JP2002075060A - Overhead transmission line - Google Patents

Overhead transmission line

Info

Publication number
JP2002075060A
JP2002075060A JP2000262940A JP2000262940A JP2002075060A JP 2002075060 A JP2002075060 A JP 2002075060A JP 2000262940 A JP2000262940 A JP 2000262940A JP 2000262940 A JP2000262940 A JP 2000262940A JP 2002075060 A JP2002075060 A JP 2002075060A
Authority
JP
Japan
Prior art keywords
water
conductor
electric wire
super
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000262940A
Other languages
Japanese (ja)
Inventor
Kiyotomi Miyajima
清富 宮島
Kazuo Tanabe
一夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2000262940A priority Critical patent/JP2002075060A/en
Publication of JP2002075060A publication Critical patent/JP2002075060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Suspension Of Electric Lines Or Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To control corona discharge occurring from a tip of a water drop adhered on a conductive surface in rain. SOLUTION: The ultra water repellency is provided on the surface of a conductor by forming ultra-water-repellent film for example. By so doing, a water drop contacted on a conductor in rain is immediately repelled, and dispersed or slipped without staying on the smooth surface of the conductor so as to protect formation of a water drop projection on the surface of the conductor. This protection prevents the occurrence of the state in which the electric field becomes high at the tip of a projection on the surface of a conductor even in an electro-mechanical state, which allows protecting the occurrence of corona discharge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は架空送電線に関す
る。さらに詳述すると、本発明は、架空送電線の導体表
面に付着した水滴から発生するコロナ放電を抑制するた
めの送電線の導体表面の状態に関するものである。
[0001] The present invention relates to an overhead power transmission line. More specifically, the present invention relates to a state of a conductor surface of a transmission line for suppressing corona discharge generated from water droplets attached to a conductor surface of an overhead transmission line.

【0002】[0002]

【従来の技術】降雨時に、架空送電線でコロナ放電が発
生し、コロナ放電に起因する騒音が可聴域に達する可聴
コロナ騒音問題や電波雑音によるテレビ・ラジオの受信
障害が沿線の民家で起こる場合がある。この現象は、新
設の撥水性を有する架空送電線(製造過程で油が付着し
て撥水性を有する)において多く発生している。一般
に、架空送電線とりわけ超高圧以上の架空送電線の導体
の表面は滑らかに形成されているが、降雨時には水滴が
その導体表面に付着し、水滴から成る突起物を形成す
る。課電状態にある導体表面の突起物の先端は電界が高
くなるため、コロナ放電が発生しやすくなる。
2. Description of the Related Art When rainfall causes corona discharge in overhead transmission lines, noise due to corona discharge reaches the audible range, and audible corona noise problems and TV / radio reception failure due to radio noise occur in private houses along the road. There is. This phenomenon frequently occurs in a newly installed water-repellent overhead power transmission line (having water repellency due to the adhesion of oil during the manufacturing process). Generally, the surface of the conductor of an overhead power transmission line, especially an overhead power transmission line having an ultra-high voltage or higher, is formed smoothly. However, during rainfall, water droplets adhere to the surface of the conductor and form projections made of water droplets. Since the electric field is high at the tip of the protrusion on the conductor surface in the state of being charged, corona discharge is likely to occur.

【0003】そこで、従来、超高圧以上の架空送電線
は、図7に示すように多導体方式(電線を数十cmの間
隔で円周上に平行配置し、同電位の電線数本で電流を流
す方式で、一般に送電線の電圧階級が高くなるほど電線
数は増える)を採用し、導体周囲の電界強度を低くして
コロナ放電を抑えるようにしている。
[0003] Conventionally, overhead transmission lines having an ultra-high voltage or higher are multi-conductor systems (wires are arranged in parallel at intervals of several tens of cm, as shown in FIG. In general, the higher the voltage class of the transmission line, the more the number of wires increases), and the electric field strength around the conductor is reduced to suppress corona discharge.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、多導体
方式として電界を緩和しても、水滴付着に因るコロナ放
電自体を無くすことはできないので、降雨時のコロナ放
電特性を考慮して熱容量(送電容量)で決定される導体
数よりも導体数を増やさざるを得ない。更に、多導体方
式の素導体数の増加は送電線鉄塔の巨大化や工事の大規
模化を伴う。このため、架空送電線建設費の増加を招
く。
However, even if the electric field is reduced as a multi-conductor system, the corona discharge itself due to the adhesion of water droplets cannot be eliminated. The number of conductors must be increased from the number of conductors determined by the capacitance. In addition, the increase in the number of elementary conductors in the multi-conductor system is accompanied by the enlargement of transmission towers and the scale of construction. This leads to an increase in overhead transmission line construction costs.

【0005】本発明は、降雨時の導体表面において付着
水滴先端から発生するコロナ放電を抑制する架空送電線
を提供することを目的とする。
[0005] It is an object of the present invention to provide an overhead power transmission line that suppresses corona discharge generated from the tip of attached water drops on a conductor surface during rainfall.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明者等が種々実験・研究した結果、電線に垂れ
下がる水滴の先端から主に発生するコロナ放電の騒音
が、親水性を示すエージング電線(エージングが進んだ
電線)よりも製造時の油が残り撥水性を示す新電線の方
が高くなるものの、超撥水性を示す電線の場合にはエー
ジング電線よりも遙かに低くなることを明らかにした。
As a result of various experiments and studies conducted by the present inventors to attain the object, the noise of corona discharge mainly generated from the tip of a water drop hanging on an electric wire shows aging indicating hydrophilicity. The new wires exhibiting water repellency remain higher than the wires (aged wires) due to the oil remaining in the manufacturing process, while the wires exhibiting super water repellency are much lower than the aged wires. Revealed.

【0007】本発明の架空送電線は、かかる知見に基づ
くものであって、導体表面を超撥水性表面とするように
している。したがって、導体表面が雨に濡れても、瞬時
に水滴を散乱あるいは滑落させて水滴として付着するの
を防ぐので、コロナ放電を抑制することができる。
[0007] The overhead transmission line of the present invention is based on such findings, and the conductor surface is made to have a super-water-repellent surface. Therefore, even if the conductor surface is wet with rain, water droplets are instantaneously scattered or slid down to prevent them from adhering as water droplets, so that corona discharge can be suppressed.

【0008】また、請求項2記載の発明は、請求項1記
載の架空送電線の超撥水性表面を、導体の表面に超撥水
性材料が塗布されることによって形成される超撥水膜で
構成するようにしている。この場合、超撥水性材料を塗
布するだけで超撥水性表面を容易に実現できる。
According to a second aspect of the present invention, the super-water-repellent surface of the overhead transmission line according to the first aspect is formed of a super-water-repellent film formed by applying a super-water-repellent material to the surface of a conductor. It is composed. In this case, a super-water-repellent surface can be easily realized only by applying a super-water-repellent material.

【0009】[0009]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施の形態の一例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on an example of an embodiment shown in the drawings.

【0010】本発明の架空送電線は、導体1の表面に超
撥水性を有するように構成されている。超撥水性表面
は、例えば導体の表面に超撥水性材料が塗布されて超撥
水膜2が形成されることによって形成されている。尚、
本件発明において導体1そのものの組成や構造などは、
導体表面の超撥水性に影響を与えない限り、特別の組成
や構造とされることはない。
The overhead transmission line of the present invention is configured so that the surface of the conductor 1 has super-water repellency. The super-water-repellent surface is formed, for example, by applying a super-water-repellent material to the surface of a conductor to form the super-water-repellent film 2. still,
In the present invention, the composition and structure of the conductor 1 itself are as follows.
As long as the super-water repellency of the conductor surface is not affected, there is no special composition or structure.

【0011】ここで、超撥水性とは、慣用語であり、明
確な定義は為されていないが一般には撥水の程度が著し
く高い性質を指し、目安としては水の接触角θが約15
0°以上のぬれ現象をいう。しかし、本明細書でいう超
撥水性は、接触角θが厳密に150°以上である場合に
限定されるものではなく、導体1に接触した水滴3を直
ちに弾いて導体表面に水滴突起物が形成されるのを防止
できる程度の撥水機能を有しているものの全てを含むも
のである。
Here, the term super water repellency is an idiomatic term, and although not clearly defined, it generally refers to a property in which the degree of water repellency is extremely high.
It refers to a wetting phenomenon of 0 ° or more. However, the super-water repellency referred to in the present specification is not limited to the case where the contact angle θ is strictly 150 ° or more, and the water droplets 3 in contact with the conductor 1 are immediately flipped to form water droplet projections on the conductor surface. It includes all those having a water-repellent function to the extent that they can be prevented from being formed.

【0012】このような超撥水性を有する導体の表面
は、例えばトリアシルグリセリドによるコーティング
(接触角160°)、アルキルケテンダイマーによるコ
ーティング(接触角174°)、陽極酸化表面にフッ素
系シランカップリング剤処理を施した陽極酸化法(接触
角167°)、低分子PTFE(ポリテトラフルオロエ
チレン)粒子を添加したアニオン系アクリル樹脂塗料を
用いた電着塗装法(接触角171°)、高分子PTFE
(ポリテトラフルオロエチレン)粒子を添加したカチオ
ン系エポキシ樹脂塗料を用いた電着塗装法(接触角15
5°)、PFA(ペルフルオロアルコキシフッ素樹脂)
粒子を添加したカチオン系エポキシ樹脂塗料を用いた電
着塗装法(接触角162°)、プラズマエッチング表面
にフッ素化界面活性剤を吸着させる化学吸着法(接触角
150°)、TFEO(テトラフルオロエチレンオリゴ
マー)粒子を添加したニッケルめっきによる分散複合め
っき法(接触角180°)などによって形成される。こ
れら超撥水性処理法によって、導体表面に超撥水性を有
する材料の膜2が均一に形成される。尚、超撥水性処理
法や使用材料は上述したものが好適な一例ではあるがこ
れに特に限定されるものではない。
The surface of such a super-water-repellent conductor is coated with, for example, triacylglyceride (contact angle: 160 °), coated with alkyl ketene dimer (contact angle: 174 °), and fluorinated silane coupling is applied to the anodized surface. Anodizing method (contact angle: 167 °) treated with an agent, electrodeposition coating method using an anionic acrylic resin paint to which low-molecular PTFE (polytetrafluoroethylene) particles are added (contact angle: 171 °), polymer PTFE
Electrodeposition coating method using a cationic epoxy resin coating to which (polytetrafluoroethylene) particles are added (contact angle 15
5 °), PFA (perfluoroalkoxy fluororesin)
An electrodeposition coating method using a cationic epoxy resin paint to which particles are added (contact angle: 162 °), a chemical adsorption method in which a fluorinated surfactant is adsorbed on a plasma-etched surface (contact angle: 150 °), TFEO (tetrafluoroethylene) Oligomer) It is formed by a dispersion composite plating method (contact angle 180 °) by nickel plating to which particles are added. By these super water repellent treatment methods, a film 2 of a material having super water repellency is uniformly formed on the conductor surface. The super-water-repellent treatment method and the materials used are described above as a preferred example, but are not particularly limited thereto.

【0013】以上のように表面を超撥水処理した架空送
電線によれば、降雨時や降雪時に導体表面で融雪したと
きなどに、導体1に接触した水滴3を弾き、接触後ただ
ちに散乱または滑落させて導体表面に水滴突起物が形成
されるのを常に防止することができる。したがって、課
電状態においても導体表面の突起物先端で電界が高くな
るという事態を生じさせないようにしてコロナ放電発生
を抑えることができる。
According to the overhead transmission line whose surface is super-water-repellent as described above, when the snow melts on the conductor surface during rainfall or snowfall, the water droplets 3 contacting the conductor 1 are repelled and immediately scattered or dispersed. It is possible to always prevent water droplet projections from being formed on the conductor surface by sliding down. Therefore, even in the power application state, it is possible to suppress the occurrence of corona discharge by preventing a situation in which the electric field is increased at the tip of the protrusion on the conductor surface.

【0014】なお、上述の実施形態は本発明の好適な実
施の一例ではあるがこれに限定されるものではなく本発
明の要旨を逸脱しない範囲において種々変形実施可能で
ある。例えば、本実施形態では、超撥水性処理時に酸化
チタン光触媒を応用することもできる。この場合、酸化
チタン光触媒の超親水性と強い酸化分解力並びに防汚性
が超撥水性材料の表面の汚損を防いで長寿命化を可能に
する。
The above embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, a titanium oxide photocatalyst can be applied at the time of the super-hydrophobic treatment. In this case, the superhydrophilicity, strong oxidative decomposition power, and antifouling property of the titanium oxide photocatalyst prevent the surface of the superhydrophobic material from being stained, and can extend the life.

【0015】[0015]

【実施例】本発明者等は、電線に垂れ下がる水滴の先端
から主に発生するコロナ放電の騒音が、親水性を示すエ
ージング電線よりも製造時の油が残り撥水性を示す新電
線の方が高くなるものの、超撥水性を示す電線の場合に
はエージングが進んだ電線よりも遙かに低くなることを
以下の試験・実験で明らかにした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have found that the noise of corona discharge mainly generated from the tip of a water drop hanging on an electric wire is higher in a new electric wire having water repellency than in an aging electric wire showing hydrophilicity because oil remaining during manufacturing remains. The following tests and experiments revealed that, although higher, the electric wire exhibiting super water repellency is much lower than the aged electric wire.

【0016】(1)試験電線の注水試験と付着水滴観察
結果 長年使用されている送電線のコロナ騒音レベルは、新設
された送電線よりも低くなることが実験的・経験的に明
らかにされている。これは、新設の導体(以下、新電線
1aという)は製造時に含油しており、その表面は撥水
性を備えることに起因する。一方、エージング(経時)
が進んだ導体(以下、エージング電線1bと呼ぶ)は親
水性を示し、水滴3の付着状況は新電線1aにおける状
況とは異なるためであると考えられる。
(1) Results of water injection test and observation of attached water drops on test wires It has been experimentally and empirically revealed that the corona noise level of transmission lines used for many years is lower than that of newly installed transmission lines. I have. This is because a newly-installed conductor (hereinafter, referred to as a new electric wire 1a) contains oil at the time of manufacture, and its surface has water repellency. On the other hand, aging (aging)
It is considered that the conductor (hereinafter, referred to as the aging electric wire 1b) which has advanced is hydrophilic, and the adhesion state of the water droplet 3 is different from that of the new electric wire 1a.

【0017】そこで、潤滑油を出荷時と同じく含み撥水
性を示す新電線1aと、中性洗剤で十分に油分を落とし
水道水で洗浄して親水性を呈させたエージング電線1b
と、フッ素樹脂微粒子を添加した超撥水塗料(NTTア
ドバンステクノロジ株式会社製商品名HIREC110
0)を均一に表面に塗布して超撥水性表面を形成した超
撥水電線1cとを作製し、注水時に形成される各電線1
a,1b,1cの付着水滴3の形状を観察した。尚、電
線材としては、超高圧送電線に用いられる鋼心アルミ撚
り線(ACSR)810mmを使用した。また、電線
1への注水は噴霧器を用いて行い、電線になるべく均一
に水滴3が降り注ぐようにし、十分に注水が行われた後
から水滴3の観察を開始した。
Therefore, a new electric wire 1a which contains lubricating oil as before and exhibits water repellency, and an aging electric wire 1b which has been sufficiently washed with a neutral detergent to remove oil and washed with tap water to exhibit hydrophilicity.
And a super water-repellent paint to which fluororesin fine particles are added (trade name: HIREC110 manufactured by NTT Advanced Technology Corporation)
0) is uniformly applied to the surface to produce a super-water-repellent electric wire 1c having a super-water-repellent surface, and each electric wire 1 formed when water is injected.
The shapes of the attached water droplets 3 of a, 1b, and 1c were observed. In addition, as a wire material, 810 mm 2 of steel core aluminum stranded wire (ACSR) used for an ultra-high voltage transmission line was used. Further, water injection into the electric wire 1 was performed using a sprayer, so that the water droplet 3 was poured down as uniformly as possible into the electric wire, and observation of the water droplet 3 was started after sufficient water injection was performed.

【0018】(1.1)新電線 図2に新電線1aに注水したときの付着水滴3を示す。
電線上部に落ちた水滴3は電線1aのより溝を流れ、電
線下部で保持される。このとき、電線1aの表面に付着
した油分が撥水性を示し、曲率半径の小さい水滴3を形
成する。水滴付着電線1aの断面を測定した結果、水滴
3の先端部の曲率半径は約0.22cm(直径dwは約0.44c
m)であった。
(1.1) New Electric Wire FIG. 2 shows the attached water droplets 3 when water is injected into the new electric wire 1a.
The water droplet 3 that has fallen on the upper part of the electric wire flows through the groove of the electric wire 1a and is held at the lower part of the electric wire. At this time, the oil attached to the surface of the electric wire 1a exhibits water repellency, and forms a water droplet 3 having a small radius of curvature. As a result of measuring the cross section of the electric wire 1a to which the water droplet is attached, the radius of curvature of the tip of the water droplet 3 is approximately 0.22 cm (the diameter dw is approximately 0.44c).
m).

【0019】(1.2)エージング電線 図3にエージング電線1bの付着水滴3を示す。金属表
面は親水性を示すため、エージング電線1bの下部で保
持される水滴3の曲率半径は大きくなった。水滴3の付
着した電線1bの断面を測定した結果、水滴3の先端部
の曲率半径は約0.755cm(直径dwは約1.51cm)であっ
た。因みに、エージング電線1bは注水試験前に十分に
乾燥させた。
(1.2) Aging wire FIG. 3 shows the water droplets 3 attached to the aging wire 1b. Since the metal surface shows hydrophilicity, the radius of curvature of the water droplet 3 held at the lower part of the aging electric wire 1b is increased. As a result of measuring the cross section of the electric wire 1b to which the water droplet 3 adhered, the radius of curvature of the tip of the water droplet 3 was about 0.755 cm (the diameter dw was about 1.51 cm). Incidentally, the aging electric wire 1b was sufficiently dried before the water injection test.

【0020】(1.3)超撥水電線 図4に示すように、電線1cの上部に落ちた水滴3は、
はじかれるように散乱した。電線1cは含水しないが、
細かな水滴3のように電線1cのより溝上に乗る水滴3
が存在する。しかし、わずかな振動でこの水滴3は落下
し、電線1c上で保持されなかった。
(1.3) Super-water-repellent electric wire As shown in FIG.
Scattered as if flipped. The electric wire 1c does not contain water,
Water droplet 3 that rides on the groove of electric wire 1c like fine water droplet 3
Exists. However, the water drops 3 dropped due to slight vibration, and were not held on the electric wire 1c.

【0021】(2)注水課電試験 実際に課電状態の新電線1a、エージング電線1b、超
撥水電線1cについてコロナ特性の確認を行った。
(2) Water injection test The corona characteristics of the new electric wire 1a, the aging electric wire 1b, and the super water-repellent electric wire 1c which were actually charged were confirmed.

【0022】試験は注水条件一定にするため、図5に示
すように屋内課電設備を用いた。注水ノズルからは約8
5mm/hの放水がなされ、試験電線1にほぼ一様に降
り注ぐ。試験電線1は電線最下部と零電位面が50cm
の距離を保つように架線した。
In the test, indoor power supply equipment was used as shown in FIG. About 8 from the water injection nozzle
Water is discharged at a rate of 5 mm / h, and the water falls almost uniformly on the test wire 1. Test wire 1 is 50cm at the bottom of wire and zero potential surface
It was overhead line to keep the distance.

【0023】騒音レベルは、課電設備から発生する10
0Hz成分の騒音が高いレベルであったため、1〜20
kHz程度までのA特性の騒音レベルを精密騒音計(R
ION社製NA−61)により測定した。
[0023] The noise level is determined by the 10
Because the noise of the 0 Hz component was at a high level,
Noise level of A characteristic up to about kHz is measured with a precision sound level meter (R
ION Corporation NA-61).

【0024】図6に乾燥時の電線表面のGmax(最大電
界値である最大導体表面電位の傾き)が16kV/cm
になるように課電した条件でのコロナ騒音測定結果を示
す。試験電線1は上述の(1)において示した電線1と
同様の表面処理を行った新電線1a、エージング電線1
b、超撥水電線1cであり、乾燥時と注水時、注水停止
後のコロナ騒音レベルを測定した。
FIG. 6 shows that the Gmax (gradient of the maximum conductor surface potential, which is the maximum electric field value) of the electric wire surface during drying is 16 kV / cm.
The results of the corona noise measurement under the condition where the power was applied so that The test wire 1 is a new wire 1a and an aging wire 1 which have been subjected to the same surface treatment as the wire 1 shown in the above (1).
b, Super-water-repellent electric wire 1c, the corona noise level was measured at the time of drying, at the time of pouring water, and after stopping pouring water.

【0025】各処理を行った電線1の外形は変化がない
ため、乾燥時の試験電線表面の電界分布やコロナ放電発
生量は変化しない。試験電線1の架線は、試験設備の設
置状態による乾燥時の騒音レベルの差がでないように十
分に注意を払った。乾燥時の騒音レベルは試験電線1の
他に課電設備から発生する騒音と暗騒音も含まれるが、
これらを含めた騒音レベルを基準とし、後の比較を行っ
た。
Since the outer shape of the wire 1 subjected to each treatment does not change, the electric field distribution and the amount of corona discharge generated on the test wire surface during drying do not change. Careful attention was paid so that the noise level at the time of drying of the overhead wire of the test wire 1 did not vary depending on the installation state of the test equipment. The noise level during drying includes noise and background noise generated from power application equipment in addition to the test wire 1,
Later comparisons were made based on the noise levels including these.

【0026】注水時の騒音レベルには注水音も含まれて
いるが、騒音レベルは新電線1aが最も高く、超撥水電
線1cが最も低い。超撥水電線1cは電線上部において
水滴3との接触部分においてわずかにコロナ放電が発生
しているが、電線下部からはコロナ放電が発生していな
いことを目視により確認した。新電線1aとエージング
電線1bは電線下部の付着水滴3から激しく、定常的に
コロナ放量が発生していた。注水停止後の騒音レベルの
変化に着目すると、新電線1aに付着した水滴3の落下
量は少ないため、時間経過による騒音レベルの低減量は
小さい。注水停止後の超撥水電線1cの表面には水滴3
が存在しないため、注水停止直後の騒音レベルは乾燥時
の騒音レベル付近まで低下する。
The noise level at the time of water injection includes the sound of water injection, but the noise level is highest for the new electric wire 1a and lowest for the super water-repellent electric wire 1c. In the super water-repellent electric wire 1c, it was visually confirmed that corona discharge was slightly generated at the contact portion with the water droplet 3 at the upper part of the electric wire, but no corona discharge was generated at the lower part of the electric wire. The new electric wire 1a and the aging electric wire 1b were violent from the attached water drops 3 at the lower part of the electric wire, and corona discharge was constantly generated. Focusing on the change in the noise level after the stop of the water injection, the amount of drop of the water droplet 3 attached to the new electric wire 1a is small, and therefore, the reduction amount of the noise level with the passage of time is small. After the water injection is stopped, water droplets 3
Therefore, the noise level immediately after the stop of water injection decreases to near the noise level during drying.

【0027】以上の試験では、試験電線長が短いことや
試験設備から発生する騒音を除去する測定系を用いたた
め、実規模レベルの騒音やコロナハム音の発生量は測定
できなかったが、超撥水電線1cがコロナ騒音の有効な
対策法であることを示していると考えられる。このこと
から、超撥水電線の適用が多導体方式の素導体数の減少
や降雨時のコロナ騒音対策として有効であることが証明
された。また、同時に、この超撥水電線は水滴が付着し
ないので着氷することもなければ雪が付着することもな
く滑落するため、保守を必要としないで着氷雪対策とし
て用いることができる。
In the above test, since the length of the test wire was short and a measurement system for removing noise generated from the test equipment was used, the amount of noise and corona hum generated at the actual scale could not be measured. This is considered to indicate that the water wire 1c is an effective countermeasure against corona noise. From this, it was proved that the application of the super water-repellent electric wire was effective as a measure for reducing the number of elementary conductors of the multi-conductor system and as a measure against corona noise during rainfall. At the same time, since the super-water-repellent electric wire does not adhere to water droplets and slides down without icing or snow, it can be used as a measure against icing and snow without maintenance.

【0028】[0028]

【発明の効果】以上の説明より明らかなように、請求項
1記載の架空送電線によると、導体表面に超撥水機能を
備えることから、導体表面が雨に濡れても、瞬時に水滴
を散乱あるいは滑落させて導体下部に水滴として垂れ下
がるのを防ぐので、課電状態においても導体表面に水滴
からなる突起物が形成されてその先端で電界が高くなる
という事態を防いで、コロナ放電を抑制することができ
る。
As is apparent from the above description, according to the overhead transmission line according to the first aspect, since the conductor surface has a super water repellent function, even if the conductor surface is wet with rain, water droplets are instantaneously formed. Prevents water droplets from scattering or sliding down to the bottom of the conductor, and prevents water droplets from forming on the surface of the conductor even when power is being applied, preventing the electric field from increasing at the tip and preventing corona discharge. can do.

【0029】したがって、コロナ放電に起因する電波雑
音ならびにコロナ騒音を低減することができる。また、
多導体方式を採用する場合にも、コロナ騒音を無視した
架空送電線を設計でき、送電容量で決まる素導体数に導
体数を減らすことができる。この多導体方式での素導体
数の低減は、超超高圧送電における送電線鉄塔の巨大化
や工事の大規模化を防いで、架空送電線建設費の抑制を
可能とする。即ち、これまではコロナ放電の発生を考慮
して設計されていた送電線の電気環境設計に変革をもた
らし、小型化を可能とし、工期の短縮や低コスト化をも
たらす。
Therefore, radio wave noise and corona noise caused by corona discharge can be reduced. Also,
Even when the multiconductor method is adopted, an overhead power transmission line that ignores corona noise can be designed, and the number of conductors can be reduced to the number of elementary conductors determined by the power transmission capacity. The reduction in the number of elementary conductors in the multi-conductor system prevents transmission line towers in ultra-ultra-high-voltage transmission from becoming huge and large-scale construction, and enables overhead transmission line construction costs to be reduced. That is, the electrical environment design of the transmission line, which has been designed in consideration of the occurrence of corona discharge, is changed, the size of the transmission line can be reduced, the construction period can be shortened, and the cost can be reduced.

【0030】また、請求項2記載の架空送電線による
と、導体表面に超撥水性材料が塗布されて超撥水膜が形
成されていることから、電線製造工程で連続的に均一に
塗布でき、容易に超撥水表面を形成できる。
According to the overhead transmission line of the second aspect, since the super-water-repellent material is applied to the conductor surface to form the super-water-repellent film, it can be continuously and uniformly applied in the electric wire manufacturing process. A super water-repellent surface can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す架空送電線の部分斜
視図である。
FIG. 1 is a partial perspective view of an overhead transmission line showing one embodiment of the present invention.

【図2】新電線と水滴を示す断面図である。FIG. 2 is a cross-sectional view showing a new electric wire and water drops.

【図3】エージング電線と水滴を示す断面図である。FIG. 3 is a cross-sectional view showing an aging electric wire and water drops.

【図4】注水された超撥水電線を示す断面図である。FIG. 4 is a sectional view showing a super-water-repellent electric wire injected with water.

【図5】注水課電試験装置の構成の概略を示す図であ
る。
FIG. 5 is a diagram schematically showing a configuration of a water injection charge test apparatus.

【図6】コロナ騒音測定結果例を示すグラフである。FIG. 6 is a graph showing an example of a corona noise measurement result.

【図7】従来の多導体方式における素導体の配列例を示
す図である。
FIG. 7 is a diagram showing an example of arrangement of elementary conductors in a conventional multiconductor system.

【符号の説明】[Explanation of symbols]

1 電線(導体) 2 超撥水膜 3 水滴 1 electric wire (conductor) 2 super water repellent film 3 water drop

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導体の表面を超撥水性表面としたことを
特徴とする架空送電線。
1. An overhead power transmission line, wherein the surface of the conductor is a super water-repellent surface.
【請求項2】 前記超撥水性表面は導体の表面に超撥水
性材料が塗布されて超撥水膜が形成されることによって
形成されていることを特徴とする請求項1記載の架空送
電線。
2. The overhead transmission line according to claim 1, wherein the super-water-repellent surface is formed by applying a super-water-repellent material to a surface of a conductor to form a super-water-repellent film. .
JP2000262940A 2000-08-31 2000-08-31 Overhead transmission line Pending JP2002075060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000262940A JP2002075060A (en) 2000-08-31 2000-08-31 Overhead transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000262940A JP2002075060A (en) 2000-08-31 2000-08-31 Overhead transmission line

Publications (1)

Publication Number Publication Date
JP2002075060A true JP2002075060A (en) 2002-03-15

Family

ID=18750543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262940A Pending JP2002075060A (en) 2000-08-31 2000-08-31 Overhead transmission line

Country Status (1)

Country Link
JP (1) JP2002075060A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072648A1 (en) * 2004-12-03 2006-07-13 Valtion Teknillinen Tutkimuskeskus Method and arrangement for treating an overhead cable and an overhead cable
JP2013150384A (en) * 2012-01-17 2013-08-01 Nippon Telegr & Teleph Corp <Ntt> Cable cover
JP2014074138A (en) * 2012-10-05 2014-04-24 Viscas Corp Hardly ice covered surface structure and manufacturing method of hardly ice covered surface structure
CN107961964A (en) * 2017-11-30 2018-04-27 国网重庆市电力公司电力科学研究院 The noise reduction process method of ultra-high-tension power transmission line corona audible noise

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072648A1 (en) * 2004-12-03 2006-07-13 Valtion Teknillinen Tutkimuskeskus Method and arrangement for treating an overhead cable and an overhead cable
JP2013150384A (en) * 2012-01-17 2013-08-01 Nippon Telegr & Teleph Corp <Ntt> Cable cover
JP2014074138A (en) * 2012-10-05 2014-04-24 Viscas Corp Hardly ice covered surface structure and manufacturing method of hardly ice covered surface structure
CN107961964A (en) * 2017-11-30 2018-04-27 国网重庆市电力公司电力科学研究院 The noise reduction process method of ultra-high-tension power transmission line corona audible noise

Similar Documents

Publication Publication Date Title
Li et al. Anti-icing performance of a superhydrophobic PDMS/modified nano-silica hybrid coating for insulators
US11596975B2 (en) Water repellent coating film and product provided with same
Cherney RTV silicone-a high tech solution for a dirty insulator problem
KR950005855B1 (en) High voltage insulator
Deng et al. Role of the size of particles of alumina trihydrate filler on the life of RTV silicone rubber coating
JP2002075060A (en) Overhead transmission line
US8163999B2 (en) Insulation-coated wire
US10991487B2 (en) Cable and producing method therefor
JPH08195126A (en) Ice/snow sticking prevention type power transmission line
JPH10156282A (en) Water-oil repellent metallic material
CN107390066B (en) Method and device for judging motion state of particles of spraying layer of gas-insulated power transmission line
JPH0723520A (en) Snow melting apparatus for overhead transmission line
Isa et al. Characteristics of RTV coating on ceramic insulator
JP2000268637A (en) Snow accretion preventing type overhead electric wire and wire line thereof
EP3722853B1 (en) Overhead power line made to prevent snow sleeves accretion
JP2012181981A (en) Low corona electric wire and strand therefor
WO2006072648A1 (en) Method and arrangement for treating an overhead cable and an overhead cable
Miyajima et al. Evaluation of audible noise from surface processing conductors for AC overhead transmission line
Balordi et al. A comparison of anti-ice and anti-snow coatings performances: laboratory and field testing
Wu et al. Degradation assessment of nanostructured superhydrophobic insulating surfaces using multi-stress methods
Deng et al. Low molecular weight silicone fluid content and diffusion in RTV silicone rubber coating
JPH06111630A (en) Snow-adhesion resistant overhead cable line
Mafasigodo Using inclined plane test to compare tracking on silicon rubber under HVAC and HVDC.
RU2499315C2 (en) Electric insulating structure with hydrophobic coating of different thickness
Komatsu et al. Interaction of partial discharge in air with silicone rubber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060823