JP2002088493A - Water electrolysis system - Google Patents

Water electrolysis system

Info

Publication number
JP2002088493A
JP2002088493A JP2000285222A JP2000285222A JP2002088493A JP 2002088493 A JP2002088493 A JP 2002088493A JP 2000285222 A JP2000285222 A JP 2000285222A JP 2000285222 A JP2000285222 A JP 2000285222A JP 2002088493 A JP2002088493 A JP 2002088493A
Authority
JP
Japan
Prior art keywords
water electrolysis
solar cell
electrolysis device
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000285222A
Other languages
Japanese (ja)
Inventor
Kei Handa
圭 判田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000285222A priority Critical patent/JP2002088493A/en
Priority to US09/950,825 priority patent/US20020033332A1/en
Publication of JP2002088493A publication Critical patent/JP2002088493A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a water electrolysis system constituted in such a manner that, even when the most adequate working point, hence the maximum output of a solar battery fluctuates, efficient operation is made possible by utilizing this maximum output. SOLUTION: The water electrolysis system 1 has a water electrolyzer 4, the solar battery 2 which is a power source of this water electrolyzer 4 and a DC/DC converter 5 which converts the maximum output to the current and voltage corresponding to the IV characteristic of the water electrolyzer 4 and inputs the same to the water electrolyzer 4 by converting the current and voltage of a part of the max. output of the solar battery 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,太陽電池の出力で
水電解装置を運転するようにした水電解システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water electrolysis system in which a water electrolysis device is operated with the output of a solar cell.

【0002】[0002]

【従来の技術】太陽電池は最適動作点,つまりその出力
が最大となるときの動作電流・動作電圧を有し,その最
適動作点と水電解装置のIV(I:電流,V:電圧)特
性とが合致すればその水電解システムを効率良く運転す
ることができる。ところが,前記最適動作点は太陽電池
の温度,日射量等によって変動するため,その最適動作
点と水電解装置のIV特性とが不一致となり,太陽電池
と水電解装置とを直列接続する,つまり直結した場合に
は,水電解システムを常時効率良く運転することは困難
であった。
2. Description of the Related Art A solar cell has an optimum operating point, that is, an operating current and an operating voltage when its output is maximized. The optimum operating point and IV (I: current, V: voltage) characteristics of the water electrolysis device If these conditions are met, the water electrolysis system can be operated efficiently. However, since the optimal operating point varies depending on the temperature of the solar cell, the amount of solar radiation, etc., the optimal operating point does not match the IV characteristic of the water electrolysis device, and the solar cell and the water electrolysis device are connected in series, that is, directly connected. In such a case, it was difficult to always operate the water electrolysis system efficiently.

【0003】そこで,太陽電池の最適動作点,したがっ
て最大出力が変動した場合にも,その最大出力を利用し
て効率の良い運転を行うべく,水電解装置と,太陽電池
と,その太陽電池の最大出力の全部を前記水電解装置の
IV特性に対応した電流・電圧に変換してその水電解装
置に入力する高出力型DC/DCコンバータとを有する
水電解システムが開発されている(例えば,特開平7−
233493号公報参照)。
[0003] Therefore, even when the optimum operating point of the solar cell, that is, the maximum output fluctuates, the water electrolysis device, the solar cell, and the solar cell are used in order to perform efficient operation using the maximum output. A water electrolysis system having a high output type DC / DC converter that converts all of the maximum output into a current / voltage corresponding to the IV characteristic of the water electrolysis device and inputs the converted current / voltage to the water electrolysis device has been developed (for example, JP-A-7-
233493).

【0004】[0004]

【発明が解決しようとする課題】しかしながら,高出力
型DC/DCコンバータは大型である上にコストが高
く,またその効率は80〜90%であって10〜20%
の損失が生じるため,従来システムは経済性に欠ける,
という問題があった。
However, high-output DC / DC converters are large and costly, and their efficiencies are 80-90% and 10-20%.
Conventional system lacks economy because of the loss of
There was a problem.

【0005】[0005]

【課題を解決するための手段】本発明は太陽電池の最適
動作点,したがって最大出力が変動した場合にも,その
最大出力を利用して効率の良い運転を行い得るようにし
た経済的な水電解システムを提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention is directed to an economical water supply system capable of performing efficient operation by utilizing the maximum output even when the optimum operation point of the solar cell, that is, the maximum output fluctuates. An object is to provide an electrolysis system.

【0006】前記目的を達成するため本発明によれば,
水電解装置と,その水電解装置の電源である太陽電池
と,その太陽電池の最大出力の一部について電流・電圧
の変換を行うことにより,前記最大出力を水電解装置の
IV特性に対応した電流・電圧に変換してその水電解装
置に入力するDC/DCコンバータとを有する水電解シ
ステムが提供される。
[0006] To achieve the above object, according to the present invention,
The maximum output corresponds to the IV characteristics of the water electrolyzer by performing current / voltage conversion on a water electrolyzer, a solar cell as a power source of the water electrolyzer, and a part of the maximum output of the solar cell. There is provided a water electrolysis system having a DC / DC converter that converts the current into a voltage and inputs the converted current / voltage to the water electrolysis device.

【0007】このように構成すると,太陽電池の最大出
力が変動した場合,その変動後の最大出力を利用して水
電解システムを効率良く運転することができる。その
上,太陽電池の最大出力の一部について,DC/DCコ
ンバータによる電流・電圧の変換を行うので,システム
全体としては損失を小さく抑え,またDC/DCコンバ
ータとしては小型で,且つ低コストな低出力型のものを
用いることが可能であり,これにより経済性を向上させ
ることができる。
With this configuration, when the maximum output of the solar cell fluctuates, the water electrolysis system can be operated efficiently using the maximum output after the fluctuation. In addition, since a part of the maximum output of the solar cell is subjected to current / voltage conversion by a DC / DC converter, the loss of the entire system is kept small, and the DC / DC converter is small in size and low in cost. It is possible to use a low-output type, which can improve economic efficiency.

【0008】また本発明によれば,水電解装置と,その
水電解装置の電源である太陽電池と,水電解装置のIV
特性に対応した電流・電圧を得ベく,太陽電池の最大出
力に,外部出力を付加する直流電源とを有する水電解シ
ステムが提供される。
Further, according to the present invention, a water electrolysis device, a solar cell as a power source of the water electrolysis device, and an IV of the water electrolysis device are provided.
Provided is a water electrolysis system having a DC power supply for adding an external output to a maximum output of a solar cell to obtain a current and a voltage corresponding to characteristics.

【0009】このように構成すると,太陽電池の最大出
力が変動した場合,その変動に応じた外部出力を変動後
の最大出力に付加することによって,それに応じた新た
な最適動作点を現出させ,その最適動作点を水電解装置
のIV特性に合致させてその動作点とすることが可能で
ある。これにより水電解システムを効率良く運転するこ
とができる。
With this configuration, when the maximum output of the solar cell fluctuates, a new optimum operating point corresponding to the fluctuation is added by adding an external output corresponding to the fluctuation to the maximum output after the fluctuation. The optimum operating point can be set as the operating point by matching the IV characteristic of the water electrolysis apparatus. Thereby, the water electrolysis system can be operated efficiently.

【0010】[0010]

【発明の実施の形態】図1〜4は水電解システム1の第
1実施例を示す。第1実施例は例1および例2を含み,
図1,2は例1を,また図3,4は例2をそれぞれ示
す。
1 to 4 show a first embodiment of a water electrolysis system 1. FIG. The first embodiment includes Examples 1 and 2,
1 and 2 show Example 1, and FIGS. 3 and 4 show Example 2.

【0011】例1において,図1は太陽電池2の最大出
力が変動したときの一態様を示す。線L1は,太陽電池
2の28℃(日射量:1040W/m2 )におけるIV
特性を,また線L2はその太陽電池2の出力特性をそれ
ぞれ示す。この場合,太陽電池2の最適動作点P1は出
力が最大となる点であり,その最大出力Emaxは15
06Wである。一方,線L3は水電解装置(水電解セル
数:8)4のIV特性を示す。太陽電池2と水電解装置
4とを直列接続した場合,太陽電池2のIV特性を示す
線L1と,水電解装置4のIV特性を示す線L3との交
点が水電解装置4の動作点P2となる。この動作点P2
は,太陽電池2の最適動作点P1よりも,低電流・高電
圧側に変位した位置にあり,したがって水電解システム
1の高効率運転は望めない。
In Example 1, FIG. 1 shows one mode when the maximum output of the solar cell 2 fluctuates. Line L1 indicates the IV of the solar cell 2 at 28 ° C. (solar radiation: 1040 W / m 2 ).
And the line L2 indicates the output characteristics of the solar cell 2. In this case, the optimum operating point P1 of the solar cell 2 is a point where the output is maximum, and the maximum output Emax is 15 points.
06W. On the other hand, a line L3 indicates the IV characteristics of the water electrolysis device (the number of water electrolysis cells: 8) 4. When the solar cell 2 and the water electrolysis device 4 are connected in series, the intersection of the line L1 indicating the IV characteristics of the solar cell 2 and the line L3 indicating the IV characteristics of the water electrolysis device 4 is the operating point P2 of the water electrolysis device 4. Becomes This operating point P2
Is located at a position displaced to a lower current / higher voltage side than the optimum operating point P1 of the solar cell 2, and therefore, the water electrolysis system 1 cannot be expected to operate with high efficiency.

【0012】これに対応すべく,例1では,太陽電池2
の最適動作点P1の動作電流Imaxを下げ,且つ動作
電圧Vmaxを上げるように低出力型DC/DCコンバ
ータ5を制御して,水電解装置4のIV特性を示す線L
3に載る電流Imax−dIおよび電圧Vmax+dV
を求め,この電流および電圧を,水電解装置4の動作電
流および動作電圧とする,といったピークパワートラッ
キングを行うようになっている。
To cope with this, in Example 1, the solar cell 2
Of the water electrolysis device 4 by controlling the low-output type DC / DC converter 5 so as to lower the operating current Imax of the optimum operating point P1 and increase the operating voltage Vmax.
3, the current Imax-dI and the voltage Vmax + dV
, And the current and voltage are used as the operating current and operating voltage of the water electrolysis device 4 to perform peak power tracking.

【0013】図2,(A)に示すように,例1において
は,太陽電池2および水電解装置4間に低出力型DC/
DCコンバータ5が直列接続されている。低出力型DC
/DCコンバータ5は,前記ピークパワートラッキング
を行うべく,太陽電池2の最大出力の一部について電流
・電圧の変換を行うことにより,その最大出力を水電解
装置4のIV特性に対応した電流・電圧に変換してその
水電解装置4に入力する,といった機能を有する。図
2,(B)は,図2,(A)の等価回路を示す。
As shown in FIGS. 2A and 2A, in Example 1, a low-power DC / DC
The DC converter 5 is connected in series. Low output DC
The / DC converter 5 converts the current / voltage of a part of the maximum output of the solar cell 2 to perform the peak power tracking, and converts the maximum output to a current / voltage corresponding to the IV characteristic of the water electrolysis device 4. It has a function of converting the voltage into a voltage and inputting it to the water electrolysis device 4. FIGS. 2 and 2B show an equivalent circuit of FIGS.

【0014】図1に示す状況下で水電解装置4を運転す
る場合には,先ず,太陽電池2の最適動作点P1の動作
電流Imax(92.4A)および動作電圧Vmax
(16.3V)を求める。太陽電池2と水電解装置4と
を直列接続したときの水電解装置4の動作点P2は,動
作電流80A,動作電圧17.8Vの点にある。
When operating the water electrolysis apparatus 4 under the conditions shown in FIG. 1, first, the operating current Imax (92.4 A) and the operating voltage Vmax of the optimum operating point P1 of the solar cell 2 are set.
(16.3 V) is obtained. The operating point P2 of the water electrolysis device 4 when the solar cell 2 and the water electrolysis device 4 are connected in series is a point where the operation current is 80A and the operation voltage is 17.8V.

【0015】次いで,図2,(B)において,低出力型
DC/DCコンバータ5を動作させて可変抵抗Rの抵抗
値を下げると,電流dIが流れるので,水電解装置4へ
の電流が減少してImax−dIとなり,一方,電圧は
増加してVmax+dVとなる。これを続行して,水電
解装置4のIV特性を示す線L3に載る電流Imax−
dI(73.5A)および電圧Vmax+dV(17.
7V)を求め,それら電流および電圧を持つ点P3を水
電解装置4の動作点とする。
Next, in FIG. 2 (B), when the low output type DC / DC converter 5 is operated to lower the resistance value of the variable resistor R, the current dI flows, and the current to the water electrolysis device 4 decreases. As a result, Imax−dI, while the voltage increases to Vmax + dV. By continuing this, the current Imax− on the line L3 indicating the IV characteristic of the water electrolysis device 4
dI (73.5A) and voltage Vmax + dV (17.
7V), and the point P3 having the current and the voltage is set as the operating point of the water electrolysis device 4.

【0016】つまり,水電解装置4には,太陽電池2か
ら(Vmax+dV)・(Imax−dI)の出力が供
給され,この場合,太陽電池2の最大出力Imax・V
maxの一部Vmax・dIが,供給出力(Vmax+
dV)・(Imax−dI)において(Imax−d
I)・dVと変換されている。ただし,(Imax−d
I)・dVはVmax・dIから変換による損失を除い
た値である。
That is, the output of (Vmax + dV) · (Imax−dI) is supplied from the solar cell 2 to the water electrolysis device 4. In this case, the maximum output Imax · V of the solar cell 2 is provided.
A part Vmax · dI of the maximum is the supply output (Vmax +
dV) · (Imax−dI) and (Imax−d
I) · dV. However, (Imax-d
I) · dV is a value obtained by removing a loss due to conversion from Vmax · dI.

【0017】例2において,図3は太陽電池2の最大出
力が変動したときの一態様を示す。線L1は,前記同様
に,太陽電池2の28℃(日射量:1040W/m2
におけるIV特性を,また線L2は,前記同様に,その
太陽電池2の出力特性をそれぞれ示す。この場合,太陽
電池2の最適動作点P1は,出力が最大となる点であ
り,その最大出力Emaxは1506Wである。一方,
線L3は水電解装置(水電解セル数:6)4のIV特性
を示す。
In Example 2, FIG. 3 shows an embodiment when the maximum output of the solar cell 2 fluctuates. The line L1 is at 28 ° C. (solar radiation: 1040 W / m 2 ) of the solar cell 2 as described above.
, And the line L2 indicates the output characteristics of the solar cell 2 in the same manner as described above. In this case, the optimum operating point P1 of the solar cell 2 is a point where the output is maximum, and the maximum output Emax is 1506W. on the other hand,
A line L3 indicates the IV characteristic of the water electrolysis device (the number of water electrolysis cells: 6) 4.

【0018】太陽電池2の水電解装置4とを直列接続し
た場合,太陽電池2のIV特性を示す線L1と,水電解
装置4のIV特性を示す線L3との交点が水電解装置4
の動作点P2となる。この動作点P2は,太陽電池2の
最適動作点P1よりも,高電流・低電圧側に変位した位
置にあり,したがって水電解システム1の高効率運転は
望めない。
When the water electrolysis device 4 of the solar cell 2 is connected in series, the intersection of the line L1 showing the IV characteristic of the solar cell 2 and the line L3 showing the IV characteristic of the water electrolysis device 4 is
Operating point P2. This operating point P2 is located at a position displaced to a higher current / lower voltage side than the optimum operating point P1 of the solar cell 2, and therefore, high efficiency operation of the water electrolysis system 1 cannot be expected.

【0019】これに対応すべく,例2では,太陽電池2
の最適動作点P1の動作電流Imaxを上げ,且つ動作
電圧Vmaxを下げるように低出力型DC/DCコンバ
ータ5を制御して,水電解装置4のIV特性を示す線L
3に載る電流Imax+dIおよび電圧Vmax−dV
を求め,この電流および電圧を,水電解装置4の動作電
流および動作電圧とする,といったピークパワートラッ
キングを行うようになっている。
To deal with this, in Example 2, the solar cell 2
The low output DC / DC converter 5 is controlled so as to increase the operating current Imax of the optimum operating point P1 and to lower the operating voltage Vmax, thereby obtaining a line L indicating the IV characteristic of the water electrolysis device 4.
Current Imax + dI and voltage Vmax−dV
, And the current and voltage are used as the operating current and operating voltage of the water electrolysis device 4 to perform peak power tracking.

【0020】図4,(A)に示すように,例2において
は,太陽電池2および水電解装置4間に低出力型DC/
DCコンバータ5が並列接続されている。低出力型DC
/DCコンバータ5は,前記ピークパワートラッキング
を行うべく,太陽電池2の最大出力の一部について電流
・電圧の変換を行うことにより,その最大出力を水電解
装置4のIV特性に対応した電流・電圧に変換してその
水電解装置4に入力する,といった機能を有する。図
4,(B)は図4,(A)の等価回路を示す。
As shown in FIGS. 4A and 4A, in Example 2, a low-power DC / DC is connected between the solar cell 2 and the water electrolysis device 4.
DC converters 5 are connected in parallel. Low output DC
The / DC converter 5 converts the current / voltage of a part of the maximum output of the solar cell 2 to perform the peak power tracking, thereby converting the maximum output to a current / voltage corresponding to the IV characteristic of the water electrolysis device 4. It has a function of converting the voltage into a voltage and inputting it to the water electrolysis device 4. FIGS. 4 and 4B show an equivalent circuit of FIGS.

【0021】図3に示す状況下で水電解装置4を運転す
る場合には,先ず,太陽電池2の最適動作点P1の動作
電流Imax(92.4A)および動作電圧Vmax
(16.3V)を求める。太陽電池2と水電解装置4と
を直列接続したときの水電解装置4の動作点P2は,動
作電流100A,動作電圧13.8Vの点にある。
When operating the water electrolysis apparatus 4 under the conditions shown in FIG. 3, first, the operating current Imax (92.4 A) and the operating voltage Vmax of the optimum operating point P1 of the solar cell 2 are set.
(16.3 V) is obtained. The operating point P2 of the water electrolysis device 4 when the solar cell 2 and the water electrolysis device 4 are connected in series is a point where the operation current is 100A and the operation voltage is 13.8V.

【0022】次いで,図4,(B)において,低出力型
DC/DCコンバータ5を動作させて可変抵抗Rの抵抗
値を上げると,電流dIが流れるので,水電解装置4へ
の電流が増加してImax+dIとなり,一方,電圧は
減少してVmax−dVとなる。これを続行して,水電
解装置4のIV特性を示す線L3に載る電流Imax+
dI(108.2A)および電圧Vmax−dV(1
3.9V)を求め,それら電流および電圧を持つ点P3
を水電解装置4の動作点とする。
Next, in FIG. 4 (B), when the low output type DC / DC converter 5 is operated to increase the resistance value of the variable resistor R, the current dI flows, so that the current to the water electrolysis device 4 increases. Then, the voltage decreases to Imax + dI, while the voltage decreases to Vmax-dV. By continuing this, the current Imax + on the line L3 indicating the IV characteristic of the water electrolysis device 4
dI (108.2 A) and the voltage Vmax−dV (1
3.9 V), and a point P3 having these currents and voltages
Is the operating point of the water electrolysis device 4.

【0023】つまり,水電解装置4には,太陽電池2か
ら(Vmax−dV)・(Imax+dI)の出力が供
給され,この場合,太陽電池2の最大出力Imax・V
maxの一部Imax・dVが,供給出力(Vmax−
dV)・(Imax+dI)において(Vmax−d
V)・dIと変換されている。ただし,(Vmax−d
V)・dIはImax・dVから,変換による損失を除
いた値である。
That is, the output of (Vmax−dV) · (Imax + dI) is supplied from the solar cell 2 to the water electrolysis device 4, and in this case, the maximum output Imax · V of the solar cell 2
A part of the maximum Imax · dV is the supply output (Vmax−
dV) · (Imax + dI) and (Vmax−d
V) · dI. However, (Vmax−d
V) · dI is a value obtained by removing the loss due to the conversion from Imax · dV.

【0024】図5〜7は水電解システム1の第2実施例
を示す。図5に示す第2実施例の例1においては,太陽
電池および水電解装置4間に直流電源6が直列に接続さ
れている。その直流電源6は,水電解装置4のIV特性
に対応した電流・電圧を得べく,太陽電池2の最大出力
に外部出力を付加する,といった機能を有する。
FIGS. 5 to 7 show a second embodiment of the water electrolysis system 1. In Example 1 of the second embodiment shown in FIG. 5, a DC power supply 6 is connected in series between a solar cell and a water electrolysis device 4. The DC power supply 6 has a function of adding an external output to the maximum output of the solar cell 2 in order to obtain a current / voltage corresponding to the IV characteristics of the water electrolysis device 4.

【0025】図6において,曲線L1は,太陽電池2の
80℃(日射量:905W/m2 )におけるIV特性を
示し,また線L2は,その太陽電池2の出力特性をそれ
ぞれ示す。太陽電池2の最適動作点P1は,相対出力が
最大となる,動作電圧13.3V,動作電流92A(1
224W)の点である。一方,線L3は,水電解装置
(水電解セル数:7)4のIV特性を示す。
In FIG. 6, a curve L1 shows the IV characteristic of the solar cell 2 at 80 ° C. (solar radiation: 905 W / m 2 ), and a line L2 shows the output characteristic of the solar cell 2, respectively. The optimal operating point P1 of the solar cell 2 is such that the operating voltage is 13.3 V and the operating current is 92 A (1
224 W). On the other hand, a line L3 indicates the IV characteristics of the water electrolysis device (the number of water electrolysis cells: 7) 4.

【0026】太陽電池2と水電解装置4とを直列接続し
た場合,太陽電池2のIV特性を示す線L1と,水電解
装置4のIV特性を示す線L3との交点,つまり最適動
作点P1よりも低電流・高電圧側の点が水電解装置4の
動作点P2となる。
When the solar cell 2 and the water electrolysis device 4 are connected in series, the intersection of the line L1 indicating the IV characteristic of the solar cell 2 and the line L3 indicating the IV characteristic of the water electrolysis device 4, that is, the optimum operating point P1 The point on the low current / high voltage side is the operating point P2 of the water electrolysis device 4.

【0027】そこで,最適動作点P1を電流(92A)
一定の状態で高電圧側へ移動させると,電圧15.6V
において水電解装置4のIV特性を示す線L3と合致す
る。最適動作点P1の動作電圧は13.3Vであって,
15.6V−13.3V=2.3Vであるから,太陽電
池2のIV特性に直流電源6から2.3Vの外部電圧を
付加すると,太陽電池2および直流電源6の協働による
二次的なIV特性は点線示の線L4のようになり,その
IV特性における新たな最適動作点P3が水電解装置4
の動作点となる。
Therefore, the optimum operating point P1 is set to the current (92 A)
When moved to the high voltage side in a constant state, the voltage is 15.6V
At line L3, which corresponds to the IV characteristic of the water electrolysis device 4. The operating voltage at the optimum operating point P1 is 13.3V,
Since 15.6V-13.3V = 2.3V, when an external voltage of 2.3V is applied from the DC power supply 6 to the IV characteristic of the solar cell 2, the secondary voltage due to the cooperation of the solar cell 2 and the DC power supply 6 is increased. The IV characteristic is as shown by a dotted line L4, and a new optimum operating point P3 in the IV characteristic
Operating point.

【0028】このように,太陽電池2の最大出力が変動
した場合,その変動に応じた外部出力を変動後の最大出
力に付加することによって,それに応じた新たな最適動
作点P3,即ち,動作電圧15.6V,動作電流92A
(1435W)の点を現出させ,その最適動作点P3を
水電解装置4のIV特性に合致させて,その動作点とす
ることが可能である。このようなピークパワートラッキ
ングによって水電解システム1を効率良く運転すること
ができる。
As described above, when the maximum output of the solar cell 2 fluctuates, an external output corresponding to the fluctuation is added to the maximum output after the fluctuation, so that a new optimum operating point P3 corresponding to the fluctuation is obtained. Voltage 15.6V, operating current 92A
(1435W), and the optimum operating point P3 can be set as the operating point by matching the IV characteristic of the water electrolysis device 4. The water electrolysis system 1 can be efficiently operated by such peak power tracking.

【0029】図9に示す第2実施例の例2においては,
太陽電池2および水電解装置4間に直流電源6が並列に
接続されている。これによってもピークパワートラッキ
ングを行うことが可能である。
In Example 2 of the second embodiment shown in FIG.
A DC power supply 6 is connected in parallel between the solar cell 2 and the water electrolysis device 4. This also allows peak power tracking to be performed.

【0030】[0030]

【発明の効果】本発明によれば,前記のように構成する
ことによって,太陽電池の最適動作点,したがって最大
出力が変動した場合にも,その最大出力を利用して効率
の良い運転を行い得るようにした水電解システムを提供
することができる。
According to the present invention, with the above-described configuration, even when the optimum operating point of the solar cell, and therefore the maximum output, fluctuates, efficient operation can be performed using the maximum output. A water electrolysis system adapted to be obtained can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】太陽電池および水電解装置に関するIV特性の
第1例を示すグラフである。
FIG. 1 is a graph showing a first example of IV characteristics of a solar cell and a water electrolysis device.

【図2】(A)は第1実施例における例1の電気回路
図,(B)は(A)の等価回路図である。
FIG. 2A is an electric circuit diagram of Example 1 in the first embodiment, and FIG. 2B is an equivalent circuit diagram of FIG.

【図3】太陽電池および水電解装置に関するIV特性の
第2例を示すグラフである。
FIG. 3 is a graph showing a second example of IV characteristics of a solar cell and a water electrolysis device.

【図4】(A)は第1実施例における例2の電気回路
図,(B)は(A)の等価回路図である。
4A is an electric circuit diagram of Example 2 in the first embodiment, and FIG. 4B is an equivalent circuit diagram of FIG.

【図5】第2実施例における例1の電気回路図である。FIG. 5 is an electric circuit diagram of Example 1 in a second embodiment.

【図6】太陽電池および水電解装置に関するIV特性の
第3例を示すグラフである。
FIG. 6 is a graph showing a third example of IV characteristics of a solar cell and a water electrolysis device.

【図7】第2実施例における例2の電気回路図である。FIG. 7 is an electric circuit diagram of Example 2 in the second embodiment.

【符号の説明】[Explanation of symbols]

1…………水電解システム 2…………太陽電池 4…………水電解装置 5…………低出力型DC/DCコンバータ(DC/DC
コンバータ) 6…………直流電源
1 Water electrolysis system 2 Solar cell 4 Water electrolysis device 5 Low output DC / DC converter (DC / DC)
Converter) 6 DC power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水電解装置(4)と,その水電解装置
(4)の電源である太陽電池(2)と,その太陽電池
(2)の最大出力の一部について電流・電圧の変換を行
うことにより,前記最大出力を前記水電解装置(4)の
IV特性に対応した電流・電圧に変換してその水電解装
置(4)に入力するDC/DCコンバータ(5)とを有
することを特徴とする水電解システム。
1. A water electrolysis device (4), a solar cell (2) as a power source of the water electrolysis device (4), and conversion of current and voltage for a part of the maximum output of the solar cell (2). A DC / DC converter (5) for converting the maximum output into a current / voltage corresponding to the IV characteristic of the water electrolysis device (4) and inputting the converted current / voltage to the water electrolysis device (4). Characterized water electrolysis system.
【請求項2】 水電解装置(4)と,その水電解装置
(4)の電源である太陽電池(2)と,前記水電解装置
(4)のIV特性に対応した電流・電圧を得ベく,前記
太陽電池(2)の最大出力に,外部出力を付加する直流
電源(6)とを有することを特徴とする水電解システ
ム。
2. A water electrolysis device (4), a solar cell (2) as a power source of the water electrolysis device (4), and a current / voltage corresponding to the IV characteristics of the water electrolysis device (4). And a DC power supply (6) for adding an external output to the maximum output of the solar cell (2).
JP2000285222A 2000-09-14 2000-09-14 Water electrolysis system Pending JP2002088493A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000285222A JP2002088493A (en) 2000-09-14 2000-09-14 Water electrolysis system
US09/950,825 US20020033332A1 (en) 2000-09-14 2001-09-13 Water Electrolytic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285222A JP2002088493A (en) 2000-09-14 2000-09-14 Water electrolysis system

Publications (1)

Publication Number Publication Date
JP2002088493A true JP2002088493A (en) 2002-03-27

Family

ID=18769327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285222A Pending JP2002088493A (en) 2000-09-14 2000-09-14 Water electrolysis system

Country Status (2)

Country Link
US (1) US20020033332A1 (en)
JP (1) JP2002088493A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010048706A1 (en) * 2008-10-30 2010-05-06 Next Hydrogen Corporation Power dispatch system for electrolytic production of hydrogen from wind power
US9631287B2 (en) 2008-12-18 2017-04-25 Silicon Fire Ag Method and facility system for providing an energy carrier by application of carbon dioxide as a carbon supplier of electric energy
CA2769950C (en) * 2009-08-13 2017-08-15 Silicon Fire Ag Method and system for providing a hydrocarbon-based energy carrier using a portion of renewably produced methanol and a portion of methanol that is produced by means of direct oxidation, partial oxidation, or reforming
CA2774111C (en) * 2009-09-18 2018-03-20 Autarcon Gmbh Device for disinfecting water by means of anodic oxidation
US9133553B2 (en) 2012-09-13 2015-09-15 Next Hydrogen Corporation Externally-reinforced water electrolyzer module
US9187833B2 (en) 2012-09-13 2015-11-17 Next Hydrogen Corporation Internally-reinforced water electrolyser module
CN104630815B (en) * 2015-01-29 2017-11-28 湖北民族学院 Photovoltaic hydrogen generating system
EP3533905A1 (en) * 2018-03-01 2019-09-04 Shell Internationale Research Maatschappij B.V. Method of configuring a water electrolysis system
CN112226787B (en) * 2020-10-21 2022-04-08 阳光电源股份有限公司 Control method, device and system for startup and shutdown of hydrogen production system and storage medium
US11697882B2 (en) * 2021-06-03 2023-07-11 Analog Devices, Inc. Electrolyzer system converter arrangement

Also Published As

Publication number Publication date
US20020033332A1 (en) 2002-03-21

Similar Documents

Publication Publication Date Title
US8144490B2 (en) Operation of a three level converter
US8334616B2 (en) Photovoltaic integrated variable frequency drive
US9024594B2 (en) System and method for power conversion for renewable energy sources
WO2017000910A1 (en) Photovoltaic electricity generation system and method of operating same to perform photovoltaic electricity generation
JP2002088493A (en) Water electrolysis system
Vinnikov et al. MPPT performance enhancement of low-cost PV microconverters
CN110112943B (en) Double-end multi-level inverter circuit and inverter system
US20230318464A1 (en) Direct current converter, control method, direct current combiner box, and photovoltaic power generation system
US20230291208A1 (en) Photovoltaic power generation system, photovoltaic inverter, and iv curve scanning method
CN115694167B (en) Multimode voltage conversion circuit and control thereof
KR101697855B1 (en) H-bridge multi-level inverter
US11128216B2 (en) Converter, step-down method based on the converter and electronic device
Soleimanifard et al. A bidirectional buck-boost converter in cascade with a dual active bridge converter to increase the maximum input and output currents and extend zero voltage switching range
CN111010031B (en) Improved high-gain Boost-Sepic converter
JP2004244653A (en) Water electrolysis system
CN109560703B (en) Switch capacitance type high-gain DC/DC converter based on coupling inductance
US10411002B2 (en) Electric power conversion circuit including switches and bootstrap circuits, and electric power transmission system including electric power conversion circuit
CN212627670U (en) Isolated current-sharing circuit
CN103944386A (en) DC-DC boost conversion device and boost conversion working method thereof
Simon et al. PV powered soft switched boost converter using MPPT control
US20240048072A1 (en) Single stage buck-boost inverter with step modulation
JP2716721B2 (en) Solar power system
CN114285308B (en) Inversion power generation system, inversion module and inverter
CN211151832U (en) Push-pull topology primary side switch MOS tube parallel connection self-adaptive adjusting circuit
CN216134430U (en) Boost circuit and photovoltaic inverter