JP2002081676A - Air conditioning system utilizing steam turbine - Google Patents

Air conditioning system utilizing steam turbine

Info

Publication number
JP2002081676A
JP2002081676A JP2000278657A JP2000278657A JP2002081676A JP 2002081676 A JP2002081676 A JP 2002081676A JP 2000278657 A JP2000278657 A JP 2000278657A JP 2000278657 A JP2000278657 A JP 2000278657A JP 2002081676 A JP2002081676 A JP 2002081676A
Authority
JP
Japan
Prior art keywords
cooling water
steam turbine
air conditioning
condenser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000278657A
Other languages
Japanese (ja)
Other versions
JP3533367B2 (en
Inventor
Toshihiro Asanuma
俊浩 浅沼
Mitsuo Takayama
光雄 高山
Shinji Murakoshi
新之 村越
Ryohei Minowa
良平 箕輪
Kazunari Kawamura
和成 河村
Osamu Sasabe
修 佐々部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Hitachi Ltd
Original Assignee
Aisin AW Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Hitachi Ltd filed Critical Aisin AW Co Ltd
Priority to JP2000278657A priority Critical patent/JP3533367B2/en
Publication of JP2002081676A publication Critical patent/JP2002081676A/en
Application granted granted Critical
Publication of JP3533367B2 publication Critical patent/JP3533367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

PROBLEM TO BE SOLVED: To effectively utilize vapor inputted into a steam turbine in an air conditioning system utilizing the steam turbine. SOLUTION: An air conditioning system utilizing a steam turbine includes a steam turbine 1, and a condenser 2 for converting steam reduced in pressure in the steam turbine to water. In the condenser, vapor guided from the steam turbine and condensed cooling water are heat exchanged. The condensed cooling water is circulated through condensed water cooling systems 12, 13. In the condensate cooling water system, a heat dissipation heat exchanger 4 is provided. There are further provided air conditioning pipe lines 10, 11 that are branched from the condensate cooling water system for supplying the condensate cooling water to an air conditioned load. In the heat dissipation heat exchanger, there are heat exchanged the condensate cooling water and the heat dissipation cooling water returned from the condenser. A control device 21 controls the flow rate of the heat dissipation cooling water by changing the opening of a control valve 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸気タービンを利用
した空調システムに係り、特に復水器で熱交換した熱を
暖房負荷に用いるのに好適な、蒸気タービンを利用した
空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system using a steam turbine, and more particularly to an air conditioning system using a steam turbine, which is suitable for using heat exchanged by a condenser for a heating load.

【0002】[0002]

【従来の技術】従来の蒸気タービン設備においては、特
開平5-222905号公報に示されるように、蒸気タ
ービンからの排気を復水器内の伝熱管を流通する冷却水
で冷却凝縮していた。そして昇温した冷却水の熱回収を
するため、この冷却水をプロセスに供給している。具体
的には、プロセスに供給する温水の温度を、高負荷時に
は冷却塔の下部水槽において、冷却塔で冷却された温水
と冷却されない温水とを混合して制御している。低負荷
時には、復水器に抽気系からの抽気量を制御して流入さ
せ冷却凝縮する蒸気量を増加させている。
2. Description of the Related Art In a conventional steam turbine facility, as shown in Japanese Patent Application Laid-Open No. 5-222905, exhaust gas from a steam turbine is cooled and condensed by cooling water flowing through a heat transfer tube in a condenser. . This cooling water is supplied to the process in order to recover the heat of the heated cooling water. Specifically, the temperature of the hot water supplied to the process is controlled by mixing hot water cooled by the cooling tower and hot water that is not cooled in the lower water tank of the cooling tower at a high load. When the load is low, the amount of steam extracted from the bleed air system into the condenser is controlled so as to increase the amount of steam to be cooled and condensed.

【0003】また、日本コージェネレーション研究会発
行 コージェネレーション海外ミッション‘93報告書
の第36〜39頁(1994年1月)には、蒸気タービン設備
が有する復水器の冷却水を地域冷暖房用の温水として利
用することが記載されている。
[0003] In addition, the report of the Cogeneration Overseas Mission '93, published by the Japan Society for the Study of Cogeneration '93, pages 36-39 (January 1994), states that the cooling water of the condenser of the steam turbine equipment is used for district cooling and heating. It is described that it is used as hot water.

【0004】[0004]

【発明が解決しようとする課題】上記公報では、復水器
を流通した冷却水をプロセスに供給することにより熱エ
ネルギー有効に回収できるという利点を有するものの、
蒸気タービン設備から電力を供給される需要元を空調す
る点については、何等考慮されていない。すなわち、蒸
気タービン設備から電力を供給される需要元でも何らか
の空調設備は必要であり、従来はそのために蒸気タービ
ンとは異なる熱源からエネルギーを供給して、例えば圧
縮機を用いた空調機や吸収式冷凍機等で空調の用に供し
ていた。その結果、蒸気タービンの出口側においてなお
十分に空調に使用できるエネルギーがあるにもかかわら
ず、空調用として余分な熱源を必要としていた。
The above-mentioned publication has an advantage that heat energy can be effectively recovered by supplying cooling water flowing through a condenser to a process.
No consideration is given to air conditioning of a demand source supplied with power from a steam turbine facility. That is, some air conditioning equipment is required even at the demand source that is supplied with power from the steam turbine equipment.Conventionally, for this purpose, energy is supplied from a heat source different from that of the steam turbine, for example, an air conditioner using a compressor or an absorption type. It was used for air conditioning with a refrigerator. As a result, an extra heat source is required for air conditioning, despite the fact that there is still enough energy available for air conditioning at the exit side of the steam turbine.

【0005】また、上記報告書に記載のものでは、空調
用に温水を利用できることは知られるものの、これを季
節変動等に応じて制御することについては考慮されてい
ない。
Further, although it is known that hot water can be used for air conditioning in the above-mentioned report, no consideration is given to controlling the hot water in accordance with seasonal fluctuations and the like.

【0006】本発明は上記従来技術の不具合に鑑みなさ
れたものであり、その目的は、蒸気タービンに入力され
た蒸気を有効に空調に利用することにある。本発明の他
の目的は、蒸気タービンに入力された蒸気のエネルギー
を空調と発電とに効率的に振り分けることにある。
The present invention has been made in view of the above-mentioned disadvantages of the related art, and an object of the present invention is to effectively use steam input to a steam turbine for air conditioning. It is another object of the present invention to efficiently distribute the energy of steam input to a steam turbine to air conditioning and power generation.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、蒸気タービンと、この蒸気タ
ービンで減圧した蒸気を水に変換する復水器と、この復
水器で蒸気タービンから導かれた蒸気と熱交換する復水
冷却水が循環し、放熱用熱交換器を有する復水冷却水系
統とを備え、復水冷却水系統から分岐して空調負荷に復
水冷却水を供給する空調管路を設け、放熱用熱交換器は
復水器から戻った復水冷却水と放熱用冷却水とを熱交換
させ、この放熱用冷却水の流量を制御する制御装置を設
けたことにある。
A first feature of the present invention to achieve the above object is a steam turbine, a condenser for converting steam depressurized by the steam turbine into water, and a condenser Condensate cooling water, which exchanges heat with steam guided from the steam turbine, circulates, and is provided with a condensate cooling water system having a heat exchanger for heat radiation. An air-conditioning pipe for supplying cooling water is provided.The heat-radiating heat exchanger exchanges heat between the condensed cooling water returned from the condenser and the cooling water for cooling, and controls the flow rate of the cooling water for cooling. Has been established.

【0008】そしてこの特徴において、空調管路に空調
負荷量を検出する検出手段を設け、この検出手段が検出
した空調負荷量に応じて制御装置が放熱用冷却水の流量
を制御してもよい。また、蒸気タービンに発電手段を接
続し、この発電手段の発電量を優先するときは、放熱用
冷却水流量を増大させて復水冷却水温度を低下させるよ
う前記制御装置が制御してもよい。
In this aspect, the air conditioning pipeline may be provided with a detecting means for detecting the air conditioning load, and the control device may control the flow rate of the cooling water for radiation in accordance with the air conditioning load detected by the detecting means. . Further, when a power generation means is connected to the steam turbine, and the power generation amount of the power generation means is prioritized, the control device may control to increase the flow rate of the cooling water for cooling and to lower the temperature of the condensed cooling water. .

【0009】上記目的を達成するための本発明の第2の
特徴は、蒸気タービンと、この蒸気タービンで減圧した
蒸気が導かれる復水器と、蒸気タービンに接続された発
電機と、復水器に導かれた蒸気と熱交換する復水冷却水
が循環する復水冷却水系統と、この復水冷却水系統に介
在させた放熱用熱交換器と、この放熱用熱交換器に導か
れた放熱用冷却水の水量を制御する制御弁と、復水冷却
水系統から分岐して空調負荷に復水冷却水を供給する空
調負荷管路と、この空調負荷管路内を流通する復水冷却
水温度を検出する負荷温度検出手段と、復水冷却水系統
を流通する復水冷却水温度を検出する復水冷却水温度検
出手段と、負荷温度検出手段が検出した負荷温度と復水
冷却水温度検出手段が検出した復水冷却水温度とに応じ
て、制御弁の開度をを制御する制御装置とを備えたもの
である。
A second feature of the present invention to achieve the above object is that a steam turbine, a condenser through which steam depressurized by the steam turbine is led, a generator connected to the steam turbine, and a condenser Condensate cooling water system that circulates condensate cooling water that exchanges heat with the steam led to the heat exchanger, a heat radiation heat exchanger interposed in the condensate cooling water system, and a heat radiation heat exchanger A control valve for controlling the amount of cooling water for heat dissipation, an air conditioning load pipe branching off from the condensate cooling water system and supplying condensed cooling water to the air conditioning load, and a condensate flowing through the air conditioning load pipe. Load temperature detecting means for detecting the cooling water temperature, condensed cooling water temperature detecting means for detecting the condensed cooling water temperature flowing through the condensed cooling water system, load temperature detected by the load temperature detecting means and condensed water cooling Opening of the control valve according to the condensed cooling water temperature detected by the water temperature detecting means It is obtained by a controller for controlling the.

【0010】[0010]

【発明の実施の形態】本発明の一実施例を、図1に示
す。図1は、蒸気タービンを利用した空調システムの系
統図である。図示しない蒸気発生装置で発生した高圧蒸
気は、高圧蒸気配管6を経て蒸気タービン1に導かれ
る。蒸気タービン1には図示しないカップリングを介し
て発電機24が接続されている。発電機24で発電した電
力は、電力供給配線15により、電力需要元16に送ら
れる。なお、蒸気タービン1で蒸気の熱エネルギーは回
転エネルギーに変換され、発電機24で回転エネルギー
が電気エネルギーに変換される。
FIG. 1 shows one embodiment of the present invention. FIG. 1 is a system diagram of an air conditioning system using a steam turbine. High-pressure steam generated by a steam generator (not shown) is guided to the steam turbine 1 through a high-pressure steam pipe 6. A generator 24 is connected to the steam turbine 1 via a coupling (not shown). The power generated by the generator 24 is sent to the power demand source 16 by the power supply wiring 15. The heat energy of the steam is converted into rotational energy in the steam turbine 1, and the rotational energy is converted into electric energy in the generator 24.

【0011】蒸気タービン1で降圧した蒸気は、低圧蒸
気配管7を介して復水器2に導かれる。復水器2には、
冷却水配管12、13を循環する冷却水が導かれ、蒸気
タービン1からの蒸気と熱交換して蒸気を凝縮させる。
復水器2で凝縮した復水は、復水配管8に介在させた復
水ポンプ3により、蒸気発生装置に送られる。
The steam reduced in pressure in the steam turbine 1 is guided to the condenser 2 through a low-pressure steam pipe 7. In condenser 2,
The cooling water circulating through the cooling water pipes 12 and 13 is guided and exchanges heat with steam from the steam turbine 1 to condense the steam.
The condensate condensed in the condenser 2 is sent to the steam generator by the condensate pump 3 interposed in the condensate pipe 8.

【0012】復水器2で昇温した冷却水の一部は、復水
器冷却水出口配管12の途中から分岐した温水供給配管
11により空調負荷である電力需要元16に送られ、電
力需要元16を空調する。空調し終えた冷却水は、温水
戻り配管10を経て復水器冷却水出口配管12に戻され
る。なお、温水供給配管11には温水供給ポンプ25が
設けられており、電力需要元へ冷却水を供給可能にして
いる。
A part of the cooling water whose temperature has been raised in the condenser 2 is sent to a power demand source 16 as an air conditioning load by a hot water supply pipe 11 branched from the middle of the condenser cooling water outlet pipe 12. Air conditioner 16 is air-conditioned. The cooling water that has been air-conditioned is returned to the condenser cooling water outlet pipe 12 via the hot water return pipe 10. The hot water supply pipe 11 is provided with a hot water supply pump 25 to supply cooling water to a power demand source.

【0013】復水器2で昇温した冷却水は、途中で電力
需要元16を空調した冷却水と一緒になって、放熱用熱
交換器4に送られる。放熱用熱交換器4には、クーリン
グタワー等で冷却された冷却水が導かれている。放熱用
熱交換器4で復水器2からの冷却水と、クーリングタワ
ーからの冷却水が熱交換し、復水器2からの冷却水は温
度低下し、インバータ9で駆動される復水器冷却水ポン
プ5により再び復水器2に送られる。
The cooling water heated in the condenser 2 is sent to the heat-radiating heat exchanger 4 along with the cooling water that has air-conditioned the power demand source 16 on the way. Cooling water cooled by a cooling tower or the like is guided to the heat radiation heat exchanger 4. The cooling water from the condenser 2 and the cooling water from the cooling tower exchange heat with the heat exchanger 4 for heat radiation, and the temperature of the cooling water from the condenser 2 drops, and the cooling of the condenser driven by the inverter 9 is performed. The water is sent to the condenser 2 again by the water pump 5.

【0014】一方、クーリングタワーからの冷却水は、
開放系冷却水配管14に介在させた開放系冷却水ポンプ
23により放熱用熱交換器4に導かれ、復水器2からの
冷却水と熱交換して昇温し、図示しないクーリングタワ
ーへと送られる。開放系冷却水配管14の途中にはバイ
パス管26が設けられており、このバイパス管26には
開放系冷却水バイパス弁26が設けられている。
On the other hand, the cooling water from the cooling tower is
An open cooling water pump 23 interposed in the open cooling water pipe 14 guides the heat to the heat exchanger 4 for heat radiation, exchanges heat with the cooling water from the condenser 2 to increase the temperature, and sends it to a cooling tower (not shown). Can be A bypass pipe 26 is provided in the middle of the open system cooling water pipe 14, and an open system cooling water bypass valve 26 is provided in the bypass pipe 26.

【0015】復水器冷却水出口配管12の途中にはこの
冷却水の温度を検出する温度検出器17が取付けられて
いる。また、温水戻り配管10の途中には、電力需要元
16を空調した冷却水の温度を検出する温度検出器19
が取付けられている。温度検出器17が検出した冷却水
温度は、温度調節計18を経て制御演算装置21に入力
される。同様に、温度検出器19が検出した空調後の冷
却水温度は、温度調節計20を経て制御演算装置21に
入力される。この制御演算装置21は、復水器冷却水ポ
ンプ5を駆動するインバータ9に回転指令を、開放系冷
却水バイパス弁22に開度指令を出力する。
In the middle of the condenser cooling water outlet pipe 12, a temperature detector 17 for detecting the temperature of the cooling water is mounted. In the middle of the hot water return pipe 10, a temperature detector 19 that detects the temperature of the cooling water that has air-conditioned the power demand source 16 is provided.
Is installed. The cooling water temperature detected by the temperature detector 17 is input to the control operation device 21 via the temperature controller 18. Similarly, the temperature of the cooling water after air conditioning detected by the temperature detector 19 is input to the control arithmetic unit 21 via the temperature controller 20. The control arithmetic unit 21 outputs a rotation command to the inverter 9 that drives the condenser cooling water pump 5 and an opening command to the open system cooling water bypass valve 22.

【0016】ところで、復水器2を冷却する冷却水とし
てはこれまで、クーリングタワーなどで冷却した冷却水
を多く用いていた。クーリングタワーを有する開放系の
冷却水は、クーリングタワーを流通するときに大気中の
塵埃を吸い込むので、暖房用温水に使用すると空調機器
を汚してしまい、つまりなどの不具合を発生させる恐れ
があった。本実施例では、復水器にいおいて蒸気を冷却
する冷却水を密閉循環系を流れる冷却水とし、この冷却
水を電力需要元の空調に使用している。したがって、従
来の不具合を解消でき、電力需要元の空調用冷却水が大
気の塵埃などで汚染されることが無く、水質を清浄な状
態に保持できるから、空調機機を汚損することがない。
Incidentally, as the cooling water for cooling the condenser 2, a large amount of cooling water cooled by a cooling tower or the like has hitherto been used. The open-system cooling water having the cooling tower absorbs dust in the air when flowing through the cooling tower. Therefore, when used for heating hot water, the air-conditioning equipment may be soiled, which may cause troubles such as clogging. In the present embodiment, the cooling water for cooling the steam in the condenser is used as cooling water flowing through the closed circulation system, and this cooling water is used for air conditioning of a power demand source. Therefore, the conventional problems can be solved, and the cooling water for air conditioning, which is the power demand source, is not contaminated by dust and the like, and the water quality can be maintained in a clean state, so that the air conditioner does not become dirty.

【0017】復水器2の冷却水を空調用の温水として供
給するために、この温水を空調負荷まで流すのに必要な
ヘッドを出し得る温水供給ポンプ25を温水供給配管1
1に取付けている。この温水供給ポンプ25は暖房時の
み運転すればよい。その結果、復水器冷却水入口配管1
3に設けた冷却水を駆動するポンプ5は、復水器2と放
熱用熱交換器4間を冷却水が循環できるだけのへっどを
出し得るものであればよく、ポンプの小型化が可能にな
る。また、暖房の不要な春〜秋まで期間は、温水供給ポ
ンプ25を運転する必要がなく、ポンプ動力の節減が図
れる。
In order to supply the cooling water of the condenser 2 as hot water for air conditioning, a hot water supply pump 25 capable of taking out a head necessary for flowing the hot water to an air conditioning load is connected to the hot water supply pipe 1.
It is attached to 1. The hot water supply pump 25 may be operated only during heating. As a result, the condenser cooling water inlet pipe 1
The pump 5 for driving the cooling water provided in the pump 3 may be any pump capable of circulating the cooling water between the condenser 2 and the heat exchanger 4 for heat radiation so that the pump can be circulated. become. In addition, during the period from spring to autumn when heating is unnecessary, there is no need to operate the hot water supply pump 25, and the pump power can be saved.

【0018】なお、温水供給ポンプ25を復水器冷却水
出口配管25に取り付け、温水戻り配管10をこの復水
器冷却水出口配管25の温水配管11分岐部より下流に
接続したので、温水供給量が変化しても復水器2を循環
する冷却水の流量が変化せず、冷却水(温水)供給量を
空調負荷に応じて変えることができる。
The hot water supply pump 25 is attached to the condenser cooling water outlet pipe 25, and the hot water return pipe 10 is connected downstream of the hot water pipe 11 branch of the condenser cooling water outlet pipe 25. Even if the amount changes, the flow rate of the cooling water circulating through the condenser 2 does not change, and the supply amount of the cooling water (hot water) can be changed according to the air conditioning load.

【0019】蒸気タービン1から取出せる動力は蒸気の
膨張比に関係し、蒸気タービン1の入口における蒸気の
エンタルピーと、蒸気タービンに導かれた蒸気を復水器
2の凝縮圧力まで断熱膨張させるときの蒸気エンタルピ
ーの差に比例する。したがって、蒸気タービンの入口に
おける蒸気の圧力と温度を一定とすれば、復水器2の凝
縮圧力が低いと蒸気タービンから取出せる動力が大きく
なり、復水器2の凝縮圧力が高くなると、蒸気タービン
から取出せる動力が減少する。
The power that can be extracted from the steam turbine 1 is related to the expansion ratio of the steam, and the enthalpy of the steam at the inlet of the steam turbine 1 and when the steam guided to the steam turbine is adiabatically expanded to the condensing pressure of the condenser 2. Is proportional to the difference in steam enthalpy of the Therefore, assuming that the pressure and temperature of the steam at the inlet of the steam turbine are constant, the power that can be extracted from the steam turbine increases when the condensing pressure of the condenser 2 is low, and the condensing pressure of the steam increases when the condensing pressure of the condenser 2 increases. The power that can be extracted from the turbine decreases.

【0020】復水器2における蒸気の凝縮圧力は、復水
器を冷却する冷却水温度によって変化する。復水器2に
おける蒸気の凝縮圧力が低くなると、蒸気タービン1の
出口における蒸気の湿り度が高くなる。蒸気の湿り度が
高くなると、蒸気中のドレーンにより蒸気タービンの羽
根がエロージョンを起こす恐れが生じる。そのため、凝
縮圧力の下限が定められている。復水器2における蒸気
の凝縮圧力は、一般に絶対圧9.8kPa程度に設定さ
れる。このときの蒸気の凝縮温度は約45℃である。
The condensation pressure of the steam in the condenser 2 changes depending on the temperature of the cooling water for cooling the condenser. When the condensation pressure of the steam in the condenser 2 decreases, the wetness of the steam at the outlet of the steam turbine 1 increases. When the wetness of the steam increases, there is a risk that the drain in the steam may cause erosion of the blades of the steam turbine. Therefore, the lower limit of the condensing pressure is set. The condensation pressure of steam in the condenser 2 is generally set to about 9.8 kPa absolute pressure. The condensation temperature of the steam at this time is about 45 ° C.

【0021】次に、空調負荷の少ない時期に、発電電力
の低下をできる限り低減する方法について、以下に詳述
する。夏期及び春、秋の中間期は、電力需要元16の暖
房用温熱需要が無いので、発電量を優先する。この発電
優先運転では、温水供給ポンプ25を停止し、電力需要
元16への温水供給を止める。それとともに、復水器2
の冷却水出口温度が夏期の最高温度(約40℃〜42
℃)以下になるように温度検出器17が検出した温度を温
度調節計18を介して制御演算装置21に入力し、制御
演算装置21が冷却水温度に基づいて開放系冷却水バイ
パス弁22を制御する。なお、夏期の開放系冷却水の供
給温度は32℃、戻り温度は38℃、復水器冷却水入口
温度は34℃〜36℃、復水器出口温度は40℃〜42
℃程度に設定される。
Next, a method for minimizing a decrease in the generated power during a time when the air conditioning load is small will be described in detail below. In summer, and in the middle of spring and autumn, there is no heating demand for heating by the power demand source 16, so the power generation is prioritized. In this power generation priority operation, the hot water supply pump 25 is stopped, and the supply of hot water to the power demand source 16 is stopped. At the same time, condenser 2
The cooling water outlet temperature is the highest temperature in summer (about 40 ° C to 42 ° C).
The temperature detected by the temperature detector 17 is input to the control arithmetic unit 21 via the temperature controller 18 so as to be equal to or lower than the temperature, and the control arithmetic unit 21 switches the open system cooling water bypass valve 22 based on the cooling water temperature. Control. In the summer, the supply temperature of the open system cooling water is 32 ° C, the return temperature is 38 ° C, the condenser cooling water inlet temperature is 34 ° C to 36 ° C, and the condenser outlet temperature is 40 ° C to 42 ° C.
Set to about ° C.

【0022】春や秋の中間期は、開放系冷却水温度が2
0℃程度まで低下する。これに伴い、復水器2の冷却水
温度も低下する。復水器2の蒸気凝縮温度が下がり過ぎ
ると、復水器2に流入する蒸気の湿り度が高くなり、蒸
気タービンを損傷する恐れが生じる。このような不具合
の発生を防止するとともに復水器2の冷却動力を節減す
るために以下のように空調システムを操作する。温度検
出器17が検出した復水器2の冷却水温度を、温度調節計
18を介して制御演算装置21に入力する。この温度に
基づいて、制御演算装置21は復水ポンプ5の回転速度を
インバータ9を用いて低下させる。この結果、復水器2
に流入する冷却水量が低減し、復水器2の冷却水出口温
度が上昇する。そして、復水器2の蒸気凝縮温度が適正
に保持される。
In the middle period of spring and autumn, the temperature of the open cooling water is 2
The temperature drops to about 0 ° C. Accordingly, the cooling water temperature of the condenser 2 also decreases. If the steam condensing temperature of the condenser 2 is too low, the wetness of the steam flowing into the condenser 2 increases, which may cause damage to the steam turbine. The air-conditioning system is operated as described below in order to prevent such a problem from occurring and to reduce the cooling power of the condenser 2. The cooling water temperature of the condenser 2 detected by the temperature detector 17 is input to the control arithmetic unit 21 via the temperature controller 18. Based on this temperature, the control arithmetic unit 21 reduces the rotation speed of the condensate pump 5 using the inverter 9. As a result, condenser 2
The amount of cooling water flowing into the condenser 2 decreases, and the cooling water outlet temperature of the condenser 2 increases. Then, the steam condensation temperature of the condenser 2 is properly maintained.

【0023】さらに具体的に説明する。復水器2の冷却
水入口温度は、夏と同様に開放系冷却水温度より2〜4
℃高い、22℃〜24℃になる。そこで、復水器冷却水
ポンプ5の回転速度を定格回転速度の30%に下げ、復
水器2の冷却水量を30%に減少させる。このとき、復
水器2の冷却水出口温度は40℃〜42℃になる。これ
により、復水器2の蒸気凝縮温度を適正に保持できる。
なお、復水器冷却水ポンプ5の動力はポンプ回転速度の
3乗に比例して減少するから、ポンプ5の動力は、夏の
高温時の約1/10に減少する。したがって、大幅な動
力節減が可能になる。
This will be described more specifically. The cooling water inlet temperature of the condenser 2 is 2 to 4 times higher than the open system cooling water temperature as in summer.
° C higher, 22 ° C to 24 ° C. Therefore, the rotation speed of the condenser cooling water pump 5 is reduced to 30% of the rated rotation speed, and the amount of cooling water of the condenser 2 is reduced to 30%. At this time, the cooling water outlet temperature of the condenser 2 becomes 40 ° C. to 42 ° C. Thereby, the steam condensation temperature of the condenser 2 can be appropriately maintained.
Since the power of the condenser cooling water pump 5 decreases in proportion to the cube of the pump rotation speed, the power of the pump 5 decreases to about 1/10 of the high temperature in summer. Therefore, significant power savings are possible.

【0024】冬期は、電力需要元16における暖房用温
水需要が大であるから、復水器冷却水出口配管12に接
続された温水供給ポンプ25を運転し、電力需要元16
へ温水を供給する。これとともに、電力需要元16から
の温水戻り温度を温水戻り温度検出器19で検出し、こ
の検出した温水戻り温度を温度調節計20を介して制御
演算装置21に入力する。制御演算装置21は、この温
水戻り温度に基づいて開放系冷却水バイパス弁22の開
閉を制御する。これにより、温水戻り温度を暖房に必要
な温度に制御できる。
In winter, since the demand for heating hot water at the power demand source 16 is large, the hot water supply pump 25 connected to the condenser cooling water outlet pipe 12 is operated, and the power demand source 16 is operated.
Supply warm water to At the same time, the hot water return temperature from the power demand source 16 is detected by the hot water return temperature detector 19, and the detected hot water return temperature is input to the control arithmetic unit 21 via the temperature controller 20. The control arithmetic unit 21 controls the opening and closing of the open system cooling water bypass valve 22 based on the hot water return temperature. Thereby, the hot water return temperature can be controlled to a temperature required for heating.

【0025】電力需要元16の暖房負荷が少ないと、供
給した温水から熱が奪われないため戻り温水の温度は高
いままとなる。この場合、制御演算装置21は、開放系
冷却水バイパス弁22を閉じるように指令する。これに
より、放熱熱交換器4に流入する開放系冷却水量が増
え、復水器で昇温した冷却水の放熱量も増える。この結
果、復水器冷却水温度が下がり、電力需要元16へ供給
される温水の供給温度が下がり、温水戻り温度が所定の
温度に制御される。したがって、電力需要元16の暖房
負荷がほとんど0であれば、復水器2の冷却水出口温度
は、予め定めた電力需要元16からの温水戻り温度まで
低下する。
If the heating load of the power demand source 16 is small, the temperature of the returned hot water remains high because heat is not taken from the supplied hot water. In this case, the control arithmetic unit 21 instructs to close the open system cooling water bypass valve 22. As a result, the amount of open system cooling water flowing into the heat radiation heat exchanger 4 increases, and the amount of heat radiation of the cooling water heated by the condenser also increases. As a result, the condenser cooling water temperature decreases, the supply temperature of the hot water supplied to the power demand source 16 decreases, and the hot water return temperature is controlled to a predetermined temperature. Therefore, if the heating load of the power demand source 16 is almost zero, the cooling water outlet temperature of the condenser 2 decreases to a predetermined hot water return temperature from the power demand source 16.

【0026】電力需要元16の暖房負荷が多いと、供給
した温水から奪われる熱が多くなるので戻り温水温度は
低くなる。この場合、制御演算装置21は、開放系冷却
水バイパス弁22を開くように指令する。バイパス弁22
が開くと、放熱熱交換器4に流入する開放系冷却水量が
減り、復水器冷却水の放熱量も減る。その結果、復水器
冷却水温度が上昇し、電力需要元16に供給される温水
温度も上昇し、温水戻り温度が所定値に制御される。
When the heating load of the power demand source 16 is large, the amount of heat taken from the supplied hot water increases, so that the temperature of the returned hot water decreases. In this case, the control arithmetic unit 21 instructs the opening of the open system cooling water bypass valve 22. Bypass valve 22
When is opened, the amount of open system cooling water flowing into the heat radiation heat exchanger 4 decreases, and the amount of heat radiation of the condenser cooling water also decreases. As a result, the condenser cooling water temperature increases, the temperature of the hot water supplied to the power demand source 16 also increases, and the hot water return temperature is controlled to a predetermined value.

【0027】なお、暖房用温水の供給温度は50℃〜6
0℃に、戻り温度は40℃〜50℃に設定されることが
多い。したがって、本発明のように電力需要元16の温
水戻り温度が一定になるように制御したときに、復水器
冷却水を暖房用温水として使用すれば、復水器2の冷却
水出口温度は、暖房負荷により40℃〜50℃または5
0℃〜60℃に変化する。
The supply temperature of the heating hot water is 50 ° C. to 6 ° C.
The return temperature is often set to 0 ° C and the return temperature is set to 40 ° C to 50 ° C. Therefore, if the condenser cooling water is used as heating water for heating when the hot water return temperature of the power demand source 16 is controlled to be constant as in the present invention, the cooling water outlet temperature of the condenser 2 becomes , 40-50 ℃ or 5 depending on heating load
It changes from 0 ° C to 60 ° C.

【0028】ところで、蒸気タービン1の入口蒸気圧力
2059kPa(a),入口温度300℃とし、復水器2の
蒸気凝縮温度を45℃とすれば、蒸気タービン1の入口
蒸気のエンタルピーは5188J/kg,出口蒸気のエ
ンタルピーは2135J/kgとなり、出入口のエンタ
ルピー差は3053J/kgとなる。このエンタルピー
差に蒸気流量と蒸気タービン1の効率を掛けたものが、
蒸気タービン1の出力である。
If the inlet steam pressure of the steam turbine 1 is 2059 kPa (a), the inlet temperature is 300 ° C., and the steam condensing temperature of the condenser 2 is 45 ° C., the enthalpy of the inlet steam of the steam turbine 1 is 5188 J / kg. The enthalpy of the outlet steam is 2135 J / kg, and the enthalpy difference between the entrance and the exit is 3053 J / kg. This enthalpy difference multiplied by the steam flow rate and the efficiency of the steam turbine 1 gives
This is the output of the steam turbine 1.

【0029】このような設定の蒸気タービンシステムに
おいて、冬期の暖房用温水を取り出すために、復水器冷
却水温度を10℃高くすると、復水器2の蒸気凝縮温度
も10℃高い約55℃になる。このときの蒸気タービン
1の出口蒸気エンタルピーは2185J/kgとなり、
出入口のエンタルピー差は3003J/kgとなる。つ
まり、蒸気タービンの出力は約2%低下したことにな
る。この効率の低下分を熱量に換算する。低下分の熱量
は、50J/kgに蒸気タービン効率を掛けたものであ
り、蒸気タービン効率を70%と仮定すると、低下分の
熱量は、35J/kgである。
In the steam turbine system having such a setting, if the condenser cooling water temperature is raised by 10 ° C. in order to take out hot water for heating in winter, the steam condensation temperature of the condenser 2 is also raised by about 10 ° C. to about 55 ° C. become. At this time, the exit steam enthalpy of the steam turbine 1 is 2185 J / kg,
The enthalpy difference between the entrance and exit is 3003 J / kg. That is, the output of the steam turbine is reduced by about 2%. The reduced efficiency is converted into a calorific value. The calorific value of the decrease is obtained by multiplying 50 J / kg by the steam turbine efficiency. Assuming that the steam turbine efficiency is 70%, the calorific value of the decrease is 35 J / kg.

【0030】一方、復水器2における蒸気の凝縮熱量
は、蒸気タービンの入口蒸気のエンタルピー5188J
/kgから、蒸気タービン1で動力として取り出した熱
当量3003×0.7=2102J/kgと復水のエン
タルピー230J/kgとを差し引いた値である。この
値は、2856J/kgである。この熱は全て復水器冷
却水に移動するので、復水を全て暖房用温水として利用
すれば、発電で低下した熱当量の約82倍の熱が有効利
用されたことになる。したがって、総合熱効率が飛躍的
に向上する。
On the other hand, the heat of condensation of steam in the condenser 2 is determined by the enthalpy of steam at the inlet of the steam turbine.
/ Kg from the heat equivalent 3003 × 0.7 = 2102 J / kg extracted as power in the steam turbine 1 and the enthalpy of condensate 230 J / kg. This value is 2856 J / kg. Since all of this heat is transferred to the condenser cooling water, if all of the condensed water is used as warm water for heating, the heat equivalent to about 82 times the reduced heat equivalent of the power generation is effectively used. Therefore, the overall thermal efficiency is dramatically improved.

【0031】また、本実施例によれば暖房負荷に応じて
復水器冷却水の温度を調節するので、蒸気タービン1の
発電出力が低下する時間が短く、日本のように暖房時間
が比較的短い地域においては蒸気タービンによる発電と
空調とを共に効率的に満足できる。なお、開放系冷却水
バイパス弁の代わりに、復水器冷却水系バイパス弁を設
けても同様の効果が得られる。さらに、バイパス弁を三
方弁にしてもよい。また、本実施例では電力需要元に空
調用温水を供給したが、空調用温水の供給元と電力需要
元が異なっていてもよいことは言うまでもない。
Further, according to the present embodiment, since the temperature of the condenser cooling water is adjusted in accordance with the heating load, the time during which the power generation output of the steam turbine 1 decreases is short, and the heating time is relatively short as in Japan. In a short area, both power generation by a steam turbine and air conditioning can be efficiently satisfied. The same effect can be obtained by providing a condenser cooling water bypass valve instead of the open cooling water bypass valve. Further, the bypass valve may be a three-way valve. In the present embodiment, the hot water for air conditioning is supplied to the power demand source, but it goes without saying that the hot water for air conditioning and the power demand source may be different.

【0032】[0032]

【発明の効果】以上説明した本発明によれば、蒸気ター
ビンを利用した空調システムにおいて、電力需要と空調
負荷需要に応じて復水器の冷却水温度を変化させること
が可能になり、高効率に空調需要元の空調が可能にな
る。また、空調負荷に応じて冷却水温度を変えることも
可能であるから、空調負荷の少ない時期に空調に無駄に
エネルギーを費やすのを防止できる。
According to the present invention described above, in an air conditioning system using a steam turbine, it is possible to change the cooling water temperature of the condenser in accordance with the power demand and the air conditioning load demand, thereby achieving high efficiency. The air conditioning of the air conditioning demand source becomes possible. Further, since the temperature of the cooling water can be changed according to the air conditioning load, it is possible to prevent energy from being wasted on air conditioning when the air conditioning load is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蒸気タービンを利用した空調シス
テムの一実施例の系統図である。
FIG. 1 is a system diagram of an embodiment of an air conditioning system using a steam turbine according to the present invention.

【符号の説明】[Explanation of symbols]

1…発電用蒸気タービン、2…復水器、3…復水ポン
プ、4…放熱用熱交換器、5…冷却水ポンプ、16…電
力および熱の需要元、17…復水器の入口冷却水温度検出
器、18…温度調節計、19…温水温度検出器、20…温度調
節計、21…制御装置、22…冷却水流量調節弁、23…冷却
水ポンプ。
DESCRIPTION OF SYMBOLS 1 ... Steam turbine for electric power generation, 2 ... Condenser, 3 ... Condenser pump, 4 ... Heat exchanger for radiation, 5 ... Cooling water pump, 16 ... Demand source of electric power and heat, 17 ... Inlet cooling of condenser Water temperature detector, 18: Temperature controller, 19: Hot water temperature detector, 20: Temperature controller, 21: Control device, 22: Cooling water flow control valve, 23: Cooling water pump.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年11月15日(2000.11.
15)
[Submission date] November 15, 2000 (200.11.
15)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】上記目的を達成するための本発明の第2の
特徴は、蒸気タービンと、この蒸気タービンで減圧した
蒸気が導かれる復水器と、蒸気タービンに接続された発
電機と、復水器に導かれた蒸気と熱交換する復水冷却水
が循環する復水冷却水系統と、この復水冷却水系統に介
在させた放熱用熱交換器と、この放熱用熱交換器に導か
れた放熱用冷却水の水量を制御する制御弁と、復水冷却
水系統から分岐して空調負荷に復水冷却水を供給する空
調負荷管路と、この空調負荷管路内を流通する復水冷却
水温度を検出する負荷温度検出手段と、復水冷却水系統
を流通する復水冷却水温度を検出する復水冷却水温度検
出手段と、負荷温度検出手段が検出した負荷温度と復水
冷却水温度検出手段が検出した復水冷却水温度とに応じ
て、制御弁の開度を制御する制御装置とを備えたもので
ある。
A second feature of the present invention to achieve the above object is that a steam turbine, a condenser through which steam depressurized by the steam turbine is led, a generator connected to the steam turbine, and a condenser Condensate cooling water system that circulates condensate cooling water that exchanges heat with the steam led to the heat exchanger, a heat radiation heat exchanger interposed in the condensate cooling water system, and a heat radiation heat exchanger A control valve for controlling the amount of cooling water for heat dissipation, an air conditioning load pipe branching off from the condensate cooling water system and supplying condensed cooling water to the air conditioning load, and a condensate flowing through the air conditioning load pipe. Load temperature detecting means for detecting the cooling water temperature, condensed cooling water temperature detecting means for detecting the condensed cooling water temperature flowing through the condensed cooling water system, load temperature detected by the load temperature detecting means and condensed water cooling water temperature detecting means in accordance with the the condensate coolant temperature detected opening degree of the control valve It is obtained by a controller to controller.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】一方、クーリングタワーからの冷却水は、
開放系冷却水配管14に介在させた開放系冷却水ポンプ
23により放熱用熱交換器4に導かれ、復水器2からの
冷却水と熱交換して昇温し、図示しないクーリングタワ
ーへと送られる。開放系冷却水配管14の途中にはバイ
パス管26が設けられており、このバイパス管26には
開放系冷却水バイパス弁22が設けられている。
On the other hand, the cooling water from the cooling tower is
An open cooling water pump 23 interposed in the open cooling water pipe 14 guides the heat to the heat exchanger 4 for heat radiation, exchanges heat with the cooling water from the condenser 2 to increase the temperature, and sends it to a cooling tower (not shown). Can be A bypass pipe 26 is provided in the middle of the open system cooling water pipe 14, and an open system cooling water bypass valve 22 is provided in the bypass pipe 26.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】ところで、復水器2を冷却する冷却水とし
てはこれまで、クーリングタワーなどで冷却した冷却水
を多く用いていた。クーリングタワーを有する開放系の
冷却水は、クーリングタワーを流通するときに大気中の
塵埃を吸い込むので、暖房用温水に使用すると空調機器
を汚してしまい、つまりなどの不具合を発生させる恐れ
があった。本実施例では、復水器において蒸気を冷却す
る冷却水を密閉循環系を流れる冷却水とし、この冷却水
を電力需要元の空調に使用している。したがって、従来
の不具合を解消でき、電力需要元の空調用冷却水が大気
の塵埃などで汚染されることが無く、水質を清浄な状態
に保持できるから、空調機器を汚損することがない。
Incidentally, as the cooling water for cooling the condenser 2, a large amount of cooling water cooled by a cooling tower or the like has hitherto been used. The open-system cooling water having the cooling tower absorbs dust in the air when flowing through the cooling tower. Therefore, when used for heating hot water, the air-conditioning equipment may be soiled, which may cause troubles such as clogging. In this embodiment, the cooling water for cooling the steam and cooling water flowing in a closed circulation system have you to condenser, using cooling water in power demand source of the air conditioner. Therefore, the conventional problems can be solved, and the cooling water for air conditioning, which is the power demand source, is not contaminated by dust or the like in the air, and the water quality can be maintained in a clean state, so that the air conditioning equipment is not polluted.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】復水器2の冷却水を空調用の温水として供
給するために、この温水を空調負荷まで流すのに必要な
ヘッドを出し得る温水供給ポンプ25を温水供給配管1
1に取付けている。この温水供給ポンプ25は暖房時の
み運転すればよい。その結果、復水器冷却水入口配管1
3に設けた冷却水を駆動するポンプ5は、復水器2と放
熱用熱交換器4間を冷却水が循環できるだけのヘッド
出し得るものであればよく、ポンプの小型化が可能にな
る。また、暖房の不要な春〜秋まで期間は、温水供給ポ
ンプ25を運転する必要がなく、ポンプ動力の節減が図
れる。
In order to supply the cooling water of the condenser 2 as hot water for air conditioning, a hot water supply pump 25 capable of taking out a head necessary for flowing the hot water to an air conditioning load is connected to the hot water supply pipe 1.
It is attached to 1. The hot water supply pump 25 may be operated only during heating. As a result, the condenser cooling water inlet pipe 1
The pump 5 for driving the cooling water provided in 3 may be any pump that can provide a head that can circulate the cooling water between the condenser 2 and the heat exchanger 4 for heat radiation, and the pump can be downsized. . In addition, during the period from spring to autumn when heating is unnecessary, there is no need to operate the hot water supply pump 25, and the pump power can be saved.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】なお、温水供給ポンプ25を復水器冷却水
出口配管12に取り付け、温水戻り配管10をこの復水
器冷却水出口配管12の温水配管11分岐部より下流に
接続したので、温水供給量が変化しても復水器2を循環
する冷却水の流量が変化せず、冷却水(温水)供給量を
空調負荷に応じて変えることができる。
Since the hot water supply pump 25 is attached to the condenser cooling water outlet pipe 12 and the hot water return pipe 10 is connected downstream of the hot water pipe 11 branch of the condenser cooling water outlet pipe 12 , Even if the amount changes, the flow rate of the cooling water circulating through the condenser 2 does not change, and the supply amount of the cooling water (hot water) can be changed according to the air conditioning load.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】ところで、蒸気タービン1の入口蒸気圧力
2059kPa(a)入口温度300℃とし、復水器2
の蒸気凝縮温度を45℃とすれば、蒸気タービン1の入
口蒸気のエンタルピーは3019J/kg,出口蒸気
のエンタルピーは2135J/kgとなり、出入口の
エンタルピー差は884kJ/kgとなる。このエンタ
ルピー差に蒸気流量と蒸気タービン1の効率を掛けたも
のが、蒸気タービン1の出力である。
By the way, the inlet steam pressure of the steam turbine 1 is set to 2059 kPa (a) , the inlet temperature is set to 300 ° C., and the condenser 2
If the steam condensation temperature and 45 ° C., enthalpy of inlet steam of the steam turbine 1 3019 k J / kg, the enthalpy of the outlet steam 2135 k J / kg, and the enthalpy difference of the doorway becomes 884k J / kg. The output of the steam turbine 1 is obtained by multiplying the enthalpy difference by the steam flow rate and the efficiency of the steam turbine 1.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】このような設定の蒸気タービンシステムに
おいて、冬期の暖房用温水を取り出すために、復水器冷
却水温度を10℃高くすると、復水器2の蒸気凝縮温度
も10℃高い約55℃になる。このときの蒸気タービン
1の出口蒸気エンタルピーは2185J/kgとな
り、出入口のエンタルピー差は834kJ/kgとな
る。つまり、蒸気タービンの出力は約%低下したこと
になる。この効率の低下分を熱量に換算する。低下分の
熱量は、50J/kgに蒸気タービン効率を掛けたも
のであり、蒸気タービン効率を70%と仮定すると、低
下分の熱量は、35J/kgである。
In the steam turbine system having such a setting, if the condenser cooling water temperature is raised by 10 ° C. in order to take out hot water for heating in winter, the steam condensation temperature of the condenser 2 is also raised by about 10 ° C. to about 55 ° C. become. Outlet steam enthalpy of the steam turbine 1 in this case is 2185 k J / kg, and the enthalpy difference of the doorway becomes 834k J / kg. That is, the output of the steam turbine is reduced by about 6 %. The reduced efficiency is converted into a calorific value. The calorie of the drop is 50 kJ / kg multiplied by the steam turbine efficiency. Assuming a steam turbine efficiency of 70%, the calorie of the drop is 35 kJ / kg.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】一方、復水器2における蒸気の凝縮熱量
は、蒸気タービンの入口蒸気のエンタルピー3019k
J/kgから、蒸気タービン1で動力として取り出した
熱当量834×0.7=584kJ/kgと復水のエン
タルピー230J/kgとを差し引いた値である。こ
の値は、2205J/kgである。この熱は全て復水
器冷却水に移動するので、復水を全て暖房用温水として
利用すれば、発電で低下した熱当量の約63倍の熱が有
効利用されたことになる。したがって、総合熱効率が飛
躍的に向上する。
On the other hand, the heat of condensation of steam in the condenser 2 is determined by the enthalpy of steam at the inlet of the steam turbine 3019 k
From J / kg, a value obtained by subtracting the enthalpy 230 k J / kg of heat taken out as the power in the steam turbine 1 eq 834 × 0.7 = 584k J / kg and condensate. This value is 2205 k J / kg. Since all of this heat is transferred to the condenser cooling water, if all of the condensed water is used as warm water for heating, about 63 times the heat equivalent of the reduced heat equivalent in power generation is effectively used. Therefore, the overall thermal efficiency is dramatically improved.

フロントページの続き (72)発明者 高山 光雄 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所システム事業部内 (72)発明者 村越 新之 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所システム事業部内 (72)発明者 箕輪 良平 茨城県土浦市神立町603番地 株式会社テ ィーテック内 (72)発明者 河村 和成 愛知県安城市藤井町高根10番地 アイシ ン・エィ・ダブリュ株式会社施設部内 (72)発明者 佐々部 修 愛知県安城市藤井町高根10番地 アイシ ン・エィ・ダブリュ株式会社施設部内 Fターム(参考) 3L050 BB07 BB12 3L054 BE10 Continued on the front page (72) Inventor Mitsuo Takayama 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Inside the Hitachi, Ltd. Systems Division (72) Inventor Shinyuki Murakoshi 4-6- 6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. Ryohei Minowa 603, Kandamachi, Tsuchiura-shi, Ibaraki, Japan T-Tech Co., Ltd. (72) Inventor Osamu Sasabe 10 Takane, Fujii-cho, Anjo-shi, Aichi F-term in the facility department of Aisin AW Co., Ltd. 3L050 BB07 BB12 3L054 BE10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】蒸気タービンと、この蒸気タービンで減圧
した蒸気を水に変換する復水器と、この復水器で蒸気タ
ービンから導かれた蒸気と熱交換する復水冷却水が循環
し、放熱用熱交換器を有する復水冷却水系統とを備え、
前記復水冷却水系統から分岐して空調負荷に復水冷却水
を供給する空調管路を設け、前記放熱用熱交換器は復水
器から戻った復水冷却水と放熱用冷却水とを熱交換さ
せ、この放熱用冷却水の流量を制御する制御装置を設け
たことを特徴とする蒸気タービンを利用した空調システ
ム。
1. A steam turbine, a condenser for converting steam depressurized by the steam turbine into water, and condensate cooling water for exchanging heat with steam guided from the steam turbine by the condenser, A condensate cooling water system having a heat exchanger for heat dissipation,
An air-conditioning pipe is provided to branch off from the condensate cooling water system and supply condensate cooling water to the air conditioning load, and the heat-radiating heat exchanger separates the condensed cooling water and the heat-radiating cooling water returned from the condenser. An air conditioning system using a steam turbine, wherein a control device for performing heat exchange and controlling a flow rate of the cooling water for radiation is provided.
【請求項2】前記空調管路に空調負荷量を検出する検出
手段を設け、この検出手段が検出した空調負荷量に応じ
て前記制御装置が放熱用冷却水の流量を制御することを
特徴とする請求項1に記載の蒸気タービンを利用した空
調システム。
2. An air conditioning system according to claim 2, wherein said air conditioning pipeline includes a detection means for detecting an air conditioning load, and said control unit controls a flow rate of the cooling water in accordance with the air conditioning load detected by said detection means. An air conditioning system using the steam turbine according to claim 1.
【請求項3】前記蒸気タービンに発電手段を接続し、こ
の発電手段の発電量を優先するときは、前記放熱用冷却
水流量を増大させて復水冷却水温度を低下させるよう前
記制御装置が制御することを特徴とする請求項1または2
に記載の蒸気タービンを利用した空調システム。
3. When the steam turbine is connected to a power generating means, and when priority is given to the amount of power generated by the power generating means, the control device increases the flow rate of the cooling water for cooling and lowers the temperature of the condensed cooling water. 3. The method according to claim 1, wherein the control is performed.
An air conditioning system using the steam turbine according to item 1.
【請求項4】蒸気タービンと、この蒸気タービンで減圧
した蒸気が導かれる復水器と、前記蒸気タービンに接続
された発電機と、前記復水器に導かれた蒸気と熱交換す
る復水冷却水が循環する復水冷却水系統と、この復水冷
却水系統に介在させた放熱用熱交換器と、この放熱用熱
交換器に導かれた放熱用冷却水の水量を制御する制御弁
と、前記復水冷却水系統から分岐して空調負荷に復水冷
却水を供給する空調負荷管路と、この空調負荷管路内を
流通する復水冷却水温度を検出する負荷温度検出手段
と、前記復水冷却水系統を流通する復水冷却水温度を検
出する復水冷却水温度検出手段と、前記負荷温度検出手
段が検出した負荷温度と前記復水冷却水温度検出手段が
検出した復水冷却水温度とに応じて、前記制御弁の開度
を制御する制御装置とを備えたことを特徴とする蒸気タ
ービンを利用した空調システム。
4. A steam turbine, a condenser through which steam depressurized by the steam turbine is led, a generator connected to the steam turbine, and a condensate for performing heat exchange with the steam led to the condenser. A condensate cooling water system through which the cooling water circulates, a heat radiation heat exchanger interposed in the condensate cooling water system, and a control valve for controlling the amount of heat radiation cooling water guided to the heat radiation heat exchanger An air conditioning load pipe branching from the condensed cooling water system and supplying condensed cooling water to the air conditioning load, and a load temperature detecting means for detecting a temperature of the condensed cooling water flowing through the air conditioning load pipe. A condensed cooling water temperature detecting means for detecting a condensed cooling water temperature flowing through the condensed cooling water system; a load temperature detected by the load temperature detecting means and a condensed water temperature detected by the condensed cooling water temperature detecting means. A control device for controlling an opening degree of the control valve according to a water cooling water temperature Air conditioning system utilizing a steam turbine, comprising the.
JP2000278657A 2000-09-08 2000-09-08 Air conditioning system using steam turbine Expired - Fee Related JP3533367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278657A JP3533367B2 (en) 2000-09-08 2000-09-08 Air conditioning system using steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278657A JP3533367B2 (en) 2000-09-08 2000-09-08 Air conditioning system using steam turbine

Publications (2)

Publication Number Publication Date
JP2002081676A true JP2002081676A (en) 2002-03-22
JP3533367B2 JP3533367B2 (en) 2004-05-31

Family

ID=18763787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278657A Expired - Fee Related JP3533367B2 (en) 2000-09-08 2000-09-08 Air conditioning system using steam turbine

Country Status (1)

Country Link
JP (1) JP3533367B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042801A3 (en) * 2007-09-25 2009-07-16 J Edward Cichanowicz Integration of an internet-serving datacenter with a thermal power station and reducing operating costs and emissions of carbon dioxide
CN102392702A (en) * 2011-07-20 2012-03-28 李德军 Fully-closed circulating water system for recovering latent heat of condensing generation units by utilizing air cooler
KR20170138301A (en) * 2016-06-07 2017-12-15 현대중공업 주식회사 Floating marine structure with electric power generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042801A3 (en) * 2007-09-25 2009-07-16 J Edward Cichanowicz Integration of an internet-serving datacenter with a thermal power station and reducing operating costs and emissions of carbon dioxide
CN102392702A (en) * 2011-07-20 2012-03-28 李德军 Fully-closed circulating water system for recovering latent heat of condensing generation units by utilizing air cooler
KR20170138301A (en) * 2016-06-07 2017-12-15 현대중공업 주식회사 Floating marine structure with electric power generator
KR102239298B1 (en) * 2016-06-07 2021-04-09 한국조선해양 주식회사 Floating marine structure with electric power generator

Also Published As

Publication number Publication date
JP3533367B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
JP3886977B2 (en) Combined air conditioning system
KR100657471B1 (en) Cogeneration system
JP2010096436A (en) Ejector type refrigeration system
KR100591320B1 (en) Air-conditioner using cogeneration system
JPWO2003074854A1 (en) Turbine equipment, combined power generation equipment and turbine operating method
CZ216296A3 (en) Method of transferring heating and/or cooling energy and apparatus for making the same
CA1278684C (en) Method and apparatus for heating a large building
JPS6134335A (en) Waste heat utilization system for engine and absorption-type water heating/cooling unit
JP2002081676A (en) Air conditioning system utilizing steam turbine
JP6596320B2 (en) Plant equipment, plant equipment operating method and plant equipment control device
JP2004325045A (en) Air conditioner
JPS5848824B2 (en) Air conditioning/heating water heater
JPS60164178A (en) Solar heat collecting device
JP2002156493A (en) Site heat supply equipment of nuclear power station
JPH02301606A (en) Cogeneration system
CA1185107A (en) Cooling system
JP2001214758A (en) Gas turbine combined power generation plant facility
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
KR100911777B1 (en) Air condition system using waste heat in steam supply and power generation
JPH0355752B2 (en)
JP2954256B2 (en) Nuclear power plant hot water system
JP2002130857A (en) Steam heating double effect type absorption refrigerating machine, water cooler and heater as well as power generating, room cooling-and-heating and hot- water supplying system employing the same, and control method thereof
JP3256586B2 (en) Nuclear power plant heating and cooling equipment
JPS6014067A (en) Air-conditioning hot-water supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Ref document number: 3533367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees