table 3 together, and shows the correlation between the contact type and the non-contact type.

【0029】[0029]

【表4】 [表4]は京葉道路の篠崎高架橋での接触式と非接触式
センサーによる計測例である。
[Table 4] [Table 4] is an example of measurement by contact and non-contact sensors at the Shinozaki viaduct on Keiyo Road.

【0030】図8は[表4]を度数%とたわみの関係で
グラフ化したもので、相関性の存在が分る。
FIG. 8 is a graph of Table 4 in terms of the relationship between the frequency% and the deflection, and it can be seen that there is a correlation.

【0031】鉄筋コンクリート床版は直接に輪荷重を支
持する部材で、常時、重交通量下で、しかも過積載車両
による移動・繰り返し荷重を受ける。そのほか、使用環
境も様々で、厳しい高温多湿や凍結融解などの自然環境
条件にさらされる。そのため、一般的な構造物の維持管
理手法と異なる位置付けが必要である。特に、橋梁の維
持管理において、鋼橋床版は橋梁の初期損傷を発見する
ためのキー(鍵)部材の役割をしている。このため橋梁
全体系の「使用性、安全性」を評価する上で、床版の剛
性比による評価法は極めて有効なパラメーターとなる。
The reinforced concrete slab is a member that directly supports the wheel load, and is always under heavy traffic and is subjected to repeated and repeated loads by an overloaded vehicle. In addition, they are used in various environments, and are exposed to natural environmental conditions such as severe high temperature and high humidity and freezing and thawing. Therefore, a different position from the general structure maintenance management method is required. In particular, in bridge maintenance, steel bridge decks serve as key members for detecting initial damage to bridges. For this reason, in evaluating the “usability and safety” of the entire bridge system, the evaluation method based on the rigidity ratio of the floor slab is an extremely effective parameter.

【0032】図1も併せて参照して、概念的に既設の床
版1の厚さdは18〜20cmとなっている。床版1の
曲げ剛性が健全(0〜P1間)であれば、他の鋼部材を
含め疲労損傷が少ない。しかし、重交通下で、おおむね
20年以上の疲労繰り返しを受ければ、徐々に床版剛性
の低下が始まり、主桁3と対傾構4との取合部5に局部
亀裂損傷が現れる。
Referring also to FIG. 1, the thickness d of the existing floor slab 1 is conceptually 18 to 20 cm. If the bending rigidity of the floor plate 1 is healthy (between 0 to P 1), is less fatigue damage including other steel members. However, under heavy traffic, if the tire is repeatedly fatigued for about 20 years or more, the rigidity of the floor slab gradually starts to decrease, and a local crack damage appears in the joint 5 between the main girder 3 and the inclined structure 4.

【0033】図1の設計上の使用限界状態P1は、ひび
われ6が中立軸7に達した時点をRC断面(引張無視、
n=15)として設計しているが、床版1を長期間使用
していると亀甲状のひびわれが多数発生し、貫通ひびわ
れから遊離石灰が溶出する状態に達する。
In the design use limit state P 1 in FIG. 1, the time when the crack 6 reaches the neutral axis 7 is an RC cross section (ignoring tension,
n = 15), but if the floor slab 1 is used for a long period of time, a large number of turtle-shaped cracks are generated and free lime elutes from the penetrating cracks.

【0034】この状態でも鉄筋応力は許容値以下である
ため、終局状態である押し抜き剪断破壊までには、相当
の荷重繰り返しを受けられる。このため使用限界状態を
超しても道路管理上からは、部分打ち換え等を行えば、
床版は一時的に使用可能である。
Even in this state, since the reinforcing bar stress is below the allowable value, a considerable load can be repeatedly applied until the final state, ie, the punching shear failure. For this reason, even if the usage limit is exceeded, from the road management, if partial replacement is performed,
The floor slab is temporarily usable.

【0035】仮に、床版補強を行わずに、図1のよう
に、使用限界を超して放置(t3〜D)すれば、当然、
道路管理上の供用限界(通行止め等)d2も超え、道路
機能上の安全性が保てなくなる。この段階で増厚工等の
補修・補強を行っても、その効果や持続性は期待でき
ず、道路機能上、重大な損傷をきたし、全面打ち変え、
全面架け替え等の事態になる。
If the floor slab is not reinforced and left outside the service limit (t3 to D) as shown in FIG.
Road administrative serviced limit (closures, etc.) d 2 be exceeded, the safety on the road feature can not be maintained. Even if repairs and reinforcements such as thickening work are performed at this stage, the effect and sustainability cannot be expected, and serious damage is caused in terms of road function.
It is a situation such as a complete replacement.

【0036】しかしながら、使用限界状態(d2)まで
の間に、図1の「+5cm増厚工」や「+9cm増厚工」よ
うに、床版の上・下面増厚工等の補修・補強を行った場
合は、比較的安価で、かつ、長期にわたって効率的に機
能保全(使用性、安全性)を確保することができる。
However, before the use limit state (d 2 ), as shown in “+5 cm thickening work” or “+9 cm thickening work” in FIG. In this case, functional maintenance (usability and safety) can be ensured at a relatively low cost and efficiently over a long period of time.

【0037】すなわち、図1の床版寿命の概念図で、初
期の床版損傷を放置するのでなく、車線規制のみで補強
ができる使用限界状態に達する以前に補修・補強を完了
する必要がある。このためには、補修の必要性や優先順
位、補修範囲、施工時期など補修計画に必要な信頼でき
る床版の損傷情報の収集が急務である。従来の経験法に
よる目視調査だけでは、床版の微小な剛性低下や、鉄筋
腐食による床版断面欠損たわみ変化などによる変形の初
期損傷の情報は得られない。この評価法により、容易に
かつ迅速に床版の評価ができる。
That is, in the conceptual view of the floor slab life shown in FIG. 1, repair / reinforcement must be completed before reaching the use limit state where reinforcement can be performed only by lane regulation without leaving the initial slab damage. . For this purpose, it is urgently necessary to collect reliable slab damage information necessary for repair planning, such as the necessity and priority of repair, the extent of repair, and the construction period. The visual inspection based on the conventional empirical method alone cannot provide information on the initial damage of deformation due to a minute decrease in rigidity of the floor slab or a change in the deformation of the floor slab cross-section due to corrosion of reinforcing steel. With this evaluation method, the floor slab can be easily and quickly evaluated.

【0038】実床版上を走行する平均輪荷重Pt/輪
は、概ね平均荷重P=6t/片輪前後を示す一般車の無
次元剛性比と、定荷重車15t車及び20t車の載荷の
たわみ荷重と無次元剛性比とから、表5や図9のよう
に、平均輪荷重Pt/輪の計測システムが完成された結
果、図6に示すように、この計測システムによって健全
度評価値(劣化度)は、高速道路のどの路線によって
も、路線間あるいは橋間であっても、ある程度の相対比
較が可能となった。
The average wheel load Pt / wheel running on the actual floor slab is approximately the average load P = 6t / the dimensionless stiffness ratio of a general vehicle showing around one wheel and the load of the 15t and 20t vehicles with a constant load vehicle. Based on the deflection load and the dimensionless rigidity ratio, as shown in Table 5 and FIG. 9, the measurement system of the average wheel load Pt / wheel was completed. As shown in FIG. 6, the soundness evaluation value ( Degree of deterioration) can be compared to some extent on any expressway line, between lines or between bridges.

【0039】図9は表5の実測例に示す一般走行車と荷
重車による劣化度の関係をプロットしたもので、先の一
般車走行から求めた劣化度と上記の定荷重車走行から求
めた劣化度とは強い相関関係にある。
FIG. 9 is a plot of the relationship between the degree of deterioration caused by the ordinary traveling vehicle and the load vehicle shown in the actual measurement example in Table 5, and the degree of deterioration obtained from the previous traveling of the ordinary vehicle and the above-described constant load vehicle traveling. There is a strong correlation with the degree of deterioration.

【0040】[0040]

【表5】 [表5]は姥久保高架橋での20t車と15t車の接触
式センサーによる実際の測定結果を基にそれぞれの劣化
度係数を求めたものである。ここで、No.2の連行荷重差
をNo.8の平均値P=6tと設定したときの荷重差に変換
する。No.12の無次元剛性比による劣化度を求める。こ
の結果は図9にプロットされている。
[Table 5] [Table 5] shows the respective deterioration degree coefficients based on the actual measurement results of the contact type sensors of the 20t car and the 15t car at the Ubukubo viaduct. Here, the entrainment load difference of No. 2 is converted into a load difference when the average value P of No. 8 is set to P = 6t. Determine the degree of deterioration based on the dimensionless rigidity ratio of No. 12. The results are plotted in FIG.

【0041】[0041]

【表6】 [表6]は動的載荷試験の計測結果を示す。[Table 6] [Table 6] shows the measurement results of the dynamic loading test.

【0042】特に、この手法は計測値の再現性に優れて
いる。同一パネルにおいて、補強前・後をモニタリング
する場合、図10のように高精度の相対比較が可能な計
測システムである。
In particular, this method is excellent in reproducibility of measured values. When monitoring before and after reinforcement in the same panel, this is a measurement system that enables high-precision relative comparison as shown in FIG.

【0043】また、このシステムによって、路線間や橋
梁間、あるいは図11のように交通特性、図12のよう
に計測時間などに左右されずに、ある程度の相対比較が
可能となった。
Further, this system makes it possible to make a relative comparison to some extent without being influenced by the line or bridge, the traffic characteristics as shown in FIG. 11, and the measurement time as shown in FIG.

【0044】また、単位時間24時間以上計測すれば、
床版の無次元剛性比が求められるようになる。図13は
計測時間48時間と24時間の劣化度の関係を示す図で
ある。
If the measurement is performed for a unit time of 24 hours or more,
The dimensionless rigidity ratio of the floor slab is required. FIG. 13 is a diagram showing the relationship between the measurement time of 48 hours and the deterioration degree of 24 hours.

【0045】[0045]

【表7】 [表7]及び図14は[表3]の[簡単な計算例]に使
用したときの任意の大型車のたわみデータである。この
比較表は、図15のように、接触式センサーと非接触式
センサーの波形データをたわみの絶対値で比較したもの
である。接触式センサーに比べて非接触式センサーは5
%程度小さいが、よく近似している。
[Table 7] [Table 7] and FIG. 14 are deflection data of an arbitrary large vehicle when used in [Simple calculation example] of [Table 3]. This comparison table compares the waveform data of the contact type sensor and the waveform data of the non-contact type sensor by the absolute value of the deflection as shown in FIG. 5 for non-contact sensors compared to contact sensors
%, But closely approximated.

【0046】図14は[表7]の数値を基に接触式セン
サーと非接触式センサーの比較をグラフ化したもので、
両者は強い相関関係がある。
FIG. 14 is a graph showing a comparison between the contact type sensor and the non-contact type sensor based on the numerical values in [Table 7].
There is a strong correlation between the two.

【0047】図15は大型車の動たわみ波形データの比
較で、両者の相関性が表われている。
FIG. 15 is a comparison of the deflection waveform data of a large vehicle, showing the correlation between them.

【0048】長期の現場計測や低周期の振動領域の計測
が可能なように一部レーザードップラー振動計を改良し
た結果、安定した計測が可能となった。
As a result of partially improving the laser Doppler vibrometer so as to enable long-term on-site measurement and measurement of a low-period vibration region, stable measurement has become possible.

【0049】[0049]

【表8】 [表8]は接触式(D−1)および非接触式(R−2:
反射型)センサーを比較した結果である。この表から明
らかのように、従来の電気式変位計の接触式と今回初め
て本格的に実施したレーサードップラー振動計による非
接触式との比較を行った結果、接触式より非接触式の方
がやや小さい値を示すことが分かった。
[Table 8] [Table 8] shows contact type (D-1) and non-contact type (R-2:
(Reflection type) sensor. As is clear from this table, as a result of a comparison between the contact type of the conventional electric displacement meter and the non-contact type by the Lass Doppler vibrometer, which was conducted for the first time in full scale, the non-contact type was better than the contact type. It was found to show a slightly smaller value.

【0050】図16は接触式(D−1)および非接触式
(R−2:反射型)センサーによる劣化度を比較したグ
ラフである。両者の相関性が明らかに表われている。
FIG. 16 is a graph comparing the degree of deterioration of the contact type (D-1) and that of the non-contact type (R-2: reflection type) sensor. The correlation between the two is clearly apparent.

【0051】しかも、レーザードップラー振動計を用い
れば、計測方法にもよるが、床版下面の使用状況などに
制約されずに計測ができるようになる。
Moreover, if a laser Doppler vibrometer is used, the measurement can be performed without being restricted by the use condition of the lower surface of the floor slab, depending on the measuring method.

【0052】図17はレーザードップラー振動計23に
よる床版1の相対たわみδの三通りの測定方法を示して
ある。(a)は[R1法]で床版1の相対たわみδを地
上Eから計測する場合、(b)は[R2法]で橋脚等の
上からミラー反射板Mを介して計測する場合、(c)は
[R3法]で簡易ビームB上から計測する場合である。
FIG. 17 shows three methods of measuring the relative deflection δ of the floor slab 1 using the laser Doppler vibrometer 23. (A) when the relative deflection δ of the floor slab 1 is measured from the ground E by the [R1 method], and (b) when the relative deflection δ is measured from above a pier or the like via the mirror reflector M by the [R2 method]. c) is a case where the measurement is performed from the simple beam B by the [R3 method].

【0053】動たわみの頻度計測は24時間にわたって
なされる。こうすると、ある程度の大型車両が走行して
いれば計測度数が多くなり、床版の無次元剛性比が求め
られるので、計測によって安定したデータが得られる。
The measurement of the frequency of movement deflection is performed over 24 hours. In this case, if a certain large-sized vehicle is running, the measurement frequency increases, and the dimensionless rigidity ratio of the floor slab is obtained, so that stable data can be obtained by measurement.

【0054】頻度計測は接触センサー21によってなさ
れる。こうすると、接触センサー21は設備が大型にな
るが、塗装足場等の吊り足場がある場合は、接触センサ
ー21の方が多数同時計測ができる。
The frequency measurement is performed by the contact sensor 21. In this case, the contact sensor 21 is large in size, but when there is a suspended scaffold such as a painted scaffold, the contact sensor 21 can perform a larger number of simultaneous measurements.

【0055】頻度計測は非接触センサー22でなされ
る。こうすると、床版から離れた地点で計測を行える。
The frequency is measured by the non-contact sensor 22. In this case, the measurement can be performed at a point away from the floor slab.

【0056】非接触センサー22はレーザードップラー
振動計23となっている。こうすると、床版1の下方に
レーザードップラー振動計23を設置できる場合はここ
に設置して床版1の下面に直接に光線を向け、河川や鉄
道線路があって直下に設置できない場合は橋脚に設置し
て水平方向から照射し、ミラー反射鏡Mを介して床版1
の下面に当てるようにしてもよく、レーザードップラー
振動計23の設置位置の自由度が広がる。
The non-contact sensor 22 is a laser Doppler vibrometer 23. In this case, if the laser Doppler vibrometer 23 can be installed below the floor slab 1, install it here and direct the light beam directly to the lower surface of the floor slab 1. If there is a river or a railway line and cannot be installed directly below, the pier And irradiate it from the horizontal direction, and slab 1
May be applied to the lower surface of the laser Doppler, and the degree of freedom of the installation position of the laser Doppler vibrometer 23 is increased.

【0057】動たわみ差は10%と50%の間で計測さ
れる。こうすると、非線形性や載荷条件などの要因の影
響をほとんど除去できる。
The dynamic deflection difference is measured between 10% and 50%. In this way, the effects of factors such as non-linearity and loading conditions can be almost eliminated.

【0058】床版1の終局状態の劣化度係数Asfは多数
の損傷床版パネルの頻度計測データから求められた基準
床版のときの数値となっている。こうすると、実際の床
版の終局状態とは部分的な押し抜き剪断破壊の発生時点
を指しているが、数多くの床版の検証の結果から終局状
態の劣化度係数Asfを特定できているので、この終局状
態の劣化度係数Asfを採用することにより、床版の劣化
度の判定ができる。
The deterioration degree coefficient A sf in the final state of the slab 1 is a numerical value for the reference slab obtained from frequency measurement data of a large number of damaged slab panels. In this case, the actual final state of the floor slab refers to the point of time when partial shearing failure occurs, but the deterioration degree coefficient A sf of the final state can be identified from the results of verification of many floor slabs. Therefore, by adopting the deterioration degree coefficient A sf in the final state, the deterioration degree of the floor slab can be determined.

【0059】動たわみが15tと20tの定荷重車での
動載荷によるたわみとなっている。こうすると、15t
と20tの両荷重によるたわみが得られるので、より実
体に近いたわみの測定ができる。
The dynamic deflection is caused by the dynamic loading of the 15t and 20t constant load vehicles. Then, 15t
And a deflection due to both loads of 20t can be obtained, so that a deflection closer to the actual body can be measured.

【0060】[0060]

【発明の効果】本発明によれば次のような特徴がある。 (1)床版下面から支間中央の一般走行車両による動た
わみ頻度測定をするだけで、簡単かつ煩雑な計算を必要
なしに床版の損傷度の評価ができる。 (2)初期損傷を早期発見して対応でき、「床版の剛性
比による管理値」による維持管理ができ、コスト縮減し
た実施計画や予算管理が効率的に行える。 (3)鋼橋のコンクリート床版は、橋梁の初期損傷を発
見するためのキー(鍵)部材の役割をしており、床版を
管理することで、少なくとも橋梁の「使用性」・「安全
性」を確保することが可能となる。 (4)費用対効果分析では、少なくともコスト縮減効果
として、床版の全面打ち変え工に対して増し厚工は1/
8程度で、剛性回復の効果(P2〜C)は、単に機能回
復的な補修(+5cm)と25t対応を考慮した改良的な
補強(+9cm)では3倍以上となり、初期損傷を早期発
見することで、増し厚工により「早期対応」をすれば、
おおよそ1/10以上のコスト縮減が実現できる。
According to the present invention, there are the following features. (1) The damage level of the floor slab can be evaluated simply and simply by performing a dynamic deflection measurement from the lower surface of the floor slab using a general traveling vehicle at the center of the span without requiring complicated calculations. (2) Early damage can be detected and dealt with at an early stage, maintenance can be performed by "management value based on rigidity ratio of floor slab", and execution plan and budget management with reduced cost can be efficiently performed. (3) The concrete slab of the steel bridge plays the role of a key member for detecting initial damage to the bridge. By managing the slab, at least the "usability" and "safety" of the bridge Nature "can be secured. (4) In the cost-effectiveness analysis, at least the cost reduction effect is 1 /
At about 8, the effect of stiffness recovery (P2 to C) is more than three times with repair (+ 5cm) simply with functional recovery and improved reinforcement (+ 9cm) considering 25t, and early detection of early damage So, if you do "early response" by increasing thickness,
Cost reduction of about 1/10 or more can be realized.

【0061】請求項2によれば、動たわみの頻度計測は
24時間にわたってなされるので、ある程度大型車両が
走行していれば計測度数が多くなり、床版の無次元剛性
比が求められるので、計測によって安定したデータが得
られる。
According to the second aspect, the frequency of dynamic deflection is measured over 24 hours. Therefore, if a large vehicle is running to some extent, the frequency of measurement increases, and the dimensionless rigidity ratio of the floor slab is obtained. Stable data can be obtained by measurement.

【0062】請求項3によれば、頻度計測は接触センサ
ーによってなされるので、接触センサーは設備が大型に
なるが、塗装足場等の吊り足場がある場合は、接触セン
サーの方が多数同時計測ができる。
According to the third aspect, since the frequency measurement is performed by the contact sensor, the contact sensor becomes large in size, but when there is a hanging scaffold such as a paint scaffold, the contact sensor can measure a larger number of simultaneous measurements. it can.

【0063】請求項4によれば、頻度計測は非接触セン
サーでなされるので、床版から離れた地点で計測を行え
る。
According to the fourth aspect, since the frequency measurement is performed by the non-contact sensor, the measurement can be performed at a point away from the floor slab.

【0064】請求項5によれば、非接触センサーはレー
ザードップラー振動計となっているので、床版の下方に
レーザードップラー振動計を設置できる場合はここに設
置して床版の下面に直接に光線を向け、河川や鉄道線路
があって直下に設置できない場合は橋脚に設置して水平
方向から照射し、反射鏡を介して床版の下面に当てるよ
うにしてもよく、レーザードップラー振動計の設置位置
の自由度が広がる。
According to the fifth aspect, since the non-contact sensor is a laser Doppler vibrometer, if the laser Doppler vibrometer can be installed below the floor slab, it is installed here and directly on the lower surface of the floor slab. If the beam cannot be installed directly under a river or railroad track, it can be installed on a pier and illuminated from the horizontal direction, and applied to the underside of the floor slab via a reflector. The degree of freedom of the installation position is expanded.

【0065】請求項6によれば、動たわみ差は10%と
50%の間で計測されるので、非線形性や載荷条件など
の要因の影響をほとんど除去できる。
According to the sixth aspect, since the dynamic deflection difference is measured between 10% and 50%, the influence of factors such as nonlinearity and loading conditions can be almost eliminated.

【0066】請求項7によれば、床版の終局状態の劣化
度係数は多数の損傷床版パネルの頻度計測データから求
められた基準床版のときの数値となっているので、実際
の床版の終局状態とは部分的な押し抜き剪断破壊の発生
時点を指しているが、数多くの床版の検証の結果から終
局状態の劣化度係数を特定できているので、この終局状
態の劣化度係数を採用することにより、床版の劣化度の
判定ができる。
According to the seventh aspect, since the deterioration degree coefficient in the final state of the floor slab is a value of the reference floor slab obtained from the frequency measurement data of a large number of damaged slab panels, the actual floor slab has a value. The final state of the slab refers to the point of time when partial shearing failure occurs, but the deterioration coefficient of the final state can be specified from the results of verification of many floor slabs. By using the coefficient, the degree of deterioration of the floor slab can be determined.

【0067】請求項8によれば、動たわみが15tと2
0tの定荷重車での動載荷によるたわみとなっているの
で、15tと20tの両荷重によるたわみが得られ、よ
り実体に近いたわみの測定ができる。
According to claim 8, the dynamic deflection is 15t and 2t.
Since the deflection is caused by the dynamic load of the constant load vehicle of 0t, the deflection by both the loads of 15t and 20t is obtained, and the deflection closer to the actual body can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】床版の損傷と補修・補強の関係を示す概念図で
ある。
FIG. 1 is a conceptual diagram showing the relationship between damage to a floor slab and repair / reinforcement.

【図2】一般走行車による荷重分布と、接触式と非接触
式の各センサーの変位計による床版のたわみ計測装置の
概略図である。
FIG. 2 is a schematic diagram of a load distribution by a general traveling vehicle and a deflection measurement device of a floor slab using displacement sensors of contact type sensors and non-contact type sensors.

【図3】図2の右側面図である。FIG. 3 is a right side view of FIG. 2;

【図4】コンクリート床版の無次元剛性比による健全度
評価方法の説明図で、(a)は図2と同様の計測装置の
概略図、(b)はたわみδの状態を示す図、(c)はた
わみ−頻度曲線図、(d)は累積百分率のたわみ頻度曲
線Cを示す図、(e)は無次元剛性比(荷重〜たわみ
比)と劣化度の関係を示す図、(a′)は(a)と、
(b′)は(b)と、(e′)は(e)とそれぞれ対応
する図、(f′)は床版のひび割れと中立軸の関係を示
す図である。ある。
4A and 4B are explanatory diagrams of a soundness evaluation method based on a dimensionless rigidity ratio of a concrete floor slab, wherein FIG. 4A is a schematic diagram of a measuring device similar to FIG. 2, FIG. 4B is a diagram showing a state of deflection δ, c) is a deflection-frequency curve diagram, (d) is a diagram showing a deflection frequency curve C of the cumulative percentage, (e) is a diagram showing the relationship between the dimensionless rigidity ratio (load to deflection ratio) and the degree of deterioration, (a ') ) Is (a)
(B ') is a diagram corresponding to (b), (e') is a diagram corresponding to (e), and (f ') is a diagram showing the relationship between cracks and the neutral axis of the floor slab. is there.

【図5】無次元剛性比法とたわみ法の考え方の比較図
で、(a)は一般走行車、(b)は定荷重車による各劣
化度を示す。
FIGS. 5A and 5B are comparison diagrams of the concept of the dimensionless rigidity ratio method and the deflection method, wherein FIG. 5A shows the degree of deterioration of a general traveling vehicle and FIG.

【図6】全計測データ劣化度と動たわみとの関係を示す
図である。
FIG. 6 is a diagram showing the relationship between the degree of deterioration of all measurement data and the deflection.

【図7】[表3]の(a)及び(b)を一緒にグラフに
した度数百分率−たわみ図である。
FIG. 7 is a graph showing the percentages of deflection (a) and (b) in Table 3 together.

【図8】[表3]の(a)及び(b)を一緒にグラフに
した累積百分率−たわみ図である。この図からδ10、δ
50を読取り、先の式(1)’に代入した値が[表4]であ
る。
FIG. 8 is a cumulative percentage-deflection diagram in which (a) and (b) in [Table 3] are graphed together. From this figure, δ 10 , δ
[Table 4] is the value obtained by reading 50 and substituting it into the above equation (1) ′.

【図9】一般走行車と荷重車による劣化度の関係図であ
る。
FIG. 9 is a diagram showing the relationship between the degree of deterioration caused by a general traveling vehicle and a load vehicle.

【図10】高精度の相対比較が可能な計測システムであ
ることの説明図である。
FIG. 10 is an explanatory diagram of a measurement system capable of high-accuracy relative comparison.

【図11】平日と休日の交通特性の違いを示す図であ
る。
FIG. 11 is a diagram showing a difference between traffic characteristics on weekdays and holidays.

【図12】劣化度と計測時間および大型車の台数の関係
を示す図で、計測期間などに左右されずに相対比較が可
能な根拠を示す。
FIG. 12 is a diagram showing the relationship between the degree of deterioration, the measurement time, and the number of large vehicles, and shows the basis for making a relative comparison without being affected by a measurement period or the like.

【図13】計測時間48時間と24時間の劣化度の関係
を示す図である。
FIG. 13 is a diagram showing a relationship between a measurement time of 48 hours and a deterioration degree of 24 hours.

【図14】接触式と非接触式センサーの比較図である。FIG. 14 is a comparison diagram of a contact type sensor and a non-contact type sensor.

【図15】大型車の動たわみデータの比較図である。FIG. 15 is a comparison diagram of dynamic deflection data of a large vehicle.

【図16】接触式と非接触式センサーによる劣化度の比
較図である。
FIG. 16 is a comparison diagram of the degree of deterioration between a contact type sensor and a non-contact type sensor.

【図17】レーザードップラー振動計による測定方法を
示す図で、(a)はR1法、(b)はR2法、(c)は
R3法である。
17A and 17B are diagrams showing a measurement method using a laser Doppler vibrometer, wherein FIG. 17A shows the R1 method, FIG. 17B shows the R2 method, and FIG. 17C shows the R3 method.

【符号の説明】[Explanation of symbols]

1 床版 S 支間 δ たわみ 2 頻度計 21 接触センサー 22 非接触センサー 23 レーザードップラー振動計 M ミラー反射鏡 B 簡易ビーム DESCRIPTION OF SYMBOLS 1 Floor slab S span delta deflection 2 Frequency meter 21 Contact sensor 22 Non-contact sensor 23 Laser Doppler vibrometer M Mirror reflector B Simple beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤井 公昭 東京都荒川区東日暮里5丁目7番18号 株 式会社東関東内 Fターム(参考) 2G061 AB05 BA15 CA08 EA02 EA04 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kimiaki Akai 5-7-18 Higashi-Nippori, Arakawa-ku, Tokyo F-term (reference) 2G061 AB05 BA15 CA08 EA02 EA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 床版(1)の支間(S)の中央部の動たわみ
(δ)を頻度計測してその累積百分率曲線(C')から動たわ
み差(δ10−δ50)を求め、この動たわみ差と床版支間長
(L)の比から動たわみ差を変数とする床版の劣化度係数
(AS)を求め、この劣化度係数と基準床版の終局状態にお
ける劣化度係数(ASf)から両係数の比である無次元剛性
比(AS/ASf)を求め、この無次元剛性比を基準として評
価することを特徴とするコンクリート床版の無次元剛性
比を用いた健全度評価方法。
1. The dynamic deflection of the center of the span (S) of the floor slab (1)
(δ) is measured to determine the dynamic deflection difference (δ 10 −δ 50 ) from the cumulative percentage curve (C ′), and this dynamic deflection difference and the floor span length
Deterioration coefficient of floor slab using dynamic deflection difference as a variable from the ratio of (L)
(A S ) is obtained, and a dimensionless rigidity ratio (A S / A Sf ), which is a ratio of the two factors, is obtained from the deterioration degree coefficient and the deterioration degree coefficient (A Sf ) in the final state of the reference slab. A soundness evaluation method using a dimensionless stiffness ratio of a concrete slab characterized by evaluating the stiffness ratio as a reference.
【請求項2】 該動たわみ(δ)の頻度計測は24時間に
わたってなされる請求項1に記載のコンクリート床版の
無次元剛性比を用いた健全度評価方法。
2. The method according to claim 1, wherein the frequency of the dynamic deflection (δ) is measured for 24 hours.
【請求項3】 該頻度計測は接触センサー(21)によって
なされる請求項1又は2に記載のコンクリート床版の無
次元剛性比を用いた健全度評価方法。
3. The method according to claim 1, wherein said frequency measurement is performed by a contact sensor.
【請求項4】 該頻度計測は非接触センサー(22)でなさ
れる請求項1に記載のコンクリート床版の無次元剛性比
を用いた健全度評価方法。
4. The method according to claim 1, wherein the frequency measurement is performed by a non-contact sensor (22).
【請求項5】 該非接触センサー(22)はレーザードップ
ラー振動計(23)である請求項4に記載のコンクリート床
版の無次元剛性比を用いた健全度評価方法。
5. The method according to claim 4, wherein the non-contact sensor is a laser Doppler vibrometer.
【請求項6】 該動たわみ差(δ10−δ50)は10%と5
0%の間で計測される請求項1に記載のコンクリート床
版の無次元剛性比を用いた健全度評価方法。
6. The dynamic deflection difference (δ 10 −δ 50 ) is 10% and 5%.
The soundness evaluation method using a dimensionless rigidity ratio of the concrete slab according to claim 1, which is measured between 0%.
【請求項7】 該基準床版の終局状態における劣化度係
数(ASf)は多数の損傷床版パネルの頻度計測データから
求められた基準床版のときの数値となっている請求項1
に記載のコンクリート床版の無次元剛性比を用いた健全
度評価方法。
7. The deterioration degree coefficient (A Sf ) in the final state of the reference slab is a numerical value for the reference slab obtained from frequency measurement data of a large number of damaged slab panels.
A soundness evaluation method using the dimensionless rigidity ratio of the concrete slab described in 1 above.
【請求項8】 該動たわみ(δ)が15tと20tの定荷
重車での動載荷によるたわみとなっている請求項1に記
載のコンクリート床版の無次元剛性比を用いた健全度評
価方法。
8. The method for evaluating soundness of a concrete slab according to claim 1, wherein said dynamic deflection (δ) is a deflection caused by dynamic loading of a 15t and 20t constant load vehicle. .
JP2000285559A 2000-09-20 2000-09-20 Soundness evaluation method using dimensionless stiffness ratio of concrete slab Expired - Fee Related JP3836310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285559A JP3836310B2 (en) 2000-09-20 2000-09-20 Soundness evaluation method using dimensionless stiffness ratio of concrete slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285559A JP3836310B2 (en) 2000-09-20 2000-09-20 Soundness evaluation method using dimensionless stiffness ratio of concrete slab

Publications (2)

Publication Number Publication Date
JP2002090256A true JP2002090256A (en) 2002-03-27
JP3836310B2 JP3836310B2 (en) 2006-10-25

Family

ID=18769607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285559A Expired - Fee Related JP3836310B2 (en) 2000-09-20 2000-09-20 Soundness evaluation method using dimensionless stiffness ratio of concrete slab

Country Status (1)

Country Link
JP (1) JP3836310B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084404A (en) * 2004-09-17 2006-03-30 Tokyo Institute Of Technology Characteristic variation detection system, method, program, and recording medium of structure
JP2013174481A (en) * 2012-02-24 2013-09-05 Toda Constr Co Ltd Vehicle axle load measurement system and bridge monitoring system using the same
CN103759868A (en) * 2014-01-11 2014-04-30 宁波良和路桥科技有限公司 Bridge cross connection real-time assessment method based on stress proportion
CN103954415A (en) * 2014-04-21 2014-07-30 广西交通科学研究院 Method for measuring deflection of dry bridge
JP2016532603A (en) * 2013-10-11 2016-10-20 ザ プロクター アンド ギャンブル カンパニー Disposable flexible container
CN107766693A (en) * 2017-09-30 2018-03-06 上海思致汽车工程技术有限公司 A kind of cracking evaluation method of the plate for flowing through bead for punching press
JP2019518889A (en) * 2016-05-18 2019-07-04 ハイマンス エヌ.ヴィー. How to determine the structural integrity of infrastructure elements
JP2020112396A (en) * 2019-01-09 2020-07-27 株式会社東芝 Detection device, detection system, detection method, and information processing device
CN116029176A (en) * 2023-02-28 2023-04-28 江西省交通投资集团有限责任公司 Bridge structure operation and maintenance safety assessment method under high side slope condition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084404A (en) * 2004-09-17 2006-03-30 Tokyo Institute Of Technology Characteristic variation detection system, method, program, and recording medium of structure
JP2013174481A (en) * 2012-02-24 2013-09-05 Toda Constr Co Ltd Vehicle axle load measurement system and bridge monitoring system using the same
JP2016532603A (en) * 2013-10-11 2016-10-20 ザ プロクター アンド ギャンブル カンパニー Disposable flexible container
CN103759868A (en) * 2014-01-11 2014-04-30 宁波良和路桥科技有限公司 Bridge cross connection real-time assessment method based on stress proportion
CN103954415A (en) * 2014-04-21 2014-07-30 广西交通科学研究院 Method for measuring deflection of dry bridge
JP2019518889A (en) * 2016-05-18 2019-07-04 ハイマンス エヌ.ヴィー. How to determine the structural integrity of infrastructure elements
CN107766693A (en) * 2017-09-30 2018-03-06 上海思致汽车工程技术有限公司 A kind of cracking evaluation method of the plate for flowing through bead for punching press
CN107766693B (en) * 2017-09-30 2020-05-29 上海思致汽车工程技术有限公司 Cracking judgment method for punched plate flowing through draw bead
JP2020112396A (en) * 2019-01-09 2020-07-27 株式会社東芝 Detection device, detection system, detection method, and information processing device
JP7160695B2 (en) 2019-01-09 2022-10-25 株式会社東芝 DETECTION SYSTEM, DETECTION METHOD, AND INFORMATION PROCESSING APPARATUS
CN116029176A (en) * 2023-02-28 2023-04-28 江西省交通投资集团有限责任公司 Bridge structure operation and maintenance safety assessment method under high side slope condition

Also Published As

Publication number Publication date
JP3836310B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
Frýba et al. Load tests and modal analysis of bridges
DeWolf et al. Monitoring bridge performance
JP2002090256A (en) Evaluation method for soundness degree using dimensionless rigidity ratio of concrete floormboard
Sartor et al. Short-term strain monitoring of bridge structures
Strauss et al. Monitoring‐based performance assessment of rail‐bridge interaction based on structural reliability
Hag-Elsafi et al. In-service evaluation of a reinforced concrete T-beam bridge FRP strengthening system
Fujino et al. Structural health monitoring of bridges in Japan: An overview of the current trend
Geissler Assessment of old steel bridges, Germany
Li et al. Development and implementation of a continuous vertical track-support testing technique
CN115713020A (en) Rapid test and evaluation method for bearing rigidity of simply supported beam bridge based on local vibration mode
Cartiaux et al. Traffic and temperature effects monitoring on bridges by optical strands strain sensors
Bakht et al. Structural health monitoring
Hag-Elsafi et al. Strengthening of a bridge pier capbeam using bonded FRP composite plates
Astiz Towards a standard policy for structural monitoring in cable-stayed bridges
Pimentel et al. Load tests on bridges
Norris Recent advances in the understanding of bridge dynamic behaviour on the West Coast Main Line Route Modernisation Project
Sundaram et al. Condition assessment of a prestressed concrete girder and slab bridge for increased axle loadings
Lemmon et al. Developments in the analysis, testing and damage assessment of railway bridges
Bačinskas et al. Field testing of pedestrian bridges
Catbas et al. Static and dynamic testing of a concrete T-beam bridge before and after carbon fiber–reinforced polymer retrofit
Parlewar Making Safer Cities from Damaged Foot-Over-Bridges
Dewolf et al. Nondestructive evaluation of the steel bridge infrastructure
Ohtsu et al. AE Applied to Superstructure
Tarries Diaphragm bolt loosening retrofit for web gap fatigue cracking in steel girder bridges
ZAMIRI et al. Advanced Assessment of Welded Bridges for Fatigue and Brittle Fracture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3836310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150804

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees