JP2002080660A - Vibration damping material - Google Patents

Vibration damping material

Info

Publication number
JP2002080660A
JP2002080660A JP2000268704A JP2000268704A JP2002080660A JP 2002080660 A JP2002080660 A JP 2002080660A JP 2000268704 A JP2000268704 A JP 2000268704A JP 2000268704 A JP2000268704 A JP 2000268704A JP 2002080660 A JP2002080660 A JP 2002080660A
Authority
JP
Japan
Prior art keywords
vibration damping
damping material
resin
tackifier
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000268704A
Other languages
Japanese (ja)
Other versions
JP3488860B2 (en
Inventor
Tadao Odaka
忠男 小高
Masami Okamoto
正巳 岡本
Akira Takagi
亮 高木
Teruaki Sukeoka
輝明 祐岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2000268704A priority Critical patent/JP3488860B2/en
Publication of JP2002080660A publication Critical patent/JP2002080660A/en
Application granted granted Critical
Publication of JP3488860B2 publication Critical patent/JP3488860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Building Environments (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration damping material excellent in both heat resistance and vibration damping property as well as in molding property. SOLUTION: The vibration damping material is mainly composed of an olefinic resin, obtained by dynamically crosslinking an ethylene/propylene/diene- based rubber while melt-kneading a polypropylene with ethylene/propylene/diene- based rubber, and a tackifier. Though an olefinic resin of this kind is inferior in vibration damping property in itself, incorporation of a tackifier therewith imparts excellent vibration damping property to the resin. As this olefinic resin is thermoplastic, it does not require vulcanization nor a curing reaction and is readily moldable. For example, it can be mass-produced by an injection molding method. Moreover, it does not contain sulfur nor a vulcanizing agent such as an amine, it does not cause a trouble such as corrosion or the like of a material to which it is applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、OA機
器、電気・電子機器、精密機器、建築、船舶などにおい
て、制振性および耐熱性が要求される分野に用いられる
制振材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping material used in automobiles, OA equipment, electric / electronic equipment, precision equipment, buildings, ships, etc., which are required to have vibration damping properties and heat resistance.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】前記
の分野では、近年、機器の高精度化、高性能化に伴い、
振動、騒音の低減が大きな課題となってきている。また
環境問題の一つとしてもこれらの対策技術は重要視され
てきている。
2. Description of the Related Art In the above-mentioned fields, in recent years, with higher precision and higher performance of equipment,
Reduction of vibration and noise has become a major issue. These countermeasures are also regarded as important as one of the environmental problems.

【0003】従来機器等を振動源から絶縁するために弾
性率の低いゴムやゲル状の材料が使用されることがあっ
た。しかし共振周波数における振動の大きさ(共振倍
率)が非常に大きくなってしまい、機器に損傷を与える
ことが懸念されている。一方、制振材料とは外部から加
えられた力学的エネルギーを内部で減衰しやすい材料の
ことであり、上記の共振倍率を低く抑えることができ
る。特に比重が軽く成形加工が容易な高分子制振材料に
は大きな期待と高い関心が寄せられている。
Conventionally, rubber or gel-like materials having a low elastic modulus have been used to insulate equipment from vibration sources. However, the magnitude of the vibration at the resonance frequency (resonance magnification) becomes extremely large, and there is a concern that the device may be damaged. On the other hand, the damping material is a material that easily attenuates mechanical energy applied from the outside inside, and can suppress the above-described resonance magnification to a low level. In particular, high damping and high interest have been paid to polymer damping materials that are light in specific gravity and easy to mold.

【0004】高分子材料に応力が加わると変形し、応力
を取り除くと、いったん引き伸ばされた高分子鎖のから
み合いが元へ戻ろうとする。この分子内あるいは分子間
の運動により摩擦熱が発生するが、それらは外部へ散逸
してしまうため、結果として内部でエネルギーの損失
(減衰)が起こる。このように高分子制振材料とは機械
的な振動エネルギーを熱エネルギーに変換し、振動エネ
ルギー自体を材料内部で減衰する材料と言えるのであ
る。
When a stress is applied to a polymer material, the material is deformed, and when the stress is removed, the entanglement of the stretched polymer chain tends to return to its original state. This intramolecular or intermolecular motion generates frictional heat, which is dissipated to the outside, resulting in internal energy loss (attenuation). As described above, the polymer damping material is a material that converts mechanical vibration energy into heat energy and attenuates the vibration energy itself inside the material.

【0005】減衰性能の目安となる値に損失係数(以
下、tanδと記す)なるものがある。これはバネ力を
あらわす貯蔵弾性率(以下、G′と記す)と、粘性力を
あらわす損失弾性率(以下、G″と記す)から求めるこ
とができ、tanδ=G″/G′の関係がある。一般に
高分子材料の貯蔵弾性率、損失弾性率、損失係数の温度
依存性を観察すると、貯蔵弾性率が大きく低下する高分
子の2次転移点、いわゆるガラス転移点において損失係
数は極大を示す。つまり高分子制振材料を設計する際
に、ガラス転移点を使用温度付近に存在させることが重
要である。
[0005] A value that serves as a measure of damping performance is a loss coefficient (hereinafter referred to as tan δ). This can be obtained from a storage elastic modulus (hereinafter, referred to as G ') representing a spring force and a loss elastic modulus (hereinafter, referred to as G ") representing a viscous force, and the relationship of tan δ = G" / G' is obtained. is there. In general, when observing the storage elastic modulus, the loss elastic modulus, and the temperature dependence of the loss coefficient of a polymer material, the loss coefficient shows a maximum at a secondary transition point of a polymer at which the storage elastic modulus is greatly reduced, that is, a so-called glass transition point. That is, when designing a polymer damping material, it is important that the glass transition point exists near the use temperature.

【0006】従来の制振材料の大半は、ブチルゴムやノ
ルボルネンゴム等の加硫ゴムや、シリコーンゴム等の合
成ゴムといった熱硬化性樹脂によるものであった。しか
し加硫ゴムにおいては、加硫剤(架橋剤)である硫黄等
が材料中に残留し、電子機器等の金属部分と硫化物を形
成して腐食する恐れがあった。シリコーンゴムにおいて
は未反応低分子量シロキサンの揮発により電気接点障害
が起こるという問題もあった。
Most of conventional vibration damping materials are made of thermosetting resins such as vulcanized rubber such as butyl rubber and norbornene rubber, and synthetic rubber such as silicone rubber. However, in a vulcanized rubber, sulfur or the like as a vulcanizing agent (crosslinking agent) may remain in the material, forming a sulfide with a metal part of an electronic device or the like and corroding. In the case of silicone rubber, there is also a problem that electric contact failure occurs due to volatilization of unreacted low molecular weight siloxane.

【0007】これらの樹脂は成形時の加硫や硬化反応の
ために数十分から数時間、場合によっては2次加硫工程
も必要であり、量産性に劣るという問題もあった。また
熱硬化性樹脂は本質的に反応が不可逆であり、材料のリ
サイクルの要求にも応えられないという欠点を有してい
た。
[0007] These resins require tens of minutes to several hours for vulcanization and curing reactions during molding, and in some cases also require a secondary vulcanization step, and have a problem of poor mass productivity. Further, thermosetting resins have a disadvantage that the reaction is essentially irreversible and cannot meet the demand for material recycling.

【0008】さらに先述の分野で要求される性能として
は、制振性はもちろんのこと、耐熱性も必要となってき
ている。特に最近の機器の高密度化、高出力化により、
高温下でも使用できる制振材料が一層求められている。
耐熱性は一般にへたり(圧縮永久歪み)特性や低分子成
分のブリードの有無で評価されるが、特に冷却ファンや
小型モーター等の軽量物を対象にした低硬度な制振材料
では、可塑剤や軟化剤を多量に添加する必要があったた
め、高温下での圧縮永久歪特性の劣化やブリードの問題
は避けられなかった。
Further, as the performance required in the above-mentioned field, not only vibration suppression but also heat resistance is required. In particular, with the recent increase in density and output of equipment,
There is a further need for vibration damping materials that can be used even at high temperatures.
Heat resistance is generally evaluated based on the set (compression set) characteristics and the presence or absence of bleed of low molecular components. In particular, low-hardness vibration damping materials for lightweight objects such as cooling fans and small motors are plasticizers. And a large amount of a softening agent, the deterioration of compression set characteristics at high temperatures and the problem of bleeding were unavoidable.

【0009】本発明は、かかる課題に鑑みなされたもの
で、耐熱性及び制振性の双方に優れ、量産性も良好な制
振材料を提供することを目的としている。
The present invention has been made in view of the above problems, and has as its object to provide a vibration damping material which is excellent in both heat resistance and vibration damping property and has good mass productivity.

【0010】[0010]

【課題を解決するための手段および発明の効果】かかる
課題を解決するためになされた請求項1に記載の本発明
は、ポリプロピレン(以下、PPと記す)とエチレン−
プロピレン−ジエン系ゴムとを溶融混練下、エチレン−
プロピレン−ジエン系ゴム(以下、EPDMと記す)を
動的架橋させたオレフィン系樹脂、および粘着付与剤を
主成分とすることを特徴とする。
Means for Solving the Problems and Effects of the Invention The present invention according to claim 1, which has been made to solve the above problems, comprises a polypropylene (hereinafter referred to as PP) and ethylene-
While melt-kneading a propylene-diene rubber, ethylene-
It is characterized by comprising, as main components, an olefin resin obtained by dynamically cross-linking a propylene-diene rubber (hereinafter referred to as EPDM) and a tackifier.

【0011】PPはホモポリマーの他にも、ブロックコ
ポリマー、ランダムコポリマーがあるが、共重合モノマ
ーとしてはエチレン、1−ブテン、1−ペンテン、1−
ヘキセン、1−オクテン、3−メチル−1−ペンテン、
4−メチル−1−ペンテンなどが使用される。
[0011] PP may be a block copolymer or a random copolymer in addition to a homopolymer, and the copolymerized monomers are ethylene, 1-butene, 1-pentene and 1-pentene.
Hexene, 1-octene, 3-methyl-1-pentene,
4-Methyl-1-pentene and the like are used.

【0012】EPDMはエチレン、プロピレン及び若干
のジエンの3元共重合体であるが、ジエン成分として
は、1,3−シクロペンタジエン、1,4−シクロヘキ
サジエン、1−4−ヘキサジエン、1,5−シクロオク
タジエン、1,6−オクタジエン、1−メチル−1,5
−シクロオクタジエン、2−メチル−1,4−ペンタジ
エン、3,7−ジメチル−1,6−オクタジエン、5−
メチル−1,4−ヘキサジエン、5−エチリデン−2−
ノルボルネン、5−メチレン−2−ノルボルネンなどが
使用できる。
EPDM is a terpolymer of ethylene, propylene and some diene, and the diene component includes 1,3-cyclopentadiene, 1,4-cyclohexadiene, 1-4-hexadiene, 1,5 -Cyclooctadiene, 1,6-octadiene, 1-methyl-1,5
-Cyclooctadiene, 2-methyl-1,4-pentadiene, 3,7-dimethyl-1,6-octadiene, 5-
Methyl-1,4-hexadiene, 5-ethylidene-2-
Norbornene, 5-methylene-2-norbornene and the like can be used.

【0013】PPとEPDMの重量比については、材料
の物性や成形性を損ねない範囲の中で適切に選ばれる
が、特に軽量物を対象にした制振材料の場合、EPDM
の重量比が20%以上でないと材料全体の硬度を低くす
ることが困難になる。EPDMは少なくとも部分的に、
好ましくは完全に架橋していることが望ましい。そうす
ることで耐熱性、耐候性、耐薬品性が著しく改善される
だけでなく、PPマトリックス中に微細なフィラーとし
て均一に分散しやすくなる。
The weight ratio between PP and EPDM is appropriately selected within a range that does not impair the physical properties and moldability of the material.
If the weight ratio is not more than 20%, it is difficult to lower the hardness of the whole material. EPDM is at least partially
Preferably, it is completely crosslinked. By doing so, not only the heat resistance, weather resistance, and chemical resistance are remarkably improved, but also it becomes easy to be uniformly dispersed as a fine filler in the PP matrix.

【0014】動的架橋の際にはEPDMに適した架橋剤
が使用される。架橋剤の種類としては過酸化物系、金属
酸化物系、熱硬化樹脂系が挙げられるが、ここでも硫黄
系、アミン系、その他の腐食性のある架橋剤の使用は避
けるべきである。これらのオレフィン系樹脂は本質的に
制振性に劣っているものの、粘着付与剤を添加すること
で優れた制振性を有したものになる。粘着付与剤は一般
に室温より高いガラス転移点を有するものが多い。つま
りオレフィン系樹脂と相溶性が良い粘着付与剤を選択す
ればオレフィン系が本質的に持っている低いガラス転移
点を自由に制御し、制振材料としての使用温度付近にシ
フトさせることが可能となるのである。
In the case of dynamic crosslinking, a crosslinking agent suitable for EPDM is used. Examples of the type of the crosslinking agent include a peroxide type, a metal oxide type, and a thermosetting resin type. Here, the use of a sulfur type, an amine type or other corrosive crosslinking agents should be avoided. Although these olefin-based resins are essentially inferior in vibration damping properties, they have excellent vibration damping properties by adding a tackifier. Many tackifiers generally have a glass transition point higher than room temperature. In other words, if a tackifier with good compatibility with the olefin resin is selected, it is possible to freely control the low glass transition point inherent in the olefin resin and shift it to around the operating temperature as a vibration damping material. It becomes.

【0015】粘着付与剤の例としては、ロジン、変性ロ
ジン、ロジンエステル、テルペン樹脂、テルペンフェノ
ール樹脂、芳香族炭化水素変性テルペン樹脂、脂肪族系
石油樹脂、脂環族系石油樹脂、芳香族系石油樹脂、クマ
ロン・インデン樹脂、スチレン系樹脂、シクロペンタジ
エン樹脂、フェノール系樹脂、キシレン樹脂などが挙げ
られる。
Examples of the tackifier include rosin, modified rosin, rosin ester, terpene resin, terpene phenol resin, aromatic hydrocarbon modified terpene resin, aliphatic petroleum resin, alicyclic petroleum resin, and aromatic type Examples include petroleum resins, cumarone / indene resins, styrene resins, cyclopentadiene resins, phenol resins, and xylene resins.

【0016】これらの粘着付与剤は分子量が100〜3
000程度の範囲にあり、オレフィン系樹脂にたいして
可塑化効果を示す。従来であれば軽量物を対象にした制
振材料は低硬度化のために可塑剤や軟化剤を多量に添加
する必要があったが、上記のようにオリゴマーの範疇に
入る樹脂状物を使用すれば高温下での圧縮永久歪特性の
劣化やブリードの問題なく低硬度化を達成できる。
These tackifiers have a molecular weight of 100 to 3
It is in the range of about 000, and exhibits a plasticizing effect on the olefin resin. Conventionally, vibration-damping materials for lightweight materials required the addition of a large amount of plasticizers and softeners to reduce hardness, but use resin-like materials that fall into the category of oligomers as described above. If so, low hardness can be achieved without deterioration of compression set characteristics at high temperature or bleeding.

【0017】このように配合された制振材料は、熱可塑
性樹脂材料としての耐熱性、耐寒性、耐候性、耐熱老化
性、電気絶縁性、耐薬品性のバランスに優れ、しかも比
重が小さいという特徴がある。さらに本質的に熱可塑性
であり成形性にも富むため、例えば射出成形により製品
を大量生産することが可能である。また成形時にスプル
ーやランナー、不良品の再使用ができるといったリサイ
クル性が期待できる。しかも硫黄やアミン系の加硫剤を
使用しないために腐食などの問題がない。
[0017] The vibration damping material thus compounded is excellent in heat resistance, cold resistance, weather resistance, heat aging resistance, electrical insulation and chemical resistance as a thermoplastic resin material, and has a small specific gravity. There are features. Furthermore, since it is thermoplastic in nature and rich in moldability, it is possible to mass-produce products by, for example, injection molding. In addition, recyclability can be expected such that sprues, runners and defective products can be reused during molding. Moreover, there is no problem such as corrosion because no sulfur or amine vulcanizing agent is used.

【0018】請求項2に記載の本発明は、請求項1に記
載の制振材料において、前記粘着付与剤が水添テルペン
樹脂であることを特徴とする。水添テルペン樹脂とは、
イソプレン則(C58n に基づくテルペンモノマーの
重合体であるテルペン樹脂を水素添加することにより得
られるものである。テルペン樹脂のネックポイントであ
る不飽和結合がなくなるので耐熱(老化)性、耐候性、
さらには臭気や色相が大幅に改善されたものとなってい
る。
According to a second aspect of the present invention, in the vibration damping material according to the first aspect, the tackifier is a hydrogenated terpene resin. What is hydrogenated terpene resin?
Isoprene rule the (C 5 H 8) terpene resins are polymers of terpenes based monomers n is obtained by adding hydrogen. Heat resistance (aging) resistance, weather resistance,
Furthermore, the odor and hue have been greatly improved.

【0019】水添テルペン樹脂のガラス転移点は、オレ
フィン系樹脂のガラス転移点よりも一般に50℃以上高
い。また極性が低く、オレフィン系樹脂との相溶性も良
好であるため、系全体のガラス転移点を大幅に向上させ
ることが可能である。詳しくは後述の実験例で示すが、
粘着付与剤が水添テルペン樹脂であることにより、制振
性および耐熱性等の諸特性に実用的な性能を示す制振材
料となる。
The glass transition point of the hydrogenated terpene resin is generally higher by at least 50 ° C. than the glass transition point of the olefin resin. Moreover, since the polarity is low and the compatibility with the olefin resin is good, it is possible to greatly improve the glass transition point of the entire system. Details will be shown in the experimental examples described later,
When the tackifier is a hydrogenated terpene resin, it becomes a vibration damping material exhibiting practical performance in various properties such as vibration damping properties and heat resistance.

【0020】なお、これには反するが、水添テルペン樹
脂以外の粘着付与剤を用いても良い。例えば、粘着付与
剤としてある種のテルペン樹脂を用いると、後述するよ
うに耐熱性では水添テルペン樹脂を用いた制振材料に劣
るものの、制振性においては優れた材料となる。
Incidentally, contrary to this, a tackifier other than the hydrogenated terpene resin may be used. For example, when a certain type of terpene resin is used as a tackifier, the heat resistance is inferior to that of a vibration damping material using a hydrogenated terpene resin, as described later, but the vibration damping material is excellent.

【0021】請求項3に記載の本発明は、請求項1また
は2に記載の制振材料において、当該制振材料中、前記
粘着付与剤の占める重量比が40〜65%であることを
特徴とする。このような配合比率にすると、耐熱性を保
ったまま、特に制振特性の優れたものとなる(これも後
述)。
According to a third aspect of the present invention, in the vibration damping material according to the first or second aspect, the weight ratio of the tackifier in the vibration damping material is 40 to 65%. And With such a compounding ratio, a particularly excellent vibration damping property is obtained while maintaining the heat resistance (also described later).

【0022】[0022]

【発明の実施の形態】以下に本発明の実施の形態を図面
と共に説明する。 [実験例1]動的架橋したオレフィン系樹脂として、J
IS K 6253規格によるタイプAデュロメーター
硬さがA55を示し、またJIS K 6262規格に
よる25%圧縮永久歪みが100℃、168時間の条件
において30%以下となるように調製されたものを用い
た。
Embodiments of the present invention will be described below with reference to the drawings. [Experimental example 1] As a dynamically crosslinked olefin resin, J
A type A durometer according to IS K 6253 standard having a durometer hardness of A55 and a 25% compression set according to JIS K 6262 standard of 30% or less at 100 ° C. for 168 hours was used.

【0023】また粘着付与剤としては、次の3種類を用
意した。すなわち、水添テルペン樹脂(分子量70
0)、テルペン樹脂(分子量800)、脂環族系石油樹
脂(分子量610)の3種類である。以上のオレフィン
系樹脂と粘着付与剤とを重量比で50:50の割合で混
練し、3種類の試料を作成した。より詳しくは、まず原
料をミキサーで20分程度予備混合し、ナカタニ機械
(株)製AS30型2軸ベント式押出機(L/D=2
8)に供給し、シリンダー設定温度170〜200℃の
条件で混練押出した。得られた塊状物を卓上テストプレ
ス成形機を使用し、金型温度200℃、30MPaの圧
力で圧縮成形し、厚さ2mmのシート状試料を得た。各
試料の物性データを[表1]に示す。
The following three kinds of tackifiers were prepared. That is, hydrogenated terpene resin (molecular weight 70
0), terpene resin (molecular weight 800), and alicyclic petroleum resin (molecular weight 610). The olefin-based resin and the tackifier were kneaded at a weight ratio of 50:50 to prepare three types of samples. More specifically, first, the raw materials are premixed with a mixer for about 20 minutes, and an AS30 type twin screw vented extruder (L / D = 2) manufactured by Nakatani Machinery Co., Ltd.
8) and kneaded and extruded under the condition of a cylinder set temperature of 170 to 200 ° C. The obtained lump was compression-molded using a tabletop test press molding machine at a mold temperature of 200 ° C. and a pressure of 30 MPa to obtain a sheet-like sample having a thickness of 2 mm. Table 1 shows the physical property data of each sample.

【0024】[0024]

【表1】 [Table 1]

【0025】室温(25℃)におけるtanδ値、弾性
率の測定には、非共振型強制振動法に基づく測定装置で
あるレオメトリックス製ダイナミックアナライザーRD
A−IIを使用した。測定にはパラレルプレートを使用し
た。条件は歪み振幅1.0%以下、周波数1Hz、昇温
速度4.0℃/minと定め、−60〜200℃の範囲
でG′、G″、tanδの温度依存性を調べた。
For measurement of the tan δ value and the elastic modulus at room temperature (25 ° C.), a dynamic analyzer RD manufactured by Rheometrics, which is a measuring device based on a non-resonant type forced vibration method, is used.
A-II was used. A parallel plate was used for the measurement. The conditions were set at a strain amplitude of 1.0% or less, a frequency of 1 Hz, and a heating rate of 4.0 ° C./min, and the temperature dependence of G ′, G ″ and tan δ was examined in the range of −60 to 200 ° C.

【0026】また圧縮永久歪み率についてはJIS K
6262規格に基づき、100℃、22時間の条件に
おいて25%圧縮時の永久歪み率を求めた。実用的には
この値が50%以下であることが望まれる。共振周波数
や共振倍率については加振機を用いた振動試験により測
定した。試験片を治具の四隅に固定し、加振台の上に固
定した後、加速度を一定にし周波数を5〜500Hzま
で2.5分間で掃引し、共振を起こさせる。このときの
振動を加速度ピックアップで検出し、このデータを元
に、共振曲線を作製し共振倍率を算出した。
For the compression set, see JIS K
Based on the 6262 standard, the permanent set at 25% compression under the conditions of 100 ° C. and 22 hours was determined. Practically, this value is desired to be 50% or less. The resonance frequency and the resonance magnification were measured by a vibration test using a vibrator. After fixing the test piece at the four corners of the jig and fixing it on a vibration table, the acceleration is kept constant and the frequency is swept from 5 to 500 Hz for 2.5 minutes to cause resonance. The vibration at this time was detected by an acceleration pickup, and a resonance curve was created based on the data to calculate a resonance magnification.

【0027】また、損失係数については、共振曲線から
共振周波数f0 と、共振曲線の極大値(共振倍率)から
3dB下がったところの周波数の幅Δfを求め、tan
δ=Δf/f0 で求めている。[表1]に示すように、
粘着付与剤として水添テルペン樹脂を使用した実施例1
では、25℃におけるtanδ値が最も大きかった。ま
た弾性率(G′)が最も小さく、低硬度であった。さら
に水添テルペン樹脂を用いた試料は、100℃、22時
間の条件における25%圧縮時の永久歪み率が、39.
9%という優れた耐熱性を示している。なお、[表1]
には示されていないが168時間の圧縮永久歪み試験に
おいても44.8%という非常に優れた値を示した。
As for the loss coefficient, a resonance frequency f 0 from the resonance curve and a frequency width Δf at which the resonance curve is reduced by 3 dB from the maximum value (resonance magnification) of the resonance curve are obtained.
δ = Δf / f 0 . As shown in [Table 1],
Example 1 using hydrogenated terpene resin as tackifier
, The tan δ value at 25 ° C. was the largest. Further, the elastic modulus (G ') was the smallest and had low hardness. Further, the sample using the hydrogenated terpene resin had a permanent strain rate of 39.25% under a condition of 100 ° C. and 22 hours under 25% compression.
It has an excellent heat resistance of 9%. [Table 1]
Although it was not shown in the above, it showed a very excellent value of 44.8% in the compression set test of 168 hours.

【0028】また振動試験の結果においても共振倍率が
2.2dB、損失係数が1.72と非常に高い性能値を
示した。一方、テルペン樹脂を使用した実施例2におい
て、25℃におけるtanδ値や弾性率、また振動試験
における共振倍率や損失係数の値は水添テルペン樹脂の
それに近い優れた値を示した。しかし100℃、22時
間、あるいは168時間の条件における25%圧縮時の
永久歪み率は水添テルペン樹脂のそれと比べて若干劣っ
ている。
Also, as a result of the vibration test, the resonance magnification was 2.2 dB, and the loss coefficient was 1.72, which was a very high performance value. On the other hand, in Example 2 using the terpene resin, the tan δ value and the elastic modulus at 25 ° C., and the resonance magnification and the loss coefficient in the vibration test showed excellent values close to those of the hydrogenated terpene resin. However, the permanent set at 25% compression at 100 ° C. for 22 hours or 168 hours is slightly inferior to that of the hydrogenated terpene resin.

【0029】また、脂環族系石油樹脂を使用した比較例
1でも制振特性は優れた値を示した。しかし弾性率が
4.0MPaと高く、硬度が上昇してしまうという問題
があった。また混練押し出し時にストランドに引きにく
く、混練作業性や材料自体の相溶性が懸念された。
In Comparative Example 1 using an alicyclic petroleum resin, the vibration damping property also showed an excellent value. However, there is a problem that the elastic modulus is as high as 4.0 MPa and the hardness is increased. Further, it was difficult to pull the strand during kneading and extrusion, and there was a concern about kneading workability and compatibility of the material itself.

【0030】[実験例2]粘着付与剤として水添テルペ
ン樹脂を用いた場合に、その制振材料に占める重量比を
0、20、40、50、65%と変化させ、実験例1と
同様な方法でシート状試料を得た。各試料の物性データ
を[表2]に示す。ここで実施例3は水添テルペン樹脂
を添加していない、オレフィン系樹脂そのものの値であ
る。
EXPERIMENTAL EXAMPLE 2 In the case of using a hydrogenated terpene resin as a tackifier, the weight ratio in the vibration damping material was changed to 0, 20, 40, 50, and 65%, and the same as in Experimental Example 1. A sheet-like sample was obtained by a suitable method. Table 2 shows the physical property data of each sample. Here, Example 3 is the value of the olefin-based resin itself without the addition of the hydrogenated terpene resin.

【0031】[0031]

【表2】 [Table 2]

【0032】[表2]に示すように、水添テルペン樹脂
の重量比が40%以上であれば共振倍率、損失係数の双
方で優秀な値を呈している。また重量比が65%以下で
あれば100℃、22時間の条件における圧縮永久歪み
も約50%以下に収まっており、制振性と耐熱性を兼ね
備えた材料となっている。
As shown in Table 2, when the weight ratio of the hydrogenated terpene resin is 40% or more, both the resonance magnification and the loss coefficient exhibit excellent values. If the weight ratio is 65% or less, the compression set under the conditions of 100 ° C. for 22 hours is also about 50% or less, and the material has both vibration damping property and heat resistance.

【0033】実施例1と実施例3と実施例6の材料に関
して、TAインスツルメント製示差走査熱量計を用いガ
ラス転移点を測定した。測定は、昇温速度2℃/min
の条件で物性緩和を観察し、転移温度におけるヒートフ
ローを検出することにより行なった。これによると実施
例3のオレフィン系樹脂そのもののガラス転移点が−4
2.3℃であるのに対して実施例1の水添テルペン樹脂
50wt%で−8.5℃に、実施例6の65wt%では
27.4℃まで大きくシフトできていることが分かっ
た。
For the materials of Examples 1, 3, and 6, the glass transition point was measured using a differential scanning calorimeter manufactured by TA Instruments. The measurement was performed at a heating rate of 2 ° C / min
The measurement was performed by observing relaxation of physical properties under the conditions described above and detecting heat flow at the transition temperature. According to this, the glass transition point of the olefin resin of Example 3 itself was -4.
It was found that although the temperature was 2.3 ° C., the temperature was significantly shifted to −8.5 ° C. by 50% by weight of the hydrogenated terpene resin of Example 1, and to 27.4 ° C. by 65% by weight of Example 6.

【0034】また実施例1の材料については相溶性を確
認するために日立製透過型電子顕微鏡(TEM)を用い
て相構造観察を行なった。試料は包埋後、凍結状態で約
100nm厚の薄切片を作製し、RuO4 で染色した。
加速電圧は200kVにて、30万倍までの倍率で相構
造を撮影した。その結果、連続相はEPDM相から成
り、水添テルペン樹脂がEPDM相中に約50nmの大
きさで均一に微分散し、さらに結晶化したPP相が約2
〜5μmの大きさで分散している構造を形成していた
(図1参照)。結晶化したPP相にはラメラ構造が観察
されており、ラメラ間にも一部水添テルペン樹脂が取り
込まれていることが分かる。
The phase structure of the material of Example 1 was observed using a transmission electron microscope (TEM) manufactured by Hitachi in order to confirm compatibility. After embedding the sample, a thin section of about 100 nm thickness was prepared in a frozen state and stained with RuO 4 .
The phase structure was photographed at an accelerating voltage of 200 kV at a magnification of up to 300,000. As a result, the continuous phase is composed of the EPDM phase, the hydrogenated terpene resin is finely and uniformly dispersed in the EPDM phase in a size of about 50 nm, and the crystallized PP phase is about 2 nm.
A dispersed structure having a size of about 5 μm was formed (see FIG. 1). A lamellar structure is observed in the crystallized PP phase, and it can be seen that the hydrogenated terpene resin is partially incorporated between the lamellas.

【0035】以上、示したように本発明の制振材料によ
れば、優れた耐熱性を示しているにもかかわらず、制振
性にも優れたものとすることができた。この制振材料は
高分子可塑剤として作用する粘着付与樹脂を含んでお
り、これが溶融時の流動性を改善するので成形性に富ん
だものとなる。例えば、射出成形により製品を大量生産
することが可能である。また可塑剤や軟化剤を多量に添
加する必要もないためヘタリや低分子成分のブリード
等、経時変化の問題が少ない。さらに本質的に材料が熱
可塑性であるため加硫や硬化の工程が不要であり、リサ
イクル性も有する。また硫黄やアミン系の加硫剤を使用
していないため、被適用物が腐食するといった問題がな
い。
As described above, according to the vibration-damping material of the present invention, it was possible to obtain excellent heat-damping properties despite excellent heat-resistance. This vibration damping material contains a tackifying resin that acts as a polymeric plasticizer, which improves the fluidity at the time of melting, so that the material is rich in moldability. For example, products can be mass-produced by injection molding. Further, since there is no need to add a large amount of a plasticizer or a softening agent, there is little problem of change with time, such as settling and bleeding of low molecular components. Furthermore, since the material is essentially thermoplastic, a vulcanization or curing step is not required, and it has recyclability. Further, since no sulfur or amine vulcanizing agent is used, there is no problem that the object to be applied is corroded.

【0036】そのため以下のような分野における機器の
制振材料として広く使用することが可能である。つまり
自動車、OA機器、電気・電子機器、精密機器、医療、
スポーツ、建築、船舶、鉄道、産業機械、航空宇宙分野
等である。以上、本発明を実施した態様について説明し
てきたが、本発明はこれらの実施例に何等限定されるも
のではなく様々な態様で実施しうる。
Therefore, it can be widely used as a vibration damping material for equipment in the following fields. In other words, automobiles, office automation equipment, electrical and electronic equipment, precision equipment, medical care,
Sports, architecture, ships, railways, industrial machinery, aerospace, etc. The embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments and can be implemented in various embodiments.

【0037】例えば、オレフィン系樹脂や粘着付与剤と
して、上記に示したもの以外のものを用いても良い。ま
た、必要に応じて次のようなフィラーを配合してもよ
い。例えば、無定形フィラーとして、重質炭酸カルシウ
ム、軽質炭酸カルシウム、天然シリカ、合成シリカ、カ
オリン、クレー、酸化チタン、硫酸バリウム、酸化亜鉛
(亜鉛華)、水酸化アルミニウム、酸化アルミニウム
(アルミナ)、水酸化マグネシウム、板状フィラーとし
て、タルク、マイカ、ガラスフレーク、合成ハイドロタ
ルサイト、針状フィラーとして、ウォラストナイト、チ
タン酸カリウム、塩基性硫酸マグネシウム、セピオライ
ト、ゾノトライト、ホウ酸アルミニウム、球状フィラー
として、ガラスビーズ、シリカビーズ、ガラス(シリ
カ)バルーン、また機能性フィラーとして金属系導電性
フィラー、非金属系導電性フィラー、カーボン系導電性
フィラー、磁性フィラー、圧電、焦電フィラー、摺動性
フィラー、また繊維状フィラーとして有機、無機、金属
の各種ファイバーなども配合することができる。
For example, olefin resins and tackifiers other than those described above may be used. Moreover, you may mix | blend the following fillers as needed. For example, as an amorphous filler, heavy calcium carbonate, light calcium carbonate, natural silica, synthetic silica, kaolin, clay, titanium oxide, barium sulfate, zinc oxide (zinc white), aluminum hydroxide, aluminum oxide (alumina), water Magnesium oxide, as plate-like filler, talc, mica, glass flake, synthetic hydrotalcite, needle-like filler, wollastonite, potassium titanate, basic magnesium sulfate, sepiolite, zonotlite, aluminum borate, as spherical filler, Glass beads, silica beads, glass (silica) balloons, and functional fillers such as metallic conductive fillers, non-metallic conductive fillers, carbon-based conductive fillers, magnetic fillers, piezoelectric, pyroelectric fillers, slidable fillers, In addition, fibrous Organic as chromatography, inorganic, also a metal of various fibers can be blended.

【0038】また、その他の添加剤としては、可塑剤、
軟化剤、安定剤、酸化防止剤、紫外線吸収剤、発泡剤、
難燃剤、帯電防止剤、滑剤、着色剤、抗菌剤、表面処理
剤、高分子系改質剤などを使用することにより特性の向
上を期待できる。これらの材料の配合・混練方法につい
ても特に制限はない。例えばバッチ式混練装置としては
ミキシングロール、バンバリーミキサー、加圧ニーダ
ー、高剪断型ミキサーが使用でき、連続混練装置として
は単軸押出機、二軸押出機、KCK押出混練機などを用
いても良い。
Other additives include a plasticizer,
Softener, stabilizer, antioxidant, ultraviolet absorber, foaming agent,
Improvements in properties can be expected by using flame retardants, antistatic agents, lubricants, coloring agents, antibacterial agents, surface treatment agents, polymer modifiers, and the like. There is also no particular limitation on the method of mixing and kneading these materials. For example, a mixing roll, a Banbury mixer, a pressure kneader, or a high-shear mixer can be used as a batch-type kneading apparatus, and a single-screw extruder, a twin-screw extruder, a KCK extrusion-kneader, or the like may be used as a continuous kneading apparatus. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の制振材料の透過型電子顕微鏡写真で
ある。
FIG. 1 is a transmission electron micrograph of a vibration damping material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 123/10 C09J 123/10 4J040 123/16 123/16 201/00 201/00 C09K 3/00 C09K 3/00 P E04B 1/98 E04B 1/98 B F16F 1/36 F16F 1/36 C 15/08 15/08 D (72)発明者 高木 亮 愛知県名古屋市中区千代田二丁目24番15号 北川工業株式会社内 (72)発明者 祐岡 輝明 愛知県名古屋市中区千代田二丁目24番15号 北川工業株式会社内 Fターム(参考) 2E001 DD05 DF07 DG01 FA24 GA24 HD11 JD02 LA16 3J048 AA01 AC01 AC05 AD05 BA11 DA01 EA13 EA38 3J059 AA08 AB01 BA63 GA01 GA21 GA41 4F070 AA15 AA16 AC74 AC96 AE11 FA03 FA08 FA17 FB06 FC05 GA05 GA06 GB08 4J002 AF02Y BA00Y BA01Y BB12W BB14W BB15W BB15X BC02Y BK00Y BP02W CE00Y FD140 GT00 4J040 BA191 BA192 BA201 BA202 DA091 DA092 DA122 DB021 DB022 DK011 DK012 DK021 DK022 DN031 DN032 EB021 EB022 EB081 EB082 JA09 KA26 LA06 LA08 NA02 NA05 NA12 NA15 NA16 NA19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C09J 123/10 C09J 123/10 4J040 123/16 123/16 201/00 201/00 C09K 3/00 C09K 3 / 00 P E04B 1/98 E04B 1/98 B F16F 1/36 F16F 1/36 C 15/08 15/08 D (72) Inventor Ryo Takagi 24-24-15 Chiyoda, Naka-ku, Nagoya City, Aichi Prefecture Kitagawa Kogyo Inside (72) Inventor Teruaki Yuoka 2-24-15 Chiyoda, Naka-ku, Nagoya-shi, Aichi F-term (reference) in Kitagawa Industry Co., Ltd. 2E001 DD05 DF07 DG01 FA24 GA24 HD11 JD02 LA16 3J048 AA01 AC01 AC05 AD05 BA11 DA01 EA13 EA38 3J059 AA08 AB01 BA63 GA01 GA21 GA41 4F070 AA15 AA16 AC74 AC96 AE11 FA03 FA08 FA17 FB06 FC05 GA05 GA06 GB08 4J002 AF02Y BA00Y BA01Y BB12W BB14W BB15W BB15X BC02Y BK00Y BP02W CE00 0 4J040 BA191 BA192 BA201 BA202 DA091 DA092 DA122 DB021 DB022 DK011 DK012 DK021 DK022 DN031 DN032 EB021 EB022 EB081 EB082 JA09 KA26 LA06 LA08 NA02 NA05 NA12 NA15 NA16 NA19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリプロピレンとエチレン−プロピレン
−ジエン系ゴムとを溶融混練下、エチレン−プロピレン
−ジエン系ゴムを動的架橋させたオレフィン系樹脂、お
よび粘着付与剤を主成分とすることを特徴とする制振材
料。
An olefin resin obtained by dynamically cross-linking an ethylene-propylene-diene rubber while melt-kneading a polypropylene and an ethylene-propylene-diene rubber, and a tackifier as a main component. Damping material.
【請求項2】 請求項1に記載の制振材料において、 前記粘着付与剤が、水添テルペン樹脂であることを特徴
とする制振材料。
2. The vibration damping material according to claim 1, wherein the tackifier is a hydrogenated terpene resin.
【請求項3】 請求項1または請求項2に記載の制振材
料において、 当該制振材料中、前記粘着付与剤の占める重量比が40
〜65%であることを特徴とする制振材料。
3. The damping material according to claim 1, wherein the weight ratio of the tackifier in the damping material is 40.
A vibration damping material characterized by being 65% or less.
JP2000268704A 2000-09-05 2000-09-05 Damping material Expired - Fee Related JP3488860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268704A JP3488860B2 (en) 2000-09-05 2000-09-05 Damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268704A JP3488860B2 (en) 2000-09-05 2000-09-05 Damping material

Publications (2)

Publication Number Publication Date
JP2002080660A true JP2002080660A (en) 2002-03-19
JP3488860B2 JP3488860B2 (en) 2004-01-19

Family

ID=18755443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268704A Expired - Fee Related JP3488860B2 (en) 2000-09-05 2000-09-05 Damping material

Country Status (1)

Country Link
JP (1) JP3488860B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048803A1 (en) * 2002-11-27 2004-06-10 Asahi Rubber Co., Ltd. Composite vibration damper
WO2008020522A1 (en) * 2006-07-27 2008-02-21 Nihon Tokushu Toryo Co., Ltd. Steel plate-reinforcing material of type applying vibration-damping performance to steel plate
CN101928423A (en) * 2009-06-18 2010-12-29 日东电工株式会社 High temperature vibration damper composition, high temperature vibration damping base material, its using method, high temperature vibration-damping sheet and using method thereof
WO2022160689A1 (en) * 2021-01-29 2022-08-04 歌尔股份有限公司 Diaphragm and sound production device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048803A1 (en) * 2002-11-27 2004-06-10 Asahi Rubber Co., Ltd. Composite vibration damper
WO2008020522A1 (en) * 2006-07-27 2008-02-21 Nihon Tokushu Toryo Co., Ltd. Steel plate-reinforcing material of type applying vibration-damping performance to steel plate
US8268440B2 (en) 2006-07-27 2012-09-18 Nihon Tokushu Toryo Co., Ltd. Steel plate-reinforcing material of a type giving vibration-damping performance to a steel plate
CN101928423A (en) * 2009-06-18 2010-12-29 日东电工株式会社 High temperature vibration damper composition, high temperature vibration damping base material, its using method, high temperature vibration-damping sheet and using method thereof
CN101928423B (en) * 2009-06-18 2014-06-25 日东电工株式会社 Vibration-damping composition for high temperature, vibration-damping base material for high temperature, method for using the base material, vibration-damping sheet for high temperature, and method for using the sheet
WO2022160689A1 (en) * 2021-01-29 2022-08-04 歌尔股份有限公司 Diaphragm and sound production device

Also Published As

Publication number Publication date
JP3488860B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
US4395512A (en) Polyphenylenesulfide resin composition
KR101375928B1 (en) Thermally conducting and electrically insulating moldable compositions and methods of manufacture thereof
KR101577363B1 (en) Thermoplastic elastomer composition having advanced vibration isolation and thermal resistance and molded article manufactured therefrom
KR20020071977A (en) Thermoplastic elastomers having improved adhesive properties
JPH05230370A (en) Polyarylene sulfide resin composition
JP2002080660A (en) Vibration damping material
JP2002003663A (en) Polyethylene resin composition and container using it
KR102220221B1 (en) In­situ compatibilization of silicone rubber/polyolefin elastomer blends by forming ionomers for cold shrink splice and preparation method thereof
Cui et al. Thermoplastic vulcanizates with an integration of good mechanical performance and excellent resistance to high temperature and oil based on HNBR/TPEE
JP2003176410A (en) Insert-molded article
JPH0711067A (en) Thermoplastic elastomer composition
KR100371233B1 (en) Polypropylene resin compositions having good thermal stability and impact resistance
Mali et al. Preparation and characterization of vinyltrimethoxysilane and dicumyl peroxide–cured (ethylene propylene diene monomer)/polypropylene thermoplastic vulcanizates
KR100989907B1 (en) Thermoplastic resin composition and molding articles using the same
JPH10237301A (en) Polyphenylene sulfide resin composition
US8557393B2 (en) Adhesive thermoplastic vulcanizates
WO2022034903A1 (en) Resin composition, molded body, composite body, and application of same
JP3177654B2 (en) Vibration energy absorber
JPWO2002072690A1 (en) Olefin-based thermoplastic elastomer composition
JP2004269756A (en) Sheet for vibration-damping material
JP2006117744A (en) Vibration-damping material
JP2020055981A (en) Thermoplastic elastomer composition and joining member
JP2005089686A (en) High dielectric constant elastomer composition and electronic material using the same
JPWO2018124079A1 (en) Method of improving corona resistance of polyarylene sulfide resin molded article
JP5290653B2 (en) Sliding composition and sliding product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees