JP2002073184A - Photovoltaic power generation system - Google Patents

Photovoltaic power generation system

Info

Publication number
JP2002073184A
JP2002073184A JP2000264268A JP2000264268A JP2002073184A JP 2002073184 A JP2002073184 A JP 2002073184A JP 2000264268 A JP2000264268 A JP 2000264268A JP 2000264268 A JP2000264268 A JP 2000264268A JP 2002073184 A JP2002073184 A JP 2002073184A
Authority
JP
Japan
Prior art keywords
power generation
inverter
solar cell
unit
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000264268A
Other languages
Japanese (ja)
Other versions
JP3656531B2 (en
Inventor
Akira Yoshitake
晃 吉武
Hiroaki Koshin
博昭 小新
Shinichiro Okamoto
信一郎 岡本
Hirotada Higashihama
弘忠 東浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000264268A priority Critical patent/JP3656531B2/en
Publication of JP2002073184A publication Critical patent/JP2002073184A/en
Application granted granted Critical
Publication of JP3656531B2 publication Critical patent/JP3656531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generation system, with which efficiency is high as a whole system even when the quantity of solar radiation is lowered. SOLUTION: This system is provided with parallel plural solar battery power generation units 5 composed of a solar battery power generating part 2 constituted by serially connecting plural solar battery panels 1 and an inverter 4 for converting output power from this solar battery power generating part 2 to AC. Besides, the inverter selected out of the inverters inside the plural solar battery power generation units is provided with a connection converting part 7 for performing switching to concentrate the generated power of the solar battery power generating parts connected with the inverters, which are not selected at that time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光発電システ
ムに関し、詳しくは、日射量が低下した場合において
も、システム全体として効率良く発電する太陽光発電シ
ステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system, and more particularly to a photovoltaic power generation system capable of efficiently generating power as a whole even when the amount of solar radiation is reduced.

【0002】[0002]

【従来の技術】従来からの太陽光発電システムには、太
陽電池パネルを直列に接続してなる太陽電池発電部があ
り、これがインバータと接続して構成される太陽光発電
ユニットがある。そして、この太陽光発電ユニットが複
数並列に接続されて、例えば電力系統に連系されている
ものがある。以下、このシステム構造をストリングイン
バータ方式と呼ぶことにする。
2. Description of the Related Art A conventional photovoltaic power generation system includes a photovoltaic power generation unit formed by connecting solar cell panels in series, and a photovoltaic power generation unit configured by connecting the solar cell panel to an inverter. Then, there is a plurality of solar power generation units connected in parallel, for example, connected to an electric power system. Hereinafter, this system structure is referred to as a string inverter system.

【0003】しかし、この方式では各インバータに制御
装置を備える必要があるため、この制御装置による電力
損失(固定損失)が増加するという問題を有している。
特に日射量が減少し、低い発電電力で運転を行っている
場合は電力損失の影響により効率が大幅に低下してしま
う。
However, in this method, since it is necessary to provide a control device for each inverter, there is a problem that power loss (fixed loss) due to the control device increases.
In particular, when the amount of solar radiation is reduced and the operation is performed with low generated power, the efficiency is greatly reduced due to the influence of the power loss.

【0004】また、特開平10−69321号記載の太
陽光発電システムでは、基本的に太陽電池発電部とイン
バータが1:1対応で接続されているストリングインバ
ータ方式で構成されているのだが、太陽光発電ユニット
をいくつかまとめて組み分けし、その各組ごとに切り換
え装置が設けられている。そして、その組内において、
予め定められた主となるインバータにいくつかの太陽電
池発電部の発電電力が集中するような構造となってい
る。
The solar power generation system described in Japanese Patent Application Laid-Open No. H10-69321 is basically configured by a string inverter system in which a solar cell power generation unit and an inverter are connected in a 1: 1 correspondence. Several photovoltaic units are grouped together and a switching device is provided for each group. And within that group,
The structure is such that the power generated by several solar cell power generation units concentrates on a predetermined main inverter.

【0005】そして、通常、太陽電池発電部に照射され
る日射量が充分である時には、各太陽光発電ユニット内
において、太陽電池発電部とインバータを1:1対応で
接続する。また、日射量の減少時には、予め組み分けさ
れたいくつかの太陽光発電ユニットにおいて、そのそれ
ぞれが有している各太陽電池発電部からの発電電力が集
中するような主となるインバータを予め定めておく。そ
して、いくつかの切り換え装置をスイッチングすること
によって、主インバータに発電電力を集中させていくと
ともに、主インバータでの電力変換を高効率で行えるよ
うにしている。
[0005] Normally, when the amount of solar radiation irradiated to the solar cell power generation unit is sufficient, the solar cell power generation unit and the inverter are connected in a one-to-one correspondence in each solar power generation unit. In addition, when the amount of solar radiation decreases, in some of the photovoltaic power generation units that have been pre-combined, a main inverter in which power generated from each of the solar cell power generation units of each of the photovoltaic power generation units is concentrated is determined in advance. Keep it. By switching some switching devices, the generated power is concentrated on the main inverter, and the power conversion in the main inverter can be performed with high efficiency.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記従来例
にあって、予め定めらている主インバータが故障等の原
因で動作しなくなった場合には、日射量が減少した時に
おいても、各太陽光発電ユニットにおいて太陽電池発電
部とインバータを1:1対応で接続して個別運転しなけ
ればならず、個々のインバータによる電力損失の影響が
大きくなり、発電効率が著しく低下してしまう。
However, in the above-mentioned conventional example, when the predetermined main inverter stops operating due to a failure or the like, even when the amount of solar radiation is reduced, each of the solar cells cannot be operated. In the photovoltaic power generation unit, the solar cell power generation unit and the inverter must be connected in a one-to-one correspondence to operate individually, and the effect of power loss by each inverter increases, and the power generation efficiency is significantly reduced.

【0007】本発明は、上記事由に鑑みて為されたもの
であり、日射量の違いやインバータの故障等に応じて自
由にいくつかの稼動するインバータを選択し、そのイン
バータに最もシステム全体の効率がよくなるように発電
電力を集中させることができる太陽光発電システムを提
供するものである。
The present invention has been made in view of the above circumstances, and freely selects several operating inverters in response to a difference in the amount of solar radiation, a failure of the inverter, and the like. An object of the present invention is to provide a solar power generation system capable of concentrating generated power so that efficiency is improved.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の太陽光発電システムは、複数の太陽電
池パネルを直列接続してなる太陽電池発電部と、この太
陽電池発電部からの出力電力を交流に変換するインバー
タとで構成される太陽電池発電ユニットを複数並列に接
続して備えるとともに、複数の太陽電池発電ユニット内
にあるインバータのうちから選択された稼動インバータ
に、これと同一ユニット内にある太陽電池発電部を接続
し、かつ、そのとき選択されなかった非稼動インバータ
から、これと同一ユニット内にある太陽電池発電部を切
断して、この切断された太陽電池発電部を前記稼動イン
バータのうちいずれかに接続するようにスイッチングを
行う接続変換部を備えたことを特徴とするものである。
According to a first aspect of the present invention, there is provided a photovoltaic power generation system comprising a plurality of solar cell panels connected in series; A plurality of photovoltaic power generation units each comprising an inverter that converts the output power of the photovoltaic power into an alternating current are connected in parallel, and the operating inverter selected from the inverters in the plurality of photovoltaic power generation units is The solar cell power generation unit in the same unit is connected, and the solar cell power generation unit in the same unit as this is disconnected from the non-operating inverter not selected at that time. And a connection conversion unit that performs switching so as to be connected to any of the operating inverters.

【0009】また、請求項2記載の太陽光発電システム
は、複数の太陽電池発電ユニット内にあるインバータの
発電データをそれぞれ検出し、これら発電データに基づ
いて前記稼動インバータを選択し、前記接続変換部にお
けるスイッチングを制御する制御部を設けたことを特徴
とするものである。
Further, the photovoltaic power generation system according to claim 2 detects power generation data of inverters in a plurality of solar cell power generation units, respectively, selects the operating inverter based on the power generation data, and performs the connection conversion. A control unit for controlling switching in the unit is provided.

【0010】さらに、請求項3記載の太陽光発電システ
ムは、請求項2記載の太陽光発電システムにおいて、前
記制御部に、複数の太陽電池発電ユニット内にある太陽
電池発電部を構成するいずれかの太陽電池パネルからそ
れぞれ開放電圧を測定して、前記非稼動インバータとこ
れと同一ユニット内にある太陽電池発電部とを再接続し
て得られるこのインバータからの発電電力を予測し、こ
の発電電力に基づいて再接続するかどうかの判断をする
制御機能を持たせたことを特徴とするものである。
Further, in the photovoltaic power generation system according to a third aspect, in the photovoltaic power generation system according to the second aspect, any one of the control units includes a photovoltaic power generation unit in a plurality of photovoltaic power generation units. The open-circuit voltage is measured from each of the solar cell panels, and the generated power from the inverter obtained by reconnecting the non-operating inverter and the solar cell power generation unit in the same unit is predicted. And a control function for determining whether or not to reconnect based on the control function.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の第1実施形態に係る太陽光
発電システムの回路構成図である。
Embodiments of the present invention will be described below. FIG. 1 is a circuit configuration diagram of the photovoltaic power generation system according to the first embodiment of the present invention.

【0012】この第1実施形態の太陽光発電システム
は、複数個の太陽電池モジュールからなる太陽電池パネ
ル1を複数直列に接続してなる太陽電池発電部2と、こ
の太陽電池発電部2から出力される直流電力を供給する
主電路3と、この主電路3を介して供給された太陽電池
発電部2からの直流電力を交流電力に変換するインバー
タ4とで構成された太陽光発電ユニット5を備えてい
る。そして、複数台の太陽光発電ユニット5が並列に接
続されて、商用電源6に連系されている。
The solar power generation system according to the first embodiment includes a solar cell power generation unit 2 in which a plurality of solar cell panels 1 each including a plurality of solar cell modules are connected in series, and an output from the solar cell power generation unit 2. A solar power generation unit 5 including a main electric circuit 3 for supplying DC power to be supplied and an inverter 4 for converting DC electric power supplied from the solar cell power generation unit 2 through the main electric circuit 3 into AC electric power. Have. A plurality of photovoltaic power generation units 5 are connected in parallel and connected to a commercial power supply 6.

【0013】ここで、太陽光発電ユニット5を区別する
ために、図1のように左の方から順番にa、b、cと
し、太陽光発電ユニット5aを構成するものにはaを、
5bを構成するものにはbを、5cを構成するものには
cを付することにする。(以下、同様にして説明す
る。) この実施形態において、インバータ4は直流電力を交流
電力に変換する電力変換機能とともに、商用電源6の周
波数変動や電圧変動、あるいは停電等を検出して、イン
バータ4と商用電源6を切断する系統連系保護機能を有
している。また、インバータ4は主電路3により接続さ
れる太陽電池発電部2の最大電力を出力可能なように、
各太陽光発電ユニットにおいて個別に最大点出力制御を
行う。すなわち、インバータ4aは太陽電池発電部2a
に対して最大点出力制御を行うようになっている。
Here, in order to distinguish the photovoltaic power generation units 5, as shown in FIG. 1, a, b, and c are set in order from the left, and a is used for the components constituting the photovoltaic power generation unit 5a.
The component constituting 5b is denoted by b, and the component configuring 5c is denoted by c. In the present embodiment, the inverter 4 detects a frequency fluctuation and a voltage fluctuation of the commercial power supply 6 or a power failure, and performs an inverter operation together with a power conversion function of converting DC power into AC power. 4 and a system interconnection protection function for disconnecting the commercial power supply 6. In addition, the inverter 4 can output the maximum power of the solar cell power generation unit 2 connected by the main electric circuit 3,
The maximum point output control is individually performed in each solar power generation unit. That is, the inverter 4a is connected to the solar cell power generation unit 2a.
, The maximum point output control is performed.

【0014】また、この太陽光発電システムは、太陽電
池発電部2とインバータ4との間の配線を変更する接続
変換部7を備えている。この接続変換部7は、各太陽光
発電ユニットの主電路間を接続している分岐電路8と、
主電路3に設けられた直流開閉器9および分岐電路8に
設けられた直流開閉器10から構成されている。本実施
形態では、この直流開閉器9および10はインバータ4
に内蔵された構造になっている。ただし本発明では、こ
の直流開閉器9および10はインバータ4の外部に設け
られていてもよい。
Further, the solar power generation system includes a connection conversion unit 7 for changing a wiring between the solar cell power generation unit 2 and the inverter 4. This connection conversion unit 7 includes a branch electric circuit 8 connecting between main electric circuits of the respective photovoltaic power generation units,
It comprises a DC switch 9 provided on the main circuit 3 and a DC switch 10 provided on the branch circuit 8. In the present embodiment, the DC switches 9 and 10 are connected to the inverter 4
It has a built-in structure. However, in the present invention, DC switches 9 and 10 may be provided outside inverter 4.

【0015】本太陽光発電システムの動作について説明
する。通常、各太陽電池発電部に照射される日射量が充
分である時には、各インバータ4a、4b、4cは各太
陽光発電ユニット内において直流開閉器9a、9b、9
cを閉じ、各太陽電池発電部と1:1対応で接続して個
別に発電を行っている。
The operation of the solar power generation system will be described. Normally, when the amount of solar radiation applied to each solar cell power generation unit is sufficient, each inverter 4a, 4b, 4c is connected to a DC switch 9a, 9b, 9 in each solar power generation unit.
c is closed and connected to each solar cell power generation unit in a 1: 1 correspondence to individually generate power.

【0016】次に、太陽電池発電部2の設置場所や設置
方向の違いにより、1日の太陽の動きによる影響を受け
て日射量に違いが生じ、あるインバータの効率が低下し
た場合について説明する。例えば、太陽電池発電部2a
の日射量が減少し発電電力が小さくなったとすると、そ
れに応じてインバータ4aは電力損失の影響を受けやす
くなり、効率が悪くなる。そして、このインバータ4a
においてある程度効率が下がると、自動的に直流開閉器
9aを開放して発電を停止し、かわりに直流開閉器10
aを閉じるのである。図1において、インバータ4aの
直流開閉器9aを開放し、直流開閉器10aを閉じると
太陽電池発電部2aは、インバータ4cに接続される。
このとき、インバータ4cには太陽電池発電部2aと太
陽電池発電部2cが接続されることになり入力電力が増
加する。このように、効率が下がったインバータの動作
を停止し、これによって切り離された太陽電池発電部の
発電電力を別のインバータに集中させることによって、
効率が下がったインバータによる電力損失の影響を受け
にくくし、システム全体として発電効率を上げるように
なっている。このシステム構成によって、住宅等の屋根
に取り付ける場合における、一部の太陽電池発電部の日
射量が減少したときにおいても、効率の良い発電が可能
となる。
Next, a case will be described in which the amount of solar radiation is affected by the movement of the sun every day due to the difference in the installation location and installation direction of the solar cell power generation unit 2, and the efficiency of a certain inverter is reduced. . For example, the solar cell power generation unit 2a
If the amount of solar radiation decreases and the generated power decreases, the inverter 4a becomes susceptible to the power loss and the efficiency decreases accordingly. And this inverter 4a
When the efficiency decreases to some extent, the DC switch 9a is automatically opened to stop the power generation, and the DC switch 10
Close a. In FIG. 1, when the DC switch 9a of the inverter 4a is opened and the DC switch 10a is closed, the solar cell power generation unit 2a is connected to the inverter 4c.
At this time, the solar cell power generation unit 2a and the solar cell power generation unit 2c are connected to the inverter 4c, and the input power increases. In this way, by stopping the operation of the inverter with reduced efficiency and concentrating the power generated by the separated solar cell power generation unit to another inverter,
Inverters with reduced efficiency are less susceptible to power loss, and the power generation efficiency of the entire system is increased. With this system configuration, efficient power generation is possible even when the amount of solar radiation of some of the solar cell power generation units decreases when the solar cell power generation unit is attached to a roof of a house or the like.

【0017】また、曇りの日や夕方などのように一様に
日射量が減少し、各インバータ4a、4b、4cともに
低効率領域で動作している場合ついて説明する。図1に
示すように、太陽光発電ユニット5a、5b内におい
て、太陽電池発電部2a、2bとインバータ4a、4b
を、直流開閉器9a、9bを開放することによって切り
離すと同時に、直流開閉器10a、10bを閉じる。こ
のようにして、切り離された太陽電池発電部2a、2b
の発電電力はインバータ4cに集中することになり、イ
ンバータ1台あたりの入力電力が増加して効率を上げて
いるのである。
A case will be described in which the amount of solar radiation decreases uniformly, such as on a cloudy day or in the evening, and each of the inverters 4a, 4b, and 4c operates in a low efficiency region. As shown in FIG. 1, in the solar power generation units 5a and 5b, the solar cell power generation units 2a and 2b and the inverters 4a and 4b
Is disconnected by opening the DC switches 9a and 9b, and at the same time, the DC switches 10a and 10b are closed. Thus, the separated solar cell power generation units 2a, 2b
Is concentrated on the inverter 4c, and the input power per inverter is increased to improve the efficiency.

【0018】次に、本発明の第2実施形態について、図
2を参照して説明する。この太陽光発電システムは、接
続変換部7の制御を行う制御部11を別途設け、かつ直
流開閉器9および10をインバータ4の外部に設けた構
成となっている点において、上記第1実施形態と異なっ
ている。
Next, a second embodiment of the present invention will be described with reference to FIG. This solar power generation system has a configuration in which a control unit 11 for controlling the connection conversion unit 7 is separately provided and DC switches 9 and 10 are provided outside the inverter 4 in the first embodiment. Is different.

【0019】この太陽光発電システムの動作について、
上記した太陽電池発電部2の設置場所や設置方向の違い
により、各太陽電池発電部における日射量に違いが生じ
た場合について説明する。例えば、太陽電池発電部2a
の日射量が減少したとすると、制御部11は各太陽電池
発電ユニット内にある各インバータの発電データ(電
圧、電流、電力)をそれぞれ検出し、太陽電池発電部2
aの発電電力が低下していることを検知する。そして、
制御部11は稼動インバータ(日射量減少時に動作する
インバータ)を自由に選択することができる。図1にお
いて、稼動インバータを4b、4cの2つに選択したと
すると、制御部11はそのときに選択されなかった非稼
動インバータ4aの直流開閉器9aを開放して太陽電池
発電部2aを切り離し、直流開閉器10aを閉じて太陽
電池発電部2aの発電電力をインバータ4cに集めてい
る。このとき、選択された稼動インバータ4b、4c
は、それぞれの太陽光発電ユニット5b、5c内にある
太陽電池発電部2b、2cと、直流開閉器9b、9cを
介して接続されている。このように、一部の太陽電池発
電部の日射量が減少した場合において、制御部11は動
作するインバータ数を減少させ、動作を継続するインバ
ータの太陽電池発電部の並列数を増加させるように、接
続変換部7が有する直流開閉器9および10のスイッチ
ングを制御しているのである。
Regarding the operation of this solar power generation system,
A case in which the amount of solar radiation in each solar cell power generation unit differs due to the difference in the installation location and installation direction of the solar cell power generation unit 2 will be described. For example, the solar cell power generation unit 2a
Assuming that the amount of solar radiation has decreased, the control unit 11 detects the power generation data (voltage, current, power) of each inverter in each solar cell power generation unit, and
It is detected that the generated power of a has dropped. And
The control unit 11 can freely select an operating inverter (an inverter that operates when the amount of solar radiation decreases). In FIG. 1, assuming that the operating inverter is selected to be two of 4b and 4c, the control unit 11 opens the DC switch 9a of the non-operating inverter 4a which is not selected at that time to disconnect the solar cell power generation unit 2a. The DC switch 10a is closed, and the power generated by the solar cell power generation unit 2a is collected by the inverter 4c. At this time, the selected operating inverters 4b, 4c
Are connected to solar cell power generation units 2b, 2c in the respective solar power generation units 5b, 5c via DC switches 9b, 9c. As described above, when the amount of solar radiation of some of the solar cell power generation units decreases, the control unit 11 reduces the number of operating inverters and increases the number of parallel solar cell power generation units of the inverters that continue to operate. That is, the switching of the DC switches 9 and 10 of the connection converter 7 is controlled.

【0020】なお、何らかの原因でインバータ4のいず
れかが故障し動作しなくなった場合においても、制御部
11は、その故障したインバータに接続されている太陽
電池発電部の発電電力を他の正常なインバータに集中さ
せるように、接続変換部7が有する直流開閉器9および
10を制御する。
Even if one of the inverters 4 fails for some reason and stops operating, the control unit 11 uses the power generated by the solar cell power generation unit connected to the failed inverter to another normal power source. The DC switches 9 and 10 of the connection converter 7 are controlled so as to concentrate on the inverter.

【0021】また、曇りの日や夕方など一様に日射量が
減少した場合に、例えば図1において、制御部11は各
太陽電池発電ユニット内にある各インバータの発電デー
タより、稼動インバータをインバータ4cに選択したと
すると、直流開閉器9a、9bを開放し、直流開閉器1
0a、10b閉じて稼動インバータ4cの入力電力が増
加するように制御する。
When the amount of solar radiation is uniformly reduced, such as on a cloudy day or in the evening, for example, in FIG. 1, the control unit 11 determines the operating inverter based on the power generation data of each inverter in each solar cell power generation unit. 4c, the DC switches 9a and 9b are opened, and the DC switches 1a and 9b are opened.
Control is performed so that the input power of the operation inverter 4c is increased by closing 0a and 10b.

【0022】さらに、本実施形態において、稼動インバ
ータのうちいずれかに入力電力が集中して発電している
システムを、各太陽光発電ユニットにおいて、太陽電池
発電部2とインバータ4がもとの1:1対応で接続して
個別に発電を行うシステムに戻すときの動作について説
明する。日射量が減少し、1台のインバータに複数の太
陽電池発電部が並列接続されている状態、例えば図1に
おいて、太陽電池発電部2a、2bの発電電力がインバ
ータ4aに集中して発電しているとする。このとき、制
御部11は、各太陽電池発電部2a、2bを構成するい
ずれかの太陽電池パネルから、それぞれ開放電圧を測定
し、その開放電圧からインバータ4bを再び動作させ
て、各太陽光発電ユニット5a、5bを個別に運転した
場合に予測される各インバータ4a、4bの発電電力を
演算により求めるのである。そして、太陽電池発電部2
aと太陽電池発電部2bが並列接続され、インバータ4
aが動作している状態において、 p1+p2>P1 p1:開放電圧から予測される個別運転した時のインバ
ータ1aの発電電力 p2:開放電圧から予測される個別運転した時のインバ
ータ1bの発電電力 P1:集中運転を行うインバータ1aの発電電力 である場合、太陽電池発電部2bをインバータ4aから
切り離し、個別運転にシフトする。このように、集中運
転時と個別運転時の発電電力を比較しながら接続変換部
を制御することができるため、太陽電池発電部に雲がか
かった場合のような一時的な日射量の減少により、太陽
電池発電部が並列に接続されたときにでも、最も効率の
良いタイミングで集中運転から個別運転へ移行させるこ
とができるのである。
Further, in this embodiment, a system in which input power is concentrated and generated in one of the operating inverters is connected to a solar cell power generation unit 2 and an inverter 4 in each solar power generation unit. The operation when returning to a system that generates power individually by connecting them in a 1: 1 correspondence will be described. In a state where the amount of solar radiation is reduced and a plurality of solar cell power generation units are connected in parallel to one inverter, for example, in FIG. 1, the power generated by the solar cell power generation units 2a and 2b is concentrated and generated by the inverter 4a. Suppose you have At this time, the control unit 11 measures an open voltage from one of the solar cell panels constituting each of the solar cell power generation units 2a and 2b, operates the inverter 4b again from the open voltage, and outputs The power generation of each inverter 4a, 4b predicted when the units 5a, 5b are individually operated is calculated. And the solar cell power generation unit 2
a and the solar cell power generation unit 2b are connected in parallel, and the inverter 4
In the state where a is operating, p1 + p2> P1 p1: generated power of the inverter 1a during individual operation predicted from the open circuit voltage p2: generated power of the inverter 1b during individual operation predicted from the open circuit voltage P1: If the power is generated by the inverter 1a that performs the centralized operation, the solar cell power generation unit 2b is disconnected from the inverter 4a, and the operation is shifted to the individual operation. In this way, since the connection conversion unit can be controlled while comparing the generated power during the centralized operation and the individual operation, the temporary decrease in the amount of solar radiation, such as when a cloud covers the solar cell power generation unit, Even when the solar cell power generation units are connected in parallel, it is possible to shift from the centralized operation to the individual operation at the most efficient timing.

【0023】[0023]

【発明の効果】以上、説明したように、請求項1記載の
太陽光発電システムでは、少数のインバータに太陽電池
発電部の出力を集中させることにより、インバータが高
効率領域で動作できるため、システム全体として効率の
向上が図れる。
As described above, in the solar power generation system according to the first aspect, since the output of the solar cell power generation unit is concentrated on a small number of inverters, the inverter can operate in a high efficiency region. The efficiency can be improved as a whole.

【0024】請求項2記載の太陽光発電システムでは、
制御部がシステム全体の発電状況を監視しながら、太陽
電池発電部とインバータの組み合わせを決定し、接続変
換部のスイッチングを制御するため、精度良く、効率的
なシステム動作が可能となる。
In the solar power generation system according to the second aspect,
Since the control unit determines the combination of the solar cell power generation unit and the inverter and controls the switching of the connection conversion unit while monitoring the power generation status of the entire system, accurate and efficient system operation is possible.

【0025】請求項3記載の太陽光発電システムでは、
集中運転時と個別運転時の発電電力を比較しながら接続
変換部を制御することができるため、最も効率の良いタ
イミングで集中運転から個別運転へ移行させることがで
きる。
In the solar power generation system according to the third aspect,
Since the connection converter can be controlled while comparing the generated power during the centralized operation and the individual operation, it is possible to shift from the centralized operation to the individual operation at the most efficient timing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る太陽光発電システ
ムの回路構成図である。
FIG. 1 is a circuit configuration diagram of a photovoltaic power generation system according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る太陽光発電システ
ムの構成図である。
FIG. 2 is a configuration diagram of a photovoltaic power generation system according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 太陽電池パネル 2 太陽電池発電部 4 インバータ 5 太陽光発電ユニット 7 接続変換部 11 制御部 REFERENCE SIGNS LIST 1 solar cell panel 2 solar cell power generation unit 4 inverter 5 solar power generation unit 7 connection conversion unit 11 control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 信一郎 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 東浜 弘忠 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 5F051 BA11 KA01 KA03 KA10 5G066 HA01 HB03 HB06 5H420 BB03 BB14 CC03 CC06 DD03 EA48 EB13 EB39 FF03 FF22 GG01  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shinichiro Okamoto 1048 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. F term (reference) 5F051 BA11 KA01 KA03 KA10 5G066 HA01 HB03 HB06 5H420 BB03 BB14 CC03 CC06 DD03 EA48 EB13 EB39 FF03 FF22 GG01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の太陽電池パネルを直列接続してな
る太陽電池発電部と、この太陽電池発電部からの出力電
力を交流に変換するインバータとで構成される太陽電池
発電ユニットを複数並列に接続して備えるとともに、複
数の太陽電池発電ユニット内にあるインバータのうちか
ら選択された稼動インバータに、これと同一ユニット内
にある太陽電池発電部を接続し、かつ、そのとき選択さ
れなかった非稼動インバータから、これと同一ユニット
内にある太陽電池発電部を切断して、この切断された太
陽電池発電部を前記稼動インバータのうちいずれかに接
続するようにスイッチングを行う接続変換部を備えたこ
とを特徴とする太陽光発電システム。
1. A plurality of solar cell power generation units each comprising a solar cell power generation unit formed by connecting a plurality of solar cell panels in series, and an inverter that converts output power from the solar cell power generation unit into an alternating current. Connected and provided, and connected to the operating inverter selected from the inverters in the plurality of solar cell power generation units, the solar cell power generation unit in the same unit as the operating inverter, and the non-selected non-selected at that time. A connection conversion unit that performs switching so as to disconnect the solar cell power generation unit in the same unit as the operation inverter from the operation inverter and connect the disconnected solar cell power generation unit to any of the operation inverters. A photovoltaic power generation system characterized in that:
【請求項2】 複数の太陽電池発電ユニット内にあるイ
ンバータの発電データをそれぞれ検出し、これら発電デ
ータに基づいて前記稼動インバータを選択し、前記接続
変換部におけるスイッチングを制御する制御部を設けた
ことを特徴とする請求項1記載の太陽光発電システム。
2. A control unit for detecting power generation data of inverters in a plurality of solar cell power generation units, selecting the operating inverter based on the power generation data, and controlling switching in the connection conversion unit. The photovoltaic power generation system according to claim 1, wherein:
【請求項3】 前記制御部は、複数の太陽電池発電ユニ
ット内にある太陽電池発電部を構成するいずれかの太陽
電池パネルからそれぞれ開放電圧を測定して、前記非稼
動インバータとこれと同一ユニット内にある太陽電池発
電部とを再接続して得られるこのインバータからの発電
電力を予測し、この発電電力に基づいて再接続するかど
うかの判断をすることを特徴とする請求項2記載の太陽
光発電システム。
3. The control unit measures an open circuit voltage from any one of the solar cell panels constituting the solar cell power generation units in the plurality of solar cell power generation units, and controls the inactive inverter and the same unit as the inactive inverter. The power generation from the inverter obtained by reconnecting the photovoltaic power generation unit within the inverter is predicted, and it is determined whether to reconnect based on the generated power. Solar power system.
JP2000264268A 2000-08-31 2000-08-31 Solar power system Expired - Lifetime JP3656531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264268A JP3656531B2 (en) 2000-08-31 2000-08-31 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264268A JP3656531B2 (en) 2000-08-31 2000-08-31 Solar power system

Publications (2)

Publication Number Publication Date
JP2002073184A true JP2002073184A (en) 2002-03-12
JP3656531B2 JP3656531B2 (en) 2005-06-08

Family

ID=18751706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264268A Expired - Lifetime JP3656531B2 (en) 2000-08-31 2000-08-31 Solar power system

Country Status (1)

Country Link
JP (1) JP3656531B2 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098792A (en) * 2008-10-14 2010-04-30 Ntt Facilities Inc Power conversion system, power conversion controller, and method and program for controlling power conversion
WO2010049549A1 (en) 2008-10-30 2010-05-06 Asea Brown Boveri, S.A. System and method for energy optimisation in photovoltaic generators
US20110144822A1 (en) * 2009-12-15 2011-06-16 Samsung Sdi Co., Ltd. Grid-connected energy storage system and method of controlling grid-connected energy storage system
CN102611133A (en) * 2012-03-13 2012-07-25 华为技术有限公司 Solar photovoltaic grid-connected electric generating system and electric generating control method
WO2012098392A1 (en) * 2011-01-18 2012-07-26 Enecsys Limited Solar photovoltaic systems
JP2012518909A (en) * 2009-02-23 2012-08-16 テンケーソーラー インコーポレイテッド Highly efficient renewable solar energy system
CN102684297A (en) * 2012-05-16 2012-09-19 华为技术有限公司 Solar power generating system and (N+1) backup power distribution control method thereof
JP2012186234A (en) * 2011-03-04 2012-09-27 Techno Knowledge System Kk Photovoltaic power generator
KR200466061Y1 (en) * 2012-10-25 2013-04-03 이창수 Inverter tower for photovoltaic power generation apparatus
KR101257639B1 (en) * 2012-10-25 2013-04-29 이창수 Photovoltaic power generation system
WO2013161307A1 (en) * 2012-04-27 2013-10-31 パナソニック株式会社 Wiring switching system
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
JP2016516382A (en) * 2013-02-20 2016-06-02 トタル マルケタン セルヴィス Electronic management system for power generation cell, power generation system, and method for electronically managing energy flow
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
WO2016165730A1 (en) * 2015-04-13 2016-10-20 FeCon GmbH Method for error handling and partial redundancy in parallel inverters by means of input switches
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543890B2 (en) 2009-01-21 2017-01-10 Tenksolar, Inc. Illumination agnostic solar panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9608438B2 (en) 2012-07-17 2017-03-28 Electronics And Telecommunications Research Institute Inverter system for photovoltaic power generation
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
KR101777230B1 (en) * 2012-07-17 2017-09-11 한국전자통신연구원 Inverter system for photovoltaic power generation
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US9768725B2 (en) 2008-01-18 2017-09-19 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
JP2010098792A (en) * 2008-10-14 2010-04-30 Ntt Facilities Inc Power conversion system, power conversion controller, and method and program for controlling power conversion
EP2341523A4 (en) * 2008-10-30 2014-03-05 Bbc Brown Boveri & Cie System and method for energy optimisation in photovoltaic generators
WO2010049549A1 (en) 2008-10-30 2010-05-06 Asea Brown Boveri, S.A. System and method for energy optimisation in photovoltaic generators
US8334617B2 (en) 2008-10-30 2012-12-18 Asea Brown Boveri, S.A. System and method for energy optimization in photovoltaic generators
EP2341523A1 (en) * 2008-10-30 2011-07-06 Asea Brown Boveri, S.A. System and method for energy optimisation in photovoltaic generators
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543890B2 (en) 2009-01-21 2017-01-10 Tenksolar, Inc. Illumination agnostic solar panel
JP2012518909A (en) * 2009-02-23 2012-08-16 テンケーソーラー インコーポレイテッド Highly efficient renewable solar energy system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US20110144822A1 (en) * 2009-12-15 2011-06-16 Samsung Sdi Co., Ltd. Grid-connected energy storage system and method of controlling grid-connected energy storage system
US8716891B2 (en) * 2009-12-15 2014-05-06 Samsung Sdi Co., Ltd. Energy storage system connected to a grid and multiple power generation modules and method of controlling the same
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9276409B2 (en) 2011-01-18 2016-03-01 Solarcity Corporation Solar photovoltaic systems
GB2485423B (en) * 2011-01-18 2014-06-04 Enecsys Ltd Solar photovoltaic systems
US10418818B2 (en) 2011-01-18 2019-09-17 Tesla, Inc. Solar photovoltaic systems
WO2012098392A1 (en) * 2011-01-18 2012-07-26 Enecsys Limited Solar photovoltaic systems
JP2012186234A (en) * 2011-03-04 2012-09-27 Techno Knowledge System Kk Photovoltaic power generator
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
CN102611133A (en) * 2012-03-13 2012-07-25 华为技术有限公司 Solar photovoltaic grid-connected electric generating system and electric generating control method
US10158226B2 (en) 2012-04-27 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Line switching system
JP5415654B1 (en) * 2012-04-27 2014-02-12 パナソニック株式会社 Wiring switching system
WO2013161307A1 (en) * 2012-04-27 2013-10-31 パナソニック株式会社 Wiring switching system
CN102684297A (en) * 2012-05-16 2012-09-19 华为技术有限公司 Solar power generating system and (N+1) backup power distribution control method thereof
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
KR101777230B1 (en) * 2012-07-17 2017-09-11 한국전자통신연구원 Inverter system for photovoltaic power generation
US9608438B2 (en) 2012-07-17 2017-03-28 Electronics And Telecommunications Research Institute Inverter system for photovoltaic power generation
KR200466061Y1 (en) * 2012-10-25 2013-04-03 이창수 Inverter tower for photovoltaic power generation apparatus
KR101257639B1 (en) * 2012-10-25 2013-04-29 이창수 Photovoltaic power generation system
JP2016516382A (en) * 2013-02-20 2016-06-02 トタル マルケタン セルヴィス Electronic management system for power generation cell, power generation system, and method for electronically managing energy flow
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
WO2016165730A1 (en) * 2015-04-13 2016-10-20 FeCon GmbH Method for error handling and partial redundancy in parallel inverters by means of input switches
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices

Also Published As

Publication number Publication date
JP3656531B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP2002073184A (en) Photovoltaic power generation system
US11205946B2 (en) Serially connected inverters
EP2899606B1 (en) Power conditioner, and method for controlling same
JP6521332B2 (en) Cascaded H-bridge inverter and method for handling defects thereof
EP2092625B1 (en) Current bypass for distributed power harvesting systems using dc power sources
US9172270B2 (en) Smart and scalable lunar power inverters
US20140333135A1 (en) High Performance Voltage Compensation
JPH0767346A (en) Control method of parallel operation of inverter for system interconnection
JPH09135541A (en) Power feed system
CN115276549B (en) PID effect suppression system
CN103890958A (en) System and method for increasing voltage in a photovoltaic inverter
KR102246043B1 (en) Tcs solar generation system and method
KR101226628B1 (en) Series voltage compensation apparatus for solar generating system
JP6369803B2 (en) Power storage device
JP2000270482A (en) System linkage method of natural energy generator
KR101777230B1 (en) Inverter system for photovoltaic power generation
JPWO2006033142A1 (en) Photovoltaic power generation system and its boosting unit
JP2014130416A (en) System interconnection device
JP2016187291A (en) Power supply system and power conversion device
CN210007623U (en) Power conversion system
KR20130115719A (en) Grid-tied multistring photovoltaic inverter system
US20240039408A1 (en) Partial power converter
JP6072991B1 (en) Converter between solar panel, source and load
JP6804266B2 (en) Power conditioner
EP4181350A1 (en) Charging arrangement for solar tracker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8