JP2002085373A - Method for inhibiting electromagnetic coupling between coils, orthogonal coil, mri device and method of making orthogonal coil - Google Patents

Method for inhibiting electromagnetic coupling between coils, orthogonal coil, mri device and method of making orthogonal coil

Info

Publication number
JP2002085373A
JP2002085373A JP2000279100A JP2000279100A JP2002085373A JP 2002085373 A JP2002085373 A JP 2002085373A JP 2000279100 A JP2000279100 A JP 2000279100A JP 2000279100 A JP2000279100 A JP 2000279100A JP 2002085373 A JP2002085373 A JP 2002085373A
Authority
JP
Japan
Prior art keywords
coil
coils
electromagnetic coupling
planar conductor
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000279100A
Other languages
Japanese (ja)
Inventor
Kenji Sato
健志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP2000279100A priority Critical patent/JP2002085373A/en
Publication of JP2002085373A publication Critical patent/JP2002085373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit electromagnetic coupling between coils by use of a simple arrangement. SOLUTION: Copper foil 2 for inhibiting the electromagnetic coupling between a first coil 110 and a second coil 120 arranged so that the times formed by the coils are orthogonal to each other is affixed near a portion where the conductors of the first coil 110 and the second coil 120 cross each other near the centers of the coil surfaces. Thus, SN ratios can be enhanced and reliability enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コイル間電磁結合
抑制方法、直交コイル、MRI(Magnetic Resonance I
maging)装置および直交コイルの製造方法に関し、更に
詳しくは、簡単な構成でコイル間の電磁結合を抑制でき
るコイル間電磁結合抑制方法、直交コイル、MRI装置
および直交コイルの製造方法に関する。
The present invention relates to a method for suppressing electromagnetic coupling between coils, a quadrature coil, and an MRI (Magnetic Resonance I).
More specifically, the present invention relates to a method for suppressing electromagnetic coupling between coils that can suppress electromagnetic coupling between coils with a simple configuration, a quadrature coil, an MRI apparatus, and a method for manufacturing a quadrature coil.

【0002】[0002]

【従来の技術】図7に、従来の直交コイルの一例を示
す。この直交コイル500は、第1コイル110と、第
2コイル120と、それらコイル間の電磁結合を抑制す
るための共振回路53とを具備している。なお、図7
は、判りやすくするため、第1コイル110と第2コイ
ル120の位置をずらせて描いてある。
2. Description of the Related Art FIG. 7 shows an example of a conventional orthogonal coil. The orthogonal coil 500 includes a first coil 110, a second coil 120, and a resonance circuit 53 for suppressing electromagnetic coupling between the coils. FIG.
Is drawn with the positions of the first coil 110 and the second coil 120 shifted for easier understanding.

【0003】図8に示すように、前記第1コイル110
は、第1コイル導線111から給電した場合、8の字状
に電流が流れる。これにより、コイル中央を縦断する電
流I1に直交する方向で且つコイル面に平行な磁界H1
が、コイル面中央から少し離れた空間に形成される。前
記第2コイル120は、第1コイル110と同構造であ
るが、第1コイル110とは90゜方向を違えてある。
[0003] As shown in FIG.
When power is supplied from the first coil conductor 111, a current flows in a figure eight shape. Thus, a magnetic field H1 parallel to the coil surface in a direction perpendicular to the current I1 traversing the center of the coil.
Is formed in a space slightly away from the center of the coil surface. The second coil 120 has the same structure as the first coil 110, but differs from the first coil 110 in a 90 ° direction.

【0004】この直交コイル500を「直交コイル」と
言うのは、第1コイル110と第2コイル120とにそ
れぞれ磁界を形成させた場合に、コイル500の目標領
域(何らかの対象とコイル500とが相互に電磁的に作
用することを目標とする領域)であるコイル面中央から
少し離れた空間において、第1コイル110と第2コイ
ル120とにそれぞれ形成させた磁界が直交するからで
ある。
[0004] The orthogonal coil 500 is referred to as an "orthogonal coil". When a magnetic field is formed in each of the first coil 110 and the second coil 120, a target area of the coil 500 (a certain object and the coil 500 are separated). This is because the magnetic fields respectively formed in the first coil 110 and the second coil 120 are orthogonal to each other in a space slightly away from the center of the coil surface, which is a region that is to act on each other electromagnetically.

【0005】なお、コイル間の電磁結合を抑制するため
にコイル間に共振回路を接続する従来技術は、特開20
00−166894号公報に開示がある。
A conventional technique of connecting a resonance circuit between coils to suppress electromagnetic coupling between the coils is disclosed in Japanese Patent Laid-Open No.
This is disclosed in JP-A-00-166894.

【0006】[0006]

【発明が解決しようとする課題】従来の直交コイル50
0では、コイル間の電磁結合を抑制するために、コイル
間に共振回路53を接続していた。しかし、このような
共振回路53はコイル間の電位差が高い部分間に接続さ
れるため、耐圧の大きな回路素子(コンデンサ,インダ
クタンスなど)が必要になったり、放熱を考慮して回路
素子を配置したりする必要があるなど、構成が煩雑にな
る問題点があった。そこで、本発明の目的は、簡単な構
成でコイル間の電磁結合を抑制できるコイル間電磁結合
抑制方法、直交コイル、MRI装置および直交コイルの
製造方法を提供することにある。
A conventional orthogonal coil 50
At 0, the resonance circuit 53 is connected between the coils in order to suppress the electromagnetic coupling between the coils. However, since such a resonance circuit 53 is connected between portions where the potential difference between the coils is high, a circuit element having a large withstand voltage (such as a capacitor or an inductance) is required, or the circuit element is arranged in consideration of heat radiation. And the configuration becomes complicated. Therefore, an object of the present invention is to provide a method of suppressing electromagnetic coupling between coils, a quadrature coil, an MRI apparatus, and a method of manufacturing a quadrature coil that can suppress electromagnetic coupling between coils with a simple configuration.

【0007】[0007]

【課題を解決するための手段】第1の観点では、本発明
は、近接して配置された複数のコイルの近傍に、それら
コイルと電気的に絶縁した状態で面状導体を配設し、コ
イル間の電磁結合を抑制することを特徴とするコイル間
電磁結合抑制方法を提供する。上記第1の観点によるコ
イル間電磁結合抑制方法では、コイル同士を電磁結合さ
せる磁束が、面状導体に流れる誘導電流によって抑制さ
れるため、コイル間の電磁結合が抑制される。そして、
耐圧の大きな回路素子(コンデンサ,インダクタンスな
ど)を選んだり、放熱を考慮して回路素子を配置したり
する必要がないため、構成を簡単化できる。なお、複数
のコイルの形状および配置が決まれば、コイル間干渉を
計測しながら試行錯誤することにより、コイル間干渉を
十分小さくできる面状導体の形状および配置を決められ
る。そして、複数のコイルの形状および配置が同じなら
ば、面状導体の形状および配置も同じでよい。
According to a first aspect of the present invention, a planar conductor is disposed near a plurality of coils arranged in close proximity to each other while being electrically insulated from the coils. Provided is a method of suppressing electromagnetic coupling between coils, characterized by suppressing electromagnetic coupling between coils. In the method for suppressing electromagnetic coupling between coils according to the first aspect, the magnetic flux for electromagnetically coupling the coils is suppressed by the induced current flowing through the planar conductor, so that the electromagnetic coupling between the coils is suppressed. And
Since there is no need to select a circuit element having a large withstand voltage (such as a capacitor or an inductance) or to dispose the circuit element in consideration of heat radiation, the configuration can be simplified. If the shapes and arrangement of the plurality of coils are determined, the shape and arrangement of the planar conductor that can sufficiently reduce the inter-coil interference can be determined by trial and error while measuring the inter-coil interference. If the shape and arrangement of the plurality of coils are the same, the shape and arrangement of the planar conductor may be the same.

【0008】第2の観点では、本発明は、それぞれに形
成させた磁界が目標領域で直交するように配置された複
数のコイルの導体が交差している部分の近傍に、それら
コイルと電気的に絶縁した状態で面状導体を配設し、コ
イル間の電磁結合を抑制することを特徴とするコイル間
電磁結合抑制方法を提供する。上記第2の観点によるコ
イル間電磁結合抑制方法では、複数のコイルの導体が交
差している部分の近傍に面状導体を配設するが、このよ
うな位置に配設することで効率的にコイル間の電磁結合
を抑制できる。
[0008] In a second aspect, the present invention relates to a method of manufacturing a magnetic head, comprising: A method for suppressing electromagnetic coupling between coils, wherein a planar conductor is disposed in an insulated state to suppress electromagnetic coupling between coils. In the method for suppressing inter-coil electromagnetic coupling according to the second aspect, the planar conductor is disposed in the vicinity of the portion where the conductors of the plurality of coils intersect. Electromagnetic coupling between the coils can be suppressed.

【0009】第3の観点では、本発明は、それぞれに形
成させた磁界が目標領域で直交するように配置された複
数のコイルと、それらコイルと電気的に絶縁された状態
でコイルの近傍に設けられコイル間の電磁結合を抑制す
る面状導体とを具備したことを特徴とする直交コイルを
提供する。上記構成において「それぞれに形成させた磁
界」とは、送信コイルの場合は各コイルが形成する磁界
を意味し、受信コイルの場合は各コイルに給電した時に
各コイルが形成するであろう磁界を意味する。また、
「目標領域」とは、該領域において何らかの対象とコイ
ルの間で電磁的に作用させることを目標とする空間領域
をいう。上記第3の観点による直交コイルでは、コイル
同士を電磁結合させる磁束が、面状導体に流れる誘導電
流によって抑制されるため、コイル間の電磁結合が抑制
される。そして、耐圧の大きな回路素子(コンデンサ,
インダクタンスなど)を選んだり、放熱を考慮して回路
素子を配置したりする必要がないため、構成を簡単化で
きる。なお、複数のコイルの形状および配置が決まれ
ば、コイル間干渉を計測しながら試行錯誤することによ
り、コイル間干渉を十分小さくできる面状導体の形状お
よび配置を決められる。そして、複数のコイルの形状お
よび配置が同じならば、面状導体の形状および配置も同
じでよい。
[0009] In a third aspect, the present invention provides a plurality of coils arranged so that magnetic fields formed respectively are orthogonal to each other in a target area, and a plurality of coils arranged in the vicinity of the coils while being electrically insulated from the coils. And a planar conductor provided to suppress electromagnetic coupling between the coils. In the above configuration, the “magnetic field formed respectively” means a magnetic field formed by each coil in the case of a transmission coil, and a magnetic field formed by each coil when power is supplied to each coil in the case of a reception coil. means. Also,
The “target area” refers to a space area in which electromagnetic action is desired between a target and a coil in the area. In the orthogonal coil according to the third aspect, the magnetic flux for electromagnetically coupling the coils is suppressed by the induced current flowing through the planar conductor, so that the electromagnetic coupling between the coils is suppressed. And, the circuit element with large withstand voltage (capacitor,
It is not necessary to select an inductance or the like or to dispose circuit elements in consideration of heat radiation, so that the configuration can be simplified. If the shapes and arrangement of the plurality of coils are determined, the shape and arrangement of the planar conductor that can sufficiently reduce the inter-coil interference can be determined by trial and error while measuring the inter-coil interference. If the shape and arrangement of the plurality of coils are the same, the shape and arrangement of the planar conductor may be the same.

【0010】第4の観点では、本発明は、上記構成の直
交コイルを具備したことを特徴とするMRI装置を提供
する。上記第4の観点によるMRI装置では、上記第2
の観点による直交コイルを具備するため、コイル間の電
磁結合が抑制され、SN比を向上できる。また、コイル
間の電磁結合を抑制するための共振回路が不要であり、
構成を簡単化できると共に、共振回路の故障や発熱もな
いため、信頼性を向上できる。
[0010] In a fourth aspect, the present invention provides an MRI apparatus comprising the quadrature coil configured as described above. In the MRI apparatus according to the fourth aspect, the second
, The electromagnetic coupling between the coils is suppressed, and the S / N ratio can be improved. Also, there is no need for a resonance circuit to suppress electromagnetic coupling between the coils,
Since the configuration can be simplified, and there is no failure or heat generation of the resonance circuit, reliability can be improved.

【0011】第5の観点では、本発明は、上記構成のM
RI装置において、複数のコイルの導体が交差している
部分の近傍に面状導体を配設したことを特徴とするMR
I装置を提供する。上記第5の観点によるMRI装置で
は、複数のコイルの導体が交差している部分の近傍に面
状導体を配設するが、このような位置に配設することで
効率的にコイル間の電磁結合を抑制できる。
According to a fifth aspect, the present invention provides an M
In the RI apparatus, a planar conductor is provided near a portion where conductors of a plurality of coils intersect.
An I device is provided. In the MRI apparatus according to the fifth aspect, the planar conductor is disposed in the vicinity of the portion where the conductors of the plurality of coils intersect. Binding can be suppressed.

【0012】第6の観点では、本発明は、それぞれに形
成させた磁界が目標領域で直交するように複数のコイル
を配設し、複数のコイルの導体が交差している部分の近
傍であってそれらコイル間の電磁結合を抑制しうる位置
に、それらコイルと電気的に絶縁した状態で面状導体を
配設することを特徴とする直交コイルの製造方法を提供
する。上記第6の観点による直交コイルの製造方法で
は、上記構成の直交コイルを好適に製造できる。
According to a sixth aspect of the present invention, a plurality of coils are arranged so that the magnetic fields formed respectively are orthogonal to each other in a target area, and the vicinity of a portion where conductors of the plurality of coils intersect is provided. And providing a planar conductor at a position where electromagnetic coupling between the coils can be suppressed and in a state electrically insulated from the coils. According to the method for manufacturing a quadrature coil according to the sixth aspect, the quadrature coil having the above configuration can be suitably manufactured.

【0013】第7の観点では、本発明は、上記構成の直
交コイルの製造方法において、面状導体を配設する位置
が不明の構造の直交コイルについては試行錯誤的に面状
導体を配設する位置を決定し、その後に製造する同構造
の直交コイルについては前記決定した位置に基づく位置
に面状導体を配設すると共に試行錯誤的に面状導体を追
加または除去して構造のバラツキに対応した調整を行う
ことを特徴とする直交コイルの製造方法を提供する。上
記第7の観点による直交コイルの製造方法では、上記構
成の直交コイルを効率的に製造できる。
According to a seventh aspect of the present invention, there is provided a method for manufacturing a quadrature coil having the above-described configuration, in which a planar conductor is arranged on a trial and error basis for an orthogonal coil having a structure in which the position at which the planar conductor is to be disposed is unknown. For the orthogonal coil of the same structure to be manufactured thereafter, the planar conductor is arranged at the position based on the determined position, and the planar conductor is added or removed by trial and error to reduce the variation in the structure. Provided is a method for manufacturing a quadrature coil, which performs a corresponding adjustment. According to the method of manufacturing the orthogonal coil according to the seventh aspect, the orthogonal coil having the above configuration can be efficiently manufactured.

【0014】[0014]

【発明の実施の形態】以下、図に示す実施の形態により
本発明をさらに詳細に説明する。なお、これにより本発
明が限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited by this.

【0015】図1は、本発明の一実施形態に係るMRI
装置のブロック図である。このMRI装置1000にお
いて、マグネットアセンブリ10は、内部に被検体を挿
入するための空間部分(孔)を有し、この空間部分を取
りまくようにして、被検体に一定の静磁場を印加する静
磁場コイル10pと、スライス軸,リード軸,位相軸の
勾配磁場を発生するための勾配磁場コイル10gと、被
検体内の原子核のスピンを励起するためのRFパルスを
与える送信コイル100tと、被検体からのNMR信号
を検出する受信コイル100rとが配置されている。前
記静磁場コイル10pは、静磁場電源32に接続されて
いる。前記勾配磁場コイル10gは、勾配磁場駆動回路
23に接続されている。前記送信コイル100tは、R
F電力増幅器24に接続されている。前記受信コイル1
00rは、前置増幅器25に接続されている。なお、静
磁場コイル10pの代わりに、永久磁石を用いてもよ
い。
FIG. 1 shows an MRI according to an embodiment of the present invention.
It is a block diagram of an apparatus. In the MRI apparatus 1000, the magnet assembly 10 has a space (hole) for inserting a subject therein, and a static magnetic field for applying a constant static magnetic field to the subject so as to surround the space. A coil 10p, a gradient magnetic field coil 10g for generating a gradient magnetic field of a slice axis, a lead axis, and a phase axis, a transmission coil 100t for applying an RF pulse for exciting spins of nuclei in the subject, and And a receiving coil 100r for detecting the NMR signal of the above. The static magnetic field coil 10p is connected to a static magnetic field power supply 32. The gradient magnetic field coil 10g is connected to a gradient magnetic field drive circuit 23. The transmission coil 100t has an R
F power amplifier 24. The receiving coil 1
00r is connected to the preamplifier 25. Note that a permanent magnet may be used instead of the static magnetic field coil 10p.

【0016】シーケンス記憶回路26は、計算機27か
らの指令に従い、記憶しているパルスシーケンスに基づ
いて勾配磁場駆動回路23を操作し、前記マグネットア
センブリ10の勾配磁場コイル10gから勾配磁場を発
生させると共に、ゲート変調回路28を操作し、RF発
振回路29の搬送波出力信号を所定タイミング・所定包
絡線形状のパルス状信号に変調し、それをRFパルスと
してRF電力増幅器24に加え、RF電力増幅器24で
パワー増幅した後、前記マグネットアセンブリ10の送
信コイル100tに印加し、所望のスライス領域を選択
励起する。前置増幅器25は、マグネットアセンブリ1
0の受信コイル100rで検出された被検体からのNM
R信号を増幅し、位相検波器30に入力する。位相検波
器30は、RF発振回路29の搬送波出力信号を参照信
号とし、前置増幅器25からのNMR信号を位相検波し
て、A/D変換器31に与える。A/D変換器31は、
位相検波後のアナログ信号をディジタル信号に変換し
て、計算機27に入力する。計算機27は、A/D変換
器31からデータを読み込み、画像再構成演算を行い、
所望のスライス領域のイメージを生成する。このイメー
ジは、表示装置33にて表示される。また、計算機27
は、操作コンソール32から入力された情報を受け取る
などの全体的な制御を受け持つ。なお、前記MRI装置
1000は、インターベンショナル(interventional)
MRIに用いるオープン形のMRI装置であってもよ
い。
The sequence storage circuit 26 operates the gradient magnetic field drive circuit 23 based on the stored pulse sequence in accordance with a command from the computer 27 to generate a gradient magnetic field from the gradient magnetic field coil 10 g of the magnet assembly 10. By operating the gate modulation circuit 28, the carrier wave output signal of the RF oscillation circuit 29 is modulated into a pulse signal having a predetermined timing and a predetermined envelope shape, and the resulting signal is applied to the RF power amplifier 24 as an RF pulse. After the power is amplified, it is applied to the transmission coil 100t of the magnet assembly 10 to selectively excite a desired slice area. The preamplifier 25 includes the magnet assembly 1
NM from the subject detected by the 0 receiving coil 100r
The R signal is amplified and input to the phase detector 30. The phase detector 30 uses the carrier output signal of the RF oscillation circuit 29 as a reference signal, performs phase detection of the NMR signal from the preamplifier 25, and provides the NMR signal to the A / D converter 31. The A / D converter 31
The analog signal after the phase detection is converted into a digital signal and input to the computer 27. The computer 27 reads data from the A / D converter 31 and performs an image reconstruction operation.
Generate an image of a desired slice area. This image is displayed on the display device 33. The computer 27
Is responsible for overall control such as receiving information input from the operation console 32. In addition, the MRI apparatus 1000 is an interventional (interventional)
It may be an open type MRI apparatus used for MRI.

【0017】図2は、前記送信コイル100tおよび受
信コイル100rの少なくとも一方に用いられる直交コ
イル100の平面図である。
FIG. 2 is a plan view of the orthogonal coil 100 used for at least one of the transmission coil 100t and the reception coil 100r.

【0018】次に、図3〜図6を参照して、上記直交コ
イル100の作成手順を説明する。まず、図3に示すよ
うに、基板1を用意する。この基板1は、例えば直径8
0cm、厚さ6mmの線維強化プラスチック(FRP)
製である。
Next, with reference to FIGS. 3 to 6, a procedure for forming the orthogonal coil 100 will be described. First, as shown in FIG. 3, a substrate 1 is prepared. This substrate 1 has, for example, a diameter of 8
0cm, 6mm thick fiber reinforced plastic (FRP)
It is made.

【0019】次に、図4に示すように、粘着材の付いた
幅1/2インチ、厚さ35μmの銅箔テープを基板1に
所定パタンで貼り付けて、第1コイル110を形成す
る。また、銅箔テープの表面にポリイミドフィルムを貼
って絶縁する。さらに、コンデンサ等の回路素子Eを接
続する。
Next, as shown in FIG. 4, a copper foil tape having an adhesive material and a width of 1/2 inch and a thickness of 35 μm is attached to the substrate 1 with a predetermined pattern to form the first coil 110. A polyimide film is attached to the surface of the copper foil tape for insulation. Further, a circuit element E such as a capacitor is connected.

【0020】次に、図5に示すように、第1コイル11
0と同構造の第2コイル120を、第1コイル110と
90゜方向を違えて、基板1に形成する。また、第1コ
イル導線111および第2コイル導線121を接続す
る。
Next, as shown in FIG.
The second coil 120 having the same structure as that of the first coil 110 is formed on the substrate 1 in a direction different from the first coil 110 by 90 °. Also, the first coil conductor 111 and the second coil conductor 121 are connected.

【0021】次に、図6に示すように、コイル面の中央
付近で第1コイル110と第2コイル120の導線が交
差する部分の近傍に、コイル間の電磁結合を抑制するた
めの銅箔2を、スペースを空けて、複数貼着し、直交コ
イル100’とする。銅箔2の代わりに、銅テープや,
アルミテープや,アルミ箔を用いてもよい。
Next, as shown in FIG. 6, a copper foil for suppressing electromagnetic coupling between the coils is provided near the center of the coil surface and near the intersection of the conductors of the first coil 110 and the second coil 120. 2 are attached with a space therebetween to form a quadrature coil 100 ′. Instead of copper foil 2, copper tape,
Aluminum tape or aluminum foil may be used.

【0022】なお、第1コイル110と第2コイル12
0の形状および配置が決まれば、コイル間干渉を計測し
ながら試行錯誤することにより、コイル間干渉を十分小
さくできる銅箔2の形状および配置を決められる。そし
て、第1コイル110と第2コイル120の形状および
配置が同じならば、面状導体の形状および配置も同じで
よい。
The first coil 110 and the second coil 12
If the shape and arrangement of 0 are determined, the shape and arrangement of the copper foil 2 that can sufficiently reduce the interference between the coils can be determined by trial and error while measuring the interference between the coils. If the shape and arrangement of the first coil 110 and the second coil 120 are the same, the shape and arrangement of the planar conductor may be the same.

【0023】但し、第1コイル110と第2コイル12
0の形状および配置にもバラツキがあるため、試行錯誤
的に決めた銅箔2の形状および配置が常に最適であると
は限らない。そこで、図2に示すように、銅箔2の間の
スペースに銅箔2’を追加することで微調整し、最終的
な直交コイル100とする。
However, the first coil 110 and the second coil 12
The shape and arrangement of the copper foil 2 determined by trial and error are not always optimal because the shape and arrangement of 0 vary. Therefore, as shown in FIG. 2, fine adjustment is performed by adding a copper foil 2 ′ to a space between the copper foils 2 to obtain a final orthogonal coil 100.

【0024】[0024]

【発明の効果】本発明のコイル間電磁結合抑制方法、直
交コイル、MRI装置および直交コイルの製造方法によ
れば、簡単な構成でコイル間の電磁結合を抑制すること
が可能となる。
According to the method for suppressing the electromagnetic coupling between the coils, the orthogonal coil, the MRI apparatus and the method for manufacturing the orthogonal coil of the present invention, it is possible to suppress the electromagnetic coupling between the coils with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかるMRI装置を示す
ブロック図である。
FIG. 1 is a block diagram showing an MRI apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態にかかる直交コイル(微調
整後)の平面図である。
FIG. 2 is a plan view of a quadrature coil (after fine adjustment) according to an embodiment of the present invention.

【図3】基板の平面図である。FIG. 3 is a plan view of a substrate.

【図4】基板に第1コイルを形成した状態を示す平面図
である。
FIG. 4 is a plan view showing a state where a first coil is formed on a substrate.

【図5】基板に第1コイルおよび第2コイルを形成した
状態の平面図である。
FIG. 5 is a plan view showing a state where a first coil and a second coil are formed on a substrate.

【図6】本発明の一実施形態にかかる直交コイル(微調
整前)の平面図である。
FIG. 6 is a plan view of a quadrature coil (before fine adjustment) according to an embodiment of the present invention.

【図7】従来の直交コイルの一例を示す平面図である。FIG. 7 is a plan view showing an example of a conventional orthogonal coil.

【図8】第1コイルの平面図である。FIG. 8 is a plan view of a first coil.

【符号の説明】[Explanation of symbols]

1 基板 2,2’ 銅箔 100 直交コイル(微調整後) 100’ 直交コイル(微調整前) 110 第1コイル 120 第2コイル 100t 送信コイル 100r 受信コイル 1000 MRI装置 Reference Signs List 1 substrate 2, 2 'copper foil 100 orthogonal coil (after fine adjustment) 100' orthogonal coil (before fine adjustment) 110 first coil 120 second coil 100t transmitting coil 100r receiving coil 1000 MRI apparatus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 健志 東京都日野市旭ケ丘4丁目7番地の127 ジーイー横河メディカルシステム株式会社 内 Fターム(参考) 4C096 AA01 AB07 AB34 AD10 CC01 CC16 5E062 EE02 EE05  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takeshi Sato 4-7, Asahigaoka, Hino-shi, Tokyo 127 GE Yokogawa Medical Systems Co., Ltd. F-term (reference) 4C096 AA01 AB07 AB34 AD10 CC01 CC16 5E062 EE02 EE05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 近接して配置された複数のコイルの近傍
に、それらコイルと電気的に絶縁した状態で面状導体を
配設し、コイル間の電磁結合を抑制することを特徴とす
るコイル間電磁結合抑制方法。
1. A coil characterized in that a planar conductor is disposed in the vicinity of a plurality of coils disposed close to each other while being electrically insulated from the coils, thereby suppressing electromagnetic coupling between the coils. Method for suppressing electromagnetic coupling between the two.
【請求項2】 それぞれに形成させた磁界が目標領域で
直交するように配置された複数のコイルの導体が交差し
ている部分の近傍に、それらコイルと電気的に絶縁した
状態で面状導体を配設し、コイル間の電磁結合を抑制す
ることを特徴とするコイル間電磁結合抑制方法。
2. A planar conductor near a portion where conductors of a plurality of coils arranged so that magnetic fields respectively formed are orthogonal to each other in a target region intersect with the coils and electrically insulated from the coils. And a method for suppressing electromagnetic coupling between coils, comprising:
【請求項3】 それぞれに形成させた磁界が目標領域で
直交するように配置された複数のコイルと、それらコイ
ルと電気的に絶縁された状態でコイルの近傍に設けられ
コイル間の電磁結合を抑制する面状導体とを具備したこ
とを特徴とする直交コイル。
3. A plurality of coils arranged so that magnetic fields formed respectively are orthogonal to each other in a target area, and electromagnetic coupling between the coils provided near the coils in a state of being electrically insulated from the coils. A quadrature coil, comprising: a planar conductor to be suppressed.
【請求項4】 請求項3に記載の直交コイルを具備した
ことを特徴とするMRI装置。
4. An MRI apparatus comprising the orthogonal coil according to claim 3.
【請求項5】 請求項4に記載のMRI装置において、
複数のコイルの導体が交差している部分の近傍に面状導
体を配設したことを特徴とするMRI装置。
5. The MRI apparatus according to claim 4, wherein
An MRI apparatus, wherein a planar conductor is provided near a portion where conductors of a plurality of coils intersect.
【請求項6】 それぞれに形成させた磁界が目標領域で
直交するように複数のコイルを配設し、複数のコイルの
導体が交差している部分の近傍であってそれらコイル間
の電磁結合を抑制しうる位置に、それらコイルと電気的
に絶縁した状態で面状導体を配設することを特徴とする
直交コイルの製造方法。
6. A plurality of coils are disposed so that magnetic fields formed respectively are orthogonal to each other in a target area, and electromagnetic coupling between the coils is provided near a portion where conductors of the plurality of coils intersect. A method for manufacturing a quadrature coil, comprising: disposing a planar conductor at a position where the coil can be suppressed while being electrically insulated from the coil.
【請求項7】 請求項6に記載の直交コイルの製造方法
において、面状導体を配設する位置が不明の構造の直交
コイルについては試行錯誤的に面状導体を配設する位置
を決定し、その後に製造する同構造の直交コイルについ
ては前記決定した位置に基づく位置に面状導体を配設す
ると共に試行錯誤的に面状導体を追加または除去して構
造のバラツキに対応した調整を行うことを特徴とする直
交コイルの製造方法。
7. The method for manufacturing a quadrature coil according to claim 6, wherein the position at which the planar conductor is to be disposed is determined by trial and error for the orthogonal coil having a structure where the position at which the planar conductor is disposed is unknown. Then, for a quadrature coil having the same structure to be manufactured thereafter, the planar conductor is arranged at a position based on the determined position, and the planar conductor is added or removed by trial and error to perform adjustment corresponding to the variation in the structure. A method for manufacturing a quadrature coil, characterized in that:
JP2000279100A 2000-09-14 2000-09-14 Method for inhibiting electromagnetic coupling between coils, orthogonal coil, mri device and method of making orthogonal coil Pending JP2002085373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279100A JP2002085373A (en) 2000-09-14 2000-09-14 Method for inhibiting electromagnetic coupling between coils, orthogonal coil, mri device and method of making orthogonal coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279100A JP2002085373A (en) 2000-09-14 2000-09-14 Method for inhibiting electromagnetic coupling between coils, orthogonal coil, mri device and method of making orthogonal coil

Publications (1)

Publication Number Publication Date
JP2002085373A true JP2002085373A (en) 2002-03-26

Family

ID=18764156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279100A Pending JP2002085373A (en) 2000-09-14 2000-09-14 Method for inhibiting electromagnetic coupling between coils, orthogonal coil, mri device and method of making orthogonal coil

Country Status (1)

Country Link
JP (1) JP2002085373A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345549A (en) * 1986-08-13 1988-02-26 Jeol Ltd Coil for nmr
JPH06504128A (en) * 1991-08-07 1994-05-12 バリアン・インコーポレイテッド NMR probe incorporating RF shielding of the sample
JPH07313483A (en) * 1994-05-24 1995-12-05 Ge Yokogawa Medical Syst Ltd Transmitting and receiving method and rf coil of mri device
JPH08252240A (en) * 1994-12-01 1996-10-01 Univ California Magnetic resonance imaging system
JPH08280652A (en) * 1995-04-20 1996-10-29 Ge Yokogawa Medical Syst Ltd Plane type coil for mri
JPH0928688A (en) * 1995-07-14 1997-02-04 Ge Yokogawa Medical Syst Ltd Mr apparatus and manufacturing the same
JPH119570A (en) * 1997-06-23 1999-01-19 Hitachi Medical Corp High frequency coil and magnetic resonance imaging apparatus using the same
JP2000157506A (en) * 1998-11-25 2000-06-13 Ge Yokogawa Medical Systems Ltd Rf coil, rf magnetic field forming device and magnetic resonance image pickup method and its device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345549A (en) * 1986-08-13 1988-02-26 Jeol Ltd Coil for nmr
JPH06504128A (en) * 1991-08-07 1994-05-12 バリアン・インコーポレイテッド NMR probe incorporating RF shielding of the sample
JPH07313483A (en) * 1994-05-24 1995-12-05 Ge Yokogawa Medical Syst Ltd Transmitting and receiving method and rf coil of mri device
JPH08252240A (en) * 1994-12-01 1996-10-01 Univ California Magnetic resonance imaging system
JPH08280652A (en) * 1995-04-20 1996-10-29 Ge Yokogawa Medical Syst Ltd Plane type coil for mri
JPH0928688A (en) * 1995-07-14 1997-02-04 Ge Yokogawa Medical Syst Ltd Mr apparatus and manufacturing the same
JPH119570A (en) * 1997-06-23 1999-01-19 Hitachi Medical Corp High frequency coil and magnetic resonance imaging apparatus using the same
JP2000157506A (en) * 1998-11-25 2000-06-13 Ge Yokogawa Medical Systems Ltd Rf coil, rf magnetic field forming device and magnetic resonance image pickup method and its device

Similar Documents

Publication Publication Date Title
JP6508163B2 (en) Current measurement device
US6566872B1 (en) Magnetic sensor device
US4794338A (en) Balanced self-shielded gradient coils
WO2005121838A2 (en) Anisotropic nanoparticle amplification of magnetic resonance signals
US5819737A (en) Magnetic resonance methods and apparatus
JPS5999239A (en) Nuclear magnetic resonance tomography device
JP2006116305A (en) Gradient coil apparatus and method of assembly thereof
US7295012B1 (en) Methods and apparatus for MRI shim elements
WO2014168214A1 (en) Rf coil and magnetic resonance imaging device
KR20140039323A (en) Coil device and magnetic resonance imagining equipment
GB2400913A (en) Gradient Coils and Method of Manufacturing Gradient Coils for MRT Systems
Suto et al. Three-dimensional magnetic recording using ferromagnetic resonance
JPH07502925A (en) Local transverse gradient coil
JP2002085373A (en) Method for inhibiting electromagnetic coupling between coils, orthogonal coil, mri device and method of making orthogonal coil
US8035928B2 (en) High SNR CPP reader using high frequency standing wave interference detection
EP3761872B1 (en) Mri tracking device design, fabrication, and methods of use for mri-guided robotic system
Lei et al. Low power integrated fluxgate sensor with a spiral magnetic core
JP3502696B2 (en) RF coil for MRI
JPS5810798B2 (en) magnetic domain device
JP3866960B2 (en) Magnetic resonance imaging device
JPH05261081A (en) Inspecting system using nuclear magnetic resonance
Joensuu et al. A shielded Overhauser marker for MR tracking of interventional devices
JP2002085366A (en) Rf coil for mri and mri device
WO2022230316A1 (en) Magnetic sensor and method for detecting magnetism
JPH0467845A (en) High frequency coil of magnetic resonance imaging device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829