JP2002073132A - Device and method for boring - Google Patents

Device and method for boring

Info

Publication number
JP2002073132A
JP2002073132A JP2000267586A JP2000267586A JP2002073132A JP 2002073132 A JP2002073132 A JP 2002073132A JP 2000267586 A JP2000267586 A JP 2000267586A JP 2000267586 A JP2000267586 A JP 2000267586A JP 2002073132 A JP2002073132 A JP 2002073132A
Authority
JP
Japan
Prior art keywords
drilling
spindle
axis
command
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000267586A
Other languages
Japanese (ja)
Inventor
Takanori Aranaga
恭教 新永
Motomu Ito
求 伊藤
Shuji Takahashi
修治 高橋
Hiroshi Shikada
洋 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000267586A priority Critical patent/JP2002073132A/en
Priority to CNB01131317XA priority patent/CN1173788C/en
Priority to CN 200410077172 priority patent/CN1285429C/en
Publication of JP2002073132A publication Critical patent/JP2002073132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Boring (AREA)
  • Numerical Control (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for boring which do not bore holes at wrong positions, make the total boring operation time shorter, and enables unmanned operation free of an unbored hole. SOLUTION: This boring device is equipped with a grating data expanding means 12 which expands boring positions in matrix by using design data and a boring command generating means 13 which calculates spindle efficiency, i.e., the value obtained by dividing the number of bored holes by a positioning frequency × the number of spindles for machining according to information on the boring positions expanded into the matrix and supplies a machining command to a spindle 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被加工物に穴あけ
加工する際、効率よく、短時間にして正確に行う穴あけ
加工装置および穴あけ加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drilling apparatus and a drilling method for efficiently drilling a workpiece in a short time and accurately.

【0002】[0002]

【従来の技術】例えば、火力発電プラントや原子力発電
プラントに適用する給水加熱器や復水器等の熱交換器
は、1000MWクラスで時間当り数百万トンの復水・
給水を処理する必要上、1台当り数百本から数千本の伝
熱管を胴体内に収容させている。
2. Description of the Related Art For example, a heat exchanger such as a feed water heater or a condenser applied to a thermal power plant or a nuclear power plant is a 1000 MW class with a condensate of several million tons per hour.
Due to the necessity of treating the water supply, several hundred to several thousand heat transfer tubes are accommodated in the body of each unit.

【0003】このように、数多くの伝熱管は、胴体内に
収容した管板や支え板等で支持・固定し、加熱源として
のタービン抽気と被加熱源としての復水・給水とを熱交
換させる際に発生する流れの偏流等に基づく振動や自重
による撓み等に対処している。
As described above, many heat transfer tubes are supported and fixed by a tube plate or a support plate housed in the body, and heat exchange is performed between turbine bleed air as a heating source and condensate / water supply as a heated source. Vibration due to the drift of the flow and the like caused by the flow, deflection due to its own weight, and the like are dealt with.

【0004】一方、数多くの伝熱管を支持・固定する管
板等は、平板形状の表面に格子状の線を罫書き、罫書き
線の交点をNC(数値制御)を備えたボール盤等の加工
機を用いて一穴ずつ穴あけ加工作業を行っていた。
On the other hand, for a tube sheet or the like for supporting and fixing a large number of heat transfer tubes, a grid-like line is scribed on the surface of a flat plate, and the intersection of the scribe line is processed with a NC (numerical control) drilling machine. Drilling work was performed one by one using a machine.

【0005】[0005]

【発明が解決しようとする課題】管板等の表面に格子状
の線を罫書き線を罫書きし、罫書き線の交点に加工機を
用いて一穴ずつ穴あけする従来の穴あけ加工法では、加
工作業の効率の点から改善が求められていた。すなわ
ち、従来の加工作業方法では、罫書き作業だけでも多く
の時間を必要とし、さらに、その上、一穴ずつの穴あけ
加工作業が加わるため、より一層多くの加工作業時間を
費やしていた。
In a conventional drilling method, a grid-like line is scribed on a surface of a tube sheet or the like, and a line is drilled one by one at an intersection of the scribe line using a processing machine. Therefore, improvement has been demanded in terms of the efficiency of the processing operation. In other words, in the conventional working method, much time is required only for the scoring work, and furthermore, since a hole forming work for each hole is added, more working time is consumed.

【0006】また、数多くの穴あけ作業を行うため、穴
位置の間違いを犯し易く、作業者が付きっ切りで穴あけ
加工作業をしなければならず、作業の無人化が難しい等
の不都合な点があった。
[0006] Further, since a large number of drilling operations are performed, it is easy to make mistakes in the position of the holes, and the operator has to perform the drilling operation with a short cut, which makes it difficult to perform unmanned operations. there were.

【0007】また、NCを備えたボール盤による自動運
転でも穴あけ作業中、何らかの事情で工具異常が発生し
た穴位置は、加工作業残しとなり、NC自動運転の終了
後、中止した穴加工位置に再び穴修正加工作業を行わな
ければならない等の問題があった。
[0007] Further, even in automatic operation using a drilling machine equipped with an NC, during drilling operation, a hole position where a tool error occurs for some reason remains a machining operation, and after the NC automatic operation is completed, the hole is returned to the stopped hole processing position. There were problems such as the necessity of performing corrective work.

【0008】本発明は、このような事情に基づいてなさ
れたもので、穴あけ加工する際、穴の位置を間違えずに
行い、全穴あけ加工作業時間をより一層短くし、穴あけ
加工残しのない無人運転を可能にする穴あけ加工装置お
よび穴あけ加工方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and when drilling, the positions of the holes are made without mistakes, so that the entire drilling operation time is further shortened, and unmanned holes without drilling are left unattended. An object of the present invention is to provide a drilling apparatus and a drilling method that enable operation.

【0009】[0009]

【課題を解決するための手段】本発明に係る穴あけ加工
装置は、上述の目的を達成するために、請求項1に記載
したように、穴あけ加工軸と位置決め軸とを備えた主軸
を用いて被加工物に穴あけ加工を行う穴あけ加工装置に
おいて、設計データから穴加工位置をマトリックスに展
開する格子データ展開手段と、穴あけ数と位置決め回数
×加工軸数で割った値を軸効率とするとき、その軸効率
を上記マトリックスに展開した穴加工位置の情報に基づ
いて算出して上記主軸に加工指令を与える穴あけ指令作
成手段とを備えたものである。
In order to achieve the above object, a drilling apparatus according to the present invention uses a spindle having a drilling shaft and a positioning shaft as described in claim 1. In a drilling machine that performs drilling on a workpiece, a grid data expansion unit that expands a drilling position from a design data into a matrix, and a value obtained by dividing the number of drillings and the number of positioning times the number of processing axes as an axis efficiency, And a drilling command creating means for calculating the axis efficiency based on the information of the drilling position developed in the matrix and giving a machining command to the spindle.

【0010】また、本発明に係る穴あけ加工装置は、上
述の目的を達成するために、請求項2に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う穴あけ加工装置において、
設計データから穴加工位置をマトリックスに展開する格
子データ展開手段と、穴あけ数を位置決め回数×加工軸
数で割った値を軸効率とするとき、その軸効率を上記マ
トリックスに展開した穴加工位置の情報に基づいて算出
して上記主軸に加工指令を与える穴あけ指令作成手段
と、この穴あけ指令作成手段から指令された穴あけ回数
をカウントし、穴あけ回数が予め定められた回数を超え
ているとき、上記主軸に交換指令を出す工具寿命管理手
段とを備えたものである。
According to a second aspect of the present invention, there is provided a drilling apparatus for forming a workpiece on a workpiece by using a main shaft having a drilling axis and a positioning axis. In a drilling machine that performs drilling,
A grid data expanding means for expanding a hole machining position from a design data into a matrix, and when a value obtained by dividing the number of drillings by the number of times of positioning times the number of machining axes is defined as an axis efficiency, the axis efficiency is calculated based on the hole machining position developed in the matrix. Drilling command creation means that calculates based on information and gives a machining command to the spindle, counts the number of drilling commands from the drilling command creation means, and when the number of drilling times exceeds a predetermined number, Tool life management means for issuing an exchange command to the spindle.

【0011】また、本発明に係る穴あけ加工装置は、上
述の目的を達成するために、請求項3に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う穴あけ加工装置において、
設計データから穴加工位置をマトリックスに展開する格
子データ展開手段と、穴あけ数と位置決め回数×加工軸
数で割った値を軸効率とするとき、その軸効率を上記マ
トリックスに展開した穴加工位置の情報に基づいて算出
して上記主軸に加工指令を与える穴あけ指令作成手段
と、この穴あけ指令作成手段からの指令と上記格子デー
タ展開手段からの情報とを突き合わせ、穴あけ位置が許
容誤差範囲内にあるとき、上記主軸に加工指令を与え、
許容誤差範囲を超えるとき、上記主軸に加工中止指令を
与える穴位置チェック手段とを備えたものである。
According to a third aspect of the present invention, there is provided a drilling apparatus for forming a workpiece on a workpiece by using a spindle having a drilling axis and a positioning axis. In a drilling machine that performs drilling,
A grid data expanding means for expanding a hole machining position from a design data into a matrix, and a value obtained by dividing the number of drilling times and the number of positioning times the number of machining axes as an axis efficiency, the axis efficiency is calculated based on the hole machining position developed in the matrix. A drilling command creating means for calculating and giving a machining command to the spindle, based on information, and comparing a command from the drilling command creating means with information from the grid data expanding means, and the drilling position is within an allowable error range. When a machining command is given to the spindle,
And a hole position checking means for issuing a machining stop command to the spindle when the allowable error range is exceeded.

【0012】また、本発明に係る穴あけ加工装置は、上
述の目的を達成するために、請求項4に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う穴あけ加工装置において、
上記被加工物の穴あけ加工中、上記主軸に異常が発生し
たとき、正常な穴あけ加工軸を用いて穴あけ加工を行わ
せ、正常な穴あけ加工軸が穴あけ加工を終了した後、加
工を中断していた穴に対して上記正常な穴あけ加工軸を
用いて穴あけ加工させる指令を上記主軸に与える追加工
手段を備えたものである。
According to a fourth aspect of the present invention, there is provided a drilling apparatus according to the present invention for forming a workpiece on a workpiece by using a spindle having a drilling axis and a positioning axis. In a drilling machine that performs drilling,
During the drilling of the workpiece, when an abnormality occurs in the spindle, the drilling is performed using the normal drilling shaft, and after the normal drilling shaft finishes the drilling, the drilling is interrupted. An additional processing means is provided for giving a command to the main spindle to perform drilling of the drilled hole using the normal drilling axis.

【0013】また、本発明に係る穴あけ加工装置は、上
述の目的を達成するために、請求項5に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う穴あけ加工装置において、
設計データから穴加工位置をマトリックスに展開する格
子データ展開手段と、穴あけ数を位置決め回数×加工軸
数で割った値を軸効率とするとき、その軸効率を上記マ
トリックスに展開した穴加工位置の情報に基づいて算出
して上記主軸に加工指令を与える穴あけ指令作成手段
と、この穴あけ指令作成手段から指令された穴あけ回数
をカウントし、穴あけ回数が予め定められた回数を超え
ているとき、上記主軸に交換指令を出す工具寿命管理手
段と、上記穴あけ指令作成手段からの指令と上記格子デ
ータ展開手段からの情報とを突き合わせ、穴加工位置が
許容誤差範囲内にあるとき、上記主軸に加工指令を与
え、許容誤差範囲を超えるとき、上記主軸に加工中止指
令を与える穴位置チェック手段と、上記被加工物の穴あ
け加工中、上記主軸に異常が発生したとき、正常な穴あ
け加工軸を用いて穴加工を行わせ、正常な穴あけ加工軸
が穴あけ加工を終了した後、加工を中断していた穴に対
して上記正常な穴あけ加工軸を用いて穴あけ加工させる
指令を上記主軸に与える追加工手段とを備えたものであ
る。
According to a fifth aspect of the present invention, there is provided a drilling apparatus for forming a workpiece on a workpiece by using a main shaft having a drilling axis and a positioning axis. In a drilling machine that performs drilling,
A grid data expanding means for expanding a hole machining position from a design data into a matrix, and when a value obtained by dividing the number of drillings by the number of times of positioning times the number of machining axes is defined as an axis efficiency, the axis efficiency is calculated based on the hole machining position developed in the matrix. Drilling command creation means that calculates based on information and gives a machining command to the spindle, counts the number of drilling commands from the drilling command creation means, and when the number of drilling times exceeds a predetermined number, The tool life management means for issuing an exchange command to the spindle, the command from the drilling command creation means and the information from the grid data development means are matched, and when the hole machining position is within the allowable error range, a machining command is issued to the spindle. And a hole position checking means for giving a machining stop command to the spindle when exceeding the allowable error range; and When a normal occurs, the drilling is performed using the normal drilling axis.After the normal drilling axis finishes drilling, the normal drilling axis is And additional processing means for giving a command to perform drilling using the spindle.

【0014】また、本発明に係る穴あけ加工装置は、上
述の目的を達成するために、請求項6に記載したよう
に、穴あけ指令作成手段は、格子データ展開手段からの
情報に基づいて穴あけ加工段数がピッチ数×主軸数で表
わした主軸間の最大ストロークの範囲を超えるとき、穴
あけ加工を分割して処理し、主軸間の最大ストロークの
範囲内にあるとき、穴あけ加工を一括処理する選択処理
手段と、穴あけ加工の一列分の段数を主軸数で割った値
の整数値を主軸間のピッチとし、この主軸間ピッチから
最小設定ピッチと最大設定ピッチとを算出する主軸間ピ
ッチ候補算出手段と、この主軸間ピッチ候補からの情報
に基づいて第1主軸間ピッチと第2主軸間ピッチとを算
出する2主軸間ピッチ算出手段と、第1主軸間ピッチと
第2主軸間ピッチとを組み合わせて計算し、最高の軸効
率を算出する軸効率算出手段とを備えたものである。
According to a sixth aspect of the present invention, there is provided a drilling apparatus according to the present invention, wherein the drilling command creating means is configured to perform the drilling processing based on information from the grid data expanding means. When the number of steps exceeds the range of the maximum stroke between the spindles expressed by the number of pitches × the number of spindles, the drilling process is divided and processed, and when it is within the range of the maximum stroke between the spindles, the selection process for batch processing the drilling process Means, an inter-spindle pitch candidate calculation means for calculating an integer value of a value obtained by dividing the number of stages for one row of drilling by the number of spindles, as a pitch between the spindles, and calculating a minimum setting pitch and a maximum setting pitch from the pitch between the spindles. A two-main-axis pitch calculating means for calculating a first main-axis pitch and a second main-axis pitch based on information from the main-axis main pitch candidate; and a first main-axis pitch and a second main-axis pitch. The combination calculated, in which a shaft efficiency calculating means for calculating the maximum axial efficiency.

【0015】また、本発明に係る穴あけ加工方法は、上
述の目的を達成するために、請求項7に記載したよう
に、穴あけ指令作成手段は、格子データ展開手段からの
情報に基づいて穴あけ加工段数がピッチ数×主軸数で表
わした主軸間の最大ストロークの範囲を超えるとき、穴
あけ加工を分割して処理し、主軸間の最大ストロークの
範囲内にあるとき、穴あけ加工を一括処理する処理手段
と、穴あけ加工の一列分の段数を主軸数で割った整数値
を主軸間のピッチとし、この主軸ピッチから最小設定ピ
ッチと最大設定ピッチとを算出し、これら最小設定ピッ
チおよび最大設定ピッチの情報に基づいて上記穴あけ加
工の行毎の主軸間ピッチを算出する手段とを備えたもの
である。
According to a seventh aspect of the present invention, there is provided a drilling method according to the present invention, wherein the drilling command creating means is configured to perform the drilling processing based on information from the grid data expanding means. Processing means for dividing and processing drilling when the number of steps exceeds the range of the maximum stroke between the spindles represented by pitch number × number of spindles, and for batch processing when the number of steps is within the range of the maximum stroke between the spindles. And the integer value obtained by dividing the number of steps for one row of drilling by the number of spindles is used as the pitch between the spindles, and the minimum setting pitch and the maximum setting pitch are calculated from the spindle pitch. Means for calculating the inter-spindle pitch for each row of the drilling based on the

【0016】また、本発明に係る穴あけ加工方法は、上
述の目的を達成するために、請求項8に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う際、設計データから穴あけ
加工位置をマトリックスに展開するとともに、格子状の
交点に配置する一方、穴あけ数を位置決め回数×加工軸
数で割った値を軸効率とするとき、その軸効率を上記格
子状の交点に配置した穴加工位置の情報に基づいて算出
して上記主軸に与える方法である。
Further, in order to achieve the above object, the drilling method according to the present invention provides a method for drilling a workpiece by using a spindle having a drilling shaft and a positioning shaft. When performing drilling, the drilling positions are developed in a matrix from the design data and are arranged at grid-like intersections.On the other hand, when the value obtained by dividing the number of drillings by the number of positioning times × number of processing axes is used as the axis efficiency, In this method, the efficiency is calculated based on the information of the drilling positions arranged at the grid-like intersections and given to the spindle.

【0017】また、本発明に係る穴あけ加工方法は、上
述の目的を達成するために、請求項9に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う際、設計データから穴加工
位置をマトリックスに展開するとともに、格子状の交点
に配置する一方、穴あけ数を位置決め回数×加工軸数で
割った値を軸効率とするとき、その軸効率を上記格子状
の交点に配置した穴加工位置の情報に基づいて算出して
上記主軸に加工指令を与えるとともに、この加工指令か
ら穴あけ回数をカウントし、穴あけ回数が予め定められ
た回数を超えているとき、上記主軸に交換指令を出す方
法である。
According to a ninth aspect of the present invention, there is provided a drilling method according to the present invention for forming a workpiece on a workpiece by using a spindle having a drilling axis and a positioning axis. When performing drilling, the drilling position is developed into a matrix from the design data and placed at a grid-like intersection, while the value obtained by dividing the number of drillings by the number of positioning times the number of processing axes is used as the axis efficiency. Efficiency is calculated based on the information of the hole machining position arranged at the lattice-shaped intersection, and a machining command is given to the spindle, and the number of drills is counted from the machining command, and the number of holes exceeds a predetermined number. Is in effect, a replacement command is issued to the spindle.

【0018】また、本発明に係る穴あけ加工方法は、上
述の目的を達成するために、請求項10に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う際、設計データから穴加工
位置をマトリックスに展開するとともに、格子状の交点
に配置する一方、穴あけ数と位置決め回数×加工軸数で
割った値を軸効率とするとき、その軸効率を上記格子状
の交点に配置した穴加工位置の情報に基づいて算出して
上記主軸に加工指令を与えるとともに、この加工指令と
上記格子状の交点に配置した穴加工位置の情報とを突き
合わせ、穴あけ位置が許容誤差範囲内にあるとき、上記
主軸に加工指令を与え、許容誤差範囲を超えるとき、上
記主軸に加工中止指令を与える方法である。
According to a tenth aspect of the present invention, there is provided a drilling method for forming a workpiece on a workpiece by using a spindle having a drilling axis and a positioning axis. When performing drilling, the drilling position is developed into a matrix from the design data and arranged at the grid-like intersection, while the axis efficiency is defined as the value obtained by dividing the number of drilling times and the number of positioning times the number of processing axes as the axis efficiency. Efficiency is calculated based on the information of the hole machining positions arranged at the grid-like intersection, and a machining command is given to the spindle, and the machining command is compared with the information of the hole machining positions arranged at the grid-like intersection. A machining command is given to the spindle when the drilling position is within the allowable error range, and a machining stop command is given to the spindle when the drilling position exceeds the allowable error range.

【0019】また、本発明に係る穴あけ加工方法は、上
述の目的を達成するために、請求項11に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う際、上記被加工物の穴あけ
加工中、上記主軸に異常が発生したとき、正常な穴あけ
加工軸を用いて穴あけ加工を行わせ、正常な穴あけ加工
軸が穴あけ加工を終了した後、加工を中断していた穴に
対して上記正常な穴あけ加工軸を用いて穴あけ加工させ
る指令を上記主軸に与える方法である。
Further, in order to achieve the above object, the drilling method according to the present invention provides a method for drilling a workpiece by using a spindle having a drilling shaft and a positioning shaft. During drilling, when an error occurs in the spindle during drilling of the workpiece, the drilling is performed using a normal drilling shaft, and after the normal drilling shaft has finished drilling. A method of giving a command to the main spindle to perform drilling on a hole for which processing has been interrupted using the normal drilling axis.

【0020】また、本発明に係る穴あけ加工方法は、上
述の目的を達成するために、請求項12に記載したよう
に、穴あけ加工軸と位置決め軸とを備えた主軸を用いて
被加工物に穴あけ加工を行う際、設計データから穴加工
位置をマトリックスに展開するとともに、格子状の交点
に配置する一方、穴あけ数を位置決め回数×加工軸数で
割った値を軸効率とするとき、その軸効率を上記格子状
の交点に配置した穴加工位置の情報に基づいて算出して
上記主軸に加工指令を与えるとともに、この加工指令か
ら穴あけ回数をカウントし、穴あけ回数が予め定められ
た回数を超えているとき、上記主軸に交換指令を出し、
さらに、上記加工指令と上記格子状の交点に配置した穴
加工位置の情報とを突き合わせ、穴加工位置が許容誤差
範囲内にあるとき、上記主軸に加工指令を与え、許容誤
差範囲を超えるとき、上記主軸に加工中止指令を与える
一方、上記被加工物の穴あけ加工中、上記主軸に異常が
発生したとき、正常な穴あけ加工軸を用いて穴加工を行
わせ、正常な穴あけ加工軸が穴あけ加工を終了した後、
加工を中断していた穴に対して上記正常な穴あけ加工軸
を用いて穴あけ加工させる指令を上記主軸に与える方法
である。
According to a twelfth aspect of the present invention, there is provided a drilling method for forming a workpiece on a workpiece by using a spindle having a drilling axis and a positioning axis. When performing drilling, the drilling position is developed into a matrix from the design data and placed at a grid-like intersection, while the value obtained by dividing the number of drillings by the number of positioning times the number of processing axes is used as the axis efficiency. Efficiency is calculated based on the information of the hole machining position arranged at the lattice-shaped intersection, and a machining command is given to the spindle, and the number of drills is counted from the machining command, and the number of holes exceeds a predetermined number. Command, an exchange command is issued to the spindle,
Furthermore, when the machining command and the information of the hole machining position arranged at the lattice-shaped intersection are matched, when the hole machining position is within the allowable error range, a machining command is given to the spindle, and when the allowable error range is exceeded, While the machining stop command is given to the spindle, when an error occurs in the spindle during the drilling of the workpiece, a hole is drilled using a normal drilling axis, and the normal drilling axis is drilled. After finishing,
This is a method of giving a command to the main spindle to perform drilling on a hole for which processing has been interrupted using the normal drilling axis.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る穴あけ加工装
置および穴あけ加工方法の実施形態を図面および図面に
付した符号を引用して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a drilling apparatus and a drilling method according to the present invention will be described below with reference to the drawings and reference numerals attached to the drawings.

【0022】本実施形態に係る穴あけ加工装置および穴
あけ加工方法の説明に先立ち、本実施形態の適用方法に
ついて概略的に説明する。
Prior to the description of the drilling apparatus and the drilling method according to the present embodiment, an application method of the present embodiment will be schematically described.

【0023】穴あけ加工する穴配列が左右線対称、上下
線対称および点対称に位置している場合、全穴配列がひ
とつの格子上に位置しているときは、全配列を加工対象
に本実施形態を適用して穴あけ加工することができる。
When the hole arrangement to be drilled is located symmetrically to the left and right lines, symmetrically to the top and bottom lines and point symmetrically, and when all the hole arrangements are located on one grid, the entire arrangement is to be processed. Drilling can be performed by applying the form.

【0024】また、左右線対称では、例えば左側の穴配
列、上下線対称では、例えば上側の穴配列、点対称で
は、元データの穴配列に本実施形態を適用し、それぞれ
残り半分の穴配列については、NC装置のY軸ミラー機
能、X軸ミラー機能、ワーク座標回転機能を使って加工
することができる。
Further, in the left-right line symmetry, for example, the left side hole arrangement, in the up-down line symmetry, for example, the upper side hole arrangement, and in the point symmetry, the present embodiment is applied to the hole arrangement of the original data. Can be processed using the Y-axis mirror function, the X-axis mirror function, and the work coordinate rotation function of the NC device.

【0025】また、穴配列が複数の格子から構成されて
いる場合、それぞれの格子配列毎に、本実施形態を適用
して穴あけ加工をすることができる。
When the hole array is composed of a plurality of grids, the present embodiment can be applied to each grid array to perform drilling.

【0026】図1は、本発明に係る穴あけ加工装置およ
び穴あけ加工方法の実施形態を説明するために用いたブ
ロック図である。なお、本実施形態では、縦方向に向っ
て順に穴あけ加工軸19a、位置決め軸19b、穴あけ
加工軸19cを配列した3本の主軸(加工軸)19を備
えた横型の加工機について説明するが、主軸数、主軸配
列方法、加工機の縦横の型については、本実施形態に限
定されるものではない。
FIG. 1 is a block diagram used for explaining an embodiment of a drilling apparatus and a drilling method according to the present invention. In this embodiment, a horizontal processing machine having three main shafts (processing shafts) 19 in which a drilling shaft 19a, a positioning shaft 19b, and a drilling shaft 19c are arranged in order in the vertical direction will be described. The number of spindles, the spindle arrangement method, and the vertical and horizontal types of the processing machine are not limited to the present embodiment.

【0027】本実施形態に係る穴あけ加工装置および穴
あけ加工方法は、全体の工程を符号11で表わした穴あ
け加工全工程の手段を、格子データ展開手段12、穴あ
け指令作成手段13、工具寿命管理手段14、NC(数
値制御)加工指令手段15とで構成したものである。
The drilling apparatus and the drilling method according to the present embodiment are composed of a grid data expanding means 12, a drilling instruction creating means 13, a tool life managing means, and all of the means for drilling, the entire process of which is denoted by reference numeral 11. 14, NC (numerical control) machining command means 15.

【0028】また、本実施形態に係る穴あけ加工装置お
よび穴あけ加工方法は、予め設定された穴位置が適正か
否かをチェックする穴位置チェック手段16と、被加工
物に穴あけ中、何らかの事情で主軸(加工軸)19に異
常が発生した場合、正常な主軸で穴あけ加工される追加
工手段17とを備えた構成になっている。
Further, the drilling apparatus and the drilling method according to the present embodiment include a hole position checking means 16 for checking whether or not a predetermined hole position is appropriate, and a method for drilling a workpiece while drilling. When an abnormality occurs in the main spindle (machining axis) 19, a configuration is provided in which an additional processing means 17 is provided for drilling with a normal main spindle.

【0029】格子データ展開手段12は、例えば設計部
門で予め作成し、入力しておいたCADデータ10から
の情報に基づいて穴位置をマトリックスに展開する。こ
こでCADデータ10は、図2に示すように、例えばプ
ラント名、図面番号、部品名、入力者氏名、入力日付、
加工部位、総穴数、穴径、配列起点X座標、配列起点Y
座標、格子角度、X軸ピッチ、Y軸ピッチ、段数、列数
等のヘッダデータと、段数および穴あけ加工の有無、つ
まり「0」(穴あけなし)、「1」(穴あけ)で表わし
た穴配列データになっている。
The grid data expanding means 12 expands the hole positions into a matrix based on the information from the CAD data 10 which is created in advance by, for example, the design department. Here, as shown in FIG. 2, the CAD data 10 includes, for example, a plant name, a drawing number, a part name, an input person name, an input date,
Machining part, total number of holes, hole diameter, array origin X coordinate, array origin Y
Header data such as coordinates, grid angles, X-axis pitch, Y-axis pitch, the number of steps, the number of rows, and the number of steps and the presence or absence of drilling, ie, a hole array represented by "0" (no drilling) or "1" (drilling) Data.

【0030】穴配列の具体例は、図3に示す。この図3
において、配列起点X,Y座標を基準にX軸ピッチ、Y
軸ピッチと格子角度とから求めた格子上に穴位置が設定
される。
FIG. 3 shows a specific example of the hole arrangement. This figure 3
, The X-axis pitch, Y
The hole position is set on the grid determined from the axis pitch and the grid angle.

【0031】穴位置が設定されると、穴あけ指令作成手
段13は、軸効率(穴あけ数を位置決め回数×主軸(加
工軸)数で割った値、以下、軸効率と記す)が最大とな
る穴あけ指令を作成する。
When the hole position is set, the drilling command creating means 13 performs drilling to maximize the shaft efficiency (a value obtained by dividing the number of holes by the number of times of positioning times the number of spindles (machining axes); hereinafter, referred to as shaft efficiency). Create a directive.

【0032】作成された穴あけ指令は、工具寿命管理手
段14に転送され、指令された穴あけ加工情報で各主軸
19のそれぞれの穴あけ個数をカウントアップし、予め
工具寿命として設定された穴あけ個数に達したか否かを
判別し、工具寿命に達した主軸19があれば工具交換指
令情報をNC加工指令手段15に転送する。
The created drilling command is transferred to the tool life managing means 14, and the number of drills of each spindle 19 is counted up by the commanded drilling processing information, and reaches the number of drills set in advance as the tool life. It is determined whether or not the operation has been performed, and if there is a spindle 19 which has reached the tool life, the tool exchange command information is transferred to the NC machining command means 15.

【0033】NC加工指令手段15は、工具交換指令が
「ある」か「ない」かを確認し、「ある」の場合、工具
交換指令情報を穴加工制御装置18に転送する。次に、
穴あけ指令作成手段13から転送された穴あけ指令情報
もNC加工指令手段15を介して穴加工制御装置18に
転送される。
The NC machining command means 15 confirms whether the tool change command is “present” or “not present”, and if it is “present”, transfers the tool change command information to the drilling control device 18. next,
The drilling command information transferred from the drilling command creating means 13 is also transferred to the drilling control device 18 via the NC processing command means 15.

【0034】穴加工制御装置18では、転送された工具
交換指令情報と穴加工指令情報をベースに指令された主
軸交換を行った後、穴あけする主軸19を選択し、穴あ
け加工させる。
The drilling control device 18 performs a spindle exchange instructed based on the transferred tool exchange instruction information and the drilling instruction information, and then selects a spindle 19 to be drilled, and performs drilling.

【0035】穴加工が終了すると、穴あけ終了情報をN
C加工指令手段15にフィードバックする。
When the drilling is completed, the drilling end information is set to N
This is fed back to the C machining command means 15.

【0036】穴あけ終了情報を受け取ったNC加工指令
手段15は、次の穴あけ指令を作成するよう穴あけ指令
作成手段13に情報を与える。穴あけ指令作成手段13
は、次の穴あけ加工のための穴あけ指令データを作成す
る。このような処理は、穴あけデータ全てに対して繰り
返して行う。
The NC machining instruction means 15 having received the drilling end information gives information to the drilling instruction creating means 13 so as to create the next drilling instruction. Drilling command creation means 13
Creates drilling command data for the next drilling operation. Such processing is repeatedly performed on all the drilling data.

【0037】他方、NC加工指令手段15から穴あけ指
令情報を受け取った穴加工制御装置18は、穴あけ指令
で選択した主軸19の位置情報を穴位置チェック手段1
6に転送する。穴位置チェック手段16は、転送された
穴位置情報が、先に展開した格子データ上の穴位置と一
致しているか否かを判別し、一致している場合、そのま
ま主軸19に穴あけ加工の作業を続行させる。しかし、
一致していない場合、穴位置チェック手段16は、許容
誤差範囲(許容誤差範囲は、例えば0.03mm程度)
ならばそのまま主軸19に穴あけ加工の作業を続行さ
せ、許容誤差範囲を外れる場合、加工中止情報を穴加工
制御装置18に与え、穴あけ加工作業をスキップさせ、
別の位置の穴あけ加工を主軸19にさせる。
On the other hand, upon receiving the drilling command information from the NC drilling command means 15, the drilling control device 18 compares the position information of the spindle 19 selected by the drilling command with the hole position checking means 1.
Transfer to 6. The hole position checking means 16 determines whether or not the transferred hole position information matches the hole position on the previously developed grid data. To continue. But,
If they do not match, the hole position checking means 16 determines the allowable error range (the allowable error range is, for example, about 0.03 mm).
Then, the drilling operation is continued on the spindle 19 as it is, and when the deviation is out of the permissible error range, the machining stop information is given to the drilling control device 18 and the drilling operation is skipped.
The main shaft 19 is drilled at another position.

【0038】このように、穴位置チェック手段16で
は、主軸19が被加工物の穴位置に間違いのない加工を
行っていることを常にチェックしている。
As described above, the hole position checking means 16 always checks that the main shaft 19 is performing the correct processing on the hole position of the workpiece.

【0039】また、主軸19の被加工物への穴あけ加工
中、工具折損等の突発的な異常が発生した場合、穴加工
制御装置18は、異常が発生した主軸19に穴あけ加工
作業を中止させ、その中止情報と正常な主軸19の穴あ
け加工続行情報とを追加工手段17に与える。追加工手
段17は、残りの正常な主軸19の穴あけ加工作業が終
了した後、中止した穴に対して、穴あけ加工制御装置1
8を介して残りの正常な主軸19に穴加工指令情報を与
える。穴加工制御装置18は、残りの正常な主軸19に
追加工を行わせ、穴あけ終了情報をNC加工指令手段1
5にフィードバックする。
When a sudden abnormality such as tool breakage occurs during drilling of the spindle 19 into the workpiece, the drilling control device 18 causes the spindle 19 in which the abnormality has occurred to stop drilling. Then, the stop information and the normal continuation information of the drilling of the spindle 19 are given to the additional processing means 17. The additional machining means 17 controls the drilling control device 1 for the stopped hole after the remaining normal drilling operation of the spindle 19 is completed.
Then, the hole machining command information is given to the remaining normal spindle 19 via. The drilling control device 18 causes the remaining normal spindle 19 to carry out additional machining, and sends the drilling end information to the NC machining instruction unit 1.
Feedback to 5

【0040】このように、本実施形態は、穴あけ加工
中、主軸19に異常が発生した場合、追加工手段17の
指令情報により残りの正常な主軸19に穴あけ加工作業
をさせるので、穴あけ加工残しのない穴あけ加工を行う
ことができる。また、これらの処理は、自動化されてい
るので、主軸19に異常が発生したときでも穴あけ加工
残しのない無人化運転を行うことができる。
As described above, according to the present embodiment, when an abnormality occurs in the spindle 19 during drilling, the remaining normal spindle 19 is drilled according to the command information of the additional machining means 17, so that the remaining drilling remains. Holeless drilling can be performed. Further, since these processes are automated, even when an abnormality occurs in the spindle 19, it is possible to perform an unmanned operation without leaving any boring.

【0041】図4は、図1で示した軸効率を最大にする
穴あけ指令作成手段13の具体的処理手順を説明するた
めに用いたフローチャートである。
FIG. 4 is a flowchart used to explain the specific processing procedure of the drilling instruction creating means 13 for maximizing the axial efficiency shown in FIG.

【0042】穴あけ指令作成手段13は、格子データ展
開手段12で穴位置をマトリックスに展開した情報から
穴の段数の合計を計算する(ステップS401)。この
場合、計算した段数が主軸19のうち、各軸19a,1
9b,19c間の最大のピッチ(ストローク)でカバー
できるピッチ数×主軸数より大きいとき、穴配列を例え
ば上半、下半の二分割にし、各分割毎に穴あけ加工処理
を行う。段数が最大の主軸間ピッチでカバーできるピッ
チ数×主軸数より小さいとき、被加工物の穴あけ加工処
理を一括して行う(ステップS402、S403)。
The drilling instruction creating means 13 calculates the total number of holes from the information obtained by expanding the hole positions into a matrix by the grid data expanding means 12 (step S401). In this case, the calculated number of stages is equal to each axis 19a, 1
If the number of pitches x the number of spindles that can be covered by the maximum pitch (stroke) between 9b and 19c is larger than the number of spindles, the hole arrangement is divided into, for example, the upper half and the lower half, and drilling processing is performed for each division. When the number of steps is smaller than the number of pitches that can be covered by the maximum inter-spindle pitch × the number of spindles, the boring process for the workpiece is performed collectively (steps S402 and S403).

【0043】次に、設定可能な主軸間ピッチを全て計算
する(ステップS404)。
Next, all the settable pitches between the spindles are calculated (step S404).

【0044】このステップS404は、図6に示すよう
に、一列分の段数を読み込み(ステップS51)、主軸
数で割り整数化した値を主軸間ピッチとする(ステップ
S52)。次に、主軸間ピッチが最小、最大まで移動で
きる距離をそれぞれ穴配列のY軸ピッチで割り、整数化
した最小設定ピッチ、最大設定ピッチの範囲内にあるか
否かをチェックし、小さい場合、最小設定ピッチ、大き
い場合、最大設定ピッチに置き換え、その列の主軸間ピ
ッチを求める(ステップS53、S54、S55、S5
6)。
In this step S404, as shown in FIG. 6, the number of stages in one row is read (step S51), and a value obtained by dividing the number of spindles into an integer is set as the pitch between the spindles (step S52). Next, the distance between the main spindles is divided by the Y-axis pitch of the hole array by dividing the distance that can be moved to the minimum and maximum, respectively, and it is checked whether or not it is within the range of the minimum setting pitch and the maximum setting pitch that are converted into integers. The minimum set pitch is replaced by the maximum set pitch when the pitch is large, and the pitch between the spindles in the row is obtained (steps S53, S54, S55, S5).
6).

【0045】さらに、穴あけ指令作成手段13は、列の
穴配列段数を読み込み(ステップS57)、各列の主軸
間ピッチ計算を列数分毎に繰り返して行う(ステップS
58)。求めた各列の主軸間のピッチはメモリーに記憶
される(ステップS59)。
Further, the drilling command creating means 13 reads the number of holes arranged in the row (step S57), and repeats the calculation of the pitch between the spindles in each row for each row (step S57).
58). The obtained pitch between the main axes of each row is stored in the memory (step S59).

【0046】各列毎の主軸間ピッチが算出されると、穴
あけ指令作成手段13は、図4に示すように、2種類の
主軸間ピッチの組み合わせを求める(ステップS40
5)。ここで、2種類の主軸間ピッチの組み合わせにし
ているのは、主軸19のうち、穴あけ加工軸19a、位
置決め軸19b、穴あけ加工軸19bのピッチを何回で
も自在に変更できるけれども、ピッチの変更回数を多く
すると作業者の誤操作の要因となるので、本実施形態で
は主軸間ピッチの変更を1回にとどめたときの穴配列の
列との組み合わせにしている。
When the inter-spindle pitch is calculated for each row, the drilling command creating means 13 obtains a combination of two types of inter-spindle pitches as shown in FIG. 4 (step S40).
5). Here, the combination of the two types of pitches between the main shafts is that the pitch of the drilling shaft 19a, the positioning shaft 19b, and the drilling shaft 19b among the main shafts 19 can be freely changed any number of times. If the number of times is increased, it may cause an erroneous operation by the operator. Therefore, in the present embodiment, the combination with the row of the hole arrangement when the pitch between the spindles is changed only once is used.

【0047】このステップS405は、図7に示すよう
に、全ての主軸間ピッチをメモリーから読み込み(ステ
ップS61)、最大の主軸間ピッチを第1主軸間ピッチ
とする(ステップS62)。次に、最大の主軸間ピッチ
を除くその他の主軸間ピッチを第2種軸間ピッチの候補
とし、第1主軸間ピッチといずれか一つの第2主軸間ピ
ッチ候補との全ての組み合わせを設定する(ステップS
63、S64)。
In this step S405, as shown in FIG. 7, all the spindle pitches are read from the memory (step S61), and the maximum spindle pitch is set as the first spindle pitch (step S62). Next, the other main-axis pitches other than the maximum main-axis pitch are set as candidates for the second-type main-axis pitch, and all combinations of the first main-axis pitch and any one of the second main-axis pitch candidates are set. (Step S
63, S64).

【0048】ステップS405からの主軸間ピッチの組
み合わせ情報に基づいて穴あけ指令作成手段13は、軸
効率を算出する(ステップS406)。
The drilling command creating means 13 calculates the shaft efficiency based on the combination information of the pitch between the spindles from step S405 (step S406).

【0049】まず、第1主軸間ピッチのみで穴あけ加工
する場合の軸効率を求める。式は、軸効率=全穴あけ数
/(第1主軸間ピッチ×列数×主軸数)とする。さら
に、第1主軸間ピッチと第2主軸間ピッチの全ての組み
合わせの軸効率を求める。式は、軸効率=穴あけ数/
(第1主軸間ピッチ×第1主軸間ピッチで穴あけする列
数+第2主軸間ピッチ×第2主軸間ピッチで穴あけする
列数×主軸数)となる。ここで、第1主軸間ピッチと第
2主軸間ピッチの使い分けについて説明する。穴配列の
各列の段数が、第2主軸間ピッチ×主軸数よりも小さい
列を第2主軸間ピッチで穴あけし、残りの列は、第1主
軸間ピッチで穴あけする。
First, the shaft efficiency when drilling is performed only with the pitch between the first spindles is obtained. The equation is: shaft efficiency = number of total holes / (first spindle pitch × number of rows × number of spindles). Further, the shaft efficiencies of all combinations of the first main shaft pitch and the second main shaft pitch are obtained. The formula is: shaft efficiency = number of holes /
(Pitch of first main spindle x number of rows drilled at first main spindle pitch + second main spindle pitch x number of rows drilled at second main spindle pitch x number of main spindles). Here, the proper use of the first main spindle pitch and the second main spindle pitch will be described. A row in which the number of steps in each row of the hole array is smaller than the second main spindle pitch × the number of main spindles is drilled at the second main spindle pitch, and the remaining rows are drilled at the first main spindle pitch.

【0050】また、第1主軸間ピッチのみで穴あけする
場合の軸効率と第1主軸間ピッチと第2主軸間ピッチの
全ての組み合わせで穴あけする場合の軸効率の中で、軸
効率が最大となる主軸間ピッチの設定条件を算出する
(ステップS407)。
Among the shaft efficiencies when drilling with only the first main spindle pitch and the drilling with all combinations of the first main spindle pitch and the second main shaft pitch, the maximum shaft efficiency is considered. The condition for setting the pitch between the spindles is calculated (step S407).

【0051】次に、第1主軸間ピッチでの穴あけに対
し、中央の位置決め軸19cの位置で、穴加工の座標設
定を行い(ステップS408)、各主軸間位置での穴あ
けの有無を格子データから確認し、穴あけ指令情報のブ
ロックを作成し(ステップS409)、穴あけNC指令
情報を穴加工制御装置18に転送する(ステップS41
0)。その後は、穴あけ指令終了情報があるまで待機
し、終了情報があると、第1主軸間ピッチで穴あけする
加工データがなくなるまで、上記の処理を繰り返して行
う(ステップS411、S412、S413)。
Next, for drilling at the first inter-spindle pitch, the coordinates of drilling are set at the position of the central positioning axis 19c (step S408), and the presence or absence of drilling at each inter-spindle position is determined by grid data. To create a block of drilling command information (step S409), and transfer the drilling NC command information to the drilling control device 18 (step S41).
0). After that, the process waits until there is drilling command end information, and if there is the end information, the above process is repeated until there is no machining data to be drilled at the first spindle pitch (steps S411, S412, S413).

【0052】次に、穴あけ指令作成手段13は、図5に
示すように、第2主軸間ピッチでのNCデータ作成に移
り(ステップS414)、第2主軸間ピッチで穴あけす
る加工データがなくなるまで位置決め、NC指令作成、
NC指令転送、穴あけ加工終了情報待機、次の穴あけ位
置決めの処理を繰り返して行う(ステップS415、S
416、S417、S418、S419)。
Next, as shown in FIG. 5, the drilling command creating means 13 shifts to NC data creation at the second spindle pitch (step S414), until there is no machining data to be drilled at the second spindle pitch. Positioning, NC command creation,
The processing of NC command transfer, standby of drilling end information, and positioning of the next drilling are repeatedly performed (steps S415 and S415).
416, S417, S418, S419).

【0053】さらに、穴あけ指令作成手段13は、分割
データがあるか否かを確認し、分割データがない場合、
穴あけ加工作業を終了させる。また、分割データがある
場合、残りの下半部の穴データを展開し(ステップS4
20、S421)、主軸間ピッチ候補計算以後の処理
を、上述と同様に、図4に示す各ステップS404〜S
418に沿って繰り返して行う。
Further, the drilling command creating means 13 checks whether or not there is divided data.
Finish the drilling operation. If there is divided data, the remaining lower half hole data is developed (step S4).
20, S421), and the processing after the calculation of the candidate pitch between the spindles is performed in the same manner as described above in each of steps S404 to S404 shown in FIG.
Repeatedly along 418.

【0054】このように、本実施形態は、軸効率の最大
値を算出し、主軸間ピッチを1回だけ変更する場合の最
も効率の良い主軸間ピッチを設定しているので、被加工
物の穴あけ加工時間をより一層短くすることができる。
As described above, in the present embodiment, the maximum value of the shaft efficiency is calculated, and the most efficient inter-spindle pitch is set when the inter-spindle pitch is changed only once. Drilling time can be further reduced.

【0055】なお、図4〜図7で示したフローチャート
は、主軸間ピッチを2種類選定する場合について説明し
たが、穴配列段数が一定の場合、主軸間ピッチは1種類
になる。この場合も、図4〜図7で示したフローチャー
トが適用できる。
Although the flowcharts shown in FIGS. 4 to 7 have been described for the case of selecting two types of the pitch between the main spindles, the pitch between the main spindles becomes one type when the number of holes arranged is constant. Also in this case, the flowcharts shown in FIGS. 4 to 7 can be applied.

【0056】また、主軸間ピッチを2種類以上、最大前
列数種類の主軸間ピッチを選定することが可能である。
全ての列で主軸間ピッチを選定する場合は後述するが、
主軸間ピッチを2種類以上選定する場合は、上述フロー
チャートのステップS405で選定する主軸間ピッチの
種類数を所望の数に設定し、ステップS408、S40
9、S410、S411、S412、S413の各処理
を主軸間ピッチ種類数毎に繰り返すことで可能となる。
Further, it is possible to select two or more types of the inter-spindle pitches and a maximum of several types of the inter-spindle pitches in the front row.
When selecting the pitch between the spindles in all rows, as will be described later,
When two or more types of the pitch between the spindles are selected, the number of types of the pitch between the spindles selected in Step S405 of the above-described flowchart is set to a desired number, and Steps S408 and S40 are performed.
9, S410, S411, S412, and S413 can be performed by repeating the processing for each number of types of pitch between the spindles.

【0057】次に、穴配列の列毎の主軸間ピッチを変更
した場合の穴加工方法を、図8に示すフローチャートに
基づいて説明する。
Next, a hole drilling method in a case where the pitch between the spindles in each row of the hole array is changed will be described with reference to the flowchart shown in FIG.

【0058】穴あけ指令作成手段13は、格子データ展
開手段12で穴位置をマトリックスに展開した情報から
各列毎の段数を計算する(ステップS701)。この場
合、計算した段数が主軸19のうち、穴あけ加工軸19
a、位置決め軸19b、穴あけ加工軸19c間の最大ピ
ッチ(ストローク)でカバーできるピッチ数×主軸数よ
り大きいとき、穴配列を例えば上半、下半の二分割し、
各分割毎に穴あけ加工処理を行う。段数が最大の主軸間
ピッチでカバーできるピッチ数×主軸数より小さいと
き、被加工物の穴あけ加工処理を一括して行う(ステッ
プS702、S703)。
The drilling command creating means 13 calculates the number of stages for each column from the information obtained by developing the hole positions into a matrix by the grid data developing means 12 (step S701). In this case, the calculated number of steps corresponds to
a, when the number of pitches that can be covered by the maximum pitch (stroke) between the positioning shaft 19b and the drilling shaft 19c × the number of spindles is larger than the number of spindles, the hole arrangement is divided into, for example, an upper half and a lower half,
Drilling processing is performed for each division. When the number of steps is smaller than the number of pitches that can be covered by the maximum inter-spindle pitch × the number of spindles, the boring process for the workpiece is performed collectively (steps S702 and S703).

【0059】次に、第1列の穴データを読み込み(ステ
ップS704)、その列の主軸間ピッチを求める(ステ
ップS705)。このステップS705は、図10に示
すように、まず、段数を主軸数で割り整数化した値を主
軸間ピッチとする(ステップS81)。次に、主軸間ピ
ッチが最大、最小まで移動できる距離をそれぞれ穴配列
のY軸ピッチで割り、整数化した最小設定ピッチ、最大
設定ピッチの範囲内にあるか否かをチェックし、小さい
場合、最小設定ピッチ、大きい場合、最大設定ピッチに
置き換え、その列の主軸間ピッチを求める(ステップS
82、S83、S84、S85)。
Next, the hole data in the first column is read (step S704), and the pitch between the spindles in that column is determined (step S705). In this step S705, as shown in FIG. 10, first, a value obtained by dividing the number of stages by the number of spindles and converting it into an integer is used as a pitch between spindles (step S81). Next, the distance between the main spindles is divided by the Y-axis pitch of the hole array by dividing the distance that can be moved to the maximum and the minimum, and it is checked whether or not the minimum set pitch and the maximum set pitch are converted into integers. The minimum set pitch is replaced with the maximum set pitch when the pitch is large, and the pitch between the spindles in that row is determined (step S
82, S83, S84, S85).

【0060】さらに、穴あけ指令作成手段13は、ステ
ップS83またはS85で求めた主軸間ピッチで穴加工
を行うため、図8に示すように、主軸19のうち、中央
の位置決め軸19bで座標設定を行い(ステップS70
6)、各穴あけ加工軸19a,19b,19cの穴あけ
の有無を格子データから確認し、穴あけ指令のブロック
を作成する(ステップS707)。
Further, since the drilling command creating means 13 performs the hole drilling at the pitch between the spindles obtained in step S83 or S85, as shown in FIG. 8, the coordinates are set by the center positioning axis 19b of the spindles 19, as shown in FIG. (Step S70)
6), the presence or absence of drilling of each of the drilling axes 19a, 19b and 19c is checked from the grid data, and a block for drilling commands is created (step S707).

【0061】穴あけ作成指令手段13は、ステップS7
07で作成した穴あけ指令を穴加工制御装置18に与え
る(ステップS708)。
The drilling creation instructing means 13 determines in step S7
The drilling command created in step 07 is given to the drilling control device 18 (step S708).

【0062】その後、穴あけ指令作成手段13は、穴加
工制御装置18からNC加工指令手段15を介して穴あ
け指令終了情報があるまで待機し、穴あけ加工終了情報
があると、次の穴あけ座標設定を行うとともに、このよ
うな処理を繰り返す(ステップS709、S710、S
711)。
Thereafter, the drilling command creating means 13 waits until there is drilling command end information from the drilling control device 18 via the NC machining command means 15, and when there is drilling processing end information, sets the next drilling coordinate. And repeats such processing (steps S709, S710, S710).
711).

【0063】1列分の穴あけ加工が終了すると、穴あけ
指令作成手段13は、図9に示すように、次の列の格子
データを読み込み(ステップS712)、主軸間ピッチ
計算の処理を繰り返す。
When the drilling for one row is completed, the drilling command creating means 13 reads the grid data of the next row as shown in FIG. 9 (step S712), and repeats the process of calculating the pitch between the spindles.

【0064】全ての列の穴あけ加工が終了すると(ステ
ップS713)、穴あけ指令作成手段13は、分割デー
タの有無を確認し、分割データがない場合、穴あけ加工
作業を終了させる。また分割データがある場合、残りの
下半部の穴データを展開し(ステップS714、S71
5)、第1列の穴あけ加工データ読みから処理を繰り返
す。
When the drilling of all the rows is completed (step S713), the drilling command creating means 13 checks the presence or absence of the divided data, and terminates the drilling work if there is no divided data. If there is divided data, the remaining lower half hole data is developed (steps S714 and S71).
5) The process is repeated from the first row of drilling data reading.

【0065】このように、本実施形態は、穴配列の全て
の列で主軸間ピッチを設定して穴あけ加工を行うので、
最大の軸効率で穴あけ加工を行うことができる。
As described above, according to the present embodiment, the drilling is performed by setting the pitch between the spindles in all the rows of the hole array.
Drilling can be performed with maximum shaft efficiency.

【0066】なお、本実施形態に係る穴あけ加工方法
は、コンピュータに実行させることのできるプログラム
として、例えば磁気ディスク、光ディスク、半導体メモ
リなどの記録媒体に書き込んで適用したり、通信媒体よ
り伝送して適用することも可能である。本機能を実現す
るコンピュータは、記録媒体に記録されたプログラム、
あるいは通信媒体より伝送されたプログラムを読み込
み、このプログラムによって動作が制御されることによ
り、上述した処理を実行する。
The drilling method according to this embodiment is applied as a program that can be executed by a computer by writing it on a recording medium such as a magnetic disk, an optical disk, or a semiconductor memory, or transmitting it from a communication medium. It is also possible to apply. A computer that realizes this function includes a program recorded on a recording medium,
Alternatively, the above-described processing is executed by reading a program transmitted from a communication medium and controlling the operation by the program.

【0067】[0067]

【発明の効果】以上の説明のとおり、本発明に係る穴あ
け加工装置および穴あけ加工方法によれば、穴あけ指令
作成手段で算出した最大の軸効率のデータを基にして数
多くの穴あけ加工を行うので、穴あけ加工時間をより一
層短くすることができ、また、穴位置チェック手段で格
子上に穴あけ位置があるか否かを確認しながら穴あけ加
工を行うので、穴あけ位置の間違いのない穴あけ加工を
行うことができる。
As described above, according to the drilling apparatus and the drilling method according to the present invention, many drilling operations are performed based on the data of the maximum shaft efficiency calculated by the drilling command creating means. In addition, the drilling time can be further shortened, and the drilling is performed while confirming whether or not there is a drilling position on the lattice by the hole position checking means. be able to.

【0068】さらにまた、本発明に係る穴あけ加工装置
および穴あけ加工方法によれば、工具寿命管理手段で主
軸の穴あけ加工回数をカウントし、穴あけ回数が予め定
められた回数を超えると、主軸交換指令を出し、また、
主軸に異常が発生したとき、追加工手段で主軸異常発生
の穴を正常な主軸で追加工させる指令を出すので、加工
残しがなく、かつ無人運転を行うことが可能となる。
Further, according to the drilling apparatus and the drilling method according to the present invention, the number of drilling times of the spindle is counted by the tool life managing means, and when the number of drilling times exceeds a predetermined number, the spindle replacement command is issued. Out, and
When an abnormality occurs in the main spindle, a command is issued by the additional machining means to perform additional machining of the hole in which the spindle abnormality has occurred with the normal main spindle, so that there is no machining left and unmanned operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る穴あけ加工装置および穴あけ加工
方法の実施形態を説明するために用いたブロック図。
FIG. 1 is a block diagram used for describing an embodiment of a drilling apparatus and a drilling method according to the present invention.

【図2】本発明に係る穴あけ加工装置および穴あけ加工
方法において、穴配列のCADデータの一例を説明する
ために用いた図。
FIG. 2 is a view used to explain an example of CAD data of a hole array in the drilling apparatus and the drilling method according to the present invention.

【図3】本発明に係る穴あけ加工装置および穴あけ加工
方法において、穴配列の一例を説明するために用いた
図。
FIG. 3 is a view used to explain an example of a hole arrangement in the drilling apparatus and the drilling method according to the present invention.

【図4】本発明に係る穴あけ加工装置および穴あけ加工
方法において、軸効率を最大にして穴あけ指令情報を処
理するフローチャート。
FIG. 4 is a flowchart for processing the drilling command information while maximizing the axial efficiency in the drilling apparatus and the drilling method according to the present invention.

【図5】本発明に係る穴あけ加工装置および穴あけ加工
方法において、図4で作成した情報に基づいて穴あけN
C指令情報を作成することを説明するために用いたフロ
ーチャート。
FIG. 5 is a diagram illustrating a drilling apparatus and a drilling method according to the present invention;
9 is a flowchart used to explain creation of C command information.

【図6】本発明に係る穴あけ加工装置および穴あけ加工
方法において、主軸間ピッチ候補の計算を説明するため
に用いたフローチャート。
FIG. 6 is a flowchart used to explain the calculation of a candidate for the pitch between the spindles in the drilling apparatus and the drilling method according to the present invention.

【図7】本発明に係る穴あけ加工装置および穴あけ加工
方法において、2種類の主軸間ピッチの設定を説明する
ために用いたフローチャート。
FIG. 7 is a flowchart used for explaining setting of two types of pitches between main spindles in the drilling apparatus and the drilling method according to the present invention.

【図8】本発明に係る穴あけ加工装置および穴あけ加工
方法において、全ての列で主軸間ピッチを設定し、穴あ
け加工指令情報を処理するフローチャート。
FIG. 8 is a flowchart for setting a pitch between spindles in all rows and processing drilling command information in the drilling apparatus and the drilling method according to the present invention.

【図9】本発明に係る穴あけ加工装置および穴あけ加工
方法において、図8で作成した情報に基づいて被加工物
の穴配列の列の穴あけ加工の終了の有無を説明するため
に用いたフローチャート。
FIG. 9 is a flowchart used to explain whether or not the drilling of the row of the hole array of the workpiece is completed based on the information created in FIG. 8 in the drilling apparatus and the drilling method according to the present invention.

【図10】本発明に係る穴あけ加工装置および穴あけ加
工方法において、主軸間ピッチの設定を説明するために
用いたフローチャート。
FIG. 10 is a flowchart used for explaining the setting of the pitch between the spindles in the drilling apparatus and the drilling method according to the present invention.

【符号の説明】[Explanation of symbols]

10 CADデータ 11 穴あけ加工全工程の手段 12 格子データ展開手段 13 穴あけ指令作成手段 14 工具寿命管理手段 15 NC加工指令手段 16 穴位置チェック手段 17 追加工手段 18 穴加工制御装置 19 主軸 19a 穴あけ加工軸 19b 位置決め軸 19c 穴あけ加工軸 DESCRIPTION OF SYMBOLS 10 CAD data 11 Means of all drilling processes 12 Grid data development means 13 Drilling command creation means 14 Tool life management means 15 NC machining command means 16 Hole position checking means 17 Additional machining means 18 Hole machining control device 19 Spindle 19a Hole machining axis 19b Positioning axis 19c Drilling axis

フロントページの続き (72)発明者 高橋 修治 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 鹿田 洋 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 3C036 BB13 5H269 AB03 AB19 BB03 BB05 NN11Continued on the front page (72) Inventor Shuji Takahashi 2-4-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Keihin Works Co., Ltd. (72) Inventor Hiroshi Kada 2--4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Co., Ltd. F-term in Toshiba Keihin Works (reference) 3C036 BB13 5H269 AB03 AB19 BB03 BB05 NN11

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 穴あけ加工軸と位置決め軸とを備えた主
軸を用いて被加工物に穴あけ加工を行う穴あけ加工装置
において、設計データから穴加工位置をマトリックスに
展開する格子データ展開手段と、穴あけ数と位置決め回
数×加工軸数で割った値を軸効率とするとき、その軸効
率を上記マトリックスに展開した穴加工位置の情報に基
づいて算出して上記主軸に加工指令を与える穴あけ指令
作成手段とを備えたことを特徴とする穴あけ加工装置。
1. A drilling apparatus for drilling a workpiece using a spindle having a drilling axis and a positioning axis, grid data expanding means for expanding a drilling position from a design data into a matrix, and a drilling apparatus. When the value obtained by dividing the number by the number of times of positioning times the number of machining axes is used as the axis efficiency, the axis efficiency is calculated based on the information of the hole machining position developed in the matrix, and a drilling command creating means for giving a machining command to the spindle is provided. A drilling device comprising:
【請求項2】 穴あけ加工軸と位置決め軸とを備えた主
軸を用いて被加工物に穴あけ加工を行う穴あけ加工装置
において、設計データから穴加工位置をマトリックスに
展開する格子データ展開手段と、穴あけ数を位置決め回
数×加工軸数で割った値を軸効率とするとき、その軸効
率を上記マトリックスに展開した穴加工位置の情報に基
づいて算出して上記主軸に加工指令を与える穴あけ指令
作成手段と、この穴あけ指令作成手段から指令された穴
あけ回数をカウントし、穴あけ回数が予め定められた回
数を超えているとき、上記主軸に交換指令を出す工具寿
命管理手段とを備えたことを特徴とする穴あけ加工装
置。
2. A drilling apparatus for drilling a workpiece using a spindle having a drilling axis and a positioning axis, a grid data expanding means for expanding a drilling position from a design data into a matrix, and a drilling apparatus. When the value obtained by dividing the number by the number of times of positioning times the number of machining axes is used as the axis efficiency, the axis efficiency is calculated based on the information of the hole machining position developed in the matrix, and a drilling command creating means for giving a machining command to the spindle is provided. And a tool life management means that counts the number of drilling commands from the drilling command creation means and issues a replacement command to the spindle when the number of drilling times exceeds a predetermined number. Drilling equipment.
【請求項3】 穴あけ加工軸と位置決め軸とを備えた主
軸を用いて被加工物に穴あけ加工を行う穴あけ加工装置
において、設計データから穴加工位置をマトリックスに
展開する格子データ展開手段と、穴あけ数と位置決め回
数×加工軸数で割った値を軸効率とするとき、その軸効
率を上記マトリックスに展開した穴加工位置の情報に基
づいて算出して上記主軸に加工指令を与える穴あけ指令
作成手段と、この穴あけ指令作成手段からの指令と上記
格子データ展開手段からの情報とを突き合わせ、穴あけ
位置が許容誤差範囲内にあるとき、上記主軸に加工指令
を与え、許容誤差範囲を超えるとき、上記主軸に加工中
止指令を与える穴位置チェック手段とを備えたことを特
徴とする穴あけ加工装置。
3. A drilling apparatus for drilling a workpiece using a spindle having a drilling axis and a positioning axis, grid data expanding means for expanding a hole drilling position from a design data into a matrix, and drilling. When the value obtained by dividing the number by the number of times of positioning times the number of machining axes is used as the axis efficiency, the axis efficiency is calculated based on the information of the hole machining position developed in the matrix, and a drilling command creating means for giving a machining command to the spindle is provided. And, the command from the drilling command creating means and the information from the grid data expanding means are matched, and when the drilling position is within the allowable error range, a machining command is given to the spindle, and when the allowable error range is exceeded, A drilling machine comprising: a hole position checking means for giving a machining stop command to a spindle.
【請求項4】 穴あけ加工軸と位置決め軸とを備えた主
軸を用いて被加工物に穴あけ加工を行う穴あけ加工装置
において、上記被加工物の穴あけ加工中、上記主軸に異
常が発生したとき、正常な穴あけ加工軸を用いて穴あけ
加工を行わせ、正常な穴あけ加工軸が穴あけ加工を終了
した後、加工を中断していた穴に対して上記正常な穴あ
け加工軸を用いて穴あけ加工させる指令を上記主軸に与
える追加工手段を備えたことを特徴とする穴あけ加工装
置。
4. A drilling apparatus for drilling a workpiece using a spindle having a drilling axis and a positioning axis, wherein when an error occurs in the spindle during drilling of the workpiece. A command to perform drilling using a normal drilling axis, and after the normal drilling axis has completed drilling, to perform drilling using the normal drilling axis for the hole for which processing has been interrupted. A drilling device, comprising an additional machining means for applying a pressure to the spindle.
【請求項5】 穴あけ加工軸と位置決め軸とを備えた主
軸を用いて被加工物に穴あけ加工を行う穴あけ加工装置
において、設計データから穴加工位置をマトリックスに
展開する格子データ展開手段と、穴あけ数を位置決め回
数×加工軸数で割った値を軸効率とするとき、その軸効
率を上記マトリックスに展開した穴加工位置の情報に基
づいて算出して上記主軸に加工指令を与える穴あけ指令
作成手段と、この穴あけ指令作成手段から指令された穴
あけ回数をカウントし、穴あけ回数が予め定められた回
数を超えているとき、上記主軸に交換指令を出す工具寿
命管理手段と、上記穴あけ指令作成手段からの指令と上
記格子データ展開手段からの情報とを突き合わせ、穴加
工位置が許容誤差範囲内にあるとき、上記主軸に加工指
令を与え、許容誤差範囲を超えるとき、上記主軸に加工
中止指令を与える穴位置チェック手段と、上記被加工物
の穴あけ加工中、上記主軸に異常が発生したとき、正常
な穴あけ加工軸を用いて穴加工を行わせ、正常な穴あけ
加工軸が穴あけ加工を終了した後、加工を中断していた
穴に対して上記正常な穴あけ加工軸を用いて穴あけ加工
させる指令を上記主軸に与える追加工手段とを備えたこ
とを特徴とする穴あけ加工装置。
5. A drilling apparatus for drilling a workpiece using a spindle having a drilling axis and a positioning axis, grid data developing means for developing a drilling position from a design data into a matrix, and drilling. When the value obtained by dividing the number by the number of times of positioning times the number of machining axes is used as the axis efficiency, the axis efficiency is calculated based on the information of the hole machining position developed in the matrix, and a drilling command creating means for giving a machining command to the spindle is provided. And, counting the number of drilling commanded from the drilling command creation means, when the number of drilling exceeds a predetermined number, tool life management means for issuing a replacement command to the spindle, and from the drilling command creation means Is compared with the information from the grid data expanding means, and when the hole machining position is within the allowable error range, a machining command is given to the spindle, and the allowable error A hole position check means for giving a machining stop command to the main spindle when the main shaft is exceeded, and when an abnormality occurs in the main spindle during boring of the workpiece, a hole is drilled using a normal boring axis. After the normal drilling axis has completed drilling, additional machining means for giving a command to the spindle to perform drilling using the normal drilling axis for the hole for which processing has been interrupted. Drilling machine characterized by the following.
【請求項6】 穴あけ指令作成手段は、格子データ展開
手段からの情報に基づいて穴あけ加工段数がピッチ数×
主軸数で表わした主軸間の最大ストロークの範囲を超え
るとき、穴あけ加工を分割して処理し、主軸間の最大ス
トロークの範囲内にあるとき、穴あけ加工を一括処理す
る選択処理手段と、穴あけ加工の一列分の段数を主軸数
で割った値の整数値を主軸間のピッチとし、この主軸間
ピッチから最小設定ピッチと最大設定ピッチとを算出す
る主軸間ピッチ候補算出手段と、この主軸間ピッチ候補
からの情報に基づいて第1主軸間ピッチと第2主軸間ピ
ッチとを算出する2主軸間ピッチ算出手段と、第1主軸
間ピッチと第2主軸間ピッチとを組み合わせて計算し、
最高の軸効率を算出する軸効率算出手段とを備えたこと
を特徴とする請求項1,2,3または5記載の穴あけ加
工装置。
6. A drilling command creating means, wherein the number of drilling steps is the number of pitches × the number of pitches based on information from the grid data expanding means.
Selection processing means for dividing and processing drilling when the maximum stroke between the spindles represented by the number of spindles is exceeded, and batch processing when drilling within the maximum stroke between the spindles, and drilling An inter-spindle pitch candidate calculating means for calculating an integer value of a value obtained by dividing the number of stages in one row by the number of spindles as a pitch between the spindles, and calculating a minimum set pitch and a maximum set pitch from the pitch between the spindles; A first inter-main-axis pitch calculating means for calculating a first inter-main-axis pitch and a second inter-main-axis pitch based on information from the candidate;
6. The drilling apparatus according to claim 1, further comprising: a shaft efficiency calculating means for calculating a maximum shaft efficiency.
【請求項7】 穴あけ指令作成手段は、格子データ展開
手段からの情報に基づいて穴あけ加工段数がピッチ数×
主軸数で表わした主軸間の最大ストロークの範囲を超え
るとき、穴あけ加工を分割して処理し、主軸間の最大ス
トロークの範囲内にあるとき、穴あけ加工を一括処理す
る処理手段と、穴あけ加工の一列分の段数を主軸数で割
った整数値を主軸間のピッチとし、この主軸ピッチから
最小設定ピッチと最大設定ピッチとを算出し、これら最
小設定ピッチおよび最大設定ピッチの情報に基づいて上
記穴あけ加工の行毎の主軸間ピッチを算出する手段とを
備えたことを特徴とする請求項1,2,3または5記載
の穴あけ加工装置。
7. The drilling command creating means, based on information from the grid data expanding means, determines that the number of drilling steps is the number of pitches ×
When the maximum stroke between the spindles represented by the number of spindles is exceeded, the drilling process is divided and processed, and when the maximum stroke between the spindles is within the range of the maximum stroke, a processing means for batch-processing the drilling, and a drilling process. An integer value obtained by dividing the number of stages in one row by the number of spindles is defined as a pitch between the spindles, a minimum setting pitch and a maximum setting pitch are calculated from the spindle pitch, and the above-described drilling is performed based on the information of the minimum setting pitch and the maximum setting pitch. 6. A drilling apparatus according to claim 1, further comprising means for calculating a pitch between the spindles for each row of processing.
【請求項8】 穴あけ加工軸と位置決め軸とを備えた主
軸を用いて被加工物に穴あけ加工を行う際、設計データ
から穴あけ加工位置をマトリックスに展開するととも
に、格子状の交点に配置する一方、穴あけ数を位置決め
回数×加工軸数で割った値を軸効率とするとき、その軸
効率を上記格子状の交点に配置した穴加工位置の情報に
基づいて算出して上記主軸に与えることを特徴とする穴
あけ加工方法。
8. When drilling a workpiece using a spindle having a drilling axis and a positioning axis, a drilling position is developed in a matrix from design data and arranged at a grid-like intersection. When the value obtained by dividing the number of drillings by the number of times of positioning times the number of machining axes is defined as the axis efficiency, the axis efficiency is calculated based on the information of the hole machining positions arranged at the lattice-shaped intersections, and given to the spindle. Characteristic drilling method.
【請求項9】 穴あけ加工軸と位置決め軸とを備えた主
軸を用いて被加工物に穴あけ加工を行う際、設計データ
から穴加工位置をマトリックスに展開するとともに、格
子状の交点に配置する一方、穴あけ数を位置決め回数×
加工軸数で割った値を軸効率とするとき、その軸効率を
上記格子状の交点に配置した穴加工位置の情報に基づい
て算出して上記主軸に加工指令を与えるとともに、この
加工指令から穴あけ回数をカウントし、穴あけ回数が予
め定められた回数を超えているとき、上記主軸に交換指
令を出すことを特徴とする穴あけ加工方法。
9. When drilling a workpiece using a spindle having a drilling axis and a positioning axis, a drilling position is developed in a matrix from design data and arranged at a grid-like intersection. , The number of drilling times the number of positioning times
When the value divided by the number of machining axes is used as the axis efficiency, the axis efficiency is calculated based on the information of the hole machining position arranged at the lattice-shaped intersection, and the machining command is given to the main spindle, and from this machining command A drilling method characterized by counting the number of drillings and issuing an exchange command to the spindle when the number of drillings exceeds a predetermined number.
【請求項10】 穴あけ加工軸と位置決め軸とを備えた
主軸を用いて被加工物に穴あけ加工を行う際、設計デー
タから穴加工位置をマトリックスに展開するとともに、
格子状の交点に配置する一方、穴あけ数と位置決め回数
×加工軸数で割った値を軸効率とするとき、その軸効率
を上記格子状の交点に配置した穴加工位置の情報に基づ
いて算出して上記主軸に加工指令を与えるとともに、こ
の加工指令と上記格子状の交点に配置した穴加工位置の
情報とを突き合わせ、穴あけ位置が許容誤差範囲内にあ
るとき、上記主軸に加工指令を与え、許容誤差範囲を超
えるとき、上記主軸に加工中止指令を与えることを特徴
とする穴あけ加工方法。
10. When drilling a workpiece using a spindle having a drilling axis and a positioning axis, a drilling position is developed in a matrix from design data,
When the axis efficiency is determined by dividing the number of drilling times and the number of positioning times the number of processing axes, while arranging the grid efficiency at the lattice-shaped intersection, the axis efficiency is calculated based on the information of the hole processing position arranged at the lattice-shaped intersection. The machining command is given to the spindle, and the machining command is compared with the information of the hole machining position arranged at the lattice-shaped intersection, and when the drilling position is within the allowable error range, the machining command is given to the spindle. A drilling method, wherein a machining stop command is given to the spindle when the allowable error range is exceeded.
【請求項11】 穴あけ加工軸と位置決め軸とを備えた
主軸を用いて被加工物に穴あけ加工を行う際、上記被加
工物の穴あけ加工中、上記主軸に異常が発生したとき、
正常な穴あけ加工軸を用いて穴あけ加工を行わせ、正常
な穴あけ加工軸が穴あけ加工を終了した後、加工を中断
していた穴に対して上記正常な穴あけ加工軸を用いて穴
あけ加工させる指令を上記主軸に与えることを特徴とす
る穴あけ加工方法。
11. When drilling a workpiece using a spindle having a drilling axis and a positioning axis, when an error occurs in the spindle during drilling of the workpiece,
A command to perform drilling using a normal drilling axis, and after the normal drilling axis has completed drilling, to perform drilling using the normal drilling axis for the hole for which processing has been interrupted. A drilling method, characterized in that:
【請求項12】 穴あけ加工軸と位置決め軸とを備えた
主軸を用いて被加工物に穴あけ加工を行う際、設計デー
タから穴加工位置をマトリックスに展開するとともに、
格子状の交点に配置する一方、穴あけ数を位置決め回数
×加工軸数で割った値を軸効率とするとき、その軸効率
を上記格子状の交点に配置した穴加工位置の情報に基づ
いて算出して上記主軸に加工指令を与えるとともに、こ
の加工指令から穴あけ回数をカウントし、穴あけ回数が
予め定められた回数を超えているとき、上記主軸に交換
指令を出し、さらに、上記加工指令と上記格子状の交点
に配置した穴加工位置の情報とを突き合わせ、穴加工位
置が許容誤差範囲内にあるとき、上記主軸に加工指令を
与え、許容誤差範囲を超えるとき、上記主軸に加工中止
指令を与える一方、上記被加工物の穴あけ加工中、上記
主軸に異常が発生したとき、正常な穴あけ加工軸を用い
て穴加工を行わせ、正常な穴あけ加工軸が穴あけ加工を
終了した後、加工を中断していた穴に対して上記正常な
穴あけ加工軸を用いて穴あけ加工させる指令を上記主軸
に与えることを特徴とする穴あけ加工方法。
12. When drilling a workpiece using a spindle having a drilling axis and a positioning axis, a drilling position is developed in a matrix from design data,
When arranging the number of drillings by the number of times of positioning times the number of processing axes as the axis efficiency while arranging them at the grid-shaped intersection, the axis efficiency is calculated based on the information of the hole processing positions arranged at the grid-shaped intersection. While giving a machining command to the spindle, counting the number of drilling from this machining command, when the number of drilling exceeds a predetermined number, issues a replacement command to the spindle, further, the machining command and the When the hole machining position is within the allowable error range, a machining command is given to the spindle, and when the hole machining position exceeds the allowable error range, a machining stop command is issued to the spindle when the hole machining position is within the allowable error range. On the other hand, during the drilling of the workpiece, when an abnormality occurs in the spindle, the drilling is performed using a normal drilling shaft, and after the normal drilling shaft finishes the drilling, the machining is performed. Drilling method a command to drilling with the normal drilling axis with respect to the hole that has been suspended, characterized in that applied to the spindle.
JP2000267586A 2000-09-04 2000-09-04 Device and method for boring Pending JP2002073132A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000267586A JP2002073132A (en) 2000-09-04 2000-09-04 Device and method for boring
CNB01131317XA CN1173788C (en) 2000-09-04 2001-09-04 Hole punching device and hole punching method
CN 200410077172 CN1285429C (en) 2000-09-04 2001-09-04 Hole punching device and hole punching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267586A JP2002073132A (en) 2000-09-04 2000-09-04 Device and method for boring

Publications (1)

Publication Number Publication Date
JP2002073132A true JP2002073132A (en) 2002-03-12

Family

ID=18754490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267586A Pending JP2002073132A (en) 2000-09-04 2000-09-04 Device and method for boring

Country Status (2)

Country Link
JP (1) JP2002073132A (en)
CN (2) CN1173788C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116652014A (en) * 2023-08-01 2023-08-29 江苏宏宝工具有限公司 Punching processing method and system of tool pliers

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764482B (en) * 2008-12-10 2012-11-28 抚顺煤矿电机制造有限责任公司 Processing method of bracket holes of tunneller type asynchronous motor
JP5405160B2 (en) * 2009-03-23 2014-02-05 東芝機械株式会社 Deep hole machining method and deep hole machining apparatus
CN102830655B (en) * 2012-08-27 2014-06-18 济南铸造锻压机械研究所有限公司 System and method of adaptive die for ventral punching of U-shaped beam
CN102830656B (en) * 2012-08-27 2014-03-19 济南铸造锻压机械研究所有限公司 System and method for double punching of ventral punching production line
CN103034201A (en) * 2012-12-07 2013-04-10 宁波通诚电气有限公司 High-strength bus shell production line punching controlling method
CN103240327A (en) * 2013-04-19 2013-08-14 江苏力天新能源科技有限公司 Punching method of power battery connectors
CN103302172B (en) * 2013-06-21 2015-03-18 济南铸造锻压机械研究所有限公司 Machining method and system of intelligent adapting mold for flat plate punching production line
CN105404240B (en) * 2015-12-29 2018-03-16 博众精工科技股份有限公司 A kind of AutoCAD map files automatically generate and the method for quicksort position coordinate
JP6867336B2 (en) * 2018-07-17 2021-04-28 ファナック株式会社 Numerical control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116652014A (en) * 2023-08-01 2023-08-29 江苏宏宝工具有限公司 Punching processing method and system of tool pliers
CN116652014B (en) * 2023-08-01 2023-10-31 江苏宏宝工具有限公司 Punching processing method and system of tool pliers

Also Published As

Publication number Publication date
CN1342533A (en) 2002-04-03
CN1583313A (en) 2005-02-23
CN1173788C (en) 2004-11-03
CN1285429C (en) 2006-11-22

Similar Documents

Publication Publication Date Title
CN102736559B (en) The corrected value operational method of lathe and the control device of lathe
CN108594760B (en) Produce and process control system, production and processing control method and storage equipment
US7751991B2 (en) System for determining the wear state of a machine tool
JP2002073132A (en) Device and method for boring
JPH0321299B2 (en)
CN1669044A (en) Method and computer program for automated design and manufacture of custom workholding fixtures requiring machining of substantially unique mounting geometries
CN101960457A (en) Method and device for composite machining
JP2005100327A (en) Cnc manufacturing system having central data bank
CN104959633A (en) Tool alignment method of precision machining lathe
CN108572630B (en) Production management device and production system
US10739760B2 (en) Control system
CN103213030A (en) Processing tool and processing method for novel net rack bolt ball
US20020103551A1 (en) Multipurpose processing program and NC processing machine using the same
KR102188017B1 (en) Measurement and Management System for Mold Manufacture Machine
CN104950803A (en) Method and apparatus for controlling machine tool
JPH0899252A (en) Hole machining positioning path preparation in cad/cam system
WO1990001735A1 (en) Machining data display system
CN114518726A (en) Post-processing development method and device of four-axis semi-numerical control machine tool and numerical control machine tool equipment
JPWO2020084671A1 (en) Maintenance support system, numerical control device and maintenance support system control method
JP3092744B2 (en) Processing system
JPH0916236A (en) Nc control system
JPS60201857A (en) Multiple machining control of machine tool
JPH06312347A (en) Nc machine tool
Liu et al. Improving Machining Accuracy of Thin-Wall Parts Using the Information-Localizing Technology
KR100472299B1 (en) Method for controlling a machining tool information of a computer numerical control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Effective date: 20060911

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061204

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218