JP2002079078A - Microwave chemical reactor - Google Patents

Microwave chemical reactor

Info

Publication number
JP2002079078A
JP2002079078A JP2000309925A JP2000309925A JP2002079078A JP 2002079078 A JP2002079078 A JP 2002079078A JP 2000309925 A JP2000309925 A JP 2000309925A JP 2000309925 A JP2000309925 A JP 2000309925A JP 2002079078 A JP2002079078 A JP 2002079078A
Authority
JP
Japan
Prior art keywords
reaction
temperature
microwave
thermocouple
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000309925A
Other languages
Japanese (ja)
Inventor
Takehiro Matsuse
丈浩 松瀬
Shinyo Takizawa
辰洋 瀧沢
Katsuyuki Naito
勝之 内藤
Kazuchika Ota
和親 太田
Itsuo Yamaura
逸雄 山浦
Taizo Oshima
泰三 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Color Co Ltd
Original Assignee
Sumika Color Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Color Co Ltd filed Critical Sumika Color Co Ltd
Priority to JP2000309925A priority Critical patent/JP2002079078A/en
Publication of JP2002079078A publication Critical patent/JP2002079078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a correct temperature measurement and the control of a reaction temperature by measuring directly the temperature of a reaction vessel and simultaneously during reaction in a microwaves chemical reactor, and to provide a technology which enables the direct, simultaneous measurement of the change in optical properties during the reaction by optical analysis equipment, etc. SOLUTION: In the chemical reaction apparatus by microwave-heating, in order to control a reaction temperature, etc., a metallic device such as a thermocouple is inserted into the reactor to be approximately perpendicular to the TE mode microwave electric field of a microwave electromagnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波電磁界
中における化学反応の温度を管理および制御する方法と
装置に関するものである。また、マイクロ波電磁界中に
おける化学反応の状態を光学特性により確認し、反応を
管理および制御する方法と装置に関するものである。
The present invention relates to a method and an apparatus for managing and controlling the temperature of a chemical reaction in a microwave electromagnetic field. The present invention also relates to a method and an apparatus for confirming a state of a chemical reaction in a microwave electromagnetic field by optical characteristics and managing and controlling the reaction.

【0002】[0002]

【従来の技術】マイクロ波加熱化学反応装置において反
応槽内の温度を知りたい場合、赤外線放射温度計や光フ
ァイバー温度計等の非接触式温度計や非金属性機器を用
いての反応槽外部からの温度測定方法が行われている。
しかし、このような方法によると、反応槽の種類によっ
ては非接触式温度計が全く使えない場合や、反応槽から
発生する水蒸気やガス等の雰囲気により、正確な温度測
定が出来ないケースがほとんどである。また、反応系中
の温度を測定する方法としてマイクロ波照射部を避けて
外部で測定する方法が一般に知られているが、温度測定
点が反応部でないため、制御のためには適当とは言えな
いものである。一方、熱電対等の金属性機器をマイクロ
波電磁界中に挿入した場合は、異常加熱を生じ、ケーブ
ル部の放電等が起こり満足な測定は出来なかった。
2. Description of the Related Art When it is desired to know the temperature inside a reaction vessel in a microwave heating chemical reaction apparatus, a non-contact type thermometer such as an infrared radiation thermometer or an optical fiber thermometer or a non-metallic device is used from outside the reaction vessel. Temperature measurement method has been performed.
However, according to such a method, there are almost no cases where a non-contact type thermometer cannot be used at all depending on the type of the reaction tank, or where accurate temperature measurement cannot be performed due to an atmosphere such as steam or gas generated from the reaction tank. It is. As a method of measuring the temperature in the reaction system, a method of externally measuring the temperature while avoiding the microwave irradiation part is generally known.However, since the temperature measurement point is not in the reaction part, it can be said that it is appropriate for control. Not something. On the other hand, when a metal device such as a thermocouple was inserted into the microwave electromagnetic field, abnormal heating occurred, the cable portion was discharged, and satisfactory measurement could not be performed.

【0003】また、通常マイクロ波照射部付近はマイク
ロ波のシールドの問題から、目視や光学機器による測定
は出来ないとされていた。
[0003] In addition, it has been considered that visual observation and measurement by an optical device cannot be performed in the vicinity of a microwave irradiation part due to a problem of microwave shielding.

【0004】[0004]

【発明が解決しようとする課題】マイクロ波加熱化学反
応装置において反応槽の温度や光学特性を直接連続的に
測定出来なかったことから、本発明はこのような問題点
を解決することを目的としている。
SUMMARY OF THE INVENTION The object of the present invention is to solve such problems because the temperature and optical characteristics of a reaction vessel cannot be directly and continuously measured in a microwave heating chemical reactor. I have.

【0005】[0005]

【課題を解決するための手段】本発明はマイクロ波加熱
化学反応装置において反応槽の温度等を測定するために
熱電対等の金属性機器を設置するにあたり、設置される
熱電対等の金属性機器をマイクロ波電磁界のTEモード
のマイクロ波の電界に対しほぼ直交するように挿入する
事により、驚くべきことに熱電対等の金属性機器の異常
加熱や放電を起こさず、正確なる温度測定が出来ること
がわかった。本発明は、マイクロ波電磁界中における化
学反応の温度を簡単に管理および制御することを可能に
した方法と装置に関するものである。
SUMMARY OF THE INVENTION The present invention relates to the installation of a metallic device such as a thermocouple for measuring the temperature or the like of a reaction vessel in a microwave heating chemical reaction apparatus. Surprisingly, accurate temperature measurement can be performed without abnormal heating or electric discharge of metallic equipment such as thermocouples by inserting it so as to be almost orthogonal to the electric field of the microwave electromagnetic field TE mode microwave. I understood. The present invention relates to a method and an apparatus that can easily manage and control the temperature of a chemical reaction in a microwave electromagnetic field.

【0006】また本発明は化学反応の状態を確認するた
めに、導波管の一部にマイクロ波が漏れない程度の大き
さの窓をあけ、光透過性の素材からなる反応槽を通して
反応槽内部の反応工程中の光学特性を目視または可視
光、赤外分光、紫外光等の光学分析機器等により同時測
定し、反応を管理および制御する方法と装置に関するも
のである。
According to the present invention, in order to confirm the state of a chemical reaction, a window having a size such that microwaves do not leak is formed in a part of the waveguide, and the reaction vessel is made to pass through a reaction vessel made of a light-transmitting material. The present invention relates to a method and apparatus for managing and controlling a reaction by simultaneously measuring optical characteristics during an internal reaction step visually or by an optical analyzer such as visible light, infrared spectroscopy, and ultraviolet light.

【0007】[0007]

【実施例】以下に実施例によって詳細に説明する。な
お、例中の部は重量基準で示した。
The present invention will be described in detail below with reference to embodiments. The parts in the examples are shown on a weight basis.

【0008】[実施例1]図1に示すように、マグネト
ロン1および導波管2と無反射終端器3からなる装置
で、さらに導波管の一部をあけ反応槽設置ホール4とす
る。反応槽5は、反射槽設置ホールに挿入し導波管2に
セットした後、攪拌機7につながった攪拌羽根6および
熱電対等の温度計8が挿入できるようになっている。熱
電対等の温度計8は電磁波制御用測定機および電磁波制
御装置9につながっており、電磁波制御装置9からはマ
グネトロン1の出力コントロールが行われる。図2の側
面図に示すように、導波管2には片側もしくは両側に反
応中の光学特性を測定するための窓11が付けてある。
また図3に示すように熱電対等の金属物質は、TE波単
一モードのマイクロ波の電界12に対しほぼ直交するよ
うに挿入されている。
Embodiment 1 As shown in FIG. 1, an apparatus comprising a magnetron 1 and a waveguide 2 and a non-reflection terminator 3 is further provided. After the reaction tank 5 is inserted into the reflection tank installation hole and set in the waveguide 2, a stirring blade 6 connected to a stirrer 7 and a thermometer 8 such as a thermocouple can be inserted. A thermometer 8 such as a thermocouple is connected to an electromagnetic wave control measuring device and an electromagnetic wave control device 9 from which the output of the magnetron 1 is controlled. As shown in the side view of FIG. 2, the waveguide 2 is provided with a window 11 on one side or both sides for measuring optical characteristics during reaction.
As shown in FIG. 3, a metal material such as a thermocouple is inserted so as to be substantially orthogonal to the electric field 12 of the microwave of the TE mode single mode.

【0009】反応槽として試験管を用い、フタリジニト
リル256部、硫酸銅80部をエチレングリコール10
000部に加え、図1示す反応槽設置位置にセットす
る。攪拌羽根および金属でカバーされた直径1.6mm
のアルメルクロメル熱電対を図1のように挿入する。熱
電対は電磁波制御用測定機につながっており、反応条件
設定条件の温度指示に従って、マグネトロンの出力を制
御出来るようになっている。反応条件として、室温から
2分間で130℃まで昇温、さらに2分間で160℃ま
で昇温その後2分間で170℃まで昇温し170℃で1
5分間保持する温度条件を制御装置に設定した。
A test tube was used as a reaction vessel, and 256 parts of phthalidinitrile and 80 parts of copper sulfate were added to ethylene glycol 10
In addition to 000 parts, set at the reaction tank installation position shown in FIG. 1.6 mm diameter covered with stirring blades and metal
1 is inserted as shown in FIG. The thermocouple is connected to a measuring device for electromagnetic wave control, so that the output of the magnetron can be controlled according to the temperature instruction in the reaction condition setting condition. As reaction conditions, the temperature was raised from room temperature to 130 ° C. in 2 minutes, further raised to 160 ° C. in 2 minutes, then raised to 170 ° C. in 2 minutes,
The temperature condition for holding for 5 minutes was set in the control device.

【0010】攪拌を開始した後、2.45GHz、50
0WのTE波単一モードのマイクロ波の照射を与えたと
ころ、温度計の異常加熱やケーブル部の放電も認められ
なかった。設置した温度計で反応槽内の温度を測定した
ところ、設定条件のとおり温度が管理出来、粗製銅フタ
ロシアニン(C.I.Pigment Blue 1
5:3)が得られた。また、反応溶液が無色から青色に
変化する状態を導波管にあけられた光学特性確認用窓1
1から目視で確認する事が出来た。
After the stirring is started, 2.45 GHz, 50
Irradiation with a 0 W TE-wave single-mode microwave gave no abnormal heating of the thermometer or discharge of the cable. When the temperature inside the reaction tank was measured with an installed thermometer, the temperature could be controlled according to the set conditions, and the crude copper phthalocyanine (CI Pigment Blue 1) was used.
5: 3) was obtained. In addition, the state in which the reaction solution changes from colorless to blue is set in the optical property confirmation window 1 opened in the waveguide.
It was possible to confirm visually from 1.

【0011】[実施例2]実施例1と同様の装置と試験
管を用い、無水フタル酸592部、尿素960部、塩化
第一銅105部、四塩化チタン80部および4−スルホ
フタル酸30部をスルホラン6000部へ加え、図1示
す反応槽設置位置にセットする。攪拌羽根および金属で
カバーされた直径1.6mmのアルメルクロメル熱電対
を図のように挿入する。熱電対は電磁波制御用測定機に
つながっており、反応条件設定条件の温度指示に従っ
て、マグネトロンの出力を制御出来るようになってい
る。導波管に付けられた光学特性確認用窓11に非接触
型色彩管理器をセットする。反応条件として、室温から
15分間で190℃まで昇温し、190℃で20分間保
持する温度条件を制御装置に設定した。
Example 2 Using the same apparatus and test tube as in Example 1, 592 parts of phthalic anhydride, 960 parts of urea, 105 parts of cuprous chloride, 80 parts of titanium tetrachloride and 30 parts of 4-sulfophthalic acid To 6000 parts of sulfolane, and set at the reaction tank installation position shown in FIG. A 1.6 mm diameter alumel chromel thermocouple covered with a stirring blade and metal is inserted as shown. The thermocouple is connected to a measuring device for electromagnetic wave control, so that the output of the magnetron can be controlled according to the temperature instruction in the reaction condition setting condition. A non-contact type color manager is set in the optical characteristic confirmation window 11 attached to the waveguide. As the reaction conditions, a temperature condition in which the temperature was raised from room temperature to 190 ° C. in 15 minutes and maintained at 190 ° C. for 20 minutes was set in the control device.

【0012】攪拌を開始した後、2.45GHz、15
00WのTE波単一モードのマイクロ波の照射を与えた
ところ、温度計の異常加熱やケーブル部の放電も認めら
れなかった。設置した温度計で反応槽内の温度を測定し
たところ、設定条件のとおり温度が管理出来、粗製銅フ
タロシアニン(C.I.Pigment Blue1
5:3)が得られた。また反応溶液の色の変化を、光学
特性確認用窓11にセットした非接触型色彩管理器によ
り測定し、無色から青色に変化する状態を測色値として
確認する事が出来た。
After starting the stirring, 2.45 GHz, 15
Irradiation with a 00W TE-wave single-mode microwave did not cause abnormal heating of the thermometer or discharge of the cable. When the temperature inside the reaction tank was measured with a thermometer installed, the temperature could be controlled according to the set conditions, and crude copper phthalocyanine (CI Pigment Blue 1) was used.
5: 3) was obtained. The change in the color of the reaction solution was measured by a non-contact color controller set in the optical property confirmation window 11, and the state of colorless to blue change could be confirmed as a colorimetric value.

【0013】[実施例3]実施例1と同様の装置と試験
管を用い、ポリ燐酸240部、2,5−ビス(フェニル
アミノ)テレフタル酸40部を加え、図1示す反応槽設
置位置にセットする。攪拌羽根および金属でカバーされ
た直径1.6mmのアルメルクロメル熱電対を図のよう
に挿入する。熱電対は電磁波制御用測定機につながって
おり、反応条件設定条件の温度指示に従って、マグネト
ロンの出力を制御出来るようになっている。反応条件と
して、室温から2分間で200℃まで昇温し、200℃
で5分間保持する温度条件を制御装置に設定した。
Example 3 Using the same apparatus and test tube as in Example 1, 240 parts of polyphosphoric acid and 40 parts of 2,5-bis (phenylamino) terephthalic acid were added to the reaction tank shown in FIG. set. A 1.6 mm diameter alumel chromel thermocouple covered with a stirring blade and metal is inserted as shown. The thermocouple is connected to a measuring device for electromagnetic wave control, so that the output of the magnetron can be controlled according to the temperature instruction in the reaction condition setting condition. As reaction conditions, the temperature was raised from room temperature to 200 ° C. for 2 minutes, and 200 ° C.
Was set in the control device for 5 minutes.

【0014】攪拌を開始した後、2.45GHz、50
0WのTE波単一モードのマイクロ波の照射を与えたと
ころ、温度計の異常加熱やケーブル部の放電も認められ
なかった。設置した温度計で反応槽内の温度を測定した
ところ、設定条件のとおり温度が管理出来、粗製キナク
ロドン(C.I.Pigment Violet 1
9)を得られた。また、反応溶液の色の変化を導波管に
あけられた光学特性確認用窓11から確認する事が出来
た。
After the stirring is started, 2.45 GHz, 50
Irradiation with a 0 W TE-wave single-mode microwave gave no abnormal heating of the thermometer or discharge of the cable. When the temperature inside the reaction tank was measured with an installed thermometer, the temperature could be controlled according to the set conditions, and crude quinaclodone (CI Pigment Violet 1) was used.
9) was obtained. Further, a change in the color of the reaction solution could be confirmed from the optical property confirmation window 11 opened in the waveguide.

【0015】[0015]

【発明の効果】以上述べたように、本発明では、マイク
ロ波加熱化学反応装置において反応槽の温度を反応中に
直接同時測定することにより、正確な温度測定を可能に
しかつ反応温度の制御を可能にしたものである。さらに
は、反応中の光学特性の変化を光学分析機器等により反
応中に直接同時測定することを可能にしたものである。
可視光のみならず、赤外分光や紫外光等の直接同時計測
が可能となり、反応時の状態をその場で分析計測するこ
とが可能となる。
As described above, the present invention enables accurate temperature measurement and control of the reaction temperature by directly and simultaneously measuring the temperature of the reaction tank in the microwave heating chemical reaction apparatus during the reaction. It is made possible. Further, it is possible to directly and simultaneously measure a change in optical characteristics during the reaction using an optical analyzer or the like during the reaction.
Direct simultaneous measurement of not only visible light but also infrared spectroscopy and ultraviolet light becomes possible, and the state at the time of reaction can be analyzed and measured on the spot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるマイクロ波電界中における加熱
化学反応温度測定制御装置を説明する断面図である。
FIG. 1 is a sectional view illustrating a heating chemical reaction temperature measurement control device in a microwave electric field according to the present invention.

【図2】本発明に係わるマイクロ波電界中における化学
反応装置の側面図と光学特性確認用窓の説明図である。
FIG. 2 is a side view of a chemical reaction device in a microwave electric field according to the present invention and an explanatory diagram of a window for confirming optical characteristics.

【図3】本発明に係わるマイクロ波電界中における化学
反応装置の導波管断面でのTE波単一モードのマイクロ
波の模式的電界と反応槽断面図である。
FIG. 3 is a schematic electric field of a TE mode single-mode microwave and a cross-sectional view of a reactor in a waveguide cross section of a chemical reaction apparatus in a microwave electric field according to the present invention.

【符号の説明】[Explanation of symbols]

1 マグネトロン 2 導波管 3 無反射終端器 4 反応槽設置ホール 5 反応槽 6 攪拌羽根 7 攪拌機 8 温度計 9 電磁波制御用測定機および制御装置 10 データ記録用測定機 11 光学特性確認用窓 12 TE波単一モードのマイクロ波の模式的電界 DESCRIPTION OF SYMBOLS 1 Magnetron 2 Waveguide 3 Non-reflection terminator 4 Reaction tank installation hole 5 Reaction tank 6 Stirrer blade 7 Stirrer 8 Thermometer 9 Electromagnetic wave control measuring device and control device 10 Data recording measuring device 11 Optical characteristic confirmation window 12 TE Schematic electric field of a single-wave microwave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 和親 上田市常入1−15−4 (72)発明者 山浦 逸雄 上田市諏訪形1112−2 (72)発明者 大島 泰三 東京都足立区宮城1丁目1番25号 住化カ ラー株式会社東京工場内 Fターム(参考) 2G054 BB13 CB03 CE01 EA10 FA10 FA12 FA16 FA37 GA03 GB01 GB04 3K086 AA07 AA10 BB02 CA02 CB04 FA09 FA10 3K090 LA00 PA00 4G057 AD01 4G075 AA01 AA63 BA10 CA02 CA26 EA01 EB21 FC04 FC20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuchika Ota 1-15-4, Tsukiiri Ueda City (72) Inventor Itsuo Yamaura 1112-1-2 Suwagata, Ueda City (72) Inventor Taizo Oshima Miyagi, Adachi-ku, Tokyo 1-1-25-1 Sumika Color Co., Ltd. Tokyo factory F-term (reference) 2G054 BB13 CB03 CE01 EA10 FA10 FA12 FA16 FA37 GA03 GB01 GB04 3K086 AA07 AA10 BB02 CA02 CB04 FA09 FA10 3K090 LA00 PA00 4G057 AD01 4G075 AA01A CA26 EA01 EB21 FC04 FC20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波加熱による化学反応装置におい
て、反応槽内に熱電対等の金属性機器を挿入し、温度等
を管理および制御するために、設置される熱電対等の金
属性機器をマイクロ波電磁界のTEモードのマイクロ波
の電界に対しほぼ直交するように挿入する事を特徴とす
る化学反応装置。
In a chemical reaction apparatus using microwave heating, a metallic device such as a thermocouple is inserted into a reaction vessel, and a metallic device such as a thermocouple is installed in the microwave to control and control the temperature and the like. A chemical reaction apparatus characterized by being inserted so as to be substantially orthogonal to an electric field of a microwave in a TE mode of an electromagnetic field.
【請求項2】請求項1において導波管の一部に窓をあ
け、光透過性の素材からなる反応槽を通して反応槽内部
の光学特性を目視または光学分析機器により確認するこ
とを特徴とする化学反応装置。
2. A method according to claim 1, wherein a window is opened in a part of the waveguide, and optical characteristics inside the reaction tank are visually or visually confirmed by an optical analyzer through a reaction tank made of a light-transmitting material. Chemical reactor.
JP2000309925A 2000-09-04 2000-09-04 Microwave chemical reactor Pending JP2002079078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309925A JP2002079078A (en) 2000-09-04 2000-09-04 Microwave chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309925A JP2002079078A (en) 2000-09-04 2000-09-04 Microwave chemical reactor

Publications (1)

Publication Number Publication Date
JP2002079078A true JP2002079078A (en) 2002-03-19

Family

ID=18789976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309925A Pending JP2002079078A (en) 2000-09-04 2000-09-04 Microwave chemical reactor

Country Status (1)

Country Link
JP (1) JP2002079078A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070881A1 (en) 2004-12-28 2006-07-06 Kabushiki Kaisha Idx Micro wave chemical reaction device
US7111466B2 (en) * 2003-08-21 2006-09-26 Yamaha Corporation Microreactor and substance production method therewith
JP2009505108A (en) * 2005-08-23 2009-02-05 シーイーエム コーポレイション Real-time imaging and spectroscopy during microwave-assisted chemical reactions
US9370762B2 (en) 2011-11-11 2016-06-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
US9573112B2 (en) 2011-11-11 2017-02-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
US10457930B2 (en) 2010-06-30 2019-10-29 Microwave Chemical Co., Ltd. Oil-based material-producing method and oil-based material-producing apparatus
US11224852B2 (en) 2011-06-29 2022-01-18 Microwave Chemical Co., Ltd. Chemical reaction apparatus and chemical reaction method
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111466B2 (en) * 2003-08-21 2006-09-26 Yamaha Corporation Microreactor and substance production method therewith
WO2006070881A1 (en) 2004-12-28 2006-07-06 Kabushiki Kaisha Idx Micro wave chemical reaction device
US8138458B2 (en) 2004-12-28 2012-03-20 Kabushiki Kaisha Idx Microwave chemical reaction device
JP2009505108A (en) * 2005-08-23 2009-02-05 シーイーエム コーポレイション Real-time imaging and spectroscopy during microwave-assisted chemical reactions
US10457930B2 (en) 2010-06-30 2019-10-29 Microwave Chemical Co., Ltd. Oil-based material-producing method and oil-based material-producing apparatus
US11224852B2 (en) 2011-06-29 2022-01-18 Microwave Chemical Co., Ltd. Chemical reaction apparatus and chemical reaction method
US9370762B2 (en) 2011-11-11 2016-06-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
US9573112B2 (en) 2011-11-11 2017-02-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
US10464040B2 (en) 2011-11-11 2019-11-05 Microwave Chemical Co., Ltd. Chemical reaction method
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus

Similar Documents

Publication Publication Date Title
JP2002079078A (en) Microwave chemical reactor
EP1917100B1 (en) Real-time imaging and spectroscopy during microwave assisted chemistry
CA2307374C (en) Method and apparatus for temperature calibration in microwave assisted chemistry
JPS6156449B2 (en)
Callis et al. An In-Line Power Monitor for HE11 Low Loss Transmission Lines
CN105784197A (en) Large-range super-high temperature sensing system and method
CN108709660A (en) Temperature-detecting device and system
US20070294037A1 (en) System and Method for Optimizing Data Acquisition of Plasma Using a Feedback Control Module
CN105744457A (en) Audio device frequency response testing device and method
MacDonald et al. Optical analysis of infrared spectra recorded with tapered chalcogenide glass fibers
WO1997006426A1 (en) Waveguide sensing element for use in a sample medium and method of launching electromagnetic radiation
Boussard-Pledel et al. Infrared glass fibers for evanescent wave spectroscopy
JP3954745B2 (en) Liquid cell for sample liquid distribution
JPS62226028A (en) Calibrating method for temperature measurement using optical fiber
Hutsel et al. Inexpensive, efficient optical fiber end-face mirror
WO1999032221A1 (en) Gas agitation of microwave assisted chemical processes
JP2504763B2 (en) Optical fiber core detection method
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength
IT1228039B (en) SENSOR AND EQUIPMENT FOR MEASURING RADIANT ENERGY, IN PARTICULAR THE ENERGY ASSOCIATED WITH RADIOFREQUENCY SIGNALS, MICROWAVES AND LIGHT RADIATIONS
Bozhkov et al. A setup for investigating induced refractive index change in optical fibers at high temperatures
CN117479364A (en) Integrated optical fiber temperature monitoring and automatic timing, storage and recording system of microwave heating equipment
Saito Overview of infrared optical fiber sensors
JP3969872B2 (en) Strain measuring apparatus and method
JPH07218351A (en) Optical fiber for detecting temperature
Lansing et al. Thermal Excitation System for Shearography (TESS)