JP2002075708A - Abnormal voltage shut off element - Google Patents

Abnormal voltage shut off element

Info

Publication number
JP2002075708A
JP2002075708A JP2000265043A JP2000265043A JP2002075708A JP 2002075708 A JP2002075708 A JP 2002075708A JP 2000265043 A JP2000265043 A JP 2000265043A JP 2000265043 A JP2000265043 A JP 2000265043A JP 2002075708 A JP2002075708 A JP 2002075708A
Authority
JP
Japan
Prior art keywords
abnormal voltage
oso
voltage
amorphous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000265043A
Other languages
Japanese (ja)
Other versions
JP3964113B2 (en
Inventor
Shigemi Furubiki
重美 古曳
Yuko Hayakawa
優子 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000265043A priority Critical patent/JP3964113B2/en
Publication of JP2002075708A publication Critical patent/JP2002075708A/en
Application granted granted Critical
Publication of JP3964113B2 publication Critical patent/JP3964113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormal voltage shut off element, having a low critical voltage which is used to protect a semiconductor element from a transient abnormal voltage. SOLUTION: This abnormal voltage breaking element can act surely as an abnormal voltage breaking element at very low operating voltage of 1.5 V by using amorphous OsO2 metal oxide. Furthermore, a protecting element is assembled in a conducting line itself, and in particular, abnormal voltage protection is enabled with a thin-film multilayer wiring itself. Thereby requirements of both turning into ultra micro dimensions/ultra high density and planarizing in a device manufacturing process can be satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過渡的な異常電圧
から半導体素子を保護するのに使用される異常電圧遮断
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormal voltage cutoff device used for protecting a semiconductor device from a transient abnormal voltage.

【0002】[0002]

【従来の技術】Siを中心とする半導体素子は多岐にわ
たって発展を続け、パソコンなど様々な機器に於いて電
子化に伴う小型化、高性能化をもたらした。しかし、一
般に半導体素子は過渡的な異常電圧に弱く、パソコンの
雷害(外来サージ)などによる誤動作、あるいは破壊を
受ける場合がある。このような色々な原因による異常電
圧等による被害を取り除くために、異常電圧吸収素子が
開発されている。そのような中に、例えばセラミックバ
リスタ等の研究がなされてきている。
2. Description of the Related Art Semiconductor devices centering on Si have continued to evolve in a wide variety of fields, and have brought downsizing and high performance with various electronic devices such as personal computers. However, a semiconductor element is generally vulnerable to a transient abnormal voltage, and may malfunction or be destroyed by lightning damage (external surge) of a personal computer. Abnormal voltage absorbing elements have been developed in order to remove damage caused by abnormal voltages and the like due to various causes. In such a situation, for example, research on ceramic varistors has been conducted.

【0003】前記研究が行われている、異常電圧吸収素
子は、いずれもある臨界電圧以下では高抵抗で殆ど電流
が流れず、その臨界電圧を越えると急激に低抵抗になり
電流を流す様なものである。しかし、従来のものは、デ
ィスク状のセラミクス焼結体であり臨界電圧が約10V
と感知(作動)する異常電圧が高いためにパソコン等に
使われているSiのような動作電圧の低い半導体素子を
雷害(雷サージ)などから保護するための素子としては
適さないものである。更に、半導体素子駆動の1.5V
化のような低電圧化の進行により異常電圧遮断素子とし
ては、該低い作動電圧において確実に作動する薄膜型の
ものでなければならない。
[0003] The abnormal voltage absorbing elements, which have been studied above, have a high resistance and hardly any current flows below a certain critical voltage, and when the critical voltage is exceeded, the resistance suddenly becomes low and a current flows. Things. However, the conventional one is a disc-shaped ceramic sintered body having a critical voltage of about 10V.
It is not suitable as an element for protecting a semiconductor element having a low operating voltage such as Si used in a personal computer or the like from lightning damage (lightning surge) due to a high abnormal voltage that senses (actuates). . Furthermore, 1.5V of the semiconductor device drive
Due to the progress of lowering the voltage as described above, the abnormal voltage interrupting element must be a thin film type element that reliably operates at the low operating voltage.

【0004】このように低電圧で作動するものとして
は、ある臨界電圧以下の定常状態では低抵抗率であり、
発熱や電流損ができるだけ少なく、しかしその臨界電圧
以上の高電圧では確実に電流を遮断すると言う特性を持
つものが良いとされ、このような特性の素子では、この
電流遮断により半導体素子の破壊、即ちパソコンなどの
故障、破壊が防止されることになる。
In order to operate at such a low voltage, a low resistivity in a steady state below a certain critical voltage,
Heat generation and current loss are as small as possible, but it is good to have the characteristic that the current is surely cut off at a high voltage higher than the critical voltage. That is, failure and destruction of the personal computer and the like are prevented.

【0005】本発明の課題は、前記低作動電圧化に適し
た特性をもつ異常電圧遮断素子となる新規な材料を提供
することである。前記課題を解決すべく種々の材料につ
いて、電圧・電流の非線形的特性について検討する中
で、アモルファスのOsO2は、図1に示すように温度
に依存しない低い抵抗率(約5x10-3Ωcm程度)を
示し、図2に示すように「ある臨界電圧以下の定常状態
では低抵抗率で、発熱や電流損が少ない」という要求を
満たし、また、ある臨界電圧以上の高電圧(40V/c
m)ではブレークダウン(breakdown)を生じることに
より確実に電流を遮断することのできることを発見し、
前記新規な異常電圧遮断素子材料を提供するという課題
を解決した。
[0005] It is an object of the present invention to provide a novel material which becomes an abnormal voltage cutoff element having characteristics suitable for lowering the operating voltage. In examining the non-linear characteristics of voltage and current for various materials in order to solve the above-mentioned problems, amorphous OsO 2 has a low resistivity independent of temperature (about 5 × 10 −3 Ωcm) as shown in FIG. FIG. 2 satisfies the requirement that “in a steady state below a certain critical voltage, the resistivity is low and heat generation and current loss are small”, and a high voltage above a certain critical voltage (40 V / c) is satisfied.
In m), they found that the current could be cut off reliably by causing a breakdown,
The problem of providing the novel abnormal voltage cutoff element material has been solved.

【0006】[0006]

【課題を解決するための手段】本発明は、アモルファス
の金属酸化物OsO2を用いることを特徴とする異常電
圧遮断素子である。
The present invention SUMMARY OF THE INVENTION are abnormal voltage blocking element, which comprises using a metal oxide OsO 2 amorphous.

【0007】[0007]

【本発明の態様】A.前記特性を持つアモルファスOs
2材料 アモルファスOsO2はOsO4ガスのDCグロー放電に
より得られる。これまでにアモルファスOsO2の合成
については多くの報告があり、また、合成された膜のア
モルファス特性については、X線回折においてピークを
示さないこと、OsとOの厚さ方法における分布は均一
であることがオージェ電子線スペクトル観察により確認
されていることなどが報告されている。また、該膜は温
度に依存しない高い導電性(5×10-3Ωcm)を持つ
ことも報告されている。更に、高分解能X線光電子分光
法を用いて観察したところOsO2であることが分かっ
ている〔Y.Hayakawa, K.Fukuzaki, S.Kohiki, Y.Shibat
a, T.Matsuo, K,Wagatsma, M.Oku, Thin Solid Films,
347, 56 (1999)〕。
Aspects of the Invention A. Amorphous Os with the above characteristics
O 2 material Amorphous OsO 2 is obtained by DC glow discharge of OsO 4 gas. There have been many reports on the synthesis of amorphous OsO 2 , and the amorphous properties of the synthesized film show no peak in X-ray diffraction and the distribution of Os and O in the thickness method is uniform. It has been reported that this is confirmed by Auger electron beam spectrum observation. It is also reported that the film has a high conductivity (5 × 10 −3 Ωcm) independent of temperature. Furthermore, observation using high-resolution X-ray photoelectron spectroscopy revealed that it was OsO 2 [Y. Hayakawa, K. Fukuzaki, S. Kohiki, Y. Shibata.
a, T.Matsuo, K, Wagatsma, M.Oku, Thin Solid Films,
347, 56 (1999)].

【0008】このような特性について詳しく説明する。
OsO4のグロー放電堆積膜は周期的格子を持たない
(アモルファス)。粉末X線回折法では基板(MgO)
からの回折以外は観測されず(図3)、有力な薄膜の結
晶性評価である斜入射X線回折法でも広く分布した、低
強度のピークが観測されるにすぎない(図4)。このブ
ロードなピークは該グロー放電堆積膜OsO 2薄膜がア
モルファスであることを示している。更に有力な薄膜表
面の構造解析法であるイオン散乱分光法を用いても、図
5に示すように散乱イオン強度に何らの周期的構造が認
められず、この薄膜はアモルファスであることが再確認
された。ここでは、膜表面数原子層程度までの原子配列
の周期性を調べるため、中性化確率の小さいLi+イオ
ンを用いた直衝突イオン散乱分光を行った。様々な入射
角における散乱イオン強度曲線にシャドーイング効果の
影響は見出されていない。これらX線回折と直衝突イオ
ン散乱分光の結果は、電子輸送特性と符合しており、O
sO4のグロー放電膜は非周期(アモルファス)系の物
性を示す。
[0008] Such characteristics will be described in detail.
OsOFourGlow discharge deposited films have no periodic lattice
(amorphous). Substrate (MgO) in powder X-ray diffraction method
No diffraction other than diffraction from the sample was observed (Fig. 3).
Wide distribution in the oblique incidence X-ray diffraction method
Only intensity peaks are observed (FIG. 4). This
The load peak is the glow discharge deposited film OsO. TwoThin film
Morphus. More powerful thin film table
Using ion scattering spectroscopy, which is a method for analyzing the surface structure,
As shown in Fig. 5, no periodic structure was observed in the scattered ion intensity.
Not confirmed, this film was confirmed to be amorphous
Was done. Here, the atomic arrangement up to several atomic layers on the film surface
In order to investigate the periodicity of+Io
Direct collision ion scattering spectroscopy using Various incidents
Of the shadowing effect on the scattered ion intensity curve at
No effect has been found. These X-ray diffraction and direct collision ion
Scattering spectroscopy results are consistent with the electron transport properties,
sOFourGlow discharge film is aperiodic (amorphous)
Shows sex.

【0009】図6に示すように、オージェ電子分光法に
よる薄膜の深さ方向組成分布分析ではOsとOが均一に
膜中に分布している。表面汚染層のCKL2323強度は
アルゴンイオンスパッタリングにより減少し、OとOs
のオージェピーク強度比は膜全体に渡りほぼ一定の値を
示している。薄膜中でOとOsが均一に分布しているこ
とがオージェ電子分光法により明らかになった。X線光
電子分光法によりその化学状態を調べると、図7に示す
Os4d5/2電子の結合エネルギーやOs4f7/2電子の
結合エネルギーがこれまでに報告されているOsO2
値と一致し、OsO4のグロー放電堆積膜はアモルファ
スOsO 2であることがわかる。アルゴンイオンによる
スパッタリングで図中下のスペクトルから上のそれへ変
化した。付着炭素は除去されるが、Os4d5/2の結合
エネルギーは279.0eVのままで変化せず、OsO
2の報告値279.8eVと一致した。1keVのアル
ゴンイオンによるスパッタリングでOs4d5/2のピー
ク位置は279.0eVとなったが、本実験における金
属Osの実測値278.1eVより大きい値を示した。
これらの結果はアルゴンイオンスパッタリングにより、
0.5keVでは薄膜試料のOsは還元されず、1ke
Vでは金属とOsO2の中間状態になることを示してい
る。
As shown in FIG. 6, Auger electron spectroscopy
Os and O are uniform in the depth direction composition distribution analysis of the thin film
Distributed in the membrane. CKL of surface contamination layertwenty threeLtwenty threeStrength is
O and Os reduced by argon ion sputtering
Of the Auger peak intensity ratio is almost constant over the entire film.
Is shown. O and Os must be uniformly distributed in the thin film
Was revealed by Auger electron spectroscopy. X-ray light
FIG. 7 shows the chemical state obtained by electron spectroscopy.
Os4d5/2Electron binding energy and Os4f7/2electronic
OsO whose binding energy has been reported so farTwoof
Matches the value, OsOFourGlow discharge deposited film is amorphous
OsO TwoIt can be seen that it is. By argon ion
Sputtering changes from lower spectrum to upper
It has become. The attached carbon is removed, but Os4d5/2Join
The energy remains at 279.0 eV and does not change.
TwoWas consistent with the reported value of 279.8 eV. Al of 1 keV
Os4d by sputtering with Gon ion5/2The pea
In this experiment, the gold position was 279.0 eV.
The value of the genus Os was larger than the measured value of 278.1 eV.
These results were obtained by argon ion sputtering.
At 0.5 keV, Os of the thin film sample is not reduced and 1 ke
In V, metal and OsOTwoIndicates an intermediate state of
You.

【0010】四端子法によるアモルファスOsO2膜の
抵抗値は5×10-3Ωcm 以下であり金属的なバンド
構造が期待される。このバンド構造を調べるため価電子
帯X線光電子スペクトル(図8a)を測定し、これを解
析するために第一原理バンド計算〔8b:DOS (States/
eVCell)は、状態密度(単位体積、単位エネルギー幅当
たりの電子状態数)である。〕を行った。非晶質OsO
2の価電子帯スペクトルは単結晶OsO2の第一原理計算
と同様、今回世界で初めて測定や計算が行われたもので
ある。ここからの有用な情報は、アモルファスのバンド
スペクトルに於けるブロードニングであり、ランダムポ
テンシャルによる各結晶場での電子の局在とホッピング
による電場依存導電性の非線形性が推測できることであ
る。アモルファスOsO2膜の価電子帯X線光電子スペ
クトルは第一原理バンド計算より求めたOsO2結晶の
理論スペクトルとフェルミ面近傍で良い一致を示した。
しかし、理論スペクトルでは−2eV以下のエネルギー
領域にあるO2pは4eVと8eVに極大値を持つ2つ
のピークに分裂するが、観測されたスペクトルは3eV
から8eVに渡りほぼ一定の強度を示した。図8bは局
所密度近似下(LDA)のLinear-Muffin-Tin-Orbital(L
MTO)法を用いて求めたOsO2結晶の理論電子状態密度
である。電子輸送特性はフェルミ面近傍、kBT程度の
領域の状態密度と関係する。ここに、kBはボルツマン
定数、Tは系の絶対温度である。一般に、非晶質におい
ても単結晶と同様、その電子構造の主な特徴は第一近接
までの結晶場により説明できる。単結晶OsO2の価電
子帯スペクトルはこれまでに報告が無く、フェルミ面近
傍の状態密度に関する情報を得るため、第一原理バンド
構造計算を行った。フェルミエネルギー近傍での実験ス
ペクトルと理論スペクトルの一致から、これらはいずれ
も金属的な抵抗率温度依存性を示すと推察できる。これ
までに報告されている単結晶OsO2の抵抗率は、80
Kと300Kでそれぞれ3×10-6Ωcmと6×10-5Ω
cmであり、抵抗率の温度係数は正である。アモルファス
OsO2の抵抗率は単結晶OsO2の報告値と比較すると
2〜3桁大きく、またその温度依存性は金属的な単結晶
OsO2のそれとは全く違った挙動を示す。アモルファ
スOsO2の電子輸送特性はランダムポテンシャル場に
よる易動度ギャップを反映している。
The resistance value of the amorphous OsO 2 film by the four-terminal method is 5 × 10 −3 Ωcm or less, and a metallic band structure is expected. A valence band X-ray photoelectron spectrum (FIG. 8a) was measured to examine this band structure, and a first principle band calculation [8b: DOS (States /
eVCell) is the density of states (the number of electronic states per unit volume and unit energy width). ] Was performed. Amorphous OsO
Valence band spectrum of 2 similar to the first principles calculations of the single-crystal OsO 2, is now that the world's first measurement and calculation were made. Useful information from this is broadening in the amorphous band spectrum, and the localization of electrons in each crystal field due to random potential and the electric field dependent conductivity nonlinearity due to hopping can be estimated. The valence band X-ray photoelectron spectrum of the amorphous OsO 2 film showed good agreement in the vicinity of the Fermi surface with the theoretical spectrum of the OsO 2 crystal obtained from the first principle band calculation.
However, in the theoretical spectrum, O2p in the energy region of -2 eV or less splits into two peaks having maximum values at 4 eV and 8 eV, but the observed spectrum is 3 eV.
From 8 to 8 eV. FIG. 8B shows the linear-muffin-tin-orbital (L) under local density approximation (LDA).
It is a theoretical electronic state density of the OsO 2 crystal obtained by using the (MTO) method. Electron transport properties are related to the density of states near the Fermi surface, k B T of about regions. Where k B is the Boltzmann constant and T is the absolute temperature of the system. In general, the main features of the electronic structure of an amorphous material can be explained by the crystal field up to the first proximity, as in the case of a single crystal. The valence band spectrum of single crystal OsO 2 has not been reported so far, and a first-principles band structure calculation was performed to obtain information on the density of states near the Fermi surface. From the agreement between the experimental spectrum and the theoretical spectrum near the Fermi energy, it can be inferred that each of them exhibits metallic resistivity and temperature dependence. The resistivity of single crystal OsO 2 reported to date is 80
3 × 10 -6 Ωcm and 6 × 10 -5 Ω at K and 300K, respectively
cm and the temperature coefficient of resistivity is positive. The resistivity of amorphous OsO 2 is two to three orders of magnitude higher than the reported value of single crystal OsO 2 , and its temperature dependence shows a behavior completely different from that of metallic single crystal OsO 2 . The electron transport properties of amorphous OsO 2 reflect the mobility gap due to a random potential field.

【0011】観測スペクトルと理論スペクトルの差は、
図9に示すようにアモルファスOsO 2膜の抵抗率電界
強度依存性が長距離秩序の欠如(アモルファス)による
移動度端へのフェルミ準位バンドの侵入と関係すること
を示している。つまり、フェルミバンドが過大な電場に
より上部易動度ギャップを越えた場合、それまで小さな
抵抗率を示していたアモルファスOsO2が突然大きな
抵抗を生じる事になる。以上の電子特性などから、アモ
ルファスOsO2は電子構造や伝導機構について明らか
にされていないが低抵抗率を有する異常電圧遮断素子の
有望な材料である。
The difference between the observed spectrum and the theoretical spectrum is
As shown in FIG. TwoFilm resistivity electric field
Strength dependence is due to lack of long-range order (amorphous)
Implications for Fermi level band intrusion at the mobility edge
Is shown. In other words, the Fermi band becomes an excessive electric field
If you cross the upper mobility gap,
Amorphous OsO showing resistivityTwoSuddenly big
This will cause resistance. Based on the above electronic characteristics,
Rufus OsOTwoReveals electronic structure and conduction mechanism
Of an abnormal voltage cut-off device with low resistivity
It is a promising material.

【0012】実施例 OsO4のグロー放電によるOsO2堆積膜の形成。 グロー放電堆積室(1×10-3Torr)にOsO4の蒸気
を圧力5×10-2Torrに維持しつつ導入する。印加電界
1.2kVおよび電流2mAの条件で膜厚1000nm
堆積した。該膜を薄膜型異常電圧遮断素子に取り、これ
をサージ電圧発生源に接続し、電圧−電流特性を調べ
た。端子間距離を2.5cmとしたとき100V以上の過
大電圧を遮断した。これらの結果、本発明のOsO2
積膜は、その抵抗率が5x10-3Ωcm程度と小さいこ
とから発熱等の損失が少なく、作動電圧1.5Vの条件
における異常電圧遮断素子として有用である。
EXAMPLE Formation of OsO 2 deposited film by glow discharge of OsO 4 . OsO 4 vapor is introduced into the glow discharge deposition chamber (1 × 10 −3 Torr) while maintaining the pressure at 5 × 10 −2 Torr. 1000 nm film thickness under the conditions of an applied electric field of 1.2 kV and a current of 2 mA
Deposited. The film was taken as a thin film type abnormal voltage cutoff device, which was connected to a surge voltage source, and the voltage-current characteristics were examined. When the distance between terminals was 2.5 cm, an excessive voltage of 100 V or more was cut off. As a result, since the OsO 2 deposited film of the present invention has a small resistivity of about 5 × 10 −3 Ωcm, there is little loss such as heat generation, and it is useful as an abnormal voltage cutoff element under an operating voltage of 1.5 V.

【0013】[0013]

【発明の効果】以上述べたように、本発明のアモルファ
スOsO2からなる素子は、1.5Vと極めて低い動作電
圧においても確実に異常電圧遮断素子として機能できる
という優れた特性を持ち、今後の電子機器を思わぬ原因
による異常電圧から保護する異常電圧遮断素子として有
用である。更にこのアモルファスOsO2異常電圧遮断
素子は半導体素子製造工程と相性の良いドライプロセス
によって作られる。この素子自身がグロー放電薄膜であ
るのでEB露光等のリソグラフィーと組み合わせて、多
層半導体素子中の微少導電路ともなり、またその導電路
自身が素子として機能する事になる。特性の再現性やそ
の構造的強度に問題を生じやすい、バルクセラミクスを
圧縮して成型したペレットを外部回路として付加しなけ
ればならなかった従来の保護素子と違い、導電線路自身
に保護素子が組み込まれており、特に薄膜多層配線自身
で異常電圧保護が行えるので、デバイス製造プロセスに
於ける極微少化・極高密度化と平坦化の両方の要請を満
足でき、また特性の再現性も優れたものがあると期待さ
れる。このことからも、本発明の薄膜導電線路型アモル
ファスOsO2異常電圧遮断素子は半導体素子の異常電
圧遮断素子として有用である。
As described above, the element made of amorphous OsO 2 of the present invention has an excellent characteristic that it can reliably function as an abnormal voltage cutoff element even at an extremely low operating voltage of 1.5 V. It is useful as an abnormal voltage cutoff element that protects an electronic device from abnormal voltage due to an unexpected cause. Further, the amorphous OsO 2 abnormal voltage cutoff device is manufactured by a dry process compatible with a semiconductor device manufacturing process. Since the device itself is a glow discharge thin film, it becomes a micro conductive path in a multilayer semiconductor device in combination with lithography such as EB exposure, and the conductive path itself functions as a device. Unlike the conventional protection element, which has to add a pellet formed by compressing bulk ceramics as an external circuit, which tends to cause problems in reproducibility of characteristics and its structural strength, the protection element is built into the conductive line itself In particular, since the abnormal voltage protection can be performed by the thin-film multilayer wiring itself, it can satisfy the requirements of both miniaturization, ultra-high density and flattening in the device manufacturing process, and excellent reproducibility of characteristics. It is expected that there is something. From this, the thin film conductive line type amorphous OsO 2 abnormal voltage cutoff device of the present invention is useful as an abnormal voltage cutoff device of a semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 アモルファスOsO2膜の抵抗率温度依存性FIG. 1. Temperature dependence of resistivity of amorphous OsO 2 film

【図2】 アモルファスOsO2膜の抵抗率電圧依存性FIG. 2 Dependence of resistivity of amorphous OsO 2 film on voltage

【図3】 OsO4ガスDCグロー放電堆積膜のX線回
折図形(基板、MgO)
FIG. 3 is an X-ray diffraction pattern of an OsO 4 gas DC glow discharge deposited film (substrate, MgO)

【図4】 OsO4ガスDCグロー放電堆積膜の斜入射
X線回折図形
FIG. 4 Oblique incidence X-ray diffraction pattern of OsO 4 gas DC glow discharge deposited film

【図5】 OsO4ガスDCグロー放電堆積膜の直衝突
イオン散乱分光。
FIG. 5 is a direct collision ion scattering spectroscopy of an OsO 4 gas DC glow discharge deposited film.

【図6】 オージェ電子分光法を用いて測定したこの薄
膜の元素分布。
FIG. 6: Element distribution of this thin film measured using Auger electron spectroscopy.

【図7】 0.5eVのアルゴンイオンスパッタリング
を併用したX線光電子分光法により調べた化学状態の深
さ方向の変化。
FIG. 7 shows the change in the chemical state in the depth direction, which was examined by X-ray photoelectron spectroscopy in combination with 0.5 eV argon ion sputtering.

【図8】 アモルファスOsO2膜の価電子帯X線光電
子スペクトル。
FIG. 8 is a valence band X-ray photoelectron spectrum of an amorphous OsO 2 film.

【図9】 電界によるフェルミバンドの移動と移動度端
への侵入の模式図。
FIG. 9 is a schematic diagram of movement of a Fermi band by an electric field and penetration into a mobility edge.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アモルファスの金属酸化物OsO2を用
いることを特徴とする異常電圧遮断素子。
1. An abnormal voltage cut-off device using an amorphous metal oxide OsO 2 .
JP2000265043A 2000-09-01 2000-09-01 Abnormal voltage cutoff element Expired - Fee Related JP3964113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265043A JP3964113B2 (en) 2000-09-01 2000-09-01 Abnormal voltage cutoff element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265043A JP3964113B2 (en) 2000-09-01 2000-09-01 Abnormal voltage cutoff element

Publications (2)

Publication Number Publication Date
JP2002075708A true JP2002075708A (en) 2002-03-15
JP3964113B2 JP3964113B2 (en) 2007-08-22

Family

ID=18752372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265043A Expired - Fee Related JP3964113B2 (en) 2000-09-01 2000-09-01 Abnormal voltage cutoff element

Country Status (1)

Country Link
JP (1) JP3964113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517623A (en) * 2008-03-21 2011-06-16 カリフォルニア インスティテュート オブ テクノロジー Formation of metallic glass by rapid capacitor discharge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517623A (en) * 2008-03-21 2011-06-16 カリフォルニア インスティテュート オブ テクノロジー Formation of metallic glass by rapid capacitor discharge

Also Published As

Publication number Publication date
JP3964113B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
Rao et al. Electrical, electromechanical and structural studies of lead potassium samarium niobate ceramics
Martins et al. Zinc oxide as an ozone sensor
Takemura et al. High dielectric constant (Ba, Sr) TiO3 thin films prepared on RuO2/sapphire
KR101241524B1 (en) Sputtering target, transparent conductive film and transparent electrode
Rehman et al. Highly flexible and electroforming free resistive switching behavior of tungsten disulfide flakes fabricated through advanced printing technology
Morii et al. Dielectric relaxation in amorphous thin films of SrTiO3 at elevated temperatures
Bai et al. The effect of SiO2 on electrical properties of low‐temperature‐sintered ZnO–Bi2O3–TiO2–Co2O3–MnO2‐based ceramics
Masingboon et al. Anomalous change in dielectric constant of CaCu3Ti4O12 under violet-to-ultraviolet irradiation
Singh et al. Origin of tri-state resistive switching characteristics in SiCN thin films for high-temperature ReRAM applications
Dhananjay et al. Dielectric properties of c-axis oriented Zn1− xMgxO thin films grown by multimagnetron sputtering
Kemp et al. LaNiO3: A study by electron spectroscopy
JP2002075708A (en) Abnormal voltage shut off element
Alamdari et al. High energy ball milled nanocrystalline ZnO varistors
US10115504B2 (en) Thin-film resistor and method for producing the same
Luo et al. Electric and dielectric properties of Bi-doped CaCu3Ti4O12 ceramics
Kumar et al. Low leakage current, enhanced energy storage, and fatigue endurance in room-temperature deposited (Pb0. 93La0. 07)(Zr0. 82Ti0. 18) O3 thick films
Chen et al. Enhanced nonlinear current–voltage behavior in Au nanoparticle dispersed CaCu3Ti4O12 composite films
Prasad et al. Electrical characterisation of Pb2Bi3SmTi5O18 ceramic using impedance spectroscopy
US20060199740A1 (en) Layered CU-based electrode for high-dielectric constant oxide thin film-based devices
Siegal et al. Correlating thermoelectric (Bi, Sb) 2Te3 film electric transport properties with microstructure
Tver’yanovich et al. Ion-conducting multilayer films based on alternating nanolayers Ag 3 SI, AgI and Ag 2 S, AgI
Wan et al. Engineering of the resistive switching properties in V2O5 thin film by atomic structural transition: Experiment and theory
Huang et al. On the suppression of hydrogen degradation in PbZr0. 4Ti0. 6O3 ferroelectric capacitors with PtOx top electrode
Roy et al. Sintering of nanocrystalline multicomponent zinc oxide varistor powders prepared by ball milling
Lin et al. The electronics transport mechanism of grain and grain boundary in semiconductive hafnium oxynitride thin film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees