JP2002081601A - Pressurized fluidized bed boiler apparatus - Google Patents

Pressurized fluidized bed boiler apparatus

Info

Publication number
JP2002081601A
JP2002081601A JP2000264222A JP2000264222A JP2002081601A JP 2002081601 A JP2002081601 A JP 2002081601A JP 2000264222 A JP2000264222 A JP 2000264222A JP 2000264222 A JP2000264222 A JP 2000264222A JP 2002081601 A JP2002081601 A JP 2002081601A
Authority
JP
Japan
Prior art keywords
water
cooling wall
fluid
pipe
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000264222A
Other languages
Japanese (ja)
Inventor
Tetsuya Iwase
徹哉 岩瀬
Taro Sakata
太郎 坂田
Kenji Tokawa
謙示 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000264222A priority Critical patent/JP2002081601A/en
Publication of JP2002081601A publication Critical patent/JP2002081601A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify the furnace wall structure of the combustion furnace of a pressurized fluidized bed boiler housed in a pressure vessel and to reduce the size of the vessel. SOLUTION: The water-cooled walls of the combustion furnace of the pressurized fluidized bed boiler are constituted by alternately combining water-cooled walls composed of ascending-flow water wall pipes 42 and 44 and water-cooled walls composed of descending-flow water wall pipes 42 and 46 with each other. The cross-sectional areas of the flow passages of the water pipes 42 and 46 are set to such values that always make the pressure losses between the upper- end inlets and lower-end outlets of the pipes 42 and 46 larger than the head pressure differences between the upper-end inlets and lower-end outlets of the pipes 42 and 46 during the operation of the boiler. In addition, the heat transferring areas of the pipes 42 and 46 are set to such values that make the enthalpies of fluids at the lower-end outlets of the pipes 42 and 46 lower than saturated enthalpies.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加圧流動層ボイラ装
置に係り、特に圧力容器に収容される加圧流動層燃焼炉
の炉壁構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized-bed boiler apparatus, and more particularly to a furnace wall structure of a pressurized fluidized-bed combustion furnace housed in a pressure vessel.

【0002】[0002]

【従来の技術】加圧流動層ボイラにおいて、流動層燃焼
炉の炉壁を水冷壁管で構成し、燃焼炉内に蒸発器管、過
熱器管といった伝熱管を配置することは公知である。例
えば、特開平7−127803号公報には、図4、図5
に示すように、燃焼炉内に配置した伝熱管と炉壁を構成
する水冷壁管が示されている。また、特開平6−137
504公報には、図6に示すように、炉壁を水冷壁で構
成し、そのほかに蒸発器、過熱器等を設けた加圧流動層
ボイラの系統構成が示されている。
2. Description of the Related Art In a pressurized fluidized-bed boiler, it is known that a furnace wall of a fluidized-bed combustion furnace is constituted by a water-cooled wall tube and heat transfer tubes such as an evaporator tube and a superheater tube are arranged in the combustion furnace. For example, Japanese Unexamined Patent Publication No. 7-127803 discloses FIGS.
1 shows a heat transfer tube disposed in a combustion furnace and a water-cooled wall tube constituting a furnace wall. Further, Japanese Unexamined Patent Publication No.
FIG. 6 shows a system configuration of a pressurized fluidized-bed boiler in which a furnace wall is formed of a water-cooled wall and an evaporator, a superheater, and the like are provided as shown in FIG.

【0003】上記二つの公報に示された流動層燃焼炉に
おいては、炉壁を構成する水冷壁は、管内流体が上昇流
となるように配置され、水冷壁上端の出口を出た流体
は、大径の連絡管で別の水冷壁の下端に導かれるように
なっている。
In the fluidized bed combustion furnace disclosed in the above two publications, the water cooling wall constituting the furnace wall is arranged so that the fluid in the pipe flows upward, and the fluid that has exited the outlet at the upper end of the water cooling wall is A large-diameter connecting pipe leads to the lower end of another water-cooled wall.

【0004】なお、上記図4,5,6の図中の番号はそ
れぞれ公報において使用された番号で、後述する本発明
の実施の形態に付した番号とは異なる。
[0006] The numbers in FIGS. 4, 5, and 6 are the numbers used in the gazette, and are different from the numbers assigned to the embodiments of the present invention described later.

【0005】[0005]

【発明が解決しようとする課題】一般に水冷壁で構成す
るボイラの炉壁の管内流体の流れ方向は上昇流としてあ
る。すなわち、水冷壁に供給される給水は、水冷壁の下
端を入口とし水冷壁を上昇しながら燃焼炉の熱で加熱さ
れて水冷壁上端の出口から流れ出る。これは、管内流体
が水冷壁を通過する過程で加熱されることで、出口部の
流体の比重量は入口部のそれよりも小さくなり、入口と
出口の比重差に相当する上昇力が出口流体に働くことか
ら、出口部分を上方とする方が管内の流体流れがスムー
スになり、圧力損失も少なくて済むためである。このこ
とは、加圧流動層ボイラの水冷壁でも同様であり、図
4、図5、図6に示す例からも明らかである。
Generally, the flow direction of the fluid in the pipe on the furnace wall of a boiler having a water-cooled wall is an upward flow. That is, the water supplied to the water cooling wall is heated by the heat of the combustion furnace while flowing up the water cooling wall with the lower end of the water cooling wall as an inlet, and flows out from the outlet at the upper end of the water cooling wall. This is because the fluid in the pipe is heated in the process of passing through the water cooling wall, the specific weight of the fluid at the outlet is smaller than that at the inlet, and the rising force corresponding to the difference in specific gravity between the inlet and the outlet is the outlet fluid. This is because, when the outlet portion is located upward, the fluid flow in the pipe becomes smoother and the pressure loss can be reduced. This is the same for the water-cooled wall of the pressurized fluidized-bed boiler, and is clear from the examples shown in FIGS. 4, 5, and 6.

【0006】ところで、炉壁を構成する水冷壁がいくつ
かに区分され、管内流体が順に前記区分された水冷壁を
通過するような系統構成が一般的に採用されているが、
このような系統構成では、炉壁を構成する水冷壁の下端
を全て管内流体の入口側とし、上端を全て出口側とする
には、水冷壁上端の出口と水冷壁下端の入口を接続する
下降流れの連絡管が必要になる。加圧流動層ボイラの場
合、燃焼炉の炉壁の外側に連絡管を配置するスペース
と、連絡管の支持部材が必要となるため、これらを収容
する圧力容器の寸法が大きくなり、収容される部材の重
量も増加する。
By the way, a system configuration is generally adopted in which a water cooling wall constituting a furnace wall is divided into several sections, and a fluid in a pipe passes through the divided water cooling walls in order.
In such a system configuration, in order to make the lower end of the water cooling wall constituting the furnace wall all the inlet side of the in-pipe fluid and make the upper end all the outlet side, the lowering connecting the outlet of the upper end of the water cooling wall and the inlet of the lower end of the water cooling wall is performed. A flow connection pipe is required. In the case of a pressurized fluidized-bed boiler, a space for arranging the communication pipe outside the furnace wall of the combustion furnace and a support member for the communication pipe are required, so that the size of the pressure vessel for accommodating them is increased and accommodated The weight of the member also increases.

【0007】特開平6−137504号公報には、図6
に示すように、下降流の連絡管と水冷壁管を一体とし
て、圧力容器の寸法増加を抑制する構造が提案されてい
る。しかし、この構造では、大径の連絡管と小径の水冷
壁管の間に発生する熱応力を抑制するために、複雑な支
持構造を要することが、特開平6−193809号公報
に述べられている。
Japanese Patent Application Laid-Open No. Hei 6-137504 discloses FIG.
As shown in (1), there has been proposed a structure in which a downflow connecting pipe and a water-cooling wall pipe are integrated to suppress an increase in the size of the pressure vessel. However, this structure requires a complicated supporting structure in order to suppress the thermal stress generated between the large-diameter connecting pipe and the small-diameter water-cooling wall pipe, as described in Japanese Patent Application Laid-Open No. 6-193809. I have.

【0008】本発明の目的は、加圧流動層ボイラ装置の
圧力容器内に収容される燃焼炉の炉壁構造の簡素化と圧
力容器の小型化にある。
An object of the present invention is to simplify the structure of a furnace wall of a combustion furnace housed in a pressure vessel of a pressurized fluidized-bed boiler apparatus and to downsize the pressure vessel.

【0009】[0009]

【課題を解決するための手段】水冷壁管の一部の管内流
れを下降流れとし、上昇流れの水冷壁と下降流れの水冷
壁を交互に組み合わせて炉壁を構成し、最初に一部の水
冷壁の下端に管内流体を流入させ、該水冷壁の管を上昇
流れで通過させ、水冷壁の上端に達した管内流体を、水
冷壁の別の一部の上端に導き、該水冷壁の管を下降流れ
で通過させるように構成すれば、上昇流れの水冷壁上端
の管寄せと下降流れの水冷壁上端の管寄せを一体化で
き、さらに下降流れの水冷壁下端の管寄せと上昇流れの
水冷壁下端の管寄せを一体化できるから、水冷壁管を接
続する連絡管は不要になる。連絡管が不要になれば連絡
管を支持する支持構造も不要になり、炉壁が簡素化され
るともに、圧力容器の小型化が可能になる。
Means for Solving the Problems The flow in a part of the water cooling wall pipe is defined as a downward flow, and the furnace wall is constructed by alternately combining the upward cooling water cooling wall and the downward flowing water cooling wall. Fluid in the pipe flows into the lower end of the water cooling wall, passes through the pipe of the water cooling wall in an ascending flow, and guides the fluid in the pipe that has reached the upper end of the water cooling wall to the upper end of another part of the water cooling wall. If the pipe is configured to pass through the downflow, the header at the upper end of the water cooling wall of the ascending flow can be integrated with the header at the upper end of the water cooling wall of the descending flow. Since the header at the lower end of the water cooling wall can be integrated, a connecting pipe for connecting the water cooling wall tube is unnecessary. If the communication pipe is not required, a support structure for supporting the communication pipe is not required, so that the furnace wall is simplified and the pressure vessel can be downsized.

【0010】しかし、加熱された水冷壁管内を流体が下
降流れで流れる場合は、水冷壁の下方の流体の比重量が
水冷壁管の上方の流体の比重量よりも受熱量に応じて減
少するため、下向きの流れとは逆方向の上昇力(上向き
の対流を起こそうとする力)が流体に対して作用する。
したがって、下向きの流れを維持するには、流体に作用
する前記上昇力に打ち勝つだけの下向きの流れの推進力
が必要になる。
However, when the fluid flows downward in the heated water-cooled wall pipe, the specific weight of the fluid below the water-cooled wall pipe decreases in accordance with the amount of heat received than the specific weight of the fluid above the water-cooled wall pipe. Therefore, an upward force (a force that causes an upward convection) in the direction opposite to the downward flow acts on the fluid.
Therefore, maintaining a downward flow requires a downward flow thrust that is sufficient to overcome the upward force acting on the fluid.

【0011】流体に働く上昇力Fupは、式(1)で示す
ように、水冷壁管の上下端間の比重量差に水冷壁管の垂
直寸法Hを乗じて算出される。
The upward force Fup acting on the fluid is calculated by multiplying the specific weight difference between the upper and lower ends of the water-cooled wall pipe by the vertical dimension H of the water-cooled wall pipe, as shown in equation (1).

【0012】 Fup=(ρ1−ρ2)・H ‥‥‥(1) ρ1:下降流れ水冷壁管入口での流体の比重量 ρ2:下降流れ水冷壁管出口での流体の比重量 一方、下降流れの推進力Fdwは、水冷壁の上下端の圧力
勾配に比例し、式(2)で算出される。
Fup = (ρ1−ρ2) · H ‥‥‥ (1) ρ1: Specific weight of the fluid at the inlet of the downflow water-cooled wall pipe ρ2: Specific weight of the fluid at the outlet of the downflow water-cooled wall pipe On the other hand, the downflow Is proportional to the pressure gradient at the upper and lower ends of the water-cooled wall, and is calculated by equation (2).

【0013】 Fdw=ΔP=K・ρ・(G/A) ‥‥‥(2) ΔP:水冷壁上下端間の流体の圧力勾配 K :抵抗係数 ρ :水冷壁の流体の平均比重量(=(ρ1+ρ2)/
2) G :水冷壁を通過する管内流体の質量流量 A :水冷壁管の流路断面積 安定した下降流れを形成するためには、「下向きの推進
力」>「上昇力」の条件、つまり下記の式(3)が成立
していることが必要になる。このことは、下降流れの管
の上端入口と下端出口間の圧力損失が、該管の上端入口
と下端出口間の水頭圧差よりも、ボイラ運転中は常に大
きくなることを意味する。
Fdw = ΔP = K · ρ · (G / A) 2 ‥‥‥ (2) ΔP: Pressure gradient of fluid between upper and lower ends of water cooling wall K: Resistance coefficient ρ: Average specific weight of fluid on water cooling wall ( = (Ρ1 + ρ2) /
2) G: Mass flow rate of fluid in the pipe passing through the water-cooling wall A: Cross-sectional area of the flow path of the water-cooling wall pipe In order to form a stable downward flow, the condition of "downward propulsive force">"risingforce", that is, It is necessary that the following equation (3) holds. This means that the pressure drop between the upper and lower outlets of the downflow tube is always greater during boiler operation than the head pressure difference between the upper and lower outlets of the tube.

【0014】 (G/A)>2{(ρ1−ρ2)/(ρ1+ρ2)}・H/K (3) 式(3)において、H,K,Aは配管の構造によって決
まる数値であり、ρ1、ρ2は、Gによって決まる数値
である。さらに、H,Kは、燃焼に必要な流動層燃焼炉
の躯体の寸法として一義的に決定される寸法である。
(G / A) 2 > 2 {(ρ1−ρ2) / (ρ1 + ρ2)} · H / K (3) In equation (3), H, K, and A are numerical values determined by the structure of the pipe. ρ1 and ρ2 are numerical values determined by G. Further, H and K are dimensions uniquely determined as dimensions of a body of a fluidized bed combustion furnace required for combustion.

【0015】したがって、式(3)を成立させる方法と
しては、水冷壁管の本数を増減して流路断面積Aを調
整する方法と、管内の通過流量Gを調整する方法が利
用できる。式(3)を成立させる働きは、いずれも同等
であるが、流路断面積を調整する方法は、主に機器の
設計段階で実施する方策であるので、運転開始後の実際
の受熱量が設計段階と異なる可能性がある場合には、前
記方法と運用での調整が可能な方法を組み合わせて
用いることで、下降流れの維持を確実にすることができ
る。
Therefore, as a method for satisfying the expression (3), a method of adjusting the flow path cross-sectional area A by increasing or decreasing the number of water-cooling wall pipes and a method of adjusting the passage flow rate G in the pipes can be used. The function of satisfying the expression (3) is the same, but the method of adjusting the cross-sectional area of the flow path is a measure mainly implemented at the design stage of the equipment. When there is a possibility that the flow may be different from the design stage, the maintenance of the downward flow can be ensured by using a combination of the above method and a method that can be adjusted in operation.

【0016】水冷壁管の下降流れの流路断面積Aを調整
する前記方法の場合、水冷壁管の総本数は加圧流動層
燃焼炉の躯体寸法に応じて決定されるので、水冷壁を複
数の複数の上昇流れの水冷壁と下降流れの水冷壁に分割
し、上昇流れの水冷壁と下降流れの水冷壁を交互に配置
すればよい。このように構成すれば、図3に示すよう
に、上昇流れの水冷壁上端の管寄せと下降流れの水冷壁
上端の管寄せを一体化でき、さらに下降流れの水冷壁下
端の管寄せと上昇流れの水冷壁下端の管寄せを一体化で
きるから、水冷壁管を接続する連絡管は不要になる。
In the above method of adjusting the cross-sectional area A of the downflow of the water cooling wall tube, the total number of the water cooling wall tubes is determined according to the frame size of the pressurized fluidized bed combustion furnace. It may be divided into a plurality of ascending flow water cooling walls and descending flow water cooling walls, and the ascending flow water cooling walls and the descending flow water cooling walls may be arranged alternately. With this configuration, as shown in FIG. 3, the header at the upper end of the water-cooling wall of the rising flow and the header at the upper end of the water-cooling wall of the descending flow can be integrated, and the header at the lower end of the water-cooling wall of the descending flow can be integrated. Since the header at the lower end of the water cooling wall of the flow can be integrated, a connecting pipe for connecting the water cooling wall pipe becomes unnecessary.

【0017】管内の通過流量Gを調整する方法は、水
冷壁管出入り口の流体の比重量値ρ1、ρ2を計測する
手段と、これに応じて通過流量Gを調整する手段が必要
である。しかし、流体の比重量は該当部分の温度圧力を
測定して物性値として算出することができ、通過流量の
調整は、系統の一部に流量計と調節弁を設置することな
ど、既存の技術で実現できる。但し、流体の比重量は、
汽水混合領域では、圧力・温度に基づいて一義的に算出
することができないので、流体の状態値(エンタルピ)
が汽水混合領域より低位の状態(該当の温度・圧力での
飽和エンタルピ以下)であることが必要である。該当部
での流体の状態値(エンタルピ)は、圧力・温度の測定
値から物性値として容易に算出できる。水冷壁を流れる
流体の状態値(エンタルピ)は温度によって変わるが、
この温度は、水冷壁管の燃焼炉からの受熱量、具体的に
は伝熱面積によって変化する。つまり、予め水冷壁の伝
熱面積を、水冷壁の下端出口における流体のエンタルピ
が飽和エンタルピ以下となるような値に設定すればよ
い。流体の温度はまた、水冷壁管を流れる流体の流量に
よっても変化する。流体の状態値(エンタルピ)が飽和
エンタルピを越えている場合は、水冷壁管を流れる流体
の流量を調整して、水冷壁の下端出口における流体のエ
ンタルピが飽和エンタルピ以下となるような値に設定し
てもよい。
The method of adjusting the flow rate G in the pipe requires means for measuring the specific weights ρ1 and ρ2 of the fluid at the inlet / outlet of the water-cooled wall pipe, and means for adjusting the flow rate G accordingly. However, the specific weight of the fluid can be calculated as a physical property value by measuring the temperature and pressure of the corresponding part, and the flow rate can be adjusted by using a flow meter and a control valve in a part of the system. Can be realized. However, the specific weight of the fluid is
In the brackish water mixing region, it cannot be unambiguously calculated based on pressure and temperature, so the fluid state value (enthalpy)
Must be lower than the brackish water mixing region (less than the saturation enthalpy at the corresponding temperature and pressure). The state value (enthalpy) of the fluid at the corresponding part can be easily calculated as a physical property value from the measured values of the pressure and the temperature. The state value (enthalpy) of the fluid flowing through the water cooling wall changes depending on the temperature,
This temperature varies depending on the amount of heat received from the combustion furnace by the water-cooled wall tube, specifically, the heat transfer area. That is, the heat transfer area of the water cooling wall may be set in advance to a value such that the enthalpy of the fluid at the lower end outlet of the water cooling wall is equal to or less than the saturation enthalpy. The temperature of the fluid also depends on the flow rate of the fluid flowing through the water wall tube. If the fluid state value (enthalpy) exceeds the saturation enthalpy, adjust the flow rate of the fluid flowing through the water-cooling wall pipe to a value such that the enthalpy of the fluid at the outlet at the lower end of the water-cooling wall is less than the saturation enthalpy. May be.

【0018】つまり、水冷壁管の一部の管内流れを下降
流れとし、上昇流れの水冷壁と下降流れの水冷壁を交互
に組み合わせて炉壁を構成し、最初に一部の水冷壁の下
端に管内流体を流入させ、該水冷壁の管を上昇流れで通
過させ、水冷壁の上端に達した管内流体を、水冷壁の別
の一部の上端に導き、該水冷壁の管を下降流れで通過さ
せるようにするとともに、前記下降流れの水冷壁管の流
路断面積を計画段階で前記式(3)を満足する値に設定
する、前記下降流れの水冷壁の伝熱面積を、計画段階で
該水冷壁の下端出口における流体のエンタルピが飽和エ
ンタルピ以下となるような値に設定する、水冷壁管の流
体流量を前記式(3)を満足する値に調整する流量調整
手段を設ける、前記下降流れの水冷壁の下端出口におけ
る流体のエンタルピが飽和エンタルピ以下となるように
当該水冷壁を通過する流体の流量を調整する流量調整手
段を備える、などの工夫を加えることにより、目的を達
成することができる。
That is, a flow in a part of the water-cooling wall pipe is defined as a downward flow, and a water-cooling wall having an upward flow and a water-cooling wall having a downward flow are alternately combined to form a furnace wall. Flow through the pipe of the water-cooled wall in ascending flow, guide the fluid in the pipe reaching the upper end of the water-cooled wall to the upper end of another part of the water-cooled wall, and flow down the pipe of the water-cooled wall. And the heat transfer area of the water cooling wall of the descending flow is set to a value that satisfies the expression (3) at the planning stage. A step of setting a fluid enthalpy at a lower end outlet of the water cooling wall to a value not more than a saturation enthalpy at a stage, and providing a flow rate adjusting means for adjusting a fluid flow rate of the water cooling wall tube to a value satisfying the above formula (3); The enthalpy of the fluid at the lower end outlet of the water cooling wall of the descending flow There comprises flow regulating means for regulating the flow rate of the fluid passing through the water wall to be equal to or less than the saturation enthalpy, by devising such, it is possible to achieve the object.

【0019】すなわち、上記課題は、加圧流動層ボイラ
の燃焼炉の水冷壁を形成する水冷壁管の一部の管内流れ
を下降流れとし、上昇流れの水冷壁と下降流れの水冷壁
を交互に組み合わせて炉壁を構成し、前記下降流れの水
冷壁を構成する各管の流路断面積を、該管の上端入口と
下端出口間の圧力損失が、該管の上端入口と下端出口間
の水頭圧差よりも、ボイラ運転中は常に大きくなるよう
な値に設定するとともに、前記下降流れの水冷壁の伝熱
面積を、該水冷壁の下端出口における流体のエンタルピ
が飽和エンタルピ以下となるような値に設定することで
達成される。
That is, the above-mentioned problem is to be solved by making the flow in a part of a water-cooling wall pipe forming a water-cooling wall of a combustion furnace of a pressurized fluidized-bed boiler a downflow, and alternately using an upflow watercooling wall and a downflow watercooling wall. And the pressure loss between the upper end inlet and the lower end outlet of the tube, the pressure loss between the upper end inlet and the lower end outlet of the tube, And the heat transfer area of the water cooling wall of the downward flow is set such that the enthalpy of the fluid at the lower end outlet of the water cooling wall is equal to or less than the saturation enthalpy. This can be achieved by setting these values to appropriate values.

【0020】上記の課題はまた、加圧流動層ボイラの燃
焼炉の水冷壁を形成する水冷壁管の一部の管内流れを下
降流れとし、上昇流れの水冷壁と下降流れの水冷壁を交
互に組み合わせて炉壁を構成し、前記下降流れの水冷壁
を構成する各管の上端入口と下端出口間の圧力損失が、
該管の上端入口と下端出口間の水頭圧差よりも、ボイラ
運転中は常に大きくなるように、管内を流れる流体の流
量を調整する流量調整手段を備えるとともに、前記下降
流れの水冷壁の伝熱面積を、該水冷壁の下端出口におけ
る流体のエンタルピが飽和エンタルピ以下となるような
値に設定することにより、達成される。
[0020] The above-mentioned problem also arises in that the flow in a part of the water-cooling wall tube forming the water-cooling wall of the combustion furnace of the pressurized fluidized-bed boiler is set as a downflow, and the upflow water-cooling wall and the downflow water-cooling wall alternate. To constitute a furnace wall, the pressure loss between the upper end inlet and the lower end outlet of each tube constituting the water cooling wall of the downward flow,
In addition to the flow head pressure difference between the upper end inlet and the lower end outlet of the pipe, a flow rate adjusting means for adjusting the flow rate of the fluid flowing through the pipe is always provided during the boiler operation so as to be always larger. This is achieved by setting the area to a value such that the enthalpy of the fluid at the lower end outlet of the water cooling wall is equal to or less than the saturation enthalpy.

【0021】上記の課題はまた、加圧流動層ボイラの燃
焼炉の水冷壁を形成する水冷壁管の一部の管内流れを下
降流れとし、上昇流れの水冷壁と下降流れの水冷壁を交
互に組み合わせて炉壁を構成し、前記下降流れの水冷壁
を構成する各管の流路断面積を、該管の上端入口と下端
出口間の圧力損失が、該管の上端入口と下端出口間の水
頭圧差よりも、ボイラ運転中は常に大きくなるような値
に設定するとともに、前記下降流れの水冷壁の下端出口
における流体のエンタルピが飽和エンタルピ以下となる
ように当該水冷壁の通過する流体の流量を調整する流量
調整手段を備えることにより、達成される。
[0021] The above-mentioned problem also arises in that the flow in a part of the water-cooling wall tube forming the water-cooling wall of the combustion furnace of the pressurized fluidized-bed boiler is set as a downflow, and the upflow water cooling wall and the downflow water cooling wall alternate. And the pressure loss between the upper end inlet and the lower end outlet of the tube, the pressure loss between the upper end inlet and the lower end outlet of the tube, Of the fluid passing through the water cooling wall so that the enthalpy of the fluid at the lower end outlet of the water cooling wall of the descending flow is equal to or less than the saturation enthalpy, while being set to a value that is always larger during the boiler operation. This is achieved by providing a flow rate adjusting means for adjusting the flow rate.

【0022】上記の課題は更に、加圧流動層ボイラの燃
焼炉の水冷壁を形成する水冷壁管の一部の管内流れを下
降流れとし、上昇流れの水冷壁と下降流れの水冷壁を交
互に組み合わせて炉壁を構成し、前記下降流れの水冷壁
を構成する各管の上端入口と下端出口間の圧力損失が、
該管の上端入口と下端出口間の水頭圧差よりも、ボイラ
運転中は常に大きくなるように、管内を流れる流体の流
量を調整する流量調整手段を備えるとともに、前記下降
流れの水冷壁の下端出口における流体のエンタルピが飽
和エンタルピ以下となるように当該水冷壁の通過する流
体の流量を調整する流量調整手段を備えることにより、
達成される。
[0022] The above-mentioned problem is further solved by making the flow in a part of the water-cooling wall tube forming the water-cooling wall of the combustion furnace of the pressurized fluidized-bed boiler a downflow, and alternately using the upflow watercooling wall and the downflow watercooling wall. To constitute a furnace wall, the pressure loss between the upper end inlet and the lower end outlet of each tube constituting the water cooling wall of the downward flow,
In addition to the flow head pressure difference between the upper end inlet and the lower end outlet of the pipe, a flow rate adjusting means for adjusting the flow rate of the fluid flowing through the pipe is always provided during the boiler operation. By having a flow rate adjusting means for adjusting the flow rate of the fluid passing through the water cooling wall so that the enthalpy of the fluid in the is not more than the saturation enthalpy,
Achieved.

【0023】[0023]

【発明の実施の形態】本発明の実施の形態を、図1、図
2を参照して説明する。図1は、本発明に係る加圧流動
層ボイラ装置100A,100Bと、これら加圧流動層
ボイラ装置100A,100Bから排出される燃焼排ガ
スで駆動されるガスタービン11と、ガスタービン11
で駆動されるガスタービン発電機12と、加圧流動層ボ
イラ装置100A,100Bで生成される水蒸気で駆動
される蒸気タービン31と、蒸気タービン31で駆動さ
れる蒸気タービン発電機32と、を含んで構成される発
電プラントを示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a pressurized fluidized-bed boiler device 100A, 100B according to the present invention, a gas turbine 11 driven by combustion exhaust gas discharged from the pressurized fluidized-bed boiler device 100A, 100B, and a gas turbine 11
, A steam turbine 31 driven by steam generated by the pressurized fluidized-bed boiler apparatuses 100A and 100B, and a steam turbine generator 32 driven by the steam turbine 31. Is shown.

【0024】加圧流動層ボイラ装置100Bの加圧流動
層ボイラ4Bは圧力容器3Bに格納されており、水冷壁
7で形成された燃焼炉内には流動層を構成する流動媒体
5が収納されている。流動層内には、前記水冷壁7の出
側に接続されて蒸気を発生する蒸発器27、発生した蒸
気を過熱する過熱器30Bが配置されている。
The pressurized fluidized-bed boiler 4B of the pressurized fluidized-bed boiler apparatus 100B is accommodated in a pressure vessel 3B, and a fluidized medium 5 constituting a fluidized bed is accommodated in a combustion furnace formed by the water-cooling wall 7. ing. In the fluidized bed, an evaporator 27 connected to the outlet side of the water cooling wall 7 to generate steam and a superheater 30B for heating the generated steam are arranged.

【0025】加圧流動層ボイラ装置100Aの加圧流動
層ボイラ4Aは圧力容器3Aに格納されており、水冷壁
6で形成された燃焼炉内には流動層を構成する流動媒体
5が収納されている。流動層内には、蒸発器27で発生
し汽水分離器28で分離された蒸気を過熱する過熱器3
0A,蒸気タービン31の高圧タービン排気蒸気を再度
加熱する再熱器33が配置されている。再熱器33の出
側は、蒸気タービン31の低圧タービンに接続されてい
る。
The pressurized fluidized-bed boiler 4A of the pressurized fluidized-bed boiler apparatus 100A is stored in a pressure vessel 3A, and a fluidized medium 5 constituting a fluidized bed is accommodated in a combustion furnace formed by a water cooling wall 6. ing. In the fluidized bed, a superheater 3 that superheats the steam generated in the evaporator 27 and separated in the brackish water separator 28
At 0 A, a reheater 33 for heating the high-pressure turbine exhaust steam of the steam turbine 31 again is arranged. The outlet side of the reheater 33 is connected to the low-pressure turbine of the steam turbine 31.

【0026】過熱器30Aの出側は、前記過熱器30B
の入り側に接続され、過熱器30Bの出側は、蒸気ター
ビン31の高圧タービン入り側に接続されている。水冷
壁6の出側は水冷壁7の入側に接続され、水冷壁7の出
側は、前記蒸発器27の入り側に接続されている。
The outlet of the superheater 30A is connected to the superheater 30B.
The outlet of the superheater 30B is connected to the inlet of the high-pressure turbine of the steam turbine 31. The outlet of the water cooling wall 6 is connected to the inlet of the water cooling wall 7, and the outlet of the water cooling wall 7 is connected to the inlet of the evaporator 27.

【0027】ガスタービン11の排気煙道14には、脱
硝装置15、高圧ガス給水加熱器16、低圧ガス給水加
熱器17が順に配置され、低圧ガス給水加熱器17は、
ガス給水加熱器下流煙道18を介して煙突20に接続さ
れている。ガスタービン11の排ガスは、脱硝装置15
を通過したのち、高圧ガス給水加熱器16で給水25
に、低圧ガス給水加熱器17で復水22に、それぞれ排
熱を回収され、煙突20から放出される。
In the exhaust flue 14 of the gas turbine 11, a denitration device 15, a high-pressure gas feed water heater 16 and a low-pressure gas feed water heater 17 are arranged in this order.
It is connected to a chimney 20 via a gas feed water heater downstream flue 18. The exhaust gas from the gas turbine 11 is supplied to a denitration device 15
, And the high-pressure gas feed water heater 16 feeds water 25
Then, the exhaust heat is recovered to the condensate water 22 by the low-pressure gas feed water heater 17 and discharged from the chimney 20.

【0028】ガスタービン11で駆動されるコンプレッ
サ1は、吸引した空気を圧縮して高圧燃焼空気2を生成
し、生成された高圧燃焼空気2は、圧力容器3A,3B
に供給され、流動層ボイラ4A,4Bそれぞれの燃焼炉
の流動層内で石炭を燃焼させる。燃焼により生成された
燃焼ガス8は、それぞれ高温ガス管9A,9Bに介装さ
れた脱塵装置10A,10Bに導かれ、除塵されたの
ち、ガスタービン11を駆動する。ガスタービン11
は、結合されたガスタービン発電機12、コンプレッサ
1を駆動する。ガスタービン11を駆動した燃焼ガス
は、ガスタービン排気ガス13となってガスタービン廃
棄煙道14に導かれ、脱硝装置15に流入する。脱硝装
置15を通過したガスタービン排気ガス13は、高圧ガ
ス給水加熱器16で給水を加熱し、続けて低圧ガス給水
加熱器17で復水を加熱する。
The compressor 1 driven by the gas turbine 11 compresses the sucked air to generate high-pressure combustion air 2, and the generated high-pressure combustion air 2 is supplied to the pressure vessels 3A and 3B.
And burns coal in the fluidized bed of the combustion furnace of each of the fluidized bed boilers 4A and 4B. The combustion gas 8 generated by the combustion is guided to dust removing devices 10A and 10B interposed in the high-temperature gas pipes 9A and 9B, respectively, and drives the gas turbine 11 after the dust is removed. Gas turbine 11
Drives the combined gas turbine generator 12 and compressor 1. The combustion gas that drives the gas turbine 11 becomes a gas turbine exhaust gas 13, is guided to a gas turbine waste flue 14, and flows into a denitration device 15. The gas turbine exhaust gas 13 that has passed through the denitration device 15 heats the feedwater with a high-pressure gas feedwater heater 16 and subsequently heats the condensate with a low-pressure gas feedwater heater 17.

【0029】蒸気タービン31には復水器38が付設さ
れ、復水器38出側は復水ポンプ21を介して低圧ガス
給水加熱器17の被加熱流体入り側に接続されている。
低圧ガス給水加熱器17の被加熱流体出側は脱気器23
の入り側に接続され、脱気器23の出側は給水ポンプ2
4の吸込み側に接続されている。給水ポンプ24の出側
は、高圧ガス給水加熱器16の被加熱流体入り側に接続
され、高圧ガス給水加熱器16の被加熱流体出側は、加
圧流動層ボイラ4Aの水冷壁6の入り側に接続されてい
る。前記汽水分離器28の液相部は、ボイラ循環ポンプ
37を介して、高圧ガス給水加熱器16の被加熱流体出
側と加圧流動層ボイラ4Aの燃焼炉の水冷壁6の入り側
を接続する管路に接続されている。また、前記過熱器3
0Bの出側を蒸気タービン31の高圧タービン入り側に
接続する管路は、高圧タービンバイパス弁35及び高圧
タービンバイパス減温器36を介装した高圧タービンバ
イパス系統34により、高圧タービンの排気蒸気を再熱
器33に導く管路に接続されている。本実施の形態にお
いては、給水ポンプ24及びボイラ循環ポンプ37と、
図示されていない温度計、圧力計が、水冷壁を流れる流
体流量を調整する流量調整手段を構成している。
A condenser 38 is attached to the steam turbine 31, and the outlet of the condenser 38 is connected via a condenser pump 21 to the inlet side of the low-pressure gas feed water heater 17 to be heated.
The heated fluid outlet side of the low pressure gas feed water heater 17 is a deaerator 23.
The deaerator 23 is connected to the water supply pump 2
4 is connected to the suction side. The outlet side of the feedwater pump 24 is connected to the heated fluid inlet side of the high-pressure gas feedwater heater 16, and the heated fluid outlet side of the high-pressure gas feedwater heater 16 enters the water cooling wall 6 of the pressurized fluidized-bed boiler 4A. Connected to the side. The liquid phase portion of the steam separator 28 connects the heated fluid outlet side of the high pressure gas feed water heater 16 and the inlet side of the water cooling wall 6 of the combustion furnace of the pressurized fluidized bed boiler 4A via a boiler circulation pump 37. Connected to the pipeline. The superheater 3
A pipe connecting the outlet side of the high pressure turbine to the high pressure turbine inlet side of the steam turbine 31 is provided with a high pressure turbine bypass system 34 in which a high pressure turbine bypass valve 35 and a high pressure turbine bypass cooler 36 are interposed. It is connected to a conduit leading to the reheater 33. In the present embodiment, the water supply pump 24 and the boiler circulation pump 37,
A thermometer and a pressure gauge, not shown, constitute flow rate adjusting means for adjusting the flow rate of the fluid flowing through the water cooling wall.

【0030】次ぎに給水及び復水系統について説明す
る。復水器38で生成された復水22は、復水ポンプ2
1で加圧され、低圧ガス給水加熱器17の被加熱流体の
流路に流入する。低圧ガス給水加熱器17の被加熱流体
の流路に流入した復水22は、低圧ガス給水加熱器17
の加熱流体の流路を流れるガスタービン排気ガス13の
熱を回収して自身の温度を上昇させた後、脱気器23に
流入する。脱気器23を出た復水(以後、給水と呼ぶ)
は、給水ポンプ24で加圧され、高圧ガス給水加熱器1
6の被加熱流体の流路に流入する。高圧ガス給水加熱器
16の被加熱流体の流路に流入した給水25は、高圧ガ
ス給水加熱器16の加熱流体の流路を流れるガスタービ
ン排気ガス13の熱を回収して自身の温度を上昇させた
後、加圧流動層ボイラ4Aの燃焼炉の水冷壁6に流入す
る。
Next, the water supply and condensate system will be described. The condensate water 22 generated by the condenser 38 is supplied to the condensate pump 2
It is pressurized at 1 and flows into the flow path of the fluid to be heated of the low pressure gas feed water heater 17. The condensed water 22 flowing into the flow path of the fluid to be heated of the low-pressure gas feed water heater 17 is
After the heat of the gas turbine exhaust gas 13 flowing through the flow path of the heating fluid is recovered and its own temperature is raised, it flows into the deaerator 23. Condensate returned from deaerator 23 (hereinafter referred to as water supply)
Is pressurized by the feed water pump 24 and the high pressure gas feed water heater 1
6 flows into the flow path of the fluid to be heated. The feedwater 25 flowing into the flow path of the fluid to be heated of the high-pressure gas feedwater heater 16 recovers the heat of the gas turbine exhaust gas 13 flowing through the flow path of the heating fluid of the high-pressure gas feedwater heater 16 and raises its temperature. After that, it flows into the water cooling wall 6 of the combustion furnace of the pressurized fluidized bed boiler 4A.

【0031】水冷壁6は図2に示すように4つの壁面で
構成され、隣接する二つの壁面が組み合わされて一つの
流れ系統を構成している。つまり、水冷壁6の4つの壁
面は、二つの流れ系統を構成している。組み合わされて
一つの流れ系統を構成する二つの壁面は、給水の入り口
となる第1の水冷壁下部管寄せ(水冷壁下部管寄せ3
9)、この第1の水冷壁下部管寄せに下端を接続した第
1の上昇流れの水冷壁管(水冷壁管40)、第1の上昇
流れの水冷壁管の上端に接続された第1の水冷壁上部管
寄せ(水冷壁上部管寄せ41)、この第1の水冷壁上部
管寄せに上端を接続した第1の下降流れの水冷壁管(水
冷壁管42)、この第1の下降流れの水冷壁管の下端に
接続した第2の水冷壁下部管寄せ(水冷壁下部管寄せ4
3)、この第2の水冷壁下部管寄せに下端を接続した第
2の上昇流れの水冷壁管(水冷壁管44)、第2の上昇
流れの水冷壁管の上端に接続された第2の水冷壁上部管
寄せ(水冷壁上部管寄せ45)、この第2の水冷壁上部
管寄せに上端を接続した第2の下降流れの水冷壁管(水
冷壁管46)、この第2の下降流れの水冷壁管の下端に
接続した水冷壁出口管寄せ(水冷壁出口管寄せ47)を
備えている。水冷壁出口管寄せは、加圧流動層ボイラ4
Bの水冷壁7に接続されている。水冷壁管42、水冷壁
管46の流路断面積は、計画(設計)段階で、前記式
(3)を満足するように設定されている。
As shown in FIG. 2, the water cooling wall 6 is composed of four wall surfaces, and two adjacent wall surfaces are combined to constitute one flow system. That is, the four wall surfaces of the water cooling wall 6 constitute two flow systems. Two wall surfaces which are combined to form one flow system are connected to a first water cooling wall lower header (water cooling wall lower header 3) serving as an inlet of water supply.
9) a first ascending flow water-cooled wall tube (water-cooled wall tube 40) having a lower end connected to the first water-cooled wall lower header, and a first ascending water-cooled wall tube connected to the upper end of the first ascending flow water-cooled wall tube. Water cooling wall upper header (water cooling wall upper header 41); a first descending flow of water cooling wall pipe (water cooling wall pipe 42) having an upper end connected to the first water cooling wall upper header; A second water cooling wall lower header connected to the lower end of the flow water cooling wall pipe (water cooling wall lower header 4
3) a second ascending flow water-cooling wall tube (water-cooling wall tube 44) having a lower end connected to the second water-cooling wall lower header, and a second ascending water-cooling wall tube connected to the upper end of the second ascending flow water-cooling wall tube. Water cooling wall upper header (water cooling wall upper header 45), a second descending flow of water cooling wall pipe (water cooling wall pipe 46) having an upper end connected to the second water cooling wall upper header, A water cooling wall outlet header (water cooling wall outlet header 47) connected to the lower end of the flow water cooling wall pipe is provided. The water cooling wall outlet header is a pressurized fluidized bed boiler 4
B is connected to the water cooling wall 7. The flow path cross-sectional areas of the water-cooling wall pipe 42 and the water-cooling wall pipe 46 are set so as to satisfy Expression (3) at the planning (design) stage.

【0032】水冷壁6に流入した給水25は、図2に示
すように、水冷壁下部管寄せ39から上昇流れの水冷壁
管40を経て水冷壁上部管寄せ41に導かれ、水冷壁上
部管寄せ41から下降流れの水冷壁管42を経て水冷壁
下部管寄せ43に流入する。水冷壁下部管寄せ43に流
入した給水は上昇流れの水冷壁管44を経て水冷壁上部
管寄せ45に導かれ、水冷壁上部管寄せ45から下降流
れの水冷壁管46を経て水冷壁出口管寄せ47に流入す
る。水冷壁出口管寄せ47に流入した給水は、加圧流動
層ボイラ4Bの水冷壁7に導かれ、水冷壁6と同様に、
上昇流れと下降流れの水冷壁管で構成された炉壁を通過
する。
As shown in FIG. 2, the feed water 25 flowing into the water cooling wall 6 is guided from the water cooling wall lower header 39 to the water cooling wall upper header 41 via the ascending flow of the water cooling wall pipe 40. The water flows into the water cooling wall lower header 43 from the drawer 41 through the descending water cooling wall pipe 42. The feedwater flowing into the water cooling wall lower header 43 is guided to the water cooling wall upper header 45 via the ascending flow water cooling wall pipe 44, and the water cooling wall outlet pipe via the water cooling wall upper header 45 via the descending flow water cooling wall pipe 46. It flows into the shed 47. The feedwater flowing into the water cooling wall outlet header 47 is guided to the water cooling wall 7 of the pressurized fluidized bed boiler 4B, and like the water cooling wall 6,
It passes through a furnace wall composed of water-cooled wall pipes of upflow and downflow.

【0033】なお、水冷壁6に流入する給水は、二つの
水冷壁下部管寄せ39に分かれて供給され、二つの水冷
壁出口管寄せ47に流入した給水が一つにまとめられて
水冷壁7に導かれるようになっている。
The water supplied to the water cooling wall 6 is supplied to the two water cooling wall lower headers 39 separately, and the water supplied to the two water cooling wall outlet headers 47 is combined into one and the water cooling wall 7 is supplied. Is to be led to.

【0034】水冷壁7に導かれた給水は、上記水冷壁6
と同様に構成された水冷壁管や管寄せを通過してさらに
昇温された後、水冷壁7から流出し、ボイラ給水26と
なって、蒸発器27に導入される。蒸発器27に導入さ
れたボイラ給水26は、蒸発器27で蒸発し、汽水分離
器28に導入されて汽水分離される。汽水分離器28の
底部には、吸い込み側を汽水分離器28側に向けてボイ
ラ循環ポンプ37が接続され、ボイラ循環ポンプ37の
吐出側は、前記高圧ガス給水加熱器16の給水出側を水
冷壁6に接続する管路に結合されている。すなわち、分
離された飽和水をボイラ循環ポンプ37で加圧したの
ち、前記高圧ガス給水加熱器16で過熱された給水25
と合流させて再び水冷壁6に導入できるようになってい
る。
The water supplied to the water cooling wall 7 is supplied to the water cooling wall 6.
After passing through a water-cooling wall tube or header constructed in the same manner as above, the temperature is further raised, and then flows out of the water-cooling wall 7, becomes boiler feedwater 26, and is introduced into the evaporator 27. The boiler feedwater 26 introduced into the evaporator 27 evaporates in the evaporator 27 and is introduced into the steam separator 28 to be separated by steam. A boiler circulation pump 37 is connected to the bottom of the brackish water separator 28 with the suction side facing the brackish water separator 28, and the discharge side of the boiler circulation pump 37 is a water-cooled water supply side of the high-pressure gas feedwater heater 16. It is connected to a conduit connecting to the wall 6. That is, after the separated saturated water is pressurized by the boiler circulation pump 37, the feed water 25 heated by the high-pressure gas feed water heater 16 is heated.
And can be introduced again into the water cooling wall 6.

【0035】一方、汽水分離器28で分離された蒸気
は、加圧流動層ボイラ4Aの過熱器30Aに導入されて
過熱され、さらに加圧流動層ボイラ4Bの過熱器30B
に導入されて過熱される。過熱器30A、過熱器30B
で過熱された蒸気は、過熱蒸気となって蒸気タービン3
1の高圧タービンに供給される。高圧タービンを駆動し
たあとの排気蒸気は、加圧流動層ボイラ4Aの再熱器3
3に導入され、再熱されたのち、蒸気タービン31の低
圧タービンに供給される。
On the other hand, the steam separated by the steam separator 28 is introduced into the superheater 30A of the pressurized fluidized-bed boiler 4A and is superheated.
And overheated. Superheater 30A, Superheater 30B
The steam that has been superheated in the
1 high-pressure turbine. The exhaust steam after driving the high-pressure turbine is supplied to the reheater 3 of the pressurized fluidized-bed boiler 4A.
After being introduced into the steam turbine 3 and reheated, it is supplied to the low-pressure turbine of the steam turbine 31.

【0036】以下、加圧流動層ボイラの起動から負荷運
転に至る過程につき、図1を参照して説明する。起動過
程では、燃料入熱に対して蒸気発生量が少ないので、汽
水分離器28の飽和水をボイラ循環ポンプ37で加圧し
て水冷壁6,7に再循環させる。この飽和水再循環によ
り、水冷壁6,7の通過流体流量を大きくして下降流の
確保に必要な水冷壁管上下端間の圧力勾配を維持する。
循環流量を調整するのに必要な水冷壁管上下端間の圧力
損失と流体の比重量は、図1に記載されていない温度計
と圧力計から算出し、ボイラ循環ポンプ37の流量は、
図1に記載されていない流量調節弁で調整される。前述
の水冷壁の温度・圧力から算出できる流体のエンタルピ
が飽和エンタルピを超える場合は、ボイラ循環ポンプ3
7の流量を増加して飽和エンタルピ以下に低減できるの
で、起動過程を通じて、水冷壁で下降流れを常に維持で
きる。
Hereinafter, the process from the start of the pressurized fluidized bed boiler to the load operation will be described with reference to FIG. In the start-up process, since the amount of steam generated is smaller than the heat input to the fuel, the saturated water of the steam separator 28 is pressurized by the boiler circulation pump 37 and recirculated to the water cooling walls 6 and 7. By this saturated water recirculation, the flow rate of the fluid passing through the water cooling walls 6 and 7 is increased to maintain the pressure gradient between the upper and lower ends of the water cooling wall pipe necessary for securing the downward flow.
The pressure loss between the upper and lower ends of the water-cooled wall pipe and the specific weight of the fluid required to adjust the circulation flow rate are calculated from a thermometer and a pressure gauge not shown in FIG. 1, and the flow rate of the boiler circulation pump 37 is
It is adjusted by a flow control valve not shown in FIG. If the enthalpy of the fluid, which can be calculated from the temperature and pressure of the water cooling wall, exceeds the saturation enthalpy, the boiler circulation pump 3
Since the flow rate can be reduced to less than the saturation enthalpy by increasing the flow rate of 7, the downward flow can always be maintained at the water-cooled wall during the starting process.

【0037】起動過程から負荷が上昇し、汽水分離器2
8で分離される蒸気の流量が水冷壁の下降流れ部の必要
圧損を維持できる値にまで増加したら、ボイラ循環ポン
プ37は停止され、水冷壁6,7に供給された給水は、
蒸発器27で全て蒸発して過熱蒸気の状態にまで加熱さ
れ、全量が過熱器30A,30Bに供給される。水冷壁
の下降流れの部分の伝熱面積と流路断面積は、負荷運転
時に水冷壁での流体エンタルピが飽和エンタルピ以下に
なるように予め決定されているので、下降流れが阻害さ
れることはない。さらに、水冷壁の温度・圧力の計測値
から算出される流体エンタルピを監視して、それが飽和
エンタルピを越える場合は給水ポンプ24の流量を増加
する制御回路を設けることで、いかなる運転条件の変更
や変動に対しても、下降流れの水冷壁で常に安定した下
降流を保持できる。
The load rises from the starting process, and the steam separator 2
When the flow rate of the steam separated in 8 increases to a value that can maintain the required pressure loss in the downflow section of the water cooling wall, the boiler circulation pump 37 is stopped, and the water supplied to the water cooling walls 6 and 7 is
The whole is evaporated in the evaporator 27 and heated to a superheated steam state, and the entire amount is supplied to the superheaters 30A and 30B. Since the heat transfer area and the flow path cross-sectional area of the part of the descending flow of the water cooling wall are predetermined so that the fluid enthalpy at the water cooling wall becomes equal to or less than the saturation enthalpy during the load operation, the descending flow is not hindered. Absent. Further, by monitoring the fluid enthalpy calculated from the measured values of the temperature and the pressure of the water cooling wall, and when the fluid enthalpy exceeds the saturation enthalpy, a control circuit for increasing the flow rate of the feedwater pump 24 is provided to change any operating conditions. Even with fluctuations, a stable downward flow can always be maintained by the downwardly flowing water cooling wall.

【0038】[0038]

【発明の効果】本発明によれば、水冷壁上部管寄せと水
冷壁下部管寄せを連絡する大径の連絡管ならびに該連絡
管の支持装置を設ける必要がなくなって炉壁構造が簡素
化され、さらに、圧力容器内の必要スペースが低減され
るので、圧力容器のコンパクト化が可能になる。
According to the present invention, it is not necessary to provide a large-diameter connecting pipe for connecting the water cooling wall upper header and the water cooling wall lower header and a supporting device for the connecting pipe, thereby simplifying the furnace wall structure. Further, the required space in the pressure vessel is reduced, so that the pressure vessel can be made compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態である加圧流動層ボイラ装
置の要部構成を示す系統図である。
FIG. 1 is a system diagram showing a main configuration of a pressurized fluidized-bed boiler according to an embodiment of the present invention.

【図2】図1に示す実施の形態における加圧流動層ボイ
ラの水冷壁の流路構成を示す斜視図である。
FIG. 2 is a perspective view showing a flow path configuration of a water cooling wall of the pressurized fluidized-bed boiler in the embodiment shown in FIG.

【図3】図2に示す加圧流動層ボイラの水冷壁の流路構
成の一部を拡大して示す正面図である。
FIG. 3 is an enlarged front view showing a part of a flow path configuration of a water cooling wall of the pressurized fluidized bed boiler shown in FIG. 2;

【図4】従来技術の例を示す系統図である。FIG. 4 is a system diagram showing an example of the related art.

【図5】図4に示す従来技術における加圧流動層ボイラ
の水冷壁の流路構成を示す斜視図である。
FIG. 5 is a perspective view showing a flow channel configuration of a water cooling wall of the pressurized fluidized-bed boiler in the prior art shown in FIG.

【図6】従来技術の他の例における加圧流動層ボイラの
水冷壁の流路構成を示す斜視図である。
FIG. 6 is a perspective view showing a flow path configuration of a water cooling wall of a pressurized fluidized-bed boiler according to another example of the related art.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 2 高圧燃焼空気 3A,3B 圧力容器 4A,4B 加圧流動層ボイラ 5 流動媒体 6,7 水冷壁 8 流動層ボイラ出口ガス 9 高温ガス管 10 脱塵装置 11 ガスタービン 12 ガスタービン発電機 13 ガスタービン排気ガス 14 ガスタービン排気煙道 15 脱硝装置 16 高圧ガス給水加熱器 17 低圧ガス給水加熱器 18 ガス給水加熱器下流煙道 19 ガス給水加熱器下流ガス 20 煙突 21 復水ポンプ 22 復水 23 脱気器 24 給水ポンプ 25 給水 26 ボイラ給水 27 蒸発器 28 汽水分離器 29 発生蒸気 30A,30B 過熱器 31 蒸気タービン 32 蒸気タービン発電機 33 再熱器 34 高圧タービンバイパス系統 35 高圧タービンバイパス弁 36 高圧タービンバイパス減温器 37 ボイラ循環ポンプ 38 復水器 39 水冷壁下部管寄せ 40 水冷壁管 41 水冷壁上部管寄せ 42 水冷壁管 43 水冷壁下部管寄せ 44 水冷壁管 45 水冷壁上部管寄せ 46 水冷壁管 47 水冷壁出口管寄せ DESCRIPTION OF SYMBOLS 1 Compressor 2 High-pressure combustion air 3A, 3B Pressure vessel 4A, 4B Pressurized fluidized-bed boiler 5 Fluid medium 6, 7 Water-cooled wall 8 Fluidized-bed boiler outlet gas 9 High-temperature gas pipe 10 Dedusting device 11 Gas turbine 12 Gas turbine generator 13 Gas turbine exhaust gas 14 Gas turbine exhaust flue 15 Denitrator 16 High pressure gas feed water heater 17 Low pressure gas feed water heater 18 Gas feed water heater downstream flue 19 Gas feed water heater downstream gas 20 Chimney 21 Condensate pump 22 Condensate 23 Deaerator 24 Feedwater pump 25 Feedwater 26 Boiler feedwater 27 Evaporator 28 Steam separator 29 Generated steam 30A, 30B Superheater 31 Steam turbine 32 Steam turbine generator 33 Reheater 34 High pressure turbine bypass system 35 High pressure turbine bypass valve 36 High pressure Turbine bypass heater 37 Boiler circulation pump 8 condenser 39 water wall lower header 40 water wall tube 41 water wall upper header 42 water wall tube 43 water wall lower header 44 water wall tube 45 water wall upper header 46 water wall tube 47 water wall outlet tube pulling

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東川 謙示 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 3K064 AA10 AB01 AD05 AF10 BA07 BA17 BA24  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kenji Higashikawa 6-9 Takara-cho, Kure-shi, Hiroshima Babcock Hitachi Kure Works F-term (reference) 3K064 AA10 AB01 AD05 AF10 BA07 BA17 BA24

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器と、この圧力容器に収容された
加圧流動層ボイラと、を有してなり、前記加圧流動層ボ
イラは、管内流体が上下方向に流れる管を並べて形成し
た水冷壁を炉壁とする燃焼炉を備えたものである加圧流
動層ボイラ装置において、前記水冷壁は、管内の流体が
下方から上方に向かって流れる上昇流れの水冷壁と、管
内の流体が上方から下方に向かって流れる下降流れの水
冷壁を組み合わせて構成されていることと、前記下降流
れの水冷壁を構成する各管の流路断面積は、該管の上端
入口と下端出口間の圧力損失が、該管の上端入口と下端
出口間の水頭圧差よりも、ボイラ運転中は常に大きくな
るような値に設定されていることと、前記下降流れの水
冷壁の伝熱面積は、該水冷壁の下端出口における流体の
エンタルピが飽和エンタルピ以下となるような値に設定
されていることと、を特徴とする加圧流動層ボイラ装
置。
1. A pressurized fluidized-bed boiler having a pressure vessel and a pressurized fluidized-bed boiler housed in the pressure vessel, wherein the pressurized fluidized-bed boiler is formed by arranging pipes in which fluid in the pipes flows vertically. In a pressurized fluidized-bed boiler apparatus provided with a combustion furnace having a wall as a furnace wall, the water-cooling wall includes a rising water-cooling wall in which fluid in the pipe flows upward from below, and a fluid in the pipe upward. And the cross-sectional area of each pipe constituting the descending flow water-cooling wall is determined by the pressure between the upper end inlet and the lower end outlet of the pipe. The heat transfer area of the water cooling wall of the downflow is set so that the loss is always larger during the boiler operation than the head pressure difference between the upper end inlet and the lower end outlet of the pipe. The enthalpy of the fluid at the outlet at the bottom of the wall is saturated. A pressurized fluidized-bed boiler apparatus characterized in that it is set to a value not more than enthalpy.
【請求項2】 圧力容器と、この圧力容器に収容された
加圧流動層ボイラと、を有してなり、前記加圧流動層ボ
イラは、管内流体が上下方向に流れる管を並べて形成し
た水冷壁を炉壁とする燃焼炉を備えたものである加圧流
動層ボイラ装置において、前記水冷壁は、管内の流体が
下方から上方に向かって流れる上昇流れの水冷壁と、管
内の流体が上方から下方に向かって流れる下降流れの水
冷壁を組み合わせて構成されていることと、前記下降流
れの水冷壁を構成する各管の上端入口と下端出口間の圧
力損失が、該管の上端入口と下端出口間の水頭圧差より
も、ボイラ運転中は常に大きくなるように、管内を流れ
る流体の流量を調整する流量調整手段を備えていること
と、前記下降流れの水冷壁の伝熱面積は、該水冷壁の下
端出口における流体のエンタルピが飽和エンタルピ以下
となるような値に設定されていることと、を特徴とする
加圧流動層ボイラ装置。
2. A pressure-cooled fluidized-bed boiler housed in the pressure vessel, wherein the pressurized-fluidized-bed boiler is formed by arranging pipes in which fluid in the pipes flows vertically. In a pressurized fluidized-bed boiler apparatus provided with a combustion furnace having a wall as a furnace wall, the water-cooling wall includes a rising water-cooling wall in which fluid in the pipe flows upward from below, and a fluid in the pipe upward. And the pressure loss between the upper end inlet and the lower end outlet of each tube constituting the descending flow water cooling wall, which is configured to be combined with the upper end inlet of the pipe. A head pressure difference between the lower end outlets, so as to always be larger during the boiler operation, having a flow rate adjusting means for adjusting the flow rate of the fluid flowing in the pipe, the heat transfer area of the water cooling wall of the downward flow, Fluid at the lower end outlet of the water cooling wall Enthalpy is set to a value not more than the saturated enthalpy.
【請求項3】 圧力容器と、この圧力容器に収容された
加圧流動層ボイラと、を有してなり、前記加圧流動層ボ
イラは、管内流体が上下方向に流れる管を並べて形成し
た水冷壁を炉壁とする燃焼炉を備えたものである加圧流
動層ボイラ装置において、前記水冷壁は、管内の流体が
下方から上方に向かって流れる上昇流れの水冷壁と、管
内の流体が上方から下方に向かって流れる下降流れの水
冷壁を組み合わせて構成されていることと、前記下降流
れの水冷壁を構成する各管の流路断面積は、該管の上端
入口と下端出口間の圧力損失が、該管の上端入口と下端
出口間の水頭圧差よりも、ボイラ運転中は常に大きくな
るような値に設定されていることと、前記下降流れの水
冷壁の下端出口における流体のエンタルピが飽和エンタ
ルピ以下となるように当該水冷壁の通過する流体の流量
を調整する流量調整手段を備えていることと、を特徴と
する加圧流動層ボイラ装置。
3. A pressure-cooled fluidized-bed boiler housed in the pressure vessel, wherein the pressurized-fluidized-bed boiler is formed by arranging pipes in which fluid in the pipes flows vertically. In a pressurized fluidized-bed boiler apparatus provided with a combustion furnace having a wall as a furnace wall, the water-cooling wall includes a rising water-cooling wall in which fluid in the pipe flows upward from below, and a fluid in the pipe upward. And the cross-sectional area of each pipe constituting the descending flow water-cooling wall is determined by the pressure between the upper end inlet and the lower end outlet of the pipe. The loss is set to a value that is always larger during the boiler operation than the head pressure difference between the upper end inlet and the lower end outlet of the pipe, and the enthalpy of the fluid at the lower end outlet of the water cooling wall of the downward flow is reduced. Less than the saturation enthalpy Further comprising a flow rate adjusting means for adjusting a flow rate of the fluid passing through the water cooling wall.
【請求項4】 圧力容器と、この圧力容器に収容された
加圧流動層ボイラと、を有してなり、前記加圧流動層ボ
イラは、管内流体が上下方向に流れる管を並べて形成し
た水冷壁を炉壁とする燃焼炉を備えたものである加圧流
動層ボイラ装置において、前記水冷壁は、管内の流体が
下方から上方に向かって流れる上昇流れの水冷壁と、管
内の流体が上方から下方に向かって流れる下降流れの水
冷壁を組み合わせて構成されていることと、前記下降流
れの水冷壁を構成する各管の上端入口と下端出口間の圧
力損失が、該管の上端入口と下端出口間の水頭圧差より
も、ボイラ運転中は常に大きくなるように、管内を流れ
る流体の流量を調整する流量調整手段を備えていること
と、前記下降流れの水冷壁の下端出口における流体のエ
ンタルピが飽和エンタルピ以下となるように当該水冷壁
を通過する流体の流量を調整する流量調整手段を備えて
いることと、を特徴とする加圧流動層ボイラ装置。
4. A pressurized fluidized-bed boiler having a pressure vessel and a pressurized fluidized-bed boiler housed in the pressure vessel, wherein the pressurized fluidized-bed boiler is formed by arranging pipes in which fluid in the pipes flows vertically. In a pressurized fluidized-bed boiler apparatus provided with a combustion furnace having a wall as a furnace wall, the water-cooling wall includes a rising water-cooling wall in which fluid in the pipe flows upward from below, and a fluid in the pipe upward. And the pressure loss between the upper end inlet and the lower end outlet of each tube constituting the descending flow water cooling wall, which is configured to be combined with the upper end inlet of the pipe. It is provided with flow rate adjusting means for adjusting the flow rate of the fluid flowing in the pipe so that the head pressure difference between the lower end outlets is always larger during the boiler operation, and the flow rate of the fluid at the lower end outlet of the water cooling wall of the descending flow is provided. Enthalpy is saturated A pressurized fluidized-bed boiler device, comprising: a flow rate adjusting means for adjusting a flow rate of a fluid passing through the water-cooling wall so as to be equal to or less than talpy.
JP2000264222A 2000-08-31 2000-08-31 Pressurized fluidized bed boiler apparatus Pending JP2002081601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264222A JP2002081601A (en) 2000-08-31 2000-08-31 Pressurized fluidized bed boiler apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264222A JP2002081601A (en) 2000-08-31 2000-08-31 Pressurized fluidized bed boiler apparatus

Publications (1)

Publication Number Publication Date
JP2002081601A true JP2002081601A (en) 2002-03-22

Family

ID=18751670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264222A Pending JP2002081601A (en) 2000-08-31 2000-08-31 Pressurized fluidized bed boiler apparatus

Country Status (1)

Country Link
JP (1) JP2002081601A (en)

Similar Documents

Publication Publication Date Title
EP1869367B1 (en) Flexible assembly of once-through evaporation for horizontal heat recovery steam generator
JP2865851B2 (en) Once-through steam generator
US4044820A (en) Method and apparatus for preheating combustion air while cooling a hot process gas
JP4833278B2 (en) boiler
US3789806A (en) Furnace circuit for variable pressure once-through generator
JP4443216B2 (en) boiler
US6092490A (en) Heat recovery steam generator
RU2310121C2 (en) Steam generator
JP6712266B2 (en) Heat recovery steam generator and its operating method
US5701850A (en) Steam generator
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
US5983639A (en) Method and system for starting up a continuous flow steam generator
US5419285A (en) Boiler economizer and control system
JP4611969B2 (en) Air cooler for power plant and use of this air cooler
JP3836139B2 (en) Method and apparatus for starting once-through boiler
US7406928B2 (en) Horizontally constructed continuous steam generator and method for the operation thereof
JP2002081601A (en) Pressurized fluidized bed boiler apparatus
JP3916784B2 (en) Boiler structure
JP2001507436A (en) Method and system for operating a once-through steam generator
Manabe Flow Instability Inside Heat Transfer Tubes of MSR
JPH1114007A (en) Reheat steam temperature controller of boiler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060216