JP2002075912A - Method and device for covering and filling base - Google Patents

Method and device for covering and filling base

Info

Publication number
JP2002075912A
JP2002075912A JP2000259459A JP2000259459A JP2002075912A JP 2002075912 A JP2002075912 A JP 2002075912A JP 2000259459 A JP2000259459 A JP 2000259459A JP 2000259459 A JP2000259459 A JP 2000259459A JP 2002075912 A JP2002075912 A JP 2002075912A
Authority
JP
Japan
Prior art keywords
substrate
filling
coating
raw material
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000259459A
Other languages
Japanese (ja)
Inventor
Naoaki Kogure
直明 小榑
Kuniaki Horie
邦明 堀江
Yuji Araki
裕二 荒木
Hiroshi Nagasaka
浩志 長坂
Momoko Sumiya
桃子 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000259459A priority Critical patent/JP2002075912A/en
Priority to EP01113180A priority patent/EP1160826A3/en
Priority to US09/866,843 priority patent/US6921722B2/en
Publication of JP2002075912A publication Critical patent/JP2002075912A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for covering and filling a base that can healthily cover and fill the inside of a recess formed on the surface of the base, and has a high deposit speed and at the same time the excellent utilization rate of a raw material. SOLUTION: This device has an ion source required for generating a particle beam (a hydrogen beam 29), a high-speed ion generation mechanism, and a raw material supply mechanism (a raw material container 23 and a carburetor 26) containing the element of a material for covering and filling the inside of the recess formed on the surface of a substrate Wf. The device also has a function for applying the particle beam to the base in parallel with the execution of a normal chemical gaseous phase deposition process and/or before the supply of a feed gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に微細な穴や
溝等の凹みが形成された基材の該凹み内部を化学気相蒸
着法によって被覆・充填する基材の被覆・充填方法及び
装置に関し、特に半導体基板に形成した配線用の微細な
穴や溝等の凹みが形成された基材の該凹み内部を銅等の
金属材料で被覆・充填するのに好適な基材の被覆・充填
方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of coating / filling a substrate, in which the inside of the depression having a fine hole or groove formed on the surface is coated / filled by chemical vapor deposition. With respect to the apparatus, in particular, a base material suitable for coating / filling the inside of the recess with a metal material such as copper in a base material in which fine holes or grooves for wiring formed in a semiconductor substrate are formed. The present invention relates to a filling method and an apparatus.

【0002】[0002]

【従来の技術】今後ますます微細化、高集積化が進展す
る半導体デバイスの配線形成を目的として、半導体基板
表面に形成された微細な凹みを被覆・充填する基板の被
覆・充填手段が種々提案されている。現在まで提案され
ている従来法の限界を克服する手段のうちでは、化学気
相蒸着法(以下、必要に応じて「CVD」と略記する)
が唯一、将来実現の可能性のあるものとされており(例
えば、NIKKEI MICRODEVICES,19
98年12月号,P.32参照)、種々の機関で研究・
開発が進行している。
2. Description of the Related Art A variety of substrate coating / filling means for coating / filling a fine dent formed on a semiconductor substrate surface have been proposed for the purpose of forming wiring of a semiconductor device, which is increasingly miniaturized and highly integrated in the future. Have been. Among the means for overcoming the limitations of the conventional methods proposed to date, chemical vapor deposition (hereinafter abbreviated as “CVD” as necessary)
Is the only one that can be realized in the future (for example, NIKKEI MICRODEVICES, 19
December 1998, p. 32), research at various institutions
Development is in progress.

【0003】図1はCVDによる銅被覆・充填のための
被覆・充填装置の概略構成例を示す図である。図1にお
いて、1は反応室であり、該反応室1内には基板Wfを
載置するサセプタ2が配置され、該反応室1は真空ポン
プ等の排気系に接続され、所定の圧力Pに減圧するよう
になっている。3は液体原料を収容した原料容器であ
り、該原料容器3にキャリヤガス容器4からキャリヤガ
スを供給することにより、液体原料を気化器5に送り
(流量f)、該気化器5で気化し、原料ガス6として反
応室1内に供給するようになっている。なお、サセプタ
2内には半導体基板Wfを加熱するためのヒータ7を設
けている。
FIG. 1 is a diagram showing a schematic configuration example of a coating and filling apparatus for coating and filling copper by CVD. In FIG. 1, reference numeral 1 denotes a reaction chamber, in which a susceptor 2 on which a substrate Wf is mounted is disposed, and the reaction chamber 1 is connected to an exhaust system such as a vacuum pump and has a predetermined pressure P. The pressure is reduced. Reference numeral 3 denotes a raw material container containing a liquid raw material. By supplying a carrier gas from the carrier gas container 4 to the raw material container 3, the liquid raw material is sent to the vaporizer 5 (flow rate f) and vaporized by the vaporizer 5. The raw material gas 6 is supplied into the reaction chamber 1. Note that a heater 7 for heating the semiconductor substrate Wf is provided in the susceptor 2.

【0004】上記構成の基板の被覆・充填装置におい
て、内部を所定の圧力Pに減圧した反応室1内に気化器
5から原料ガス6を導入し、基板Wfの表面に原料ガス
に含まれる銅を解離・堆積する。ここで原料としては主
としてCuを含む有機錯体(例えば、ヘキサフルオロア
セチルアセトネート・トリメチルビニルシラン銅、常温
で液体)を用い、該液体原料を気化器5で気化して用
い、基板Wfをヒータ7で140℃〜180℃に昇温し
て反応を起こし、基板Wfの表面に銅を堆積することに
よって予め基板Wfの表面に設けた半導体デバイスの配
線用の微細な穴や溝等の凹み内部に銅を堆積して被覆又
は充填する。
In the apparatus for coating and filling a substrate having the above-described structure, a source gas 6 is introduced from a vaporizer 5 into a reaction chamber 1 in which the inside is reduced to a predetermined pressure P, and copper contained in the source gas is deposited on the surface of the substrate Wf. Is dissociated and deposited. Here, as a raw material, an organic complex mainly containing Cu (for example, hexafluoroacetylacetonate / trimethylvinylsilane copper, liquid at room temperature) is used, and the liquid raw material is vaporized by a vaporizer 5 and used. By raising the temperature to 140 ° C. to 180 ° C. to cause a reaction, and depositing copper on the surface of the substrate Wf, copper is formed inside a concave such as a fine hole or groove for wiring of a semiconductor device previously provided on the surface of the substrate Wf. Is deposited and coated or filled.

【0005】ここで、凹み内部に銅を被覆するのはそ
れに引き続く電解銅めっき埋込みの下地、即ち給電層を
形成することに相当し、一方、銅を充填するのは、電
解めっきによることなく、CVDによって配線全体を形
成するための一貫埋込みを行なうことに相当する。上記
の被覆、の充填の夫々の工程は、対象とする配線の
微細化の程度や、全体工程との相関によって適宜使い分
けることが望ましい。
[0005] Here, covering the inside of the recess with copper is equivalent to forming a base for the subsequent embedding of electrolytic copper plating, that is, a power supply layer. On the other hand, filling copper is not performed by electrolytic plating. This is equivalent to performing consistent embedding for forming the entire wiring by CVD. It is desirable that the above-described respective steps of coating and filling be properly used depending on the degree of miniaturization of the target wiring and the correlation with the entire process.

【0006】図2は上記の被覆との充填の状態を模
式的に示す図である。図2(a)は被覆の場合を示し、
基板(図示せず)の絶縁層11に形成された微細な凹み
12の内部に拡散抑制層13が形成されており、その上
に堆積銅層14を形成して給電層としている。図2
(b)は充填の場合を示し、基板(図示せず)の絶縁層
11に形成された微細な凹み12の内部に拡散抑制層1
3が形成されており、その内部を堆積銅層15で充填し
ている。
FIG. 2 is a diagram schematically showing a state of filling with the above-mentioned coating. FIG. 2A shows the case of coating,
A diffusion suppressing layer 13 is formed inside a fine recess 12 formed in an insulating layer 11 of a substrate (not shown), and a deposited copper layer 14 is formed thereon to serve as a power supply layer. FIG.
(B) shows a case of filling, in which a diffusion suppressing layer 1 is formed inside a fine recess 12 formed in an insulating layer 11 of a substrate (not shown).
3 is formed, and the inside thereof is filled with the deposited copper layer 15.

【0007】上記のように基板表面の微細な凹み12の
内部を銅のCVDで実際に被覆・充填した場合、種々の
不具合を生じることが多い。通常のCVDによって、幅
0.13μm以下の微細な凹み内部を金属銅で被覆・充
填すると、形成した皮膜表面の凹凸度合が激しく(モ
フォロジーが悪い)だけでなく、凹み開口部が内部よ
り先に閉塞する結果、充填すべき部分に空洞やシーム等
の欠陥を生じ易く、更に原料消費量に対する銅堆積速
度が小さく、基材と堆積銅層14、15の密着が弱い
という問題が生じる。
As described above, when the inside of the fine recess 12 on the substrate surface is actually coated and filled with copper CVD, various problems often occur. When the inside of a fine recess having a width of 0.13 μm or less is coated and filled with metallic copper by ordinary CVD, the degree of unevenness of the formed film surface is not only severe (poor morphology), but also the opening of the recess is formed before the inside. As a result of the blockage, defects such as cavities and seams are likely to occur in the portion to be filled, and the copper deposition rate with respect to the raw material consumption is low, and the adhesion between the base material and the deposited copper layers 14 and 15 is weak.

【0008】一般に、半導体デバイスの集積度の向上に
伴って、該半導体デバイスに形成する配線の断面積及び
配線相互の間隔がますます減少する傾向にある。その結
果、従来材のアルミニウムによる配線の場合、電気抵抗
と線間容量の増大に起因する信号伝達の遅延及び電流密
度の上昇(約1MA/cm2以上にも達する)がもたら
すエレクトロマイグレーション(EM)損傷が問題とな
っている。そこで配線材料を従来のアルミニウムから更
に電気抵抗の小さい銅に置換える動きが強まっている。
In general, as the degree of integration of a semiconductor device increases, the cross-sectional area of a wiring formed on the semiconductor device and the distance between the wirings tend to decrease more and more. As a result, in the case of a wiring made of aluminum, which is a conventional material, electromigration (EM) caused by a delay in signal transmission and an increase in current density (up to about 1 MA / cm 2 or more) due to an increase in electric resistance and line capacitance. Damage is a problem. Therefore, there is an increasing movement to replace the wiring material of conventional aluminum with copper having lower electric resistance.

【0009】現在、銅配線形成は従来のスパッタリング
等で形成した薄い給電層を陰極として電解銅めっきを行
い、これによる金属銅析出による微細凹み内部の被覆・
充填によって行なっている。然るに線幅が0.13μm
以下の世代では少なくともスパッタリング成膜による均
一な給電層形成が困難になるので、電解めっきに替る埋
込み性の良い方法を開発・実用化することが必須と考え
られている。
At present, copper wiring is formed by performing electrolytic copper plating using a thin power supply layer formed by conventional sputtering or the like as a cathode, thereby coating the inside of the fine recess by depositing metallic copper.
This is done by filling. But the line width is 0.13μm
In the following generations, it is difficult to form at least a uniform power supply layer by sputtering deposition. Therefore, it is considered essential to develop and commercialize a method with good embedding property in place of electrolytic plating.

【0010】図3はCVDによる銅被覆・充填工程に伴
って高い頻度で起こる不具合の代表例を模式的に示す図
である。図3(a)は堆積銅層14が図2(a)に示す
ように均一で連続的なものと異なり、粒状の析出物が痘
痕状に生成してしまう場合を示している。この現象が起
こる原因としては、下地表面の活性が元来低いので析出
金属の核発生密度が極端に低くなっており、少数の生成
核が異常に大きく成長する傾向が支配的なことに起因す
ると考えられている。
FIG. 3 is a view schematically showing a typical example of a defect which frequently occurs with a copper coating / filling step by CVD. FIG. 3A shows a case where the deposited copper layer 14 is different from a uniform and continuous one as shown in FIG. The cause of this phenomenon is that the activity of the underlying surface is originally low, so the nucleation density of the deposited metal is extremely low, and the tendency for a small number of generated nuclei to grow abnormally large is dominant. It is considered.

【0011】図3(a)に示すような島状の堆積銅層1
4は時間の経過と共に、その厚さと体積が増大して島ど
うしが連結・合体することによって連続した膜状堆積物
の形態に近付いていくが、核発生密度が低く、発生した
島の数が少ないので、その影響を受けて一定時間経過後
に形成する堆積銅層14の表面は凹凸が激しく、モフォ
ロジーの悪い状況を呈する。前述のように著しく表面凹
凸のある給電層上に電解めっきを施しても埋込みが不具
合になることが多い。
An island-shaped deposited copper layer 1 as shown in FIG.
In No. 4, the thickness and volume increase over time and the islands are connected and coalesced, approaching the form of a continuous film-like sediment, but the nucleation density is low and the number of generated islands is low. Because of the small amount, the surface of the deposited copper layer 14 formed after a lapse of a certain time under the influence thereof has severe irregularities, and exhibits a poor morphology. As described above, embedding often becomes a problem even when electrolytic plating is performed on a power supply layer having a significantly uneven surface.

【0012】図3(b)は基材表面に形成した微細な凹
みをCVDによって銅埋込みしたときに、凹みの中央部
分に未充填の空洞欠陥16を生じた状況を示している。
凹み12の内部に空洞欠陥16が起きる原因としては、
充填工程の途中で凹みの入口部分に局所的に堆積銅層1
5が増大して両側から張出し、入口で橋かけが起こる結
果、それ以降の凹み内への銅の流れが停止して銅の供給
が阻止されることが支配的とされている。
FIG. 3 (b) shows a situation in which an unfilled cavity defect 16 is formed at the center of the dent when a fine dent formed on the surface of the base material is buried with copper by CVD.
The cause of the cavity defect 16 inside the recess 12 is as follows.
Copper layer 1 deposited locally at the entrance of the recess during the filling process
It is presumed that as a result of the increase of 5 and overhanging from both sides and bridging at the entrance, the subsequent flow of copper into the recess is stopped and the supply of copper is stopped.

【0013】Cu−CVDは通常圧力数Torr〜数十
Torrの範囲で行なうので、気相の流動は粘性流の条
件下にある。したがって原料成分の基材表面への到着は
基材近傍に存在する滞留層を通過する拡散を介して行な
われる。滞留層内で著しい原料濃度の勾配を生じている
ことが、入口部分の閉塞に関与すると考えられている。
Since Cu-CVD is usually performed at a pressure of several Torr to several tens Torr, the flow of the gas phase is under the condition of viscous flow. Accordingly, the arrival of the raw material components on the surface of the base material is performed through diffusion through a stagnation layer existing near the base material. It is believed that the formation of a significant raw material concentration gradient in the stagnation layer contributes to the blockage of the inlet portion.

【0014】CVDによる銅の堆積速度は、一般にスパ
ッタリフローや電解めっき等のそれと比べてかなり低い
ことが知られている。因みに前者は堆積速度200nm
/minを越えることは難しいが、後二者では容易に5
00nm/min程度を得ることができる。
It is known that the deposition rate of copper by CVD is generally much lower than that of sputtering reflow or electrolytic plating. The former has a deposition rate of 200 nm.
/ Min is difficult, but the latter two easily
About 00 nm / min can be obtained.

【0015】更にCVDによる銅堆積層と基材表面(拡
散抑制層13の表面、例えばTaN皮膜表面)との密着
・接合性が悪いので、これに起因したエレクトロマイグ
レーション耐性の劣化が懸念されている。上記密着・接
合性が悪いのは、TaNとCuとの格子不整合及び通常
スパッタリングによって基材表面に形成したTaN層の
表面がその後の周囲環境の作用によって酸化され、酸化
皮膜によって覆われることに起因するとされている。
Further, the adhesion and bonding between the copper deposited layer formed by CVD and the surface of the substrate (the surface of the diffusion suppressing layer 13, for example, the TaN film) is poor. . Poor adhesion / bonding properties are due to lattice mismatch between TaN and Cu and the surface of the TaN layer formed on the substrate surface by ordinary sputtering is oxidized by the action of the surrounding environment thereafter and is covered by the oxide film. It is attributed.

【0016】[0016]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、CVDに伴って生じる上記問題点
を解決し、基材表面に形成した凹み内部の健全な被覆・
充填が可能で、堆積速度が速く、且つ原料の利用率の高
い基材の被覆・充填方法及び装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and solves the above-mentioned problems caused by CVD.
An object of the present invention is to provide a method and an apparatus for coating / filling a base material which can be filled, has a high deposition rate, and has a high raw material utilization rate.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、化学気相蒸着法によって基材
表面に設けた微細な凹み内部を被覆・充填する基材の被
覆・充填方法において、原料ガス供給に並行し及び/又
は原料ガス供給前に粒子ビームを基材に照射することに
よって、基材表面に設けた微細な凹み内部を被覆・充填
することを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is a method for coating / filling the inside of a fine recess provided on the surface of a substrate by a chemical vapor deposition method. In the filling method, the inside of the fine recess provided on the surface of the base material is covered and filled by irradiating the base material with a particle beam in parallel with and / or before the supply of the source gas.

【0018】上記のように、原料ガス供給に並行し及び
/又は原料ガス供給前に粒子ビームを基材に照射するこ
とによって、基材表面での堆積核発生密度が飛躍的に増
加する。その結果、基材表面に堆積する堆積物層の表面
モフォロジーが平坦になりやすくなる。更に、基材表面
の場所によって粒子ビームの照射強度が変化するように
調整することによって堆積層の優先成長方向を特定する
結果、凹み開口部での閉塞を避けて空洞欠陥の発生を防
ぐことが出来る。同時に、粒子ビームの照射エネルギを
大きくすることによって堆積層と基材表面との界面で、
原子レベルのミキシングを起こすことが出来るので、堆
積層と基材との間の密着性を大幅に改善することができ
る。
As described above, by irradiating the substrate with the particle beam in parallel with and / or before the supply of the source gas, the density of deposition nuclei generated on the surface of the substrate is dramatically increased. As a result, the surface morphology of the deposit layer deposited on the substrate surface tends to be flat. Further, by adjusting the irradiation intensity of the particle beam so as to change depending on the location of the base material surface, the preferential growth direction of the deposited layer is specified, so that clogging at the dent opening can be avoided to prevent generation of cavity defects. I can do it. At the same time, at the interface between the deposited layer and the substrate surface by increasing the irradiation energy of the particle beam,
Since mixing at the atomic level can be caused, the adhesion between the deposited layer and the substrate can be greatly improved.

【0019】請求項2に記載の発明は、請求項1に記載
の基材の被覆・充填方法において、基材への粒子ビーム
の照射は、電子ビーム又は荷電粒子ビームの照射、原子
線又は分子線の照射のうち、少なくとも1手段を用いて
行なうことを特徴とする。
According to a second aspect of the present invention, in the method for coating and filling a substrate according to the first aspect, the substrate is irradiated with a particle beam by electron beam or charged particle beam irradiation, atomic beam or molecular beam. It is characterized in that at least one of the line irradiation is performed.

【0020】請求項3に記載の発明は、請求項1又は2
に記載の基材の被覆・充填方法において、基材は半導体
デバイス製造用のシリコン基板であり、該基材表面に形
成する凹みは半導体デバイス配線形成用のパターン凹み
であり、原料ガスは銅を含む有機錯体ガスであることを
特徴とする。
The invention described in claim 3 is the first or second invention.
In the method of coating and filling a substrate according to the above, the substrate is a silicon substrate for manufacturing a semiconductor device, the dent formed on the surface of the substrate is a pattern dent for forming a semiconductor device wiring, and the raw material gas is copper. It is characterized by being an organic complex gas containing.

【0021】請求項4に記載の発明は、請求項1又は2
に記載の基材の被覆・充填方法において、粒子ビームの
一形態たるイオンビーム、原子線、又は分子線の照射を
行なう場合に、これらビームの粒子としてのエネルギー
を200eV以上で10keV以下とすることを特徴と
する。
The invention described in claim 4 is the first or second invention.
In the method of coating and filling a substrate described in the above, when irradiating an ion beam, an atomic beam, or a molecular beam, which is a form of a particle beam, the energy of these beams as particles is set to 200 eV or more and 10 keV or less. It is characterized by.

【0022】請求項5に記載の発明は、少なくとも粒子
ビームを発生するために必要なイオン源、イオン加速機
構、基材表面に形成された凹み内部を被覆・充填する材
料の元素を含む原料供給機構を具備し、通常の化学気相
蒸着工程実施に並行し及び/又は原料ガス供給前に基材
への粒子ビーム照射を行なう機能を有することを特徴と
する被覆・充填装置にある。
According to a fifth aspect of the present invention, there is provided an ion source necessary for generating a particle beam, an ion accelerating mechanism, and a raw material supply containing an element of a material for coating and filling the inside of a recess formed on the surface of a substrate. A coating / filling apparatus comprising a mechanism and having a function of irradiating a substrate with a particle beam in parallel with performing a normal chemical vapor deposition process and / or before supplying a raw material gas.

【0023】上記のようにイオン源、イオン加速機構、
原料供給機構を具備し、通常の化学気相蒸着工程実施に
並行し及び/又は原料ガス供給前に基材への粒子ビーム
照射を行なうことができるようにしたので、上記のよう
に基材表面に堆積する堆積物層の表面モフォロジーが平
坦になりやすく、堆積層の優先成長方向を特定すること
によって開口部での閉塞を避けて空洞欠陥の発生を防ぐ
と同時に、堆積層と基材との間の密着性を大幅に改善さ
せることができる被覆・充填装置となる。
As described above, the ion source, the ion acceleration mechanism,
Since a material supply mechanism is provided so that particle beam irradiation can be performed on the substrate in parallel with the normal chemical vapor deposition process and / or before the supply of the material gas, the surface of the substrate is The surface morphology of the deposit layer deposited on the surface tends to be flat, and the preferential growth direction of the deposit layer is specified to avoid clogging at the opening to prevent the occurrence of cavity defects, The coating / filling apparatus can greatly improve the adhesion between the coating and the filling.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図4は本発明に係るCVDによ
る被覆・充填装置の概略構成例を示す図である。図4に
おいて、21は反応室であり、該反応室21内には基板
Wfを載置・保持するサセプタ22を配置し、該反応室
21の排気口32は真空ポンプ等を具備する排気系に接
続し、所定の圧力に減圧するようになっている。23は
液体原料を収容した原料容器であり、該原料容器23
に、H2貯留容器24から流量制御器25を介してH2
スを供給することにより、液体原料を気化器26に送
り、該気化器26で気化し、原料ガス27として反応室
21内に供給するようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a view showing a schematic configuration example of a coating and filling apparatus by CVD according to the present invention. In FIG. 4, reference numeral 21 denotes a reaction chamber, in which a susceptor 22 for mounting and holding a substrate Wf is disposed, and an exhaust port 32 of the reaction chamber 21 is connected to an exhaust system having a vacuum pump or the like. The connection is made and the pressure is reduced to a predetermined pressure. Reference numeral 23 denotes a raw material container containing a liquid raw material.
Then, by supplying H 2 gas from the H 2 storage container 24 via the flow rate controller 25, the liquid raw material is sent to the vaporizer 26, and is vaporized by the vaporizer 26, and is supplied into the reaction chamber 21 as the raw material gas 27. Supply.

【0025】28は反応室21内のサセプタ22に載置
・保持された基板Wfに水素(水素イオンH+、水素ラ
ジカルH*、水素分子H2等)ビーム29を発生する高速
イオン発生機構であり、該高速イオン発生機構28には
2貯留容器24から流量制御器30を介してH2ガスを
供給するようになっている。なお、31はサセプタ22
に内蔵した基板Wfを加熱、冷却するための加熱・冷却
機構である。本被覆・充填装置は、原料ガスを外部の気
化器26から反応室21に供給し、これと水素ビームの
相互作用によって原料の分解・合成等の反応を起こすこ
とによって、基板Wf上に所望の銅を堆積するようにし
たものである。なお、原料容器23内にはヘキサフルオ
ロアセチルアセトネート・トリメチルビニルシラン銅C
u(hfac)(tmvs)を収容している。
Reference numeral 28 denotes a high-speed ion generation mechanism for generating a hydrogen (hydrogen ion H + , hydrogen radical H * , hydrogen molecule H 2, etc.) beam 29 on the substrate Wf mounted and held on the susceptor 22 in the reaction chamber 21. The H 2 gas is supplied to the high-speed ion generating mechanism 28 from the H 2 storage container 24 via the flow controller 30. 31 is the susceptor 22
This is a heating / cooling mechanism for heating and cooling the substrate Wf built in the device. The present coating and filling apparatus supplies a raw material gas from an external vaporizer 26 to the reaction chamber 21 and causes a reaction such as decomposition and synthesis of the raw material by an interaction between the raw material gas and the hydrogen beam, thereby forming a desired material on the substrate Wf. This is to deposit copper. The raw material container 23 contains hexafluoroacetylacetonate / trimethylvinylsilane copper C
u (hfac) (tmvs).

【0026】図5は図4に示す被覆・充填装置で基板W
fの表面の微細な凹み(溝、穴等)の内部に銅の皮膜・
堆積する状態を示す図である。図5(a)は凹み内面を
銅の薄膜層で被覆する場合であって、これは主として、
電解銅めっき実施に不可欠の給電層を形成する目的で行
なう。図5(b)は凹み内部を銅で直接充填する場合で
あって、これはCVDによる一貫配線形成を行う目的で
行なう。
FIG. 5 shows the coating and filling apparatus shown in FIG.
Copper film inside fine dents (grooves, holes, etc.) on the surface of f
It is a figure showing the state where it accumulates. FIG. 5A shows a case where the inner surface of the dent is covered with a thin film layer of copper,
This is performed to form a power supply layer indispensable for performing electrolytic copper plating. FIG. 5B shows a case where the inside of the recess is directly filled with copper, which is performed for the purpose of forming an integrated wiring by CVD.

【0027】図5(a)、(b)のどちらの場合も、基
板Wfの表面には、先ず原料のCu(hfac)(tm
vs)33が吸着し、その上から高速の水素(H+
*、H 2等を含む)ビーム29を照射することによって
吸着したCu(hfac)(tmvs)に必要なエネル
ギーを与え、原料を分解して金属銅の堆積物を形成す
る。この時の化学反応は式(1)、(2)に示すものに
なると想定される。
In both cases (a) and (b) of FIG.
First, on the surface of the plate Wf, the raw material Cu (hfac) (tm
vs) 33 is adsorbed and high-speed hydrogen (H+,
H*, H TwoBy irradiating the beam 29
Energy required for adsorbed Cu (hfac) (tmvs)
Energy and decompose raw materials to form metallic copper deposits
You. The chemical reaction at this time is as shown in equations (1) and (2).
It is assumed that

【0028】 2Cu+1(hfac)(tmvs)吸着(g)(水素ビームエネルギ)→ Cu0(S)+Cu+2(hfac)2(g)+2tmvs(g) (1) Cu(hfac)+H*→Cu+H(hfac)(g) (2) ここでH*は水素ラジカルを表わす。2Cu +1 (hfac) (tmvs) adsorption (g) (hydrogen beam energy) → Cu 0 (S) + Cu +2 (hfac) 2 (g) +2 tmvs (g) (1) Cu (hfac) + H * → Cu + H (hfac) (g) (2) Here, H * represents a hydrogen radical.

【0029】本発明によれば、高いエネルギーを持つ水
素ビーム29を基板Wfの表面に照射するので、それに
よって基材表面の無数の箇所で拡散抑制層(TaN)1
3の表面の原子の結合を切断する。この原子の結合が切
断された部分では表面エネルギーが高まり、この部分が
至るところに出現して核発生を促進するので、核発生サ
イトの数が著しく増加することになる。
According to the present invention, since the surface of the substrate Wf is irradiated with the hydrogen beam 29 having a high energy, the diffusion suppressing layer (TaN) 1 is formed at numerous places on the surface of the base material.
3. Break the bonds of the atoms on the surface of No. 3. The surface energy is increased in the portion where the bond of the atom is broken, and this portion appears everywhere to promote nucleation, so that the number of nucleation sites is significantly increased.

【0030】一方、原料の分解によって生成した銅原子
の表面拡散の速度は水素ビーム29のない通常の場合と
同程度にとどまるので図3(a)の粒状堆積物の寸法は
減少して、数密度が増加する。その結果、堆積層の平坦
性が強まり、表面凹凸の激しい成膜を回避できる。な
お、図5(a)に示すように、凹み内部に薄膜層を形成
するときは水素ビームの照射方向を傾動しながら銅堆積
を行い凹み底部と側壁での核発生密度を揃えることによ
って均一・同質の連続銅薄膜を形成することが可能とな
る。
On the other hand, the rate of surface diffusion of copper atoms generated by decomposition of the raw material is almost the same as that in the normal case without the hydrogen beam 29, so that the size of the granular deposit shown in FIG. Density increases. As a result, the flatness of the deposited layer is enhanced, and film formation with severe surface irregularities can be avoided. As shown in FIG. 5 (a), when forming a thin film layer inside the dent, copper deposition is performed while tilting the irradiation direction of the hydrogen beam, and the nucleation density at the bottom and the side wall of the dent is made uniform so as to be uniform. It is possible to form a continuous copper thin film of the same quality.

【0031】更に、図5(b)に示すように、基板Wf
の表面に設けた凹みの底面に垂直で、側壁に平行な方向
に限定した水素ビーム29を照射すれば、前者に対する
照射エネルギー密度が後者に対するそれに比べて著しく
大きくなるので、吸着した原料分子の分解・解離は実質
的に底面上だけで生じる。そこで、銅堆積の成長方向は
底部から入口の一方向だけに限定される。その結果、入
口部での堆積銅の張出し(オーバハング)による閉塞は
回避でき、図3(b)に示す空洞欠陥16の発生を回避
できる。
Further, as shown in FIG. 5B, the substrate Wf
Irradiating the hydrogen beam 29 in a direction perpendicular to the bottom surface of the dent provided on the surface and parallel to the side wall, the irradiation energy density for the former becomes significantly larger than that for the latter. -Dissociation occurs substantially only on the bottom surface. Thus, the growth direction of copper deposition is limited to only one direction from the bottom to the entrance. As a result, blockage due to overhang of the deposited copper at the entrance can be avoided, and the occurrence of the cavity defect 16 shown in FIG. 3B can be avoided.

【0032】また、本発明の方法では通常作動圧力が大
略1×10-4Torr以下と通常のCVDよりも極端に
低い領域で成膜を行うので、ガス分子の平均自由行程が
装置の代表寸法より大きくなる所謂分子流領域で膜堆積
を行うことが出来る。分子流空間であるから、従来CV
Dを行う粒性流空間と異なり基板Wfの表面付近のガス
滞留層は存在しないので、巨視的なガス流速とは無関係
な堆積ができる。言い換えると、原料ガス流量を小さく
して相対的に高速な堆積が可能となり、原料消費効率を
改善できる。また、通常の熱CVDでは水素の解離が殆
ど起きないので、式(1)の反応だけが起きる(原料が
含む半分のCuだけ利用する)のに対し、本発明の方法
によると、水素イオンH+や水素ラジカルH*のような活
性水素が豊富に存在するので式(2)の反応も起こりや
すくなり、通常のCVDでは排気として浪費されるCu
も有効に析出・堆積に充当できる。この面からも堆積速
度が速く(理論上2倍になり)、原料の利用率が高ま
る。
Further, in the method of the present invention, the film is formed in a region where the normal operating pressure is approximately 1 × 10 −4 Torr or less, which is extremely lower than that of the normal CVD. Film deposition can be performed in a larger so-called molecular flow region. Because it is a molecular flow space, the conventional CV
Unlike the granular flow space where D is performed, since there is no gas stagnation layer near the surface of the substrate Wf, deposition can be performed irrespective of the macroscopic gas flow velocity. In other words, a relatively high-speed deposition can be performed by reducing the flow rate of the source gas, and the source consumption efficiency can be improved. In addition, since hydrogen dissociation hardly occurs in ordinary thermal CVD, only the reaction of the formula (1) occurs (only half of the Cu contained in the raw material is used), but according to the method of the present invention, hydrogen ions H Since the active hydrogen such as + and hydrogen radical H * is abundantly present, the reaction of the formula (2) is also likely to occur, and Cu which is wasted as exhaust gas in ordinary CVD is used.
Can also be effectively applied to deposition and deposition. Also from this aspect, the deposition rate is high (doubling theoretically), and the utilization rate of the raw material is increased.

【0033】更に、200eV〜10keVの水素ビー
ム29を照射することによって基板Wfの表面のスパッ
タリングだけでなく、水素の内部への侵入による堆積銅
層と基板Wfの界面の原子レベルでのミキシングが起こ
る(図6参照)ので、堆積銅層と基板Wfとの密着・接
合性が大きく改善される。なお、上記例では粒子ビーム
として水素ビームを用いたが当然のことながら水素ビー
ム以外の化学種を用いることもできる。
Further, by irradiating the hydrogen beam 29 of 200 eV to 10 keV, not only sputtering on the surface of the substrate Wf but also mixing at the atomic level of the interface between the deposited copper layer and the substrate Wf due to the penetration of hydrogen into the inside occurs. (See FIG. 6), so that the adhesion / bonding property between the deposited copper layer and the substrate Wf is greatly improved. In the above example, a hydrogen beam is used as the particle beam. However, it goes without saying that a chemical species other than the hydrogen beam can be used.

【0034】上述の方法から派生した概念として、銅原
料ガスの供給前に水素ビームを予め照射しておくことも
有効な効果を生む。これはCu堆積に先立って下地の拡
散抑制層であるTaN層の表面の原子結合の一部を切断
・還元したり、この表面に水素を付着・侵入させたりす
ることによって、下地側の核発生点が増加することによ
る。
As a concept derived from the above-mentioned method, it is also effective to irradiate a hydrogen beam in advance before supplying the copper raw material gas. This is because, prior to Cu deposition, some of the atomic bonds on the surface of the TaN layer, which is the diffusion suppression layer of the base, are cut or reduced, or hydrogen is attached to or penetrated into the surface, thereby generating nuclei on the base side. By increasing points.

【0035】なお、上記例では基材表面に銅(Cu)を
堆積する例を示したが、堆積する物質は銅に限定される
ものではなく、他の金属でもよいことは当然である。
In the above example, copper (Cu) is deposited on the surface of the base material. However, the deposited material is not limited to copper, but may be other metals.

【0036】[0036]

【発明の効果】以上、説明したように各請求項に記載の
発明によれば下記のような優れた効果が得られる。
As described above, according to the invention described in each claim, the following excellent effects can be obtained.

【0037】請求項1乃至4に記載の発明によれば、原
料ガス供給に並行し及び/又は原料ガス供給前に粒子ビ
ームを基材に照射することによって、基材表面での堆積
核発生密度が飛躍的に増加するから、基材表面に堆積す
る堆積物層の表面モフォロジーが平坦になりやすくな
る。また、該粒子ビームの照射強度を基材の場所によっ
て変化することによって堆積層の優先成長方向を特定す
ることが出来るので開口部での閉塞を避けて空洞欠陥の
発生を防ぐと同時に、粒子ビームの照射により堆積層と
基材表面との界面での原子レベルでのミキシングを起こ
すことによって、堆積層と基材との間の密着性を大幅に
改善させることができる。
According to the first to fourth aspects of the present invention, the density of deposited nuclei on the surface of the substrate is increased by irradiating the substrate with a particle beam in parallel with and / or before the supply of the source gas. Is drastically increased, so that the surface morphology of the deposit layer deposited on the substrate surface tends to be flat. In addition, by changing the irradiation intensity of the particle beam depending on the location of the base material, the preferential growth direction of the deposited layer can be specified. Irradiation causes mixing at the atomic level at the interface between the deposited layer and the substrate surface, thereby greatly improving the adhesion between the deposited layer and the substrate.

【0038】請求項5に記載の発明によれば、イオン
源、イオン加速機構、原料供給機構を具備し、通常の化
学気相蒸着工程実施に並行し及び/又は原料ガス供給前
に基材への粒子ビーム照射を行なうことができるように
したので、上記のように基材表面に堆積する堆積物層の
表面モフォロジーが平坦になりやすく、堆積層の優先成
長方向を特定することによって開口部での閉塞を避けて
空洞欠陥の発生を防ぐと同時に、堆積層と基材との間の
密着性を大幅に改善させることができる被覆・充填装置
を提供できる。
According to the fifth aspect of the present invention, an ion source, an ion accelerating mechanism and a raw material supply mechanism are provided, and the raw material is supplied to the base material in parallel with the ordinary chemical vapor deposition process and / or before the supply of the raw material gas. Particle beam irradiation can be performed, so that the surface morphology of the deposit layer deposited on the substrate surface tends to be flat as described above, and by specifying the preferential growth direction of the deposited layer, And a coating / filling apparatus capable of preventing the occurrence of cavity defects by avoiding clogging and significantly improving the adhesion between the deposited layer and the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のCVDによる被覆・充填装置の構成例を
示す図である。
FIG. 1 is a diagram showing a configuration example of a conventional coating and filling apparatus by CVD.

【図2】凹み内部の被覆・充填の状態を模式的に示す図
で、図2(a)は被覆の場合を、図2(b)は充填の場
合を示す図である。
FIGS. 2A and 2B are diagrams schematically showing a state of coating and filling inside a recess, wherein FIG. 2A shows a case of coating and FIG. 2B shows a state of filling.

【図3】CVDによる銅被覆・充填工程に伴って高い頻
度で起こる不具合の代表例を模式的に示す図で、図3
(a)は被覆の場合を、図3(b)は充填の場合を示す
図である。
FIG. 3 is a diagram schematically showing a typical example of a defect that frequently occurs with a copper coating and filling step by CVD.
FIG. 3A shows a case of coating, and FIG. 3B shows a case of filling.

【図4】本発明に係るCVDによる被覆・充填装置の概
略構成例を示す図である。
FIG. 4 is a view showing a schematic configuration example of a coating / filling apparatus by CVD according to the present invention.

【図5】本発明に係る被覆・充填装置で凹み内部に銅の
皮膜・堆積する状態を示す図で、図5(a)は水素ビー
ムを傾動して照射する場合、図5(b)は水素ビームを
垂直に照射する場合を示す図である。
FIG. 5 is a view showing a state in which a copper film is deposited and deposited inside a recess by the coating and filling apparatus according to the present invention. FIG. 5 (a) shows a case where a hydrogen beam is tilted and irradiated, and FIG. It is a figure which shows the case where a hydrogen beam is irradiated vertically.

【図6】粒子のエネルギーと粒子ビーム照射による被照
射面への侵入深さを示す図である。
FIG. 6 is a diagram showing the energy of particles and the depth of penetration of a particle beam into a surface to be irradiated.

【符号の説明】[Explanation of symbols]

21 反応室 22 サセプタ 23 原料容器 24 H2貯留容器 25 流量制御器 26 気化器 27 原料ガス 28 高速イオン発生機構 29 水素ビーム 30 流量制御器 31 加熱・冷却機構 32 排気口 33 Cu(hfac)(tmvs)21 reaction chamber 22 a susceptor 23 source container 24 H 2 storage container 25 flow controller 26 vaporizer 27 source gas 28 fast ions generating mechanism 29 hydrogen beam 30 flow controller 31 heating and cooling mechanism 32 exhaust port 33 Cu (hfac) (tmvs )

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 裕二 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 長坂 浩志 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 角谷 桃子 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 Fターム(参考) 4K030 AA11 BA01 CA04 CA11 CA12 DA02 HA04 LA15 4M104 BB04 DD21 DD44 DD45 HH09 HH12 HH13 5F033 HH11 MM01 PP02 PP11 XX02 XX14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Araki 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Corporation (72) Inventor Hiroshi Nagasaka 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Prefecture Inside Ebara Research Institute, Limited (72) Inventor Momoko Kadoya 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa F-term in Ebara Research Institute, Limited 4K030 AA11 BA01 CA04 CA11 CA12 DA02 HA04 LA15 4M104 BB04 DD21 DD44 DD45 HH09 HH12 HH13 5F033 HH11 MM01 PP02 PP11 XX02 XX14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化学気相蒸着法によって基材表面に設け
た微細な凹み内部を被覆・充填する基材の被覆・充填方
法において、 原料ガス供給に並行し及び/又は原料ガス供給前に粒子
ビームを前記基材に照射することによって前記基材表面
に設けた微細な凹み内部を被覆・充填することを特徴と
する基材の被覆・充填方法。
1. A method of coating / filling a base material for coating / filling the inside of a fine recess provided on the surface of a base material by a chemical vapor deposition method, the method comprising: A method for coating / filling a substrate, comprising irradiating the substrate with a beam to coat / fill the inside of a fine recess provided on the surface of the substrate.
【請求項2】 請求項1に記載の基材の被覆・充填方法
において、 前記基材への粒子ビームの照射は、電子ビーム又は荷電
粒子ビームの照射、原子線又は分子線の照射手段のう
ち、少なくとも1手段を用いて行なうことを特徴とする
基材の被覆・充填方法。
2. The method of coating and filling a substrate according to claim 1, wherein the irradiation of the substrate with a particle beam is performed by an electron beam or a charged particle beam, or an atomic beam or a molecular beam. And a method for coating and filling a substrate using at least one means.
【請求項3】 請求項1又は2に記載の基材の被覆・充
填方法において、 前記基材は半導体デバイス製造用のシリコン基板であ
り、該基材表面に形成する凹みは半導体デバイス配線形
成用のパターン凹みであり、前記原料ガスは銅を含む有
機錯体ガスであることを特徴とする基材の被覆・充填方
法。
3. The method for coating and filling a substrate according to claim 1, wherein the substrate is a silicon substrate for manufacturing a semiconductor device, and the recess formed on the surface of the substrate is for forming a semiconductor device wiring. Wherein the raw material gas is an organic complex gas containing copper.
【請求項4】 請求項1又は2に記載の基材の被覆・充
填方法において、 前記粒子ビームの一形態たるイオンビーム、原子線、又
は分子線の照射を行なう場合に、これらビームの粒子と
してのエネルギーを200eV以上で10keV以下と
することを特徴とする基材の被覆・充填方法。
4. The method for coating and filling a substrate according to claim 1 or 2, wherein irradiation of an ion beam, an atomic beam, or a molecular beam, which is one form of the particle beam, is performed as particles of the beam. A method for coating and filling a substrate, wherein the energy of the substrate is 200 eV or more and 10 keV or less.
【請求項5】 少なくとも粒子ビームを発生するために
必要なイオン源、イオン加速機構、基材表面に形成され
た凹み内部を被覆・充填する材料の元素を含む原料供給
機構を具備し、通常の化学気相蒸着工程実施に並行し及
び/又は原料ガス供給前に基材への粒子ビーム照射を行
なう機能を有することを特徴とする基材の被覆・充填装
置。
5. An ion source required to generate at least a particle beam, an ion acceleration mechanism, and a raw material supply mechanism including an element of a material for coating and filling the inside of the recess formed on the surface of the base material are provided. An apparatus for coating / filling a substrate, having a function of irradiating the substrate with a particle beam in parallel with the execution of the chemical vapor deposition step and / or before the supply of the source gas.
JP2000259459A 2000-05-30 2000-08-29 Method and device for covering and filling base Pending JP2002075912A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000259459A JP2002075912A (en) 2000-08-29 2000-08-29 Method and device for covering and filling base
EP01113180A EP1160826A3 (en) 2000-05-30 2001-05-30 Coating, modification and etching of substrate surface with particle beam irradiation
US09/866,843 US6921722B2 (en) 2000-05-30 2001-05-30 Coating, modification and etching of substrate surface with particle beam irradiation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259459A JP2002075912A (en) 2000-08-29 2000-08-29 Method and device for covering and filling base

Publications (1)

Publication Number Publication Date
JP2002075912A true JP2002075912A (en) 2002-03-15

Family

ID=18747636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259459A Pending JP2002075912A (en) 2000-05-30 2000-08-29 Method and device for covering and filling base

Country Status (1)

Country Link
JP (1) JP2002075912A (en)

Similar Documents

Publication Publication Date Title
US6656831B1 (en) Plasma-enhanced chemical vapor deposition of a metal nitride layer
US20060264038A1 (en) Method for forming barrier film and method for forming electrode film
US20110223763A1 (en) Methods for growing low-resistivity tungsten for high aspect ratio and small features
US6492268B1 (en) Method of forming a copper wiring in a semiconductor device
WO1997022731A1 (en) Conformal pure and doped aluminum coatings and a methodology and apparatus for their preparation
KR100256669B1 (en) Chemical vapor deposition apparatus and method for forming copper film using the same
TW201348492A (en) Methods for depositing manganese and manganese nitrides
US8721846B2 (en) Method of forming film, film forming apparatus and storage medium
JPH04221822A (en) Formation of deposited film
US6951816B2 (en) Method of forming a metal layer over patterned dielectric by electroless deposition using a catalyst
US5653810A (en) Apparatus for forming metal film and process for forming metal film
US6355562B1 (en) Adhesion promotion method for CVD copper metallization in IC applications
US6423201B1 (en) Method of improving the adhesion of copper
US6121140A (en) Method of improving surface morphology and reducing resistivity of chemical vapor deposition-metal films
JP2002075912A (en) Method and device for covering and filling base
JPH04225223A (en) High density integrated circuit con- ducting layer or manufacture of structure and device
JP2002329682A (en) Cu THIN FILM MANUFACTURING METHOD
KR101098568B1 (en) Method of forming a catalyst containing layer over a patterned dielectric
JPH06200376A (en) Gold thin film vapor growth method
JPH08102463A (en) Integrated circuit, its manufacture and its thin film forming equipment
JP2001144089A (en) Method of manufacturing semiconductor device
US20030100183A1 (en) CVD of PtRh with good adhesion and morphology
JP4959122B2 (en) Method for forming vanadium-containing film
JP3988256B2 (en) Deposition method
KR100243654B1 (en) A apparatus and method for copper metalorganic chemical vapor deposition