JP2002084104A - Communicating device, non-reversible circuit element and manufacturing method thereof - Google Patents

Communicating device, non-reversible circuit element and manufacturing method thereof

Info

Publication number
JP2002084104A
JP2002084104A JP2000270514A JP2000270514A JP2002084104A JP 2002084104 A JP2002084104 A JP 2002084104A JP 2000270514 A JP2000270514 A JP 2000270514A JP 2000270514 A JP2000270514 A JP 2000270514A JP 2002084104 A JP2002084104 A JP 2002084104A
Authority
JP
Japan
Prior art keywords
frequency
heating
permanent magnet
circuit device
reciprocal circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000270514A
Other languages
Japanese (ja)
Inventor
Hiromoto Dejima
弘基 出嶌
Takashi Hasegawa
長谷川  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000270514A priority Critical patent/JP2002084104A/en
Publication of JP2002084104A publication Critical patent/JP2002084104A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a non-reversible circuit element that prevents deterioration in characteristics due to the deviation of the center frequency of a pas band to a low-frequency side caused by the decrease in the strength of a magnetic pole due to the heat history of a permanent magnet, and at the same time, is composed of minimum number of required parts. SOLUTION: In a resin case 1 having a leading terminal 9, a center conductor 5 electrically continuous to the leading terminal 9, a ferrite core 4 that approaches the center conductor 5, a resistor 8 that is connected to the center conductor 5, and a capacitor 7, are provided. In a metal case comprising upper and lower yokes 2 and 3, the permanent magnet 6 for applying a static magnetic field to the ferrite core 4 is arranged. In the permanent magnet 6, the strength of the magnetic pole is set, so that the center frequency is shifted toward the high-frequency side by a specific quantity in advance prior to heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、マイクロ波帯な
どで使用されるアイソレータやサーキュレータなどの非
可逆回路素子、それを備えた通信装置および非可逆回路
素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reciprocal circuit device such as an isolator and a circulator used in a microwave band and the like, a communication device including the same, and a method of manufacturing the non-reciprocal circuit device.

【0002】[0002]

【従来の技術】主に、マイクロ波帯で使用される非可逆
回路素子として、入出力端子およびアース端子を有する
樹脂ケース内に、前記入出力端子に電気的に導通する中
心導体、該中心導体に近接するフェライトコア、および
前記中心導体に接続する整合素子を配し、上部ヨークと
下部ヨークとから成る金属ケース内に、前記フェライト
コアに静磁界を印加する永久磁石を配置したものが、従
来用いられている。
2. Description of the Related Art As a nonreciprocal circuit element used mainly in a microwave band, a center conductor electrically connected to the input / output terminal is provided in a resin case having an input / output terminal and a ground terminal. Conventionally, a ferrite core close to the ferrite core and a matching element connected to the center conductor are arranged, and a permanent magnet that applies a static magnetic field to the ferrite core is arranged in a metal case including an upper yoke and a lower yoke. Used.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
従来の非可逆回路素子には、次に述べる解決すべき課題
があった。
However, such a conventional non-reciprocal circuit device has the following problems to be solved.

【0004】非可逆回路素子の製造時および非可逆回路
素子を回路基板に実装する場合には、半田接合が用いら
れる場合がある。この半田接合を行うためには、高い温
度での半田溶融の工程が必須となる。このため、非可逆
回路素子の各構成部品には、必然的に熱が加わることと
なる。しかし、非可逆回路素子に使用されている永久磁
石は、加熱されることにより、不可逆減磁(以下「熱減
磁」という。)が生じ、特性が劣化する。
When manufacturing a non-reciprocal circuit device and when mounting the non-reciprocal circuit device on a circuit board, solder bonding may be used. In order to perform this solder joining, a step of melting the solder at a high temperature is essential. Therefore, heat is inevitably applied to each component of the non-reciprocal circuit device. However, the permanent magnet used in the non-reciprocal circuit element is heated, and thus, undergoes irreversible demagnetization (hereinafter, referred to as “thermal demagnetization”), and its characteristics are deteriorated.

【0005】ここで、従来の非可逆回路素子について、
図5および表1を参照して説明する。
Here, regarding the conventional non-reciprocal circuit device,
This will be described with reference to FIG.

【0006】図5は、従来の非可逆回路素子における、
加熱の有無の差による特性の変化を示した図であり、図
5の(A)は反射損失、(B)は挿入損失、(C)はア
イソレーションの周波数特性図である。
FIG. 5 shows a conventional non-reciprocal circuit device.
FIGS. 5A and 5B are diagrams showing a change in characteristics due to a difference in the presence or absence of heating, wherein FIG. 5A is a reflection loss, FIG. 5B is an insertion loss, and FIG.

【0007】また、表1は、従来の非可逆回路素子の2
GHzでの特性値の加熱前後による変化を示す。
Table 1 shows two conventional non-reciprocal circuit devices.
The change of the characteristic value in GHz before and after heating is shown.

【0008】[0008]

【表1】 [Table 1]

【0009】前記非可逆回路素子は熱減磁により、前記
永久磁石の磁極の強さが低下し、図5に示すように、反
射損失、挿入損失およびアイソレーションの特性の中心
周波数が、加熱前の状態から低周波数側にずれる。ま
た、表1に示すように、反射損失、挿入損失およびアイ
ソレーションの特性は、劣化する。
In the nonreciprocal circuit device, the strength of the magnetic pole of the permanent magnet decreases due to thermal demagnetization. As shown in FIG. 5, the center frequency of the reflection loss, insertion loss, and isolation characteristics is reduced before heating. Shifts to the low frequency side from the state. Further, as shown in Table 1, the characteristics of reflection loss, insertion loss, and isolation deteriorate.

【0010】そこで、このような問題を解消するものと
して、特開平8−213808が示されている。
[0010] To solve such a problem, Japanese Patent Application Laid-Open No. 8-213808 is disclosed.

【0011】この非可逆回路素子は、ケースを兼ねた上
部ヨークおよび下部ヨークの間に、中心導体、フェライ
トコア、整合素子を備えた容量基板および永久磁石を配
し、該永久磁石をSmCo・2−17系磁石で形成し、
その磁石を断熱材にて覆った構造としていて、永久磁石
の熱減磁により、中心周波数が低周波数側にずれて、特
性が劣化することを防止している。
In this non-reciprocal circuit device, a center conductor, a ferrite core, a capacitor substrate provided with a matching element, and a permanent magnet are arranged between an upper yoke and a lower yoke also serving as a case, and the permanent magnet is formed of SmCo · 2. Formed with a -17 series magnet,
The structure is such that the magnet is covered with a heat insulating material to prevent the central frequency from being shifted to the low frequency side due to the thermal demagnetization of the permanent magnet, thereby preventing the characteristics from deteriorating.

【0012】ところが、断熱材を使用することにより、
その断熱材の厚み分、非可逆回路素子が厚くなり、小型
化(低背化)する場合に問題となる。また、断熱材を使
用することにより、非可逆回路素子の構成要素が増し、
非可逆回路素子の価格が上がる。さらに永久磁石にSm
Co・2−17系等の希土類系磁石を用いた場合、前記
永久磁石自体が導体であるため、中心導体付近の高周波
電磁界に結合する位置に配置されると、表面に渦電流が
生じ、非可逆回路素子の特性が劣化するという新たな問
題が生じる。
However, by using a heat insulating material,
The thickness of the non-reciprocal circuit element becomes thicker by the thickness of the heat insulating material, which is a problem when downsizing (reducing the height). In addition, the use of the heat insulating material increases the components of the non-reciprocal circuit device,
The price of the non-reciprocal circuit device increases. Sm for permanent magnet
When a rare earth magnet such as Co.2-17 is used, since the permanent magnet itself is a conductor, an eddy current is generated on the surface when the magnet is arranged at a position near the center conductor and coupled to a high-frequency electromagnetic field, A new problem arises in that the characteristics of the non-reciprocal circuit device deteriorate.

【0013】この発明の目的は、永久磁石の熱減磁から
生じる、通過帯域の中心周波数が、低周波数側にずれ
て、特性が劣化するという現象を防ぐとともに、必要最
小限の部品にて構成される非可逆回路素子およびそれを
備えた通信装置を提供することにある。
An object of the present invention is to prevent a phenomenon in which the center frequency of a pass band is shifted to a lower frequency side, which is caused by thermal demagnetization of a permanent magnet, and the characteristic is degraded, and is constituted by minimum necessary parts. And a communication device provided with the same.

【0014】[0014]

【課題を解決するための手段】この発明は、中心導体、
フェライトコア、および該フェライトコアに静磁界を印
加する永久磁石を備え、加熱前に反射損失の最小となる
周波数を、加熱後に反射損失の最小となる周波数よりも
高周波数側に予め所定量ずれるように、または加熱前に
アイソレーションの最大となる周波数を、加熱後にアイ
ソレーションの最大となる周波数よりも高周波数側に予
め所定量だけずれるように、磁極の強さを設定する。こ
れにより、通信装置の製造工程で前記非可逆回路素子が
通信装置などの回路基板上に実装される際の加熱によ
り、前記所定量の周波数ずれが生じて、所期の非可逆回
路特性が発現する。
SUMMARY OF THE INVENTION The present invention provides a center conductor,
A ferrite core, and a permanent magnet that applies a static magnetic field to the ferrite core, so that the frequency at which the reflection loss is minimized before heating is shifted by a predetermined amount to a higher frequency side than the frequency at which the reflection loss is minimized after heating. Alternatively, the strength of the magnetic pole is set so that the frequency at which the isolation becomes maximum before heating is shifted by a predetermined amount to a frequency higher than the frequency at which the isolation becomes maximum after heating. Accordingly, the predetermined amount of frequency shift occurs due to heating when the irreversible circuit element is mounted on a circuit board of a communication device or the like in a manufacturing process of the communication device, and a desired irreversible circuit characteristic appears. I do.

【0015】また、この発明は、前記永久磁石をフェラ
イト磁石で構成する。
Further, according to the present invention, the permanent magnet is constituted by a ferrite magnet.

【0016】また、この発明は、加熱前に反射損失が最
小となる周波数と加熱後に反射損失が最小となる周波数
の差、または加熱前にアイソレーションが最大になる周
波数と加熱後にアイソレーションが最大となる周波数と
の差を、通過帯域の中心周波数の0%より大きく2%以
内の範囲となるように、磁極の強さを設定する。
The present invention also provides a difference between a frequency at which reflection loss is minimized before heating and a frequency at which reflection loss is minimized after heating, or a frequency at which isolation is maximized before heating and an isolation is maximized after heating. The intensity of the magnetic pole is set so that the difference from the frequency becomes within the range of more than 0% and less than 2% of the center frequency of the pass band.

【0017】また、この発明は、前記永久磁石の磁極の
強さを定めた後に、少なくとも当該永久磁石を加熱する
工程を含んで非可逆回路素子を製造する。このように、
非可逆回路の製造工程で予め熱減磁を行うことにより、
通信装置の製造工程で通信装置の回路基板への実装時に
非可逆回路素子が加熱されても、また、その通信装置が
実際に使用された際に非可逆回路素子が発熱しても、熱
減磁による非可逆回路素子の特性変化は生じない。
Further, the present invention manufactures a non-reciprocal circuit device including a step of heating at least the permanent magnet after determining the strength of the magnetic pole of the permanent magnet. in this way,
By performing thermal demagnetization in advance in the manufacturing process of the non-reciprocal circuit,
Even if the non-reciprocal circuit element is heated when the communication device is mounted on the circuit board in the manufacturing process of the communication device, or if the non-reciprocal circuit element generates heat when the communication device is actually used, the heat is reduced. There is no change in the characteristics of the nonreciprocal circuit device due to magnetism.

【0018】また、この発明は、前記加熱工程における
加熱温度を85℃以上に設定して、非可逆回路素子を製
造する。
Further, according to the present invention, a non-reciprocal circuit device is manufactured by setting the heating temperature in the heating step to 85 ° C. or higher.

【0019】また、この発明は、前記非可逆回路素子を
備えて通信装置を構成する。
Further, according to the present invention, a communication device is provided with the non-reciprocal circuit device.

【0020】[0020]

【発明の実施の形態】第1の実施形態に係るアイソレー
タを、図1、図2および表2を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An isolator according to a first embodiment will be described with reference to FIGS.

【0021】図1は、アイソレータの分解斜視図であ
る。図1に示すように、引出端子9を有する樹脂ケース
1内に、引出端子9に電気的に導通する中心導体5、該
中心導体5に近接するフェライトコア4、および中心導
体5に接続する終端抵抗としての抵抗器8、整合素子で
あるコンデンサ7を配し、上部ヨーク2と下部ヨーク3
とから成る金属ケース内に、前記フェライトコア4に静
磁界を印加する永久磁石6配置する。該永久磁石6は、
予め中心周波数が所定量だけ高周波数側にずれるよう
に、磁極の強さを設定している。
FIG. 1 is an exploded perspective view of the isolator. As shown in FIG. 1, in a resin case 1 having a lead terminal 9, a center conductor 5 electrically connected to the lead terminal 9, a ferrite core 4 close to the center conductor 5, and a termination connected to the center conductor 5. The upper yoke 2 and the lower yoke 3 are provided with a resistor 8 as a resistor and a capacitor 7 as a matching element.
A permanent magnet 6 for applying a static magnetic field to the ferrite core 4 is disposed in a metal case composed of the following. The permanent magnet 6
The strength of the magnetic pole is set in advance so that the center frequency is shifted to the high frequency side by a predetermined amount.

【0022】図2は、アイソレータを240℃で加熱し
た前後による特性の変化を示しており、図2の(A)は
反射損失、(B)は挿入損失、(C)はアイソレーショ
ンの周波数特性図である。
FIG. 2 shows the change in characteristics before and after heating the isolator at 240 ° C. FIG. 2A shows reflection loss, FIG. 2B shows insertion loss, and FIG. 2C shows frequency characteristics of isolation. FIG.

【0023】表2は、アイソレータの2GHzでの特性
値の加熱前後による変化を示す。
Table 2 shows changes in characteristic values of the isolator at 2 GHz before and after heating.

【0024】[0024]

【表2】 [Table 2]

【0025】このように、アイソレータの加熱により、
反射損失、挿入損失、アイソレーションの最適周波数
は、所定量だけ低周波数側へずれる。これは、永久磁石
の熱減磁により、その磁極の強さが所定量だけ小さくな
ることに起因している。したがって、その所定量のずれ
の結果、使用周波数で最適な特性が得られるように、加
熱前に所定周波数で、反射損失、挿入損失およびアイソ
レーションが最適となるように、前記磁極の強さを定め
る。
Thus, by heating the isolator,
The optimum frequencies of the reflection loss, the insertion loss, and the isolation are shifted toward the lower frequency side by a predetermined amount. This is because the strength of the magnetic pole is reduced by a predetermined amount due to the thermal demagnetization of the permanent magnet. Therefore, as a result of the shift of the predetermined amount, the strength of the magnetic pole is adjusted so that the reflection loss, the insertion loss, and the isolation are optimized at the predetermined frequency before heating so that the optimum characteristics are obtained at the operating frequency. Determine.

【0026】この設定を行うことにより、図2に示すよ
うに、回路基板への実装等による加熱の影響で、中心周
波数が所定量だけ低周波数側にずれ、使用周波数である
2GHz帯で最適な反射損失、挿入損失およびアイソレ
ーションを得ることができる。
By performing this setting, as shown in FIG. 2, the center frequency shifts by a predetermined amount to the lower frequency side due to the influence of heating due to mounting on a circuit board or the like, and the optimum frequency is used in the 2 GHz band which is the operating frequency. Reflection loss, insertion loss and isolation can be obtained.

【0027】また、アイソレータの場合、反射電力によ
って、終端抵抗器が発熱し、永久磁石が加熱されるが、
この加熱による熱減磁を見越して、反射損失が最小もし
くはアイソレーションが最大となる周波数を高周波数側
に所定量ずれさせておけば、終端抵抗器の発熱による周
波数特性の変化を防ぐことができる。
In the case of an isolator, the terminating resistor generates heat and the permanent magnet is heated by the reflected power.
In anticipation of the thermal demagnetization due to this heating, if the frequency at which the reflection loss is minimized or the isolation is maximized is shifted by a predetermined amount toward the high frequency side, it is possible to prevent a change in frequency characteristics due to the heat generated by the terminating resistor. .

【0028】また、実装時または使用時の加熱による中
心周波数のずれが、所定量とならなかった場合において
も、熱減磁による影響を低減できる。
Further, even when the shift of the center frequency due to heating during mounting or use does not reach a predetermined amount, the effect of thermal demagnetization can be reduced.

【0029】さらに、永久磁石6をフェライト磁石とす
ることにより、希土類磁石を使用することによる渦電流
損による特性値の劣化はない。
Further, by using the ferrite magnet as the permanent magnet 6, there is no deterioration of the characteristic value due to the eddy current loss due to the use of the rare earth magnet.

【0030】図2および表2に示すように、フェライト
磁石を用いると、周波数のずれは、通過帯域の中心周波
数の約1%である。このため、加熱前後の中心周波数の
ずれ量を2%以上に設定しておくと、熱減磁を起こして
も、1%以上のずれが生じてしまい、特性が劣化する。
As shown in FIG. 2 and Table 2, when a ferrite magnet is used, the frequency shift is about 1% of the center frequency of the pass band. Therefore, if the amount of deviation of the center frequency before and after heating is set to 2% or more, even if thermal demagnetization occurs, a deviation of 1% or more will occur, and the characteristics will be degraded.

【0031】従って、永久磁石にフェライト磁石を用い
て加熱前後の中心周波数のずれ量を約1%にした場合、
加熱前後の中心周波数のずれ量を0%より大きく2%以
内となるように設定する。
Therefore, when the deviation of the center frequency before and after heating is set to about 1% using a ferrite magnet as the permanent magnet,
The deviation amount of the center frequency before and after heating is set to be larger than 0% and within 2%.

【0032】なお、理想的な非可逆回路素子において
は、反射損失とアイソレーションの、加熱前後の周波数
変化量は同じとなるが、通常は、反射損失の方が、アイ
ソレーションよりも変化量が大きい。そこで、反射損失
とアイソレーションのどちらを優先するかによって、前
記中心周波数のずれ量を設定する。例えば、反射損失の
方が、実際の特性に対して規格が厳しい場合には、熱減
磁によって反射損失が最小となるように、前記ずれ量を
設定する。
In an ideal non-reciprocal circuit device, the amount of change in frequency between reflection loss and isolation before and after heating is the same, but the amount of change in reflection loss is usually larger than that in isolation. large. Therefore, the shift amount of the center frequency is set depending on which of the reflection loss and the isolation is prioritized. For example, if the reflection loss has a stricter standard with respect to the actual characteristics, the deviation amount is set so that the reflection loss is minimized by thermal demagnetization.

【0033】次に、第2の実施形態に係るアイソレータ
の製造方法を図3を参照して説明する。
Next, a method of manufacturing the isolator according to the second embodiment will be described with reference to FIG.

【0034】図3は、アイソレータの製造工程フローを
示す。
FIG. 3 shows a flow chart of the manufacturing process of the isolator.

【0035】図3に示すように、アイソレータの製造工
程は、構成部品の組み立てを行った後に、加熱による中
心周波数の低周波数側へのずれを考慮して磁極の強さ調
整を行い、その後、アイソレータの加熱(熱枯らし)を
行い、特性検査をするという一連の流れとなる。
As shown in FIG. 3, in the manufacturing process of the isolator, after assembling the components, the strength of the magnetic pole is adjusted in consideration of the shift of the center frequency to the lower frequency side due to heating, and thereafter, This is a series of flows in which the isolator is heated (killed) and a characteristic test is performed.

【0036】前記アイソレータは、一度、所定の温度ま
で昇温して、熱減磁させ、特性を変化させると、その後
再度、前記温度まで昇温しても熱減磁は再度起こらない
ので、特性は変化しない。
Once the isolator is heated up to a predetermined temperature and is thermally demagnetized to change its characteristics, the thermal demagnetization does not occur again even if the temperature is raised again to the above temperature. Does not change.

【0037】したがって、このように製造工程に、アイ
ソレータの回路基板への実装時に加わる温度、または実
際に使用されてから磁石に加わる温度まで加熱する工程
を備えることにより、前記アイソレータの実装時、また
は使用時の熱による特性の変化を防ぐ。
Accordingly, by providing the manufacturing process with a step of heating to a temperature applied when the isolator is mounted on the circuit board, or to a temperature applied to the magnet after actually being used, the mounting of the isolator or Prevents changes in properties due to heat during use.

【0038】具体的には、前記アイソレータが回路基板
に半田接合にて実装するものである場合には、約240
℃に加熱する。
Specifically, when the isolator is to be mounted on a circuit board by soldering, about 240
Heat to ° C.

【0039】半田接合によらずにネジ止め等により実装
するものである場合には、アイソレータが使用される環
境温度の上限値まで昇温することにより、加熱による特
性の変化を防ぐ。すなわち、前記アイソレータが用いら
れることが多い移動体通信装置では、使用上限温度が8
5℃であるため、85℃以上で加熱する。また、反射電
力による終端抵抗器の発熱温度以上で加熱する。
In the case of mounting by screwing or the like instead of soldering, a change in characteristics due to heating is prevented by raising the temperature to the upper limit of the environmental temperature in which the isolator is used. That is, in a mobile communication device in which the isolator is often used, the upper-limit temperature of use is 8
Since it is 5 ° C., it is heated at 85 ° C. or more. Further, the heating is performed at a temperature equal to or higher than the heat generation temperature of the terminating resistor due to the reflected power.

【0040】次に、第3の実施形態に係る通信装置の構
成を図4を参照して説明する。図4においてANTは送
受信アンテナ、DPXはデュプレクサ、BPFa,BP
Fbはそれぞれ帯域通過フィルタ、AMPa,AMPb
はそれぞれ増幅回路、MIXa,MIXbはそれぞれミ
キサ、OSCはオシレータ、SYNは周波数シンセサイ
ザ、ISOはアイソレータである。
Next, the configuration of the communication device according to the third embodiment will be described with reference to FIG. In FIG. 4, ANT is a transmitting / receiving antenna, DPX is a duplexer, BPFa, BP
Fb is a band pass filter, AMPa, AMPb, respectively.
Is an amplifier circuit, MIXa and MIXb are mixers, OSC is an oscillator, SYN is a frequency synthesizer, and ISO is an isolator.

【0041】MIXaは入力されたIF信号と、SYN
から出力された信号とを混合し、BPFaはMIXaか
らの混合出力信号のうち送信周波数帯域のみを通過さ
せ、AMPaはこれを電力増幅し、アイソレータISO
およびDPXを介しANTより送信する。アイソレータ
ISOは、DPX等からAMPaへの反射信号を阻止し
て、AMPaでの歪みの発生を防止する。AMPbはD
PXから取り出した受信信号を増幅する。BPFbはA
MPbから出力される受信信号のうち受信周波数帯域の
みを通過させる。MIXbは、SYNから出力された周
波数信号と受信信号とをミキシングして中間周波信号I
Fを出力する。
MIXa represents the input IF signal and SYN
, The BPFa passes only the transmission frequency band of the mixed output signal from the MIXa, the AMPa amplifies the power, and the isolator ISO
And ANT via DPX. The isolator ISO blocks a reflected signal from DPX or the like to AMPa, thereby preventing generation of distortion in AMPa. AMPb is D
The received signal extracted from the PX is amplified. BPFb is A
Only the reception frequency band of the reception signal output from MPb is passed. MIXb mixes the frequency signal output from the SYN with the received signal to produce an intermediate frequency signal I.
Output F.

【0042】図4に示したアイソレータISO部分は、
以上に示した構造の、および製造方法によるアイソレー
タを用いる。このように、低挿入損失で小型・低背化お
よび軽量化を図ったアイソレータを用いることによっ
て、全体に電力効率が高く、薄型で軽量な携帯電話等の
通信装置を得る。
The isolator ISO shown in FIG.
An isolator having the above-described structure and a manufacturing method is used. As described above, by using an isolator that has a small insertion loss, a small size, a low profile, and a light weight, a communication device such as a mobile phone or the like that has high power efficiency as a whole and is thin and lightweight can be obtained.

【0043】[0043]

【発明の効果】この発明によれば、加熱前に反射損失の
最小となる周波数が、加熱後に反射損失の最小となる周
波数よりも高周波数側に予め所定量ずれるように、また
は加熱前にアイソレーションの最大となる周波数が、加
熱後にアイソレーションの最大となる周波数よりも高周
波数側に予め所定量ずれるように、永久磁石の磁極の強
さを設定することにより、加熱による中心周波数の低周
波数側へのずれを補正でき、回路基板への半田付けによ
る実装時の加熱や使用中の加熱によっても、所定の電気
的特性をもたせることができる。また、熱減磁により所
定量の中心周波数のずれが起きなかったとしても、熱減
磁による特性悪化が低減できる。
According to the present invention, the frequency at which the reflection loss is minimized before heating is shifted to a higher frequency side by a predetermined amount than the frequency at which the reflection loss is minimized after heating, or the frequency is minimized before heating. By setting the strength of the magnetic poles of the permanent magnet so that the frequency at which the maximum of the isolation is shifted by a predetermined amount to a higher frequency side than the frequency at which the isolation becomes the highest after the heating, the low frequency of the center frequency due to the heating is set. The shift to the side can be corrected, and predetermined electrical characteristics can be imparted by heating during mounting by soldering to a circuit board or heating during use. Further, even if a predetermined amount of shift of the center frequency does not occur due to the thermal demagnetization, deterioration of the characteristics due to the thermal demagnetization can be reduced.

【0044】また、この発明によれば、熱減磁の影響を
防止するための断熱材等の部品が必要なく、小型で且つ
安価に非可逆回路素子が構成できる。
Further, according to the present invention, a component such as a heat insulating material for preventing the influence of thermal demagnetization is not required, and a non-reciprocal circuit device can be formed at a small size and at low cost.

【0045】また、この発明によれば、永久磁石をフェ
ライト磁石にすることにより、磁石表面での渦電流損に
よる特性の劣化を防ぐことができる。
Further, according to the present invention, by using a ferrite magnet as the permanent magnet, it is possible to prevent deterioration of characteristics due to eddy current loss on the magnet surface.

【0046】また、この発明によれば、非可逆回路素子
の製造時に加熱工程で予め熱減磁を行うことにより、実
装時の加熱による特性の変化を防ぐことができる。
Further, according to the present invention, a change in characteristics due to heating during mounting can be prevented by performing thermal demagnetization in advance in a heating step when manufacturing a non-reciprocal circuit device.

【0047】また、この発明によれば、前記半田接合を
用いない場合においても、非可逆回路素子が搭載された
装置の使用上限温度で加熱する工程を加えることによ
り、加熱による特性の変化を防ぐことができる。
According to the present invention, even in the case where the solder joint is not used, a change in characteristics due to heating can be prevented by adding a step of heating at a use upper limit temperature of a device equipped with a non-reciprocal circuit device. be able to.

【0048】また、この発明によれば、非可逆回路素子
がアイソレータである場合、反射電力による終端抵抗器
の発熱による特性の変化を防ぐことができる。
Further, according to the present invention, when the non-reciprocal circuit element is an isolator, it is possible to prevent a change in characteristics due to heat generation of the terminating resistor due to reflected power.

【0049】また、この発明によれば、前記非可逆回路
素子を備えてなる通信装置は、使用環境における発熱お
よび加熱による特性の変化を防ぎ、優れた通信特性を維
持することができる。
Further, according to the present invention, the communication device including the non-reciprocal circuit element can prevent the characteristics from changing due to heat generation and heating in the use environment, and maintain excellent communication characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係る非可逆回路素子の分解斜
視図
FIG. 1 is an exploded perspective view of a non-reciprocal circuit device according to a first embodiment.

【図2】同非可逆回路素子を240℃で加熱した前後に
よる特性の変化を示す図
FIG. 2 is a diagram showing a change in characteristics before and after heating the non-reciprocal circuit device at 240 ° C.

【図3】同非可逆回路素子の製造工程フロー図FIG. 3 is a flowchart of a manufacturing process of the non-reciprocal circuit device.

【図4】第3の実施形態に係る通信装置のブロック図FIG. 4 is a block diagram of a communication device according to a third embodiment;

【図5】従来の非可逆回路素子を240℃で加熱した前
後における特性の変化を示す図
FIG. 5 is a diagram showing a change in characteristics before and after heating a conventional non-reciprocal circuit device at 240 ° C.

【符号の説明】[Explanation of symbols]

1−樹脂ケース 2−上部ヨーク 3−下部ヨーク 4−フェライトコア 5−中心導体 6−永久磁石 7−コンデンサ 8−抵抗器 9−引出端子 1-resin case 2-upper yoke 3-lower yoke 4-ferrite core 5-center conductor 6-permanent magnet 7-capacitor 8-resistor 9-lead terminal

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 中心導体、該中心導体に近接するフェラ
イトコア、および該フェライトコアに静磁界を印加する
永久磁石を備えて成る非可逆回路素子において、 前記永久磁石の磁極の強さを定めて、加熱前に反射損失
の最小となる周波数を、加熱後に反射損失の最小となる
周波数より予め所定量だけずらせた、または、加熱前に
アイソレーションの最大となる周波数を、加熱後にアイ
ソレーションの最大となる周波数より予め所定量だけず
らせた、非可逆回路素子。
1. A non-reciprocal circuit device comprising a center conductor, a ferrite core adjacent to the center conductor, and a permanent magnet for applying a static magnetic field to the ferrite core, wherein a strength of a magnetic pole of the permanent magnet is determined. The frequency at which the reflection loss is minimized before heating is shifted by a predetermined amount from the frequency at which the reflection loss is minimized after heating, or the frequency at which the isolation becomes maximum before heating is changed to the maximum isolation after heating. A non-reciprocal circuit element which is shifted in advance by a predetermined amount from the frequency to be obtained.
【請求項2】 前記永久磁石がフェライト磁石である請
求項1に記載の非可逆回路素子。
2. The non-reciprocal circuit device according to claim 1, wherein the permanent magnet is a ferrite magnet.
【請求項3】 前記所定量が、通過帯域の中心周波数の
0%より大きく2%以内の範囲である請求項2に記載の
非可逆回路素子。
3. The nonreciprocal circuit device according to claim 2, wherein the predetermined amount is in a range of more than 0% and less than 2% of a center frequency of a pass band.
【請求項4】 中心導体、該中心導体に近接するフェラ
イトコア、および該フェライトコアに静磁界を印加する
永久磁石を備えて成る非可逆回路素子の製造方法であっ
て、 前記永久磁石の磁極の強さを定めた後に、少なくとも当
該永久磁石を加熱する工程を含む非可逆回路素子の製造
方法。
4. A method for manufacturing a non-reciprocal circuit device, comprising: a center conductor, a ferrite core adjacent to the center conductor, and a permanent magnet for applying a static magnetic field to the ferrite core, wherein a magnetic pole of the permanent magnet is provided. A method for manufacturing a non-reciprocal circuit device, comprising a step of heating at least the permanent magnet after determining the strength.
【請求項5】 前記加熱工程における加熱温度が、85
℃以上である請求項4に記載の非可逆回路素子の製造方
法。
5. A heating temperature in the heating step is 85.
The method for producing a non-reciprocal circuit device according to claim 4, wherein the temperature is not less than ° C.
【請求項6】 請求項4または5に記載の製造方法によ
って製造された非可逆回路素子。
6. A non-reciprocal circuit device manufactured by the method according to claim 4. Description:
【請求項7】請求項1〜3、6のいずれかに記載の非可
逆回路素子を備えた通信装置。
7. A communication device comprising the non-reciprocal circuit device according to claim 1.
JP2000270514A 2000-09-06 2000-09-06 Communicating device, non-reversible circuit element and manufacturing method thereof Abandoned JP2002084104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270514A JP2002084104A (en) 2000-09-06 2000-09-06 Communicating device, non-reversible circuit element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270514A JP2002084104A (en) 2000-09-06 2000-09-06 Communicating device, non-reversible circuit element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002084104A true JP2002084104A (en) 2002-03-22

Family

ID=18756943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270514A Abandoned JP2002084104A (en) 2000-09-06 2000-09-06 Communicating device, non-reversible circuit element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002084104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100880369B1 (en) 2007-07-03 2009-01-30 (주)파트론 Circulator/isolator and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100880369B1 (en) 2007-07-03 2009-01-30 (주)파트론 Circulator/isolator and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US20070236304A1 (en) Non-reciprocal circuit element, method for manufacturing the same, and communication device
JP2001168605A (en) Nonreversible circuit element and communication equipment
US7936230B2 (en) Non-reciprocal component and method for making and using the component in a mobile terminal
US7167065B2 (en) Filter circuit
US20080111647A1 (en) Non-reciprocal circuit element, composite electronic component, and communication apparatus
EP1139486A1 (en) Non-reciprocal circuit device and wireless communications equipment comprising the same
US6940360B2 (en) Two-port isolator and method for evaluating it
JP2002084104A (en) Communicating device, non-reversible circuit element and manufacturing method thereof
US6798311B2 (en) Nonreciprocal circuit device with a solenoid-shaped inductor generating perpendicular flux
US6603369B2 (en) Nonreciprocal circuit device and communications apparatus incorporating the same
US6880227B2 (en) Method for manufacturing nonreciprocal circuit device, nonreciprocal circuit device, and communication apparatus incorporating the same
US6724276B2 (en) Non-reciprocal circuit device and communication apparatus
US7429901B2 (en) Non-reciprocal circuit element, composite electronic component, and communication apparatus
JP2001358504A (en) Non-reciprocal circuit element and communication apparatus
JP2001267809A (en) Non-reciprocal circuit element and communication equipment device
JP4182153B2 (en) Non-reciprocal circuit device and communication device
JP2002330003A (en) Nonreciprocal circuit element, communication equipment, and method of manufacturing the same
JP4438228B2 (en) Isolator and communication device
JP2008507879A (en) Integrated irreversible components
JP2001320205A (en) Non-reversible circuit element and communication equipment
JP3932897B2 (en) Non-reciprocal circuit device and communication device
JP4182926B2 (en) Non-reciprocal circuit device and communication device
JP4092693B2 (en) Non-reciprocal circuit device and communication device using the same
JP2001177308A (en) Irreversible circuit element and communication unit
JP2004320491A (en) Non-reciprocative circuit element and radio equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070928